XZ Utils Release Notes ====================== 5.4.6 (2024-01-26) * Fixed a bug involving internal function pointers in liblzma not being initialized to NULL. The bug can only be triggered if lzma_filters_update() is called on a LZMA1 encoder, so it does not affect xz or any application known to us that uses liblzma. * xz: - Fixed a regression introduced in 5.4.2 that caused encoding in the raw format to unnecessarily fail if --suffix was not used. For instance, the following command no longer reports that --suffix must be used: echo foo | xz --format=raw --lzma2 | wc -c - Fixed an issue on MinGW-w64 builds that prevented reading from or writing to non-terminal character devices like NUL. * Added a new test. 5.4.5 (2023-11-01) * liblzma: - Use __attribute__((__no_sanitize_address__)) to avoid address sanitization with CRC64 CLMUL. It uses 16-byte-aligned reads which can extend past the bounds of the input buffer and inherently trigger address sanitization errors. This isn't a bug. - Fixed an assertion failure that could be triggered by a large unpadded_size argument. It was verified that there was no other bug than the assertion failure. - Fixed a bug that prevented building with Windows Vista threading when __attribute__((__constructor__)) is not supported. * xz now properly handles special files such as "con" or "nul" on Windows. Before this fix, the following wrote "foo" to the console and deleted the input file "con_xz": echo foo | xz > con_xz xz --suffix=_xz --decompress con_xz * Build systems: - Allow builds with Windows win95 threading and small mode when __attribute__((__constructor__)) is supported. - Added a new line to liblzma.pc for MSYS2 (Windows): Cflags.private: -DLZMA_API_STATIC When compiling code that will link against static liblzma, the LZMA_API_STATIC macro needs to be defined on Windows. - CMake specific changes: * Fixed a bug that allowed CLOCK_MONOTONIC to be used even if the check for it failed. * Fixed a bug where configuring CMake multiple times resulted in HAVE_CLOCK_GETTIME and HAVE_CLOCK_MONOTONIC not being set. * Fixed the build with MinGW-w64-based Clang/LLVM 17. llvm-windres now has more accurate GNU windres emulation so the GNU windres workaround from 5.4.1 is needed with llvm-windres version 17 too. * The import library on Windows is now properly named "liblzma.dll.a" instead of "libliblzma.dll.a" * Fixed a bug causing the Ninja Generator to fail on UNIX-like systems. This bug was introduced in 5.4.0. * Added a new option to disable CLMUL CRC64. * A module-definition (.def) file is now created when building liblzma.dll with MinGW-w64. * The pkg-config liblzma.pc file is now installed on all builds except when using MSVC on Windows. * Added large file support by default for platforms that need it to handle files larger than 2 GiB. This includes MinGW-w64, even 64-bit builds. * Small fixes and improvements to the tests. * Updated translations: Chinese (simplified) and Esperanto. 5.4.4 (2023-08-02) * liblzma and xzdec can now build against WASI SDK when threading support is disabled. xz and tests don't build yet. * CMake: - Fixed a bug preventing other projects from including liblzma multiple times using find_package(). - Don't create broken symlinks in Cygwin and MSYS2 unless supported by the environment. This prevented building for the default MSYS2 environment. The problem was introduced in xz 5.4.0. * Documentation: - Small improvements to man pages. - Small improvements and typo fixes for liblzma API documentation. * Tests: - Added a new section to INSTALL to describe basic test usage and address recent questions about building the tests when cross compiling. - Small fixes and improvements to the tests. * Translations: - Fixed a mistake that caused one of the error messages to not be translated. This only affected versions 5.4.2 and 5.4.3. - Updated the Chinese (simplified), Croatian, Esperanto, German, Korean, Polish, Romanian, Spanish, Swedish, Ukrainian, and Vietnamese translations. - Updated the German, Korean, Romanian, and Ukrainian man page translations. 5.4.3 (2023-05-04) * All fixes from 5.2.12 * Features in the CMake build can now be disabled as CMake cache variables, similar to the Autotools build. * Minor update to the Croatian translation. 5.4.2 (2023-03-18) * All fixes from 5.2.11 that were not included in 5.4.1. * If xz is built with support for the Capsicum sandbox but running in an environment that doesn't support Capsicum, xz now runs normally without sandboxing instead of exiting with an error. * liblzma: - Documentation was updated to improve the style, consistency, and completeness of the liblzma API headers. - The Doxygen-generated HTML documentation for the liblzma API header files is now included in the source release and is installed as part of "make install". All JavaScript is removed to simplify license compliance and to reduce the install size. - Fixed a minor bug in lzma_str_from_filters() that produced too many filters in the output string instead of reporting an error if the input array had more than four filters. This bug did not affect xz. * Build systems: - autogen.sh now invokes the doxygen tool via the new wrapper script doxygen/update-doxygen, unless the command line option --no-doxygen is used. - Added microlzma_encoder.c and microlzma_decoder.c to the VS project files for Windows and to the CMake build. These should have been included in 5.3.2alpha. * Tests: - Added a test to the CMake build that was forgotten in the previous release. - Added and refactored a few tests. * Translations: - Updated the Brazilian Portuguese translation. - Added Brazilian Portuguese man page translation. 5.4.1 (2023-01-11) * liblzma: - Fixed the return value of lzma_microlzma_encoder() if the LZMA options lc/lp/pb are invalid. Invalid lc/lp/pb options made the function return LZMA_STREAM_END without encoding anything instead of returning LZMA_OPTIONS_ERROR. - Windows / Visual Studio: Workaround a possible compiler bug when targeting 32-bit x86 and compiling the CLMUL version of the CRC64 code. The CLMUL code isn't enabled by the Windows project files but it is in the CMake-based builds. * Build systems: - Windows-specific CMake changes: * Don't try to enable CLMUL CRC64 code if _mm_set_epi64x() isn't available. This fixes CMake-based build with Visual Studio 2013. * Created a workaround for a build failure with windres from GNU binutils. It is used only when the C compiler is GCC (not Clang). The workaround is incompatible with llvm-windres, resulting in "XZx20Utils" instead of "XZ Utils" in the resource file, but without the workaround llvm-windres works correctly. See the comment in CMakeLists.txt for details. * Included the resource files in the xz and xzdec build rules. Building the command line tools is still experimental but possible with MinGW-w64. - Visual Studio: Added stream_decoder_mt.c to the project files. Now the threaded decompressor lzma_stream_decoder_mt() gets built. CMake-based build wasn't affected. - Updated windows/INSTALL-MSVC.txt to mention that CMake-based build is now the preferred method with Visual Studio. The project files will probably be removed after 5.4.x releases. - Changes to #defines in config.h: * HAVE_DECL_CLOCK_MONOTONIC was replaced by HAVE_CLOCK_MONOTONIC. The old macro was always defined in configure-generated config.h to either 0 or 1. The new macro is defined (to 1) only if the declaration of CLOCK_MONOTONIC is available. This matches the way most other config.h macros work and makes things simpler with other build systems. * HAVE_DECL_PROGRAM_INVOCATION_NAME was replaced by HAVE_PROGRAM_INVOCATION_NAME for the same reason. * Tests: - Fixed test script compatibility with ancient /bin/sh versions. Now the five test_compress_* tests should no longer fail on Solaris 10. - Added and refactored a few tests. * Translations: - Updated the Catalan and Esperanto translations. - Added Korean and Ukrainian man page translations. 