
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security-Review Report runc 11.-12.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, N. Hippert, J. Larsson,
MSc. D. Weißer, MSc. N. Krein, MSc. F. Fäßler

Index
Introduction

Scope

Test Methodology

Phase 1: General security posture checks

Phase 2: Manual code auditing

Phase 1: General security posture checks

Application/Service/Project Specifics

Language Specifics

External Libraries & Frameworks

Configuration Concerns

Access Control

Logging/Monitoring

Unit/Regression Testing

Documentation

Organization/Team/Infrastructure Specifics

Security Contact

Security Fix Handling

Bug Bounty

Bug Tracking & Review Process

Evaluating the Overall Posture

Phase 2: Manual code auditing & pentesting

Mounting/Binding and Symlinks

Identified Vulnerabilities

RUN-01-001 Race-condition bypassing masked paths (High)

Conclusions & Verdict

Cure53, Berlin · 12/06/19 1/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“runc is a CLI tool for spawning and running containers according to the OCI
specification.”

From https://github.com/opencontainers/runc

This report describes the results of a security assessment and a review of the general
security posture found on the runc software complex and its surroundings. The project
was requested and sponsored by CNCF as a common part of the CNCF project
graduation process. Within the frames of well-established cooperation, the project was
awarded to Cure53, which investigated the runc scope in terms of security processes,
response and infrastructure.

The work was carried out by seven members of the Cure53 team in November and
December 2019, with a total budget standing at eighteen person-days. From the star,
the work was split into two different phases, with Phase 1 focused on General security
posture checks and Phase 2 dedicated to Manual code auditing aimed at finding
implementation-related issues that can lead to security bugs. Cure53 worked in close
collaboration with the runc team and the communications during the engagement took
place in a dedicated channel of the Docker Slack workspace. The Cure53 team was
invited to join the exchanges in that channel by the maintainers. In general,
communications were productive, yet the scope was very clear and not many questions
had to be asked.

By coincidence, Cure53 received information about a possible race condition
vulnerability present in the runc codebase at the time when this assessment was in
progress. This unusual opportunity was used to first analyze the alleged issue and
create a working PoC. Secondly, it served as a specific case of a bug initially found by a
third-party, giving Cure53 a front-row seat to observing and evaluating the disclosure
process. Perspectives of the original finder and the reaction of the runc team upon
getting access to the bug report could be investigated and, thanks to this real-life
example of an actual vulnerability spotted by a third party, Cure53 gathered empirical
evidence on optimizing the process at the runc entities in the future.

In the following sections, the report will first present the areas featured in the test’s
scope in more detail, zooming in on the proposed structure of the two phases delineated
above. The report is enriched by Cure53 describing the evaluated areas and explaining
the methodology of the executed tests in more detail. The aforementioned accidentally
covered real-life issue, together with the relevant PoC and credit for the original finder, is
then documented. Cure53 additionally furnishes mitigation advice, so to ascertain that

Cure53, Berlin · 12/06/19 2/16

https://cure53.de/
https://github.com/opencontainers/runc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the runc team can address this hard-to-find and tricky problem. The report closes with a
conclusion in which Cure53 summarizes this 2019 project and issues a verdict about the
security premise of the investigated runc scope.

Scope
• runc v1.0.0-rc9

◦ runc codebase
▪ https://github.com/opencontainers/runc/tree/master
▪ Commit: 46def4cc4cb7bae86d8c80cedd43e96708218f0a

◦ runc project’s security posture and maturity levels

Test Methodology
The following paragraphs describe the metrics and methodologies used to evaluate the
security posture of the runc project and codebase. In addition, it includes results for
individual areas of the project’s security properties that were either selected by Cure53
or singled out by other involved parties as needing a closer inspection.

As noted in the Introduction, the test was divided into two phases, each fulfilling different
goals. In the first phase, the focus was on the general security posture of the code and
the project. Furthermore, Cure53 examined the processes that the runc development
team has made available for security reports, also as relates disclosure and general
hardening approaches. In the second phase, the work has shifted to the manual source
code review of specific code areas.

Phase 1: General security posture checks

In this component of the assessment, Cure53 looked at the General security posture of
the runc project and inspected the overall code quality from a meta-level perspective.
Some of the indicators taken into account encompassed test coverage, security
vulnerability disclosure process, approaches to threat modeling and general code
hardening measures. The sum of observations from across these areas have been used
to describe the maturity levels of this project at a meta-level, independently of the
security qualities of the provided code and created binaries.