5.4.0 (2022-12-13) This bumps the minor version of liblzma because new features were added. The API and ABI are still backward compatible with liblzma 5.2.x and 5.0.x. Since 5.3.5beta: * All fixes from 5.2.10. * The ARM64 filter is now stable. The xz option is now --arm64. Decompression requires XZ Utils 5.4.0. In the future the ARM64 filter will be supported by XZ for Java, XZ Embedded (including the version in Linux), LZMA SDK, and 7-Zip. * Translations: - Updated Catalan, Croatian, German, Romanian, and Turkish translations. - Updated German man page translations. - Added Romanian man page translations. Summary of new features added in the 5.3.x development releases: * liblzma: - Added threaded .xz decompressor lzma_stream_decoder_mt(). It can use multiple threads with .xz files that have multiple Blocks with size information in Block Headers. The threaded encoder in xz has always created such files. Single-threaded encoder cannot store the size information in Block Headers even if one used LZMA_FULL_FLUSH to create multiple Blocks, so this threaded decoder cannot use multiple threads with such files. If there are multiple Streams (concatenated .xz files), one Stream will be decompressed completely before starting the next Stream. - A new decoder flag LZMA_FAIL_FAST was added. It makes the threaded decompressor report errors soon instead of first flushing all pending data before the error location. - New Filter IDs: * LZMA_FILTER_ARM64 is for ARM64 binaries. * LZMA_FILTER_LZMA1EXT is for raw LZMA1 streams that don't necessarily use the end marker. - Added lzma_str_to_filters(), lzma_str_from_filters(), and lzma_str_list_filters() to convert a preset or a filter chain string to a lzma_filter[] and vice versa. These should make it easier to write applications that allow users to specify custom compression options. - Added lzma_filters_free() which can be convenient for freeing the filter options in a filter chain (an array of lzma_filter structures). - lzma_file_info_decoder() to makes it a little easier to get the Index field from .xz files. This helps in getting the uncompressed file size but an easy-to-use random access API is still missing which has existed in XZ for Java for a long time. - Added lzma_microlzma_encoder() and lzma_microlzma_decoder(). It is used by erofs-utils and may be used by others too. The MicroLZMA format is a raw LZMA stream (without end marker) whose first byte (always 0x00) has been replaced with bitwise-negation of the LZMA properties (lc/lp/pb). It was created for use in EROFS but may be used in other contexts as well where it is important to avoid wasting bytes for stream headers or footers. The format is also supported by XZ Embedded (the XZ Embedded version in Linux got MicroLZMA support in Linux 5.16). The MicroLZMA encoder API in liblzma can compress into a fixed-sized output buffer so that as much data is compressed as can be fit into the buffer while still creating a valid MicroLZMA stream. This is needed for EROFS. - Added lzma_lzip_decoder() to decompress the .lz (lzip) file format version 0 and the original unextended version 1 files. Also lzma_auto_decoder() supports .lz files. - lzma_filters_update() can now be used with the multi-threaded encoder (lzma_stream_encoder_mt()) to change the filter chain after LZMA_FULL_BARRIER or LZMA_FULL_FLUSH. - In lzma_options_lzma, allow nice_len = 2 and 3 with the match finders that require at least 3 or 4. Now it is internally rounded up if needed. - CLMUL-based CRC64 on x86-64 and E2K with runtime processor detection. On 32-bit x86 it currently isn't available unless --disable-assembler is used which can make the non-CLMUL CRC64 slower; this might be fixed in the future. - Building with --disable-threads --enable-small is now thread-safe if the compiler supports __attribute__((__constructor__)). * xz: - Using -T0 (--threads=0) will now use multi-threaded encoder even on a single-core system. This is to ensure that output from the same xz binary is identical on both single-core and multi-core systems. - --threads=+1 or -T+1 is now a way to put xz into multi-threaded mode while using only one worker thread. The + is ignored if the number is not 1. - A default soft memory usage limit is now used for compression when -T0 is used and no explicit limit has been specified. This soft limit is used to restrict the number of threads but if the limit is exceeded with even one thread then xz will continue with one thread using the multi-threaded encoder and this limit is ignored. If the number of threads is specified manually then no default limit will be used; this affects only -T0. This change helps on systems that have very many cores and using all of them for xz makes no sense. Previously xz -T0 could run out of memory on such systems because it attempted to reserve memory for too many threads. This also helps with 32-bit builds which don't have a large amount of address space that would be required for many threads. The default soft limit for -T0 is at most 1400 MiB on all 32-bit platforms. - Previously a low value in --memlimit-compress wouldn't cause xz to switch from multi-threaded mode to single-threaded mode if the limit cannot otherwise be met; xz failed instead. Now xz can switch to single-threaded mode and then, if needed, scale down the LZMA2 dictionary size too just like it already did when it was started in single-threaded mode. - The option --no-adjust no longer prevents xz from scaling down the number of threads as that doesn't affect the compressed output (only performance). Now --no-adjust only prevents adjustments that affect compressed output, that is, with --no-adjust xz won't switch from multi-threaded mode to single-threaded mode and won't scale down the LZMA2 dictionary size. - Added a new option --memlimit-mt-decompress=LIMIT. This is used to limit the number of decompressor threads (possibly falling back to single-threaded mode) but it will never make xz refuse to decompress a file. This has a system-specific default value because without any limit xz could end up allocating memory for the whole compressed input file, the whole uncompressed output file, multiple thread-specific decompressor instances and so on. Basically xz could attempt to use an insane amount of memory even with fairly common files. The system-specific default value is currently the same as the one used for compression with -T0. The new option works together with the existing option --memlimit-decompress=LIMIT. The old option sets a hard limit that must not be exceeded (xz will refuse to decompress) while the new option only restricts the number of threads. If the limit set with --memlimit-mt-decompress is greater than the limit set with --memlimit-compress, then the latter value is used also for --memlimit-mt-decompress. - Added new information to the output of xz --info-memory and new fields to the output of xz --robot --info-memory. - In --lzma2=nice=NUMBER allow 2 and 3 with all match finders now that liblzma handles it. - Don't mention endianness for ARM and ARM-Thumb filters in --long-help. The filters only work for little endian instruction encoding but modern ARM processors using big endian data access still use little endian instruction encoding. So the help text was misleading. In contrast, the PowerPC filter is only for big endian 32/64-bit PowerPC code. Little endian PowerPC would need a separate filter. - Added decompression support for the .lz (lzip) file format version 0 and the original unextended version 1. It is autodetected by default. See also the option --format on the xz man page. - Sandboxing enabled by default: * Capsicum (FreeBSD) * pledge(2) (OpenBSD) * Scripts now support the .lz format using xz. * A few new tests were added. * The liblzma-specific tests are now supported in CMake-based builds too ("make test"). 5.3.5beta (2022-12-01) * All fixes from 5.2.9. * liblzma: - Added new LZMA_FILTER_LZMA1EXT for raw encoder and decoder to handle raw LZMA1 streams that don't have end of payload marker (EOPM) alias end of stream (EOS) marker. It can be used in filter chains, for example, with the x86 BCJ filter. - Added lzma_str_to_filters(), lzma_str_from_filters(), and lzma_str_list_filters() to make it easier for applications to get custom compression options from a user and convert it to an array of lzma_filter structures. - Added lzma_filters_free(). - lzma_filters_update() can now be used with the multi-threaded encoder (lzma_stream_encoder_mt()) to change the filter chain after LZMA_FULL_BARRIER or LZMA_FULL_FLUSH. - In lzma_options_lzma, allow nice_len = 2 and 3 with the match finders that require at least 3 or 4. Now it is internally rounded up if needed. - ARM64 filter was modified. It is still experimental. - Fixed LTO build with Clang if -fgnuc-version=10 or similar was used to make Clang look like GCC >= 10. Now it uses __has_attribute(__symver__) which should be reliable. * xz: - --threads=+1 or -T+1 is now a way to put xz into multi-threaded mode while using only one worker thread. - In --lzma2=nice=NUMBER allow 2 and 3 with all match finders now that liblzma handles it. * Updated translations: Chinese (simplified), Korean, and Turkish. 5.3.4alpha (2022-11-15) * All fixes from 5.2.7 and 5.2.8. * liblzma: - Minor improvements to the threaded decoder. - Added CRC64 implementation that uses SSSE3, SSE4.1, and CLMUL instructions on 32/64-bit x86 and E2K. On 32-bit x86 it's not enabled unless --disable-assembler is used but then the non-CLMUL code might be slower. Processor support is detected at runtime so this is built by default on x86-64 and E2K. On these platforms, if compiler flags indicate unconditional CLMUL support (-msse4.1 -mpclmul) then the generic version is not built, making liblzma 8-9 KiB smaller compared to having both versions included. With extremely compressible files this can make decompression up to twice as fast but with typical files 5 % improvement is a more realistic expectation. The CLMUL version is slower than the generic version with tiny inputs (especially at 1-8 bytes per call, but up to 16 bytes). In normal use in xz this doesn't matter at all. - Added an experimental ARM64 filter. This is *not* the final version! Files created with this experimental version won't be supported in the future versions! The filter design is a compromise where improving one use case makes some other cases worse. - Added decompression support for the .lz (lzip) file format version 0 and the original unextended version 1. See the API docs of lzma_lzip_decoder() for details. Also lzma_auto_decoder() supports .lz files. - Building with --disable-threads --enable-small is now thread-safe if the compiler supports __attribute__((__constructor__)) * xz: - Added support for OpenBSD's pledge(2) as a sandboxing method. - Don't mention endianness for ARM and ARM-Thumb filters in --long-help. The filters only work for little endian instruction encoding but modern ARM processors using big endian data access still use little endian instruction encoding. So the help text was misleading. In contrast, the PowerPC filter is only for big endian 32/64-bit PowerPC code. Little endian PowerPC would need a separate filter. - Added --experimental-arm64. This will be renamed once the filter is finished. Files created with this experimental filter will not be supported in the future! - Added new fields to the output of xz --robot --info-memory. - Added decompression support for the .lz (lzip) file format version 0 and the original unextended version 1. It is autodetected by default. See also the option --format on the xz man page. * Scripts now support the .lz format using xz. * Build systems: - New #defines in config.h: HAVE_ENCODER_ARM64, HAVE_DECODER_ARM64, HAVE_LZIP_DECODER, HAVE_CPUID_H, HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR, HAVE_USABLE_CLMUL - New configure options: --disable-clmul-crc, --disable-microlzma, --disable-lzip-decoder, and 'pledge' is now an option in --enable-sandbox (but it's autodetected by default anyway). - INSTALL was updated to document the new configure options. - PACKAGERS now lists also --disable-microlzma and --disable-lzip-decoder as configure options that must not be used in builds for non-embedded use. * Tests: - Fix some of the tests so that they skip instead of fail if certain features have been disabled with configure options. It's still not perfect. - Other improvements to tests. * Updated translations: Croatian, Finnish, Hungarian, Polish, Romanian, Spanish, Swedish, and Ukrainian. 5.3.3alpha (2022-08-22) * All fixes from 5.2.6. * liblzma: - Fixed 32-bit build. - Added threaded .xz decompressor lzma_stream_decoder_mt(). It can use multiple threads with .xz files that have multiple Blocks with size information in Block Headers. The threaded encoder in xz has always created such files. Single-threaded encoder cannot store the size information in Block Headers even if one used LZMA_FULL_FLUSH to create multiple Blocks, so this threaded decoder cannot use multiple threads with such files. If there are multiple Streams (concatenated .xz files), one Stream will be decompressed completely before starting the next Stream. - A new decoder flag LZMA_FAIL_FAST was added. It makes the threaded decompressor report errors soon instead of first flushing all pending data before the error location. * xz: - Using -T0 (--threads=0) will now use multi-threaded encoder even on a single-core system. This is to ensure that output from the same xz binary is identical on both single-core and multi-core systems. - A default soft memory usage limit is now used for compression when -T0 is used and no explicit limit has been specified. This soft limit is used to restrict the number of threads but if the limit is exceeded with even one thread then xz will continue with one thread using the multi-threaded encoder and this limit is ignored. If the number of threads is specified manually then no default limit will be used; this affects only -T0. This change helps on systems that have very many cores and using all of them for xz makes no sense. Previously xz -T0 could run out of memory on such systems because it attempted to reserve memory for too many threads. This also helps with 32-bit builds which don't have a large amount of address space that would be required for many threads. The default limit is 1400 MiB on all 32-bit platforms with -T0. Now xz -T0 should just work. It might use too few threads in some cases but at least it shouldn't easily run out of memory. It's possible that this will be tweaked before 5.4.0. - Changes to --memlimit-compress and --no-adjust: In single-threaded mode, --memlimit-compress can make xz scale down the LZMA2 dictionary size to meet the memory usage limit. This obviously affects the compressed output. However, if xz was in threaded mode, --memlimit-compress could make xz reduce the number of threads but it wouldn't make xz switch from multi-threaded mode to single-threaded mode or scale down the LZMA2 dictionary size. This seemed illogical. Now --memlimit-compress can make xz switch to single-threaded mode if one thread in multi-threaded