Later chapters in this report will dive into the details of the inspected items, justifying
these choices and presenting the results in the specific case of the runc software project.

Cure53, Berlin · 12/06/19 3/16

https://cure53.de/
https://github.com/opencontainers/runc/tree/master
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Phase 2: Manual code auditing

For this component, Cure53 performed a Small-scale code review and attempted to
identify security-relevant areas of the project’s codebase and inspect them for common
flaws.

Unlike standard processes in a usual penetration test and code audit, this phase only
took a few days. As such, it was a brief rather than an in-depth inspection. It should be
seen as an initial probing aimed at evaluating whether more thorough code audits should
be recommended. The goal was not to reach an extensive coverage but to gain an
impression about the overall quality. The completed tasks assist Cure53 in making a
judgment call as to whether runc needs additional tests and what kinds of tests these
could be.

Later chapters in this report will shed more light on what was being inspected, why and
with what implications for the runc software complex.

Phase 1: General security posture checks
This phase is meant to provide a more detailed overview of the runc project’s security
properties that are seen as somewhat separate from both the code and the runc
software itself. To facilitate clear flow and understanding, this section is divided into two
subsections, where the first part consists of elements specific to the application and the
project. The second part looks at the elements linked more strongly to the
organizational/team aspect. Lastly, each aspect below is taken into account and an
evaluation of the overall security posture is based on cross-comparative analysis of all
observations and findings.

• A general high-level code audit was undertaken to arrive at a solid judgment of
the entire runc project, in particular with the task of checking for unsafe patterns
and coding styles.

• The complete project structure was analyzed; the main call flow was mapped; the
individual sub-components were enumerated and the supported platforms were
checked.

• The project’s external and third-party dependencies were cross-checked for
problematic components.

• The provided documentation was examined in order to learn about the provided
functionality and the depth of instructions available to the developer.

• Relevant runtime- and environment-specifications were examined in connection
with the general project solution domain.

Cure53, Berlin · 12/06/19 4/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Past vulnerability reports and postings were checked to see in which areas
certain errors had previously emerged, also in assessing the likelihood of their
reappearance.

• An in-depth static code analysis was carried out to check for applicability of
automated measures. The scan results were verified for usability.

• The project’s maturity was evaluated; specific questions about the software were
compiled from a general catalog according to individual applicability.

Application/Service/Project Specifics

In this section, Cure53 will describe the areas that were inspected to get an impression
on the application-specific aspects that lead to a good security posture, such as choice
of programming language, selection and oversight of external third-party libraries, as
well as other technical aspects like logging, monitoring, test coverage and access
control.

Language Specifics

Programming languages can provide functions that pose an inherent security risk and
their use is either deprecated or discouraged. For example, strcpy() in C has led to many
security issues in the past and should be avoided altogether. Another example would be
the manual construction of SQL queries versus the usage of prepared statements. The
choice of language and enforcing the usage of proper API functions are therefore crucial
for the overall security of the project.

runc is written in Go, which inherently provides memory safety and broadly offers a
higher level of security in comparison to e.g. C/C++. This is further underlined by only
making use of the Go’s unsafe package if absolutely necessary, in particular when
interfacing with the operating system. The code is written with best practices in mind,
which helps not only with auditing, but also with maintenance. The above indicators
contribute to a healthy security posture and seem well-understood and properly spread
throughout the runc codebase. Specific examples include:

• Nesting being avoided by handling errors first;
• Separating test-cases from code;
• Documenting all relevant code;
• Keeping documentation/items concise;
• Separating independent packages;
• Avoiding unnecessary repetitions.

The usage of unsafe is limited on runc to syscall functionality where unsafe pointers are
absolutely required and implementation cannot be achieved otherwise. The unsafe

Cure53, Berlin · 12/06/19 5/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

constructs are solely used as pointers for return values from prctl() and similar low-level
system calls.

Though some vendor code containing dangerous-looking marshalling code (see
cilium/ebpf/marshalers.go) was identified, those fragments are apparently not actively
used anywhere in the production codebase.

External Libraries & Frameworks

While external libraries and frameworks can also contain vulnerabilities, it is nonetheless
beneficial to rely on sophisticated libraries instead of reinventing the wheel with every
project. This is especially true for cryptographic implementations, since those are known
to be prone to errors.

runc makes use of external libraries, therefore avoiding reimplementation of already
existing solutions. Since runc is heavily dependent on functionalities that are exposed by
the Linux kernel, it makes extensive use of third-party packages like
golang.org/x/sys/unix to provide a more portable interface to the underlying operating
system. To safeguard a good alternative for file system interactions, packages like
filepath-securejoin are used as well. Generally no concerns were found to be present in
the used third-party packages. All appear to be widely recognized by the community and
appear to be under active development.

Configuration Concerns

Complex and adaptable software systems usually have many variable options which can
be configured according to the actually deployed application necessities. While this is a
very flexible approach, it also leaves immense room for mistakes. As such, it often
creates the need for additional and detailed documentation, in particular when it comes
to security.

Containers created with runc can have security pitfalls due to the flexibility of the
configurations. Those pitfalls are not explicitly addressed by the documentation and
require deep knowledge about Linux to even have a general awareness about them.
Examples for such pitfalls are described in the following paragraphs.

In a default setup, runc makes the hosts dmesg output available inside the containers
unless kernel.dmesg_restrict=1 is set on the host system. It includes information about
the kernel, which means that in some cases it might disclose certain details to an
attacker. This especially holds for an adversary who already has access to a runc
container and needs more information in order to escape the environment. There is no
reason why this information should be retrievable from a sealed container. Such

Cure53, Berlin · 12/06/19 6/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

information leaks can easily be prevented by blocking the respective syslog system call
via seccomp and this is highly advised.

The /proc filesystem is a special virtual filesystem included in Linux. It generally requires
being mounted inside a container because a lot of software relies on it. It is also the
place where security settings like AppArmor are applied and files that have direct effect
on the underlying system are exposed. In essence, the /proc/sys/kernel/core_pattern file
controls how core files are handled when a process crashes. It also allows to specify a
command that is executed, thus it could potentially be used to break out of the container.
That is why the default config generated by runc spec, as well as configs from Docker
and podman, specify that paths like /proc/sys need to be remounted as read-only.
Because this is not documented, new projects that build upon runc might not be aware
of this danger and may forget to include the read-only settings. It is recommended to
follow up on this issue.

Another nuance is shown in RUN-01-001, where the order of mounts can have a large
security impact. podman mounts shared volumes before the /proc filesystem, enabling
the race condition in the first place, even though the Docker configs mount the /proc
filesystem first. The proposed revision of the sequence is not a guaranteed fix to the
underlying issue, but it does mitigate the specific PoC.

It should also be noted that the race condition uses a shared volume, though runc
configs can also define the same rootfs for multiple containers. Using the same rootfs
allows a race condition independent from the mount order. Implementations such as
Docker and podman define unique rootfs for each container, and thus do not suffer from
this issue. However, a new project using runc might not be aware of the risk in a shared
rootfs.

Because of the described security-relevant issues, It is recommended to provide better
default configuration files and add exhaustive explanations of security considerations to
the shipped documentation.

Access Control

Whenever an application needs to perform a privileged action, it is crucial that an access
control model is in place to ensure that appropriate permissions are present. Further, if
the application provides an external interface for interaction purposes, some form of
separation and access control may be required.

runc has a divided access control model in place, which makes the topic of access
control rather complex. The framework itself offers a subset of functionality that can be
configured in order to limit access for running containers. The general access control

Cure53, Berlin · 12/06/19 7/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

model is shared between the hosts responsible for implementation and runc. By default,
runc offers the possibility to run rootless containers as well as build tags, which control
individual access for a given container.

Logging/Monitoring

Having a good logging/monitoring system in place allows developers and users to
identify potential issues more easily or get an idea of what is going wrong. It can also
provide security-relevant information, for example when a verification of a signature fails.
Consequently, having such a system in place has a positive influence on the project.

runc makes use of logrus1, a structured logging system that is compatible with Golang’s
standard library logger. Although logrus offers a transparent API that replaces the
standard logging functionality, runc explicitly invokes logrus when needed. It would make
sense to centralize its usage by globally overriding the intrinsic log feature. This is
because then uniform logging could be consistently applied throughout the entire
codebase. Despite this rather small point of critique, runc tries to make sure that every
error is explicitly caught in log files. This additionally counts for the newly created
container namespaces and child processes which rely on logpipes. Container events are
equally treated via the events command line interface. A useful addition, though likely
hard to implement, would be a mechanism for logging exploitation attempts. Considering
previous breakout exploits that abuse vulnerabilities such as CVE-2019-5736, it might
make sense to include a warning mechanism that makes administrators aware of
attackers that try to abuse previous vulnerabilities.