mode uses too much memory. If memory usage is still too high, then the LZMA2 dictionary size can be scaled down too. The option --no-adjust was also changed so that it no longer prevents xz from scaling down the number of threads as that doesn't affect compressed output (only performance). After this commit --no-adjust only prevents adjustments that affect compressed output, that is, with --no-adjust xz won't switch from multithreaded mode to single-threaded mode and won't scale down the LZMA2 dictionary size. - Added a new option --memlimit-mt-decompress=LIMIT. This is used to limit the number of decompressor threads (possibly falling back to single-threaded mode) but it will never make xz refuse to decompress a file. This has a system-specific default value because without any limit xz could end up allocating memory for the whole compressed input file, the whole uncompressed output file, multiple thread-specific decompressor instances and so on. Basically xz could attempt to use an insane amount of memory even with fairly common files. The new option works together with the existing option --memlimit-decompress=LIMIT. The old option sets a hard limit that must not be exceeded (xz will refuse to decompress) while the new option only restricts the number of threads. If the limit set with --memlimit-mt-decompress is greater than the limit set with --memlimit-compress, then the latter value is used also for --memlimit-mt-decompress. * Tests: - Added a few more tests. - Added tests/code_coverage.sh to create a code coverage report of the tests. * Build systems: - Automake's parallel test harness is now used to make tests finish faster. - Added the CMake files to the distribution tarball. These were supposed to be in 5.2.5 already. - Added liblzma tests to the CMake build. - Windows: Fix building of liblzma.dll with the included Visual Studio project files. 5.3.2alpha (2021-10-28) This release was made on short notice so that recent erofs-utils can be built with LZMA support without needing a snapshot from xz.git. Thus many pending things were not included, not even updated translations (which would need to be updated for the new --list strings anyway). * All fixes from 5.2.5. * xz: - When copying metadata from the source file to the destination file, don't try to set the group (GID) if it is already set correctly. This avoids a failure on OpenBSD (and possibly on a few other OSes) where files may get created so that their group doesn't belong to the user, and fchown(2) can fail even if it needs to do nothing. - The --keep option now accepts symlinks, hardlinks, and setuid, setgid, and sticky files. Previously this required using --force. - Split the long strings used in --list and --info-memory modes to make them much easier for translators. - If built with sandbox support and enabling the sandbox fails, xz will now immediately exit with exit status of 1. Previously it would only display a warning if -vv was used. - Cap --memlimit-compress to 2000 MiB on MIPS32 because on MIPS32 userspace processes are limited to 2 GiB of address space. * liblzma: - Added lzma_microlzma_encoder() and lzma_microlzma_decoder(). The API is in lzma/container.h. The MicroLZMA format is a raw LZMA stream (without end marker) whose first byte (always 0x00) has been replaced with bitwise-negation of the LZMA properties (lc/lp/pb). It was created for use in EROFS but may be used in other contexts as well where it is important to avoid wasting bytes for stream headers or footers. The format is also supported by XZ Embedded. The MicroLZMA encoder API in liblzma can compress into a fixed-sized output buffer so that as much data is compressed as can be fit into the buffer while still creating a valid MicroLZMA stream. This is needed for EROFS. - Added fuzzing support. - Support Intel Control-flow Enforcement Technology (CET) in 32-bit x86 assembly files. - Visual Studio: Use non-standard _MSVC_LANG to detect C++ standard version in the lzma.h API header. It's used to detect when "noexcept" can be used. * Scripts: - Fix exit status of xzdiff/xzcmp. Exit status could be 2 when the correct value is 1. - Fix exit status of xzgrep. - Detect corrupt .bz2 files in xzgrep. - Add zstd support to xzgrep and xzdiff/xzcmp. - Fix less(1) version detection in xzless. It failed if the version number from "less -V" contained a dot. * Fix typos and technical issues in man pages. * Build systems: - Windows: Fix building of resource files when config.h isn't used. CMake + Visual Studio can now build liblzma.dll. - Various fixes to the CMake support. It might still need a few more fixes even for liblzma-only builds. 5.3.1alpha (2018-04-29) * All fixes from 5.2.4. * Add lzma_file_info_decoder() into liblzma and use it in xz to implement the --list feature. * Capsicum sandbox support is enabled by default where available (FreeBSD >= 10). 5.2.10 (2022-12-13) * xz: Don't modify argv[] when parsing the --memlimit* and --block-list command line options. This fixes confusing arguments in process listing (like "ps auxf"). * GNU/Linux only: Use __has_attribute(__symver__) to detect if that attribute is supported. This fixes build on Mandriva where Clang is patched to define __GNUC__ to 11 by default (instead of 4 as used by Clang upstream). 5.2.9 (2022-11-30) * liblzma: - Fixed an infinite loop in LZMA encoder initialization if dict_size >= 2 GiB. (The encoder only supports up to 1536 MiB.) - Fixed two cases of invalid free() that can happen if a tiny allocation fails in encoder re-initialization or in lzma_filters_update(). These bugs had some similarities with the bug fixed in 5.2.7. - Fixed lzma_block_encoder() not allowing the use of LZMA_SYNC_FLUSH with lzma_code() even though it was documented to be supported. The sync-flush code in the Block encoder was already used internally via lzma_stream_encoder(), so this was just a missing flag in the lzma_block_encoder() API function. - GNU/Linux only: Don't put symbol versions into static liblzma as it breaks things in some cases (and even if it didn't break anything, symbol versions in static libraries are useless anyway). The downside of the fix is that if the configure options --with-pic or --without-pic are used then it's not possible to build both shared and static liblzma at the same time on GNU/Linux anymore; with those options --disable-static or --disable-shared must be used too. * New email address for bug reports is which forwards messages to Lasse Collin and Jia Tan. 5.2.8 (2022-11-13) * xz: - If xz cannot remove an input file when it should, this is now treated as a warning (exit status 2) instead of an error (exit status 1). This matches GNU gzip and it is more logical as at that point the output file has already been successfully closed. - Fix handling of .xz files with an unsupported check type. Previously such printed a warning message but then xz behaved as if an error had occurred (didn't decompress, exit status 1). Now a warning is printed, decompression is done anyway, and exit status is 2. This used to work slightly before 5.0.0. In practice this bug matters only if xz has been built with some check types disabled. As instructed in PACKAGERS, such builds should be done in special situations only. - Fix "xz -dc --single-stream tests/files/good-0-empty.xz" which failed with "Internal error (bug)". That is, --single-stream was broken if the first .xz stream in the input file didn't contain any uncompressed data. - Fix displaying file sizes in the progress indicator when working in passthru mode and there are multiple input files. Just like "gzip -cdf", "xz -cdf" works like "cat" when the input file isn't a supported compressed file format. In this case the file