Unit/Regression Testing

While tests are essential for any project, their importance grows with the scale of the
endeavor. Especially for large-scale compounds, testing ensures that functionality is not
broken by code changes. Further, it generally facilitates the premise where features
function the way they are supposed to. Regression tests also help guarantee that
previously disclosed vulnerabilities do not get reintroduced into the codebase. Testing is
therefore essential for the overall security of the project.

A containerized unit- and integration-tester are shipped by runc and can easily be
invoked via the package-provided makefile. This speeds up building test environments
by making sure that necessary environments are present. While integration tests are
centralized in runc’s codebase, unit-testing is spread out across a multitude of project
files, thus making it harder to recognize whether specific functionalities are covered by
unit-testing scripts or not. At the same time, unit-testing looks fine and covers areas
ranging from config parsing to cgroups handling, as well as filesystem tests for
containers. However, regression testing is missing, especially as regards assessment of

1 https://github.com/sirupsen/logrus

Cure53, Berlin · 12/06/19 8/16

https://cure53.de/
https://github.com/sirupsen/logrus
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

whether fixes for previously disclosed vulnerabilities remain valid. Despite requiring
additional engineering effort, reifying that is highly recommended.

Documentation

Good documentation contributes greatly to the overall state of the project. It can ease
the workflow and ensure final quality of the code. For example, having a coding
guideline which is strictly enforced during the patch review process ensures that the
code is readable and can be easily understood by a spectrum of developers. Following
good conventions can also reduce the risk of introducing bugs and vulnerabilities to the
code.

The runc project makes a relatively positive impression as far as the existing
documentation is concerned. While a good amount of information is present, it is
somewhat scattered around and makes it hard to obtain a full picture of the software
complex. Thus, it is possible to overlook one or the other documented pitfall. On the one
hand, it may also be advantageous to get more detailed descriptions of the function of
the namespaces and cgroups in relation to runc. On the other hand, highly sensible
development principles2 and equally detailed maintainer guidelines3 underline the
earnest approach the developers are taking.

Organization/Team/Infrastructure Specifics

This section will describe the areas Cure53 looked at to find out about the security
qualities of the runc project that cannot be linked to the code and software but rather
encompass handling of incidents. As such, it tackles the level of preparedness for critical
bug reports within the runc development team. In addition, Cure53 also investigated the
degree of community involvement, i.e. through the use of bug bounty programs. While a
good level of code quality is paramount for a good security posture, the processes and
implementations around it can also make a difference in the final assessment of the
security posture.

Security Contact

To ensure a secure and responsible disclosure of security vulnerabilities, it is important
to have a dedicated point of contact. This person/team should be known, meaning that
all necessary information such as an email address and preferably also encryption keys
of that contact should be communicated appropriately.

2 https://github.com/opencontainers/runc/blob/master/PRINCIPLES.md
3 https://github.com/opencontainers/runc/blob/master/MAINTAINERS_GUIDE.md

Cure53, Berlin · 12/06/19 9/16

https://cure53.de/
https://github.com/opencontainers/runc/blob/master/MAINTAINERS_GUIDE.md
https://github.com/opencontainers/runc/blob/master/PRINCIPLES.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Alongside security notes4, runc offers the relevant contact’s email address
(security@opencontainers.org). However, the document omits important details, such as
the respective PGP keys and an outline of the disclosure process. Upon handling the
reporting of the vulnerability described in RUN-01-001, Cure53 found the response times
unsatisfactory. Specifically, an answer was only issued after additional inquiry. A
seemingly completely unrelated email address for handling security requests
(secalert@redhat.com) was provided by the developers later in the process. As such, it
is highly recommended to improve this area, first by making sure security researchers
can encrypt their reports by including a PGP key and, secondly, by making sure that the
reporting and disclosure processes are transparently outlined. A revised strategy in this
realm will make it easier for the researchers to understand the type of information to
include and which answers they can expect when.

Security Fix Handling

When fixing vulnerabilities in a public repository, it should not be obvious that a particular
commit addresses a security issue. Moreover, the commit message should not give a
detailed explanation of the issue. This would allow an attacker to construct an exploit
based on the patch and the provided commit message prior to the public disclosure of
the vulnerability. This means that there is a window of opportunity for attackers between
public disclosure and wide-spread patching or updating of vulnerable systems.
Additionally, as part of the public disclosure process, a system should be in place to
notify users about fixed vulnerabilities.

Both SECURITY.md and CONTRIBUTING.md of runc discourage filing of vulnerabilities
directly into GitHub. They rather propose sending an email to the appropriate security
contact. runc additionally employs a mailing list meant for distribution vendors to share
actionable information when severe security issues occur. This is a good practice and
makes sure that distributions are notified early on about upcoming security fixes.
Usually, this increases the pace of supplying updated packages. Fixed vulnerabilities are
easily identified in their respective GitHub commits. While not being tagged accordingly,
they typically mention the related CVE number, so that a clear connection between the
fix and vulnerability can unfortunately be made easily.

Bug Bounty

Having a bug bounty program acts as a great incentive in rewarding researchers and
getting them interested in projects. Especially for large and complex projects that require
a lot of time to get familiar with the codebase, bug bounties work on the basis of the
potential reward for efforts.

4 https://github.com/opencontainers/org/tree/master/security

Cure53, Berlin · 12/06/19 10/16

https://cure53.de/
mailto:secalert@redhat.com
mailto:security@opencontainers.org
https://github.com/opencontainers/org/tree/master/security
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The runc project does not have a bug bounty program at present, however this should
not be strictly viewed in a negative way. This is because bug bounty programs require
additional resources and management, which are not always a given for all projects.
However, if resources become available, establishing a bug bounty program for runc
should be considered. It is believed that such a program could provide a lot of value to
the project.

Bug Tracking & Review Process

A system for tracking bug reports or issues is essential for prioritizing and delegating
work. Additionally, having a review process ensures that no unintentional code, possibly
malicious code, is introduced into the codebase. This makes good tracking and review
into two core characteristics of a healthy codebase.

In runc, bugs which are not security-related should be handled via GitHub and users are
able to directly submit pull requests. The developers seem to have a firm grip on the
process of submitting, triaging and reviewing such changes.

Evaluating the Overall Posture

In general, the security posture of runc makes a good impression, as it can be derived
from the judgments made about the individual items above. The short code audit and the
history of previous vulnerabilities clearly show that there is not too much reason for
concern. The handling of a security issues should probably be improved and could
benefit from the incentives for reporting security issues. Nevertheless, the project has a
good stance when it comes to its overall security posture.

Choosing Go has been a great decision and automatically reduces the potential for
introducing memory safety-related issues. Additionally, the rather complete
documentation along with the established processes for patch reviews further reduce the
risk of security vulnerabilities. A topic worth-mentioning is that of a bug bounty program:
since these require good funding, it is understandable that smaller projects are likely
unable to secure these. However, with future growth of the project and potentially
increased resources, bug bounty scheme should definitely be considered.

Cure53, Berlin · 12/06/19 11/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Phase 2: Manual code auditing & pentesting
This section comments on the code auditing coverage within areas of special interest
and documents the steps undertaken during the second phase of the audit against the
runc software complex. Cure53 describes the key aspects of the manual code audit
together with manual pentesting and, since only one major issue was spotted, attests to
the thoroughness of the audit and confirms the high quality of the runc project.

• runc was partially manually pentested on the server generously provided by the
development team and partially examined on local systems.

• A variety of container setups have been created to gain a deeper understanding
of the outer and inner workings of runc.

• The code responsible for dealing with mount-points was explicitly audited for
common exploitation possibilities.

• Derailing runc by using symlinks was attempted in the context of the /dev
filesystem but this could not be achieved.

• Abusing core dumping to the host via symlinks along with spawning zombie
process while killing their parent processes has led nowhere.

• It was audited to what extent interfering with the /proc filesystem could lead to
AppArmor not being applied correctly.

• It was checked if any privileged processes were reaching into containers with the
intent of escaping the respective container by default.

• Several typical runc invocations were traced to see which operations and
especially system calls are being used to create a container.