size counters weren't reset between files so with multiple input files the progress indicator displayed an incorrect (too large) value. * liblzma: - API docs in lzma/container.h: * Update the list of decoder flags in the decoder function docs. * Explain LZMA_CONCATENATED behavior with .lzma files in lzma_auto_decoder() docs. - OpenBSD: Use HW_NCPUONLINE to detect the number of available hardware threads in lzma_physmem(). - Fix use of wrong macro to detect x86 SSE2 support. __SSE2_MATH__ was used with GCC/Clang but the correct one is __SSE2__. The first one means that SSE2 is used for floating point math which is irrelevant here. The affected SSE2 code isn't used on x86-64 so this affects only 32-bit x86 builds that use -msse2 without -mfpmath=sse (there is no runtime detection for SSE2). It improves LZMA compression speed (not decompression). - Fix the build with Intel C compiler 2021 (ICC, not ICX) on Linux. It defines __GNUC__ to 10 but doesn't support the __symver__ attribute introduced in GCC 10. * Scripts: Ignore warnings from xz by using --quiet --no-warn. This is needed if the input .xz files use an unsupported check type. * Translations: - Updated Croatian and Turkish translations. - One new translations wasn't included because it needed technical fixes. It will be in upcoming 5.4.0. No new translations will be added to the 5.2.x branch anymore. - Renamed the French man page translation file from fr_FR.po to fr.po and thus also its install directory (like /usr/share/man/fr_FR -> .../fr). - Man page translations for upcoming 5.4.0 are now handled in the Translation Project. * Update doc/faq.txt a little so it's less out-of-date. 5.2.7 (2022-09-30) * liblzma: - Made lzma_filters_copy() to never modify the destination array if an error occurs. lzma_stream_encoder() and lzma_stream_encoder_mt() already assumed this. Before this change, if a tiny memory allocation in lzma_filters_copy() failed it would lead to a crash (invalid free() or invalid memory reads) in the cleanup paths of these two encoder initialization functions. - Added missing integer overflow check to lzma_index_append(). This affects xz --list and other applications that decode the Index field from .xz files using lzma_index_decoder(). Normal decompression of .xz files doesn't call this code and thus most applications using liblzma aren't affected by this bug. - Single-threaded .xz decoder (lzma_stream_decoder()): If lzma_code() returns LZMA_MEMLIMIT_ERROR it is now possible to use lzma_memlimit_set() to increase the limit and continue decoding. This was supposed to work from the beginning but there was a bug. With other decoders (.lzma or threaded .xz decoder) this already worked correctly. - Fixed accumulation of integrity check type statistics in lzma_index_cat(). This bug made lzma_index_checks() return only the type of the integrity check of the last Stream when multiple lzma_indexes were concatenated. Most applications don't use these APIs but in xz it made xz --list not list all check types from concatenated .xz files. In xz --list --verbose only the per-file "Check:" lines were affected and in xz --robot --list only the "file" line was affected. - Added ABI compatibility with executables that were linked against liblzma in RHEL/CentOS 7 or other liblzma builds that had copied the problematic patch from RHEL/CentOS 7 (xz-5.2.2-compat-libs.patch). For the details, see the comment at the top of src/liblzma/validate_map.sh. WARNING: This uses __symver__ attribute with GCC >= 10. In other cases the traditional __asm__(".symver ...") is used. Using link-time optimization (LTO, -flto) with GCC versions older than 10 can silently result in broken liblzma.so.5 (incorrect symbol versions)! If you want to use -flto with GCC, you must use GCC >= 10. LTO with Clang seems to work even with the traditional __asm__(".symver ...") method. * xzgrep: Fixed compatibility with old shells that break if comments inside command substitutions have apostrophes ('). This problem was introduced in 5.2.6. * Build systems: - New #define in config.h: HAVE_SYMBOL_VERSIONS_LINUX - Windows: Fixed liblzma.dll build with Visual Studio project files. It broke in 5.2.6 due to a change that was made to improve CMake support. - Windows: Building liblzma with UNICODE defined should now work. - CMake files are now actually included in the release tarball. They should have been in 5.2.5 already. - Minor CMake fixes and improvements. * Added a new translation: Turkish 5.2.6 (2022-08-12) * xz: - The --keep option now accepts symlinks, hardlinks, and setuid, setgid, and sticky files. Previously this required using --force. - When copying metadata from the source file to the destination file, don't try to set the group (GID) if it is already set correctly. This avoids a failure on OpenBSD (and possibly on a few other OSes) where files may get created so that their group doesn't belong to the user, and fchown(2) can fail even if it needs to do nothing. - Cap --memlimit-compress to 2000 MiB instead of 4020 MiB on MIPS32 because on MIPS32 userspace processes are limited to 2 GiB of address space. * liblzma: - Fixed a missing error-check in the threaded encoder. If a small memory allocation fails, a .xz file with an invalid Index field would be created. Decompressing such a file would produce the correct output but result in an error at the end. Thus this is a "mild" data corruption bug. Note that while a failed memory allocation can trigger the bug, it cannot cause invalid memory access. - The decoder for .lzma files now supports files that have uncompressed size stored in the header and still use the end of payload marker (end of stream marker) at the end of the LZMA stream. Such files are rare but, according to the documentation in LZMA SDK, they are valid. doc/lzma-file-format.txt was updated too. - Improved 32-bit x86 assembly files: * Support Intel Control-flow Enforcement Technology (CET) * Use non-executable stack on FreeBSD. - Visual Studio: Use non-standard _MSVC_LANG to detect C++ standard version in the lzma.h API header. It's used to detect when "noexcept" can be used. * xzgrep: - Fixed arbitrary command injection via a malicious filename (CVE-2022-1271, ZDI-CAN-16587). A standalone patch for this was released to the public on 2022-04-07. A slight robustness improvement has been made since then and, if using GNU or *BSD grep, a new faster method is now used that doesn't use the old sed-based construct at all. This also fixes bad output with GNU grep >= 3.5 (2020-09-27) when xzgrepping binary files. This vulnerability was discovered by: cleemy desu wayo working with Trend Micro Zero Day Initiative - Fixed detection of corrupt .bz2 files. - Improved error handling to fix exit status in some situations and to fix handling of signals: in some situations a signal didn't make xzgrep exit when it clearly should have. It's possible that the signal handling still isn't quite perfect but hopefully it's good enough. - Documented exit statuses on the man page. - xzegrep and xzfgrep now use "grep -E" and "grep -F" instead of the deprecated egrep and fgrep commands. - Fixed parsing of the options -E, -F, -G, -P, and -X. The problem occurred when multiple options were specified in a single argument, for example, echo foo | xzgrep -Fe foo treated foo as a filename because -Fe wasn't correctly split into -F -e. - Added zstd support. * xzdiff/xzcmp: - Fixed wrong exit status. Exit status could be 2 when the correct value is 1. - Documented on the man page that exit status of 2 is used for decompression errors. - Added zstd support. * xzless: - Fix less(1) version detection. It failed if the version number from "less -V" contained a