• It was attempted to locate TOCTOU errors in handling files/path; the
EnsureProcHandle() is used properly.

• It was investigated what the impact of shared namespaces would be, but failing
to join mount/pid namespaces5 stopped these efforts.

• The access controls handled by runc were audited to figure out what the
expectations on the host system are.

• The integration of CRIU with respect to abusing its invocation via runc-
checkpoint and runc-restore was investigated.

• The codebase was audited for all aspects of terminal attachment functionality, in
particular process invocation and the recvtty/console code were examined.

• The runc code was audited for problems in check-pointing and handling of root
filesystems.

• The code handling of Intel RDT was given extra care, especially as regards file-
handling and filesystem/scheme writing.

• The file path normalization code down the Go core library was audited. It was
seen as pretty straightforward and purely lexical, with no potential for affecting
symlinks.

• The securejoin code was analyzed and pentested with respect to symlinks in file
paths, including some core library functionality.

5 https://github.com/opencontainers/runc/issues/1700

Cure53, Berlin · 12/06/19 12/16

https://cure53.de/
https://github.com/opencontainers/runc/issues/1700
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Mounting/Binding and Symlinks

The code responsible for mounting volumes and binding filesystems was inspected,
particularly in connection with symlinks and filename/path traversal/normalization.
Cure53 was making sure it was impossible to escape out of a container via the
filesystem. This was given extra care, since it had been pointed out as a focus area by
the runc development team. In essence, one maintainer requested looking for ‘ways to
escape containers via symlinks and mounts from within the root filesystem’ and ‘binding
/mnt to /mnt inside the container, /mnt being a traversing link akin to ../../’.

While no obvious vulnerabilities in the core library could be identified, the discussion of
these efforts nevertheless indirectly led to the discovery of RUN-01-001 by the
independent party, namely Leopold Schabel (leoluk).

It has to be noted that the applied path-based approach used within the runc codebase
is generally not race-safe, even as far as the application of the filepath-securejoin
package is concerned. These path aspects, quite prone to race-conditions, should
eventually be reworked to handle paths via filedescriptors and cease using textual file
paths, as evidenced by the related issue6.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. RUN-01-001) for the purpose of facilitating any
future follow-up correspondence.

RUN-01-001 Race-condition bypassing masked paths (High)

Through relationships to various security researchers, an interesting opportunity for a
security review emerged. Leopold Schabel (aka leoluk), who had previously reported an
issue as a publicly disclosed runc7 vulnerability, discovered a race-condition involving
two containers that can be used to bypass the read-only remounting of the potentially
dangerous /proc filesystem paths.

The issue was reported by the discoverer at midnight UTC on the 26th/27th of
November 2019 and has been included in the documented security mailing list of
security@opencontainers.org. The steps to reproduce the issue with podman can be

6 https://github.com/containers/crun/issues/111
7 https://github.com/opencontainers/runc/issues/2128

Cure53, Berlin · 12/06/19 13/16

https://cure53.de/
mailto:security@opencontainers.org
https://github.com/opencontainers/runc/issues/2128
https://github.com/containers/crun/issues/111
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

found on the respective gist. Additional reproduction steps for runc are available by
following the link.

The attack requires a rootfs in container-2 where /proc is symlinked to a folder like
/evil/layer/proc. This target folder has to be inside of a volume shared by container-1 and
container-2. When container-2 is started, runc will first mount procfs by following the
symlink into the shared volume to /evil/layer/proc. Then container-1 has to win a race
condition, whereas container-1 switches the mount-point from /evil/layer/proc to
/evil/layer~/proc. This means the procfs in container-2 is now in /evil/layer~/proc, and not
in /evil/layer/proc. However, runc trusts the path and continues with the setup. Eventually
runc will remount dangerous procfs paths as read-only, yet does so by following the
symlink into the normal folder at /evil/layer/proc. This means that the dangerous procfs
paths were not remounted as read-only. After container-1 switches the mount point
back, container-2 gains a writable access to the dangerous procfs paths.

During this investigation, the discoverer also realized that the fix for issue #2128,
specifically the function EnsureProcHandle(), could also be bypassed with this attack.
Symlinks can be used to point critical files like /proc/self/attr/%s to other procfs files, thus
passing the checks. However, runc will write AppArmor settings to the wrong file.