dot. * Translations: - Added new translations: Catalan, Croatian, Esperanto, Korean, Portuguese, Romanian, Serbian, Spanish, Swedish, and Ukrainian - Updated the Brazilian Portuguese translation. - Added French man page translation. This and the existing German translation aren't complete anymore because the English man pages got a few updates and the translators weren't reached so that they could update their work. * Build systems: - Windows: Fix building of resource files when config.h isn't used. CMake + Visual Studio can now build liblzma.dll. - Various fixes to the CMake support. Building static or shared liblzma should work fine in most cases. In contrast, building the command line tools with CMake is still clearly incomplete and experimental and should be used for testing only. 5.2.5 (2020-03-17) * liblzma: - Fixed several C99/C11 conformance bugs. Now the code is clean under gcc/clang -fsanitize=undefined. Some of these changes might have a negative effect on performance with old GCC versions or compilers other than GCC and Clang. The configure option --enable-unsafe-type-punning can be used to (mostly) restore the old behavior but it shouldn't normally be used. - Improved API documentation of lzma_properties_decode(). - Added a very minor encoder speed optimization. * xz: - Fixed a crash in "xz -dcfv not_an_xz_file". All four options were required to trigger it. The crash occurred in the progress indicator code when xz was in passthru mode where xz works like "cat". - Fixed an integer overflow with 32-bit off_t. It could happen when decompressing a file that has a long run of zero bytes which xz would try to write as a sparse file. Since the build system enables large file support by default, off_t is normally 64-bit even on 32-bit systems. - Fixes for --flush-timeout: * Fix semi-busy-waiting. * Avoid unneeded flushes when no new input has arrived since the previous flush was completed. - Added a special case for 32-bit xz: If --memlimit-compress is used to specify a limit that exceeds 4020 MiB, the limit will be set to 4020 MiB. The values "0" and "max" aren't affected by this and neither is decompression. This hack can be helpful when a 32-bit xz has access to 4 GiB address space but the specified memlimit exceeds 4 GiB. This can happen e.g. with some scripts. - Capsicum sandbox is now enabled by default where available (FreeBSD >= 10). The sandbox debug messages (xz -vv) were removed since they seemed to be more annoying than useful. - DOS build now requires DJGPP 2.05 instead of 2.04beta. A workaround for a locale problem with DJGPP 2.05 was added. * xzgrep and other scripts: - Added a configure option --enable-path-for-scripts=PREFIX. It is disabled by default except on Solaris where the default is /usr/xpg4/bin. See INSTALL for details. - Added a workaround for a POSIX shell detection problem on Solaris. * Build systems: - Added preliminary build instructions for z/OS. See INSTALL section 1.2.9. - Experimental CMake support was added. It should work to build static liblzma on a few operating systems. It may or may not work to build shared liblzma. On some platforms it can build xz and xzdec too but those are only for testing. See the comment in the beginning of CMakeLists.txt for details. - Visual Studio project files were updated. WindowsTargetPlatformVersion was removed from VS2017 files and set to "10.0" in the added VS2019 files. In the future the VS project files will be removed when CMake support is good enough. - New #defines in config.h: HAVE___BUILTIN_ASSUME_ALIGNED, HAVE___BUILTIN_BSWAPXX, and TUKLIB_USE_UNSAFE_TYPE_PUNNING. - autogen.sh has a new optional dependency on po4a and a new option --no-po4a to skip that step. This matters only if one wants to remake the build files. po4a is used to update the translated man pages but as long as the man pages haven't been modified, there's nothing to update and one can use --no-po4a to avoid the dependency on po4a. * Translations: - XZ Utils translations are now handled by the Translation Project: https://translationproject.org/domain/xz.html - All man pages are now included in German too. - New xz translations: Brazilian Portuguese, Finnish, Hungarian, Chinese (simplified), Chinese (traditional), and Danish (partial translation) - Updated xz translations: French, German, Italian, and Polish - Unfortunately a few new xz translations weren't included due to technical problems like too long lines in --help output or misaligned column headings in tables. In the future, many of these strings will be split and e.g. the table column alignment will be handled in software. This should make the strings easier to translate. 5.2.4 (2018-04-29) * liblzma: - Allow 0 as memory usage limit instead of returning LZMA_PROG_ERROR. Now 0 is treated as if 1 byte was specified, which effectively is the same as 0. - Use "noexcept" keyword instead of "throw()" in the public headers when a C++11 (or newer standard) compiler is used. - Added a portability fix for recent Intel C Compilers. - Microsoft Visual Studio build files have been moved under windows/vs2013 and windows/vs2017. * xz: - Fix "xz --list --robot missing_or_bad_file.xz" which would try to print an uninitialized string and thus produce garbage output. Since the exit status is non-zero, most uses of such a command won't try to interpret the garbage output. - "xz --list foo.xz" could print "Internal error (bug)" in a corner case where a specific memory usage limit had been set. 5.2.3 (2016-12-30) * xz: - Always close a file before trying to delete it to avoid problems on some operating system and file system combinations. - Fixed copying of file timestamps on Windows. - Added experimental (disabled by default) sandbox support using Capsicum (FreeBSD >= 10). See --enable-sandbox in INSTALL. * C99/C11 conformance fixes to liblzma. The issues affected at least some builds using link-time optimizations. * Fixed bugs in the rarely-used function lzma_index_dup(). * Use of external SHA-256 code is now disabled by default. It can still be enabled by passing --enable-external-sha256 to configure. The reasons to disable it by default (see INSTALL for more details): - Some OS-specific SHA-256 implementations conflict with OpenSSL and cause problems in programs that link against both liblzma and libcrypto. At least FreeBSD 10 and MINIX 3.3.0 are affected. - The internal SHA-256 is faster than the SHA-256 code in some operating systems. * Changed CPU core count detection to use sched_getaffinity() on GNU/Linux and GNU/kFreeBSD. * Fixes to the build-system and xz to make xz buildable even when encoders, decoders, or threading have been disabled from libilzma using configure options. These fixes added two new #defines to config.h: HAVE_ENCODERS and HAVE_DECODERS. 5.2.2 (2015-09-29) * Fixed bugs in QNX-specific code. * Omitted the use of pipe2() even if it is available to avoid portability issues with some old Linux and glibc combinations. * Updated German translation. * Added project files to build static and shared liblzma (not the whole XZ Utils) with Visual Studio 2013 update 2 or later. * Documented that threaded decompression hasn't been implemented yet. A 5.2.0 NEWS entry describing multi-threading support had incorrectly said "decompression" when it should have said "compression". 5.2.1 (2015-02-26) * Fixed a compression-ratio regression in fast mode of LZMA1 and LZMA2. The bug is present in 5.1.4beta and 5.2.0 releases. * Fixed a portability problem in xz that affected at least OpenBSD. * Fixed xzdiff to be compatible with FreeBSD's mktemp which differs from most other mktemp implementations. * Changed CPU core count detection to use cpuset_getaffinity() on FreeBSD. 5.2.0 (2014-12-21) Since 5.1.4beta: * All fixes from 5.0.8 * liblzma: Fixed lzma_stream_encoder_mt_memusage() when a preset was used. * xzdiff: If mktemp isn't installed, mkdir will be used as a fallback to create a temporary directory. Installing mktemp is still recommended. * Updated French, German, Italian, Polish, and Vietnamese translations. Summary of fixes and new features added in the 5.1.x development releases: * liblzma: - Added support for multi-threaded compression. See the lzma_mt structure, lzma_stream_encoder_mt(), and lzma_stream_encoder_mt_memusage() in , lzma_get_progress() in , and lzma_cputhreads() in for details. - Made the uses of lzma_allocator const correct. - Added lzma_block_uncomp_encode() to create uncompressed .xz Blocks using LZMA2 uncompressed chunks. - Added support for LZMA_IGNORE_CHECK. - A few speed optimizations were made. - Added support for symbol versioning. It is enabled by default on GNU/Linux, other GNU-based systems, and FreeBSD. - liblzma (not the whole XZ Utils) should now be buildable with MSVC 2013 update 2 or later using windows/config.h. * xz: - Fixed a race condition in the signal handling. It was possible that e.g. the first SIGINT didn't make xz exit if reading or writing blocked and one had bad luck. The fix is non-trivial, so as of writing it is unknown if it will be backported to the v5.0 branch. - Multi-threaded compression can be enabled with the --threads (-T) option. [Fixed: This originally said "decompression".] - New command line options in xz: --single-stream, --block-size=SIZE, --block-list=SIZES, --flush-timeout=TIMEOUT, and --ignore-check. - xz -lvv now shows the minimum xz version that is required to decompress the file. Currently it is 5.0.0 for all supported .xz files except files with empty LZMA2 streams require 5.0.2. * xzdiff and xzgrep now support .lzo files if lzop is installed. The .tzo suffix is also recognized as a shorthand for .tar.lzo. 5.1.4beta (2014-09-14) * All fixes from 5.0.6 * liblzma: Fixed the use of presets in threaded encoder initialization. * xz --block-list and --block-size can now be used together in single-threaded mode. Previously the combination only worked in multi-threaded mode. * Added support for LZMA_IGNORE_CHECK to liblzma and made it available in xz as --ignore-check. * liblzma speed optimizations: - Initialization of a new LZMA1 or LZMA2 encoder has been optimized. (The speed of reinitializing an already-allocated encoder isn't affected.) This helps when compressing many small buffers with lzma_stream_buffer_encode() and other similar situations where an already-allocated encoder state isn't reused. This speed-up is visible in xz too if one compresses many small files one at a time instead running xz once and giving all files as command-line arguments. - Buffer comparisons are now much faster when unaligned access is allowed (configured with --enable-unaligned-access). This speeds up encoding significantly. There is arch-specific code for 32-bit and 64-bit x86 (32-bit needs SSE2 for the best results and there's no run-time CPU detection for now). For other archs there is only generic code which probably isn't as optimal as arch-specific solutions could be. - A few speed optimizations were made to the SHA-256 code. (Note that the builtin SHA-256 code isn't used on all operating systems.) * liblzma can now be built with MSVC 2013 update 2 or later using windows/config.h. * Vietnamese translation was added. 5.1.3alpha (2013-10-26) * All fixes from 5.0.5 * liblzma: - Fixed a deadlock in the threaded encoder. - Made the uses of lzma_allocator const correct. - Added lzma_block_uncomp_encode() to create uncompressed .xz Blocks using LZMA2 uncompressed chunks. - Added support for native threads on Windows and the ability to detect the number of CPU cores. * xz: - Fixed a race condition in the signal handling. It was possible that e.g. the first SIGINT didn't make xz exit if reading or writing blocked and one had bad luck. The fix is non-trivial, so as of writing it is unknown if it will be backported to the v5.0 branch. - Made the progress indicator work correctly in threaded mode. - Threaded encoder now works together with --block-list=SIZES. - Added preliminary support for --flush-timeout=TIMEOUT. It can be useful for (somewhat) real-time streaming. For now the decompression side has to be done with something else than the xz tool due to how xz does buffering, but this should be fixed. 5.1.2alpha (2012-07-04) * All fixes from 5.0.3 and 5.0.4 * liblzma: - Fixed a deadlock and an invalid free() in the threaded encoder. - Added support for symbol versioning. It is enabled by default on GNU/Linux, other GNU-based systems, and FreeBSD. - Use SHA-256 implementation from the operating system if one is available in libc, libmd, or libutil. liblzma won't use e.g. OpenSSL or libgcrypt to avoid introducing new dependencies. - Fixed liblzma.pc for static linking. - Fixed a few portability bugs. * xz --decompress --single-stream now fixes the input position after successful decompression. Now the following works: echo foo | xz > foo.xz echo bar | xz >> foo.xz ( xz -dc --single-stream ; xz -dc --single-stream ) < foo.xz Note that it doesn't work if the input is not seekable or if there is Stream Padding between the concatenated .xz Streams. * xz -lvv now shows the minimum xz version that is required to decompress the file. Currently it is 5.0.0 for all supported .xz files except files with empty LZMA2 streams require 5.0.2. * Added an *incomplete* implementation of --block-list=SIZES to xz. It only works correctly in single-threaded mode and when --block-size isn't used at the same time. --block-list allows specifying the sizes of Blocks which can be useful e.g. when creating files for random-access reading. 5.1.1alpha (2011-04-12) * All fixes from 5.0.2 * liblzma fixes that will also be included in 5.0.3: - A memory leak was fixed. - lzma_stream_buffer_encode() no longer creates an empty .xz Block if encoding an empty buffer. Such an empty Block with LZMA2 data would trigger a bug in 5.0.1 and older (see the first bullet point in 5.0.2 notes). When releasing 5.0.2, I thought that no encoder creates this kind of files but I was wrong. - Validate function arguments better in a few functions. Most importantly, specifying an unsupported integrity check to lzma_stream_buffer_encode() no longer creates a corrupt .xz file. Probably no application tries to do that, so this shouldn't be a big problem in practice. - Document that lzma_block_buffer_encode(), lzma_easy_buffer_encode(), lzma_stream_encoder(), and lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK. - The return values of the _memusage() functions are now documented better. * Support for multithreaded compression was added using the simplest method, which splits the input data into blocks and compresses them independently. Other methods will be added in the future. The current method has room for improvement, e.g. it is possible to reduce the memory usage. * Added the options --single-stream and --block-size=SIZE to xz. * xzdiff and xzgrep now support .lzo files if lzop is installed. The .tzo suffix is also recognized as a shorthand for .tar.lzo. * Support for short 8.3 filenames under DOS was added to xz. It is experimental and may change before it gets into a stable release. 5.0.8 (2014-12-21) * Fixed an old bug in xzgrep that affected OpenBSD and probably a few other operating systems too. * Updated French and German translations. * Added support for detecting the amount of RAM on AmigaOS/AROS. * Minor build system updates. 