It should be noted that these issues are very difficult to fix because file paths are
inherently prone to race conditions. For general file handling, it is advised to work with
filedescriptors rather than paths, but there is no equivalent mount syscall that takes
filedescriptors. Documenting these risks and attack surface can help projects building on
top of runc while mitigating such issues. This can be done, for example, by using much
more restrictive configurations.

Cure53, Berlin · 12/06/19 14/16

https://cure53.de/
https://gist.github.com/LiveOverflow/c937820b688922eb127fb760ce06dab9
https://gist.github.com/LiveOverflow/c937820b688922eb127fb760ce06dab9
https://gist.github.com/leoluk/82965ad9df58247202aa0e1878439092
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions & Verdict
This assessment of the runc complex generally concludes on a positive note. Cure53,
represented in this assessment by a team of seven testers, can conclude that the project
held well to scrutiny and exhibits numerous indicators of taking security seriously. After
being commissioned to perform this assessment by CNCF and having spent eighteen
days on the scope, Cure53 arrived at positive verdict for both phases of the project.
Consequently, it can be stated that the runc complex passed general security posture
checks (Phase 1) and exposed no major mistakes in its coding practices (Phase 2).

To give some context, this is one in a series of high-level assessments created by
Cure53 for a CNCF-selected project, which contraposes classic code audits and
pentests. From the meta-level of code quality and project structure to the employed
coding patterns and coherent style, the runc project is quite impressive. Offering a
verdict, Cure53 must underline that the runc processes and documentation are of high
quality, even though some room for improvement has been identified. The state of the
software system is sound and mature.

Among the main positive conclusions, Cure53 wishes to point out that the static code
analysis did not reveal any problems of significance, meaning that automated testing will
most likely not yield results with the current state of technology. The choice of
implementation language and external components further attests to the solid stance of
the system. The general design principles and development guidelines are highly
sensible and unusual in that sense.

In terms of items that are currently evaluated as possibly calling for further attention,
Cure53 needs to note the lack of proper regression testing and the seemingly
unstructured application of unit-tests within the codebase. Those should be reconsidered
together with the redesign of documentation, which was found somewhat difficult to
maneuver, in particular as regards the configuration notes being scattered.

The sole security issue discovered by a third-party during this engagement was used to
test the security incident handling processes. This generally appeared to be subpar,
since the reaction times were slow and the actual handling was referred to a contact
person who is not documented in the project’s security guidelines. In this context, even if
the resources for the project are clearly limited, the creation of a bug bounty program
would be greatly beneficial to incentivize security researcher community. The race
condition described in RUN-01-001 uncovered a general problem of handling file paths
textually. It is recommended to rethink the approach and possibly replace it with a
filedescriptor-based solution to make it race-safe.

Cure53, Berlin · 12/06/19 15/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Drawing on the findings stemming from this 2019 CNCF-funded project, Cure53 can
state that the runc project is mature and safe, even though improving some aspects
would lead to a greater praise. Notably, runc is being used widely in the container- and
orchestration-realm, and this seems to be for very good reasons. The project can only
be recommended for continued large-scale deployment. Ongoing development
according to the minimal design principles and maintainer guidelines should keep the
system solid in a long-term

Cure53 would like to thank Michael Crosby and Philip Estes from the runc team as well
as Chris Aniszczyk of The Linux Foundation, for their excellent project coordination,
support and assistance, both before and during this assignment. Special gratitude also
needs to be extended to The Linux Foundation for sponsoring this project.

Cure53, Berlin · 12/06/19 16/16

https://cure53.de/
mailto:mario@cure53.de

	Security-Review Report runc 11.-12.2019
	Index
	Introduction
	Scope
	Test Methodology
	Phase 1: General security posture checks
	Phase 2: Manual code auditing

	Phase 1: General security posture checks
	Application/Service/Project Specifics
	Language Specifics
	External Libraries & Frameworks
	Configuration Concerns
	Access Control
	Logging/Monitoring
	Unit/Regression Testing
	Documentation

	Organization/Team/Infrastructure Specifics
	Security Contact
	Security Fix Handling
	Bug Bounty
	Bug Tracking & Review Process

	Evaluating the Overall Posture

	Phase 2: Manual code auditing & pentesting
	Mounting/Binding and Symlinks

	Identified Vulnerabilities
	RUN-01-001 Race-condition bypassing masked paths (High)

	Conclusions & Verdict