5.0.7 (2014-09-20) * Fix regressions introduced in 5.0.6: - Fix building with non-GNU make. - Fix invalid Libs.private value in liblzma.pc which broke static linking against liblzma if the linker flags were taken from pkg-config. 5.0.6 (2014-09-14) * xzgrep now exits with status 0 if at least one file matched. * A few minor portability and build system fixes 5.0.5 (2013-06-30) * lzmadec and liblzma's lzma_alone_decoder(): Support decompressing .lzma files that have less common settings in the headers (dictionary size other than 2^n or 2^n + 2^(n-1), or uncompressed size greater than 256 GiB). The limitations existed to avoid false positives when detecting .lzma files. The lc + lp <= 4 limitation still remains since liblzma's LZMA decoder has that limitation. NOTE: xz's .lzma support or liblzma's lzma_auto_decoder() are NOT affected by this change. They still consider uncommon .lzma headers as not being in the .lzma format. Changing this would give way too many false positives. * xz: - Interaction of preset and custom filter chain options was made less illogical. This affects only certain less typical uses cases so few people are expected to notice this change. Now when a custom filter chain option (e.g. --lzma2) is specified, all preset options (-0 ... -9, -e) earlier are on the command line are completely forgotten. Similarly, when a preset option is specified, all custom filter chain options earlier on the command line are completely forgotten. Example 1: "xz -9 --lzma2=preset=5 -e" is equivalent to "xz -e" which is equivalent to "xz -6e". Earlier -e didn't put xz back into preset mode and thus the example command was equivalent to "xz --lzma2=preset=5". Example 2: "xz -9e --lzma2=preset=5 -7" is equivalent to "xz -7". Earlier a custom filter chain option didn't make xz forget the -e option so the example was equivalent to "xz -7e". - Fixes and improvements to error handling. - Various fixes to the man page. * xzless: Fixed to work with "less" versions 448 and later. * xzgrep: Made -h an alias for --no-filename. * Include the previously missing debug/translation.bash which can be useful for translators. * Include a build script for Mac OS X. This has been in the Git repository since 2010 but due to a mistake in Makefile.am the script hasn't been included in a release tarball before. 5.0.4 (2012-06-22) * liblzma: - Fix lzma_index_init(). It could crash if memory allocation failed. - Fix the possibility of an incorrect LZMA_BUF_ERROR when a BCJ filter is used and the application only provides exactly as much output space as is the uncompressed size of the file. - Fix a bug in doc/examples_old/xz_pipe_decompress.c. It didn't check if the last call to lzma_code() really returned LZMA_STREAM_END, which made the program think that truncated files are valid. - New example programs in doc/examples (old programs are now in doc/examples_old). These have more comments and more detailed error handling. * Fix "xz -lvv foo.xz". It could crash on some corrupted files. * Fix output of "xz --robot -lv" and "xz --robot -lvv" which incorrectly printed the filename also in the "foo (x/x)" format. * Fix exit status of "xzdiff foo.xz bar.xz". * Fix exit status of "xzgrep foo binary_file". * Fix portability to EBCDIC systems. * Fix a configure issue on AIX with the XL C compiler. See INSTALL for details. * Update French, German, Italian, and Polish translations. 5.0.3 (2011-05-21) * liblzma fixes: - A memory leak was fixed. - lzma_stream_buffer_encode() no longer creates an empty .xz Block if encoding an empty buffer. Such an empty Block with LZMA2 data would trigger a bug in 5.0.1 and older (see the first bullet point in 5.0.2 notes). When releasing 5.0.2, I thought that no encoder creates this kind of files but I was wrong. - Validate function arguments better in a few functions. Most importantly, specifying an unsupported integrity check to lzma_stream_buffer_encode() no longer creates a corrupt .xz file. Probably no application tries to do that, so this shouldn't be a big problem in practice. - Document that lzma_block_buffer_encode(), lzma_easy_buffer_encode(), lzma_stream_encoder(), and lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK. - The return values of the _memusage() functions are now documented better. * Fix command name detection in xzgrep. xzegrep and xzfgrep now correctly use egrep and fgrep instead of grep. * French translation was added. 5.0.2 (2011-04-01) * LZMA2 decompressor now correctly accepts LZMA2 streams with no uncompressed data. Previously it considered them corrupt. The bug can affect applications that use raw LZMA2 streams. It is very unlikely to affect .xz files because no compressor creates .xz files with empty LZMA2 streams. (Empty .xz files are a different thing than empty LZMA2 streams.) * "xz --suffix=.foo filename.foo" now refuses to compress the file due to it already having the suffix .foo. It was already documented on the man page, but the code lacked the test. * "xzgrep -l foo bar.xz" works now. * Polish translation was added. 5.0.1 (2011-01-29) * xz --force now (de)compresses files that have setuid, setgid, or sticky bit set and files that have multiple hard links. The man page had it documented this way already, but the code had a bug. * gzip and bzip2 support in xzdiff was fixed. * Portability fixes * Minor fix to Czech translation 5.0.0 (2010-10-23) Only the most important changes compared to 4.999.9beta are listed here. One change is especially important: * The memory usage limit is now disabled by default. Some scripts written before this change may have used --memory=max on xz command line or in XZ_OPT. THESE USES OF --memory=max SHOULD BE REMOVED NOW, because they interfere with user's ability to set the memory usage limit himself. If user-specified limit causes problems to your script, blame the user. Other significant changes: * Added support for XZ_DEFAULTS environment variable. This variable allows users to set default options for xz, e.g. default memory usage limit or default compression level. Scripts that use xz must never set or unset XZ_DEFAULTS. Scripts should use XZ_OPT instead if they need a way to pass options to xz via an environment variable. * The compression settings associated with the preset levels -0 ... -9 have been changed. --extreme was changed a little too. It is now less likely to make compression worse, but with some files the new --extreme may compress slightly worse than the old --extreme. * If a preset level (-0 ... -9) is specified after a custom filter chain options have been used (e.g. --lzma2), the custom filter chain will be forgotten. Earlier the preset options were completely ignored after custom filter chain options had been seen. * xz will create sparse files when decompressing if the uncompressed data contains long sequences of binary zeros. This is done even when writing to standard output that is connected to a regular file and certain additional conditions are met to make it safe. * Support for "xz --list" was added. Combine with --verbose or --verbose --verbose (-vv) for detailed output. * I had hoped that liblzma API would have been stable after 4.999.9beta, but there have been a couple of changes in the advanced features, which don't affect most applications: - Index handling code was revised. If you were using the old API, you will get a compiler error (so it's easy to notice). - A subtle but important change was made to the Block handling API. lzma_block.version has to be initialized even for lzma_block_header_decode(). Code that doesn't do it will work for now, but might break in the future, which makes this API change easy to miss. * The major soname has been bumped to 5.0.0. liblzma API and ABI are now stable, so the need to recompile programs linking against liblzma shouldn't arise soon.