// -*- C++ -*- header. // Copyright (C) 2015-2024 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/atomic_futex.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. */ #ifndef _GLIBCXX_ATOMIC_FUTEX_H #define _GLIBCXX_ATOMIC_FUTEX_H 1 #pragma GCC system_header #include #if ! (defined(_GLIBCXX_HAVE_LINUX_FUTEX) && ATOMIC_INT_LOCK_FREE > 1) #include #include #endif #include #ifndef _GLIBCXX_ALWAYS_INLINE #define _GLIBCXX_ALWAYS_INLINE inline __attribute__((__always_inline__)) #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #ifdef _GLIBCXX_HAS_GTHREADS #if defined(_GLIBCXX_HAVE_LINUX_FUTEX) && ATOMIC_INT_LOCK_FREE > 1 struct __atomic_futex_unsigned_base { // __s and __ns are measured against CLOCK_REALTIME. Returns false // iff a timeout occurred. bool _M_futex_wait_until(unsigned *__addr, unsigned __val, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns); // __s and __ns are measured against CLOCK_MONOTONIC. Returns // false iff a timeout occurred. bool _M_futex_wait_until_steady(unsigned *__addr, unsigned __val, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns); // This can be executed after the object has been destroyed. static void _M_futex_notify_all(unsigned* __addr); }; template class __atomic_futex_unsigned : __atomic_futex_unsigned_base { typedef chrono::steady_clock __clock_t; // This must be lock-free and at offset 0. atomic _M_data; public: explicit __atomic_futex_unsigned(unsigned __data) : _M_data(__data) { } _GLIBCXX_ALWAYS_INLINE unsigned _M_load(memory_order __mo) { return _M_data.load(__mo) & ~_Waiter_bit; } private: // If a timeout occurs, returns a current value after the timeout; // otherwise, returns the operand's value if equal is true or a different // value if equal is false. // The assumed value is the caller's assumption about the current value // when making the call. // __s and __ns are measured against CLOCK_REALTIME. unsigned _M_load_and_test_until(unsigned __assumed, unsigned __operand, bool __equal, memory_order __mo, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns) { for (;;) { // Don't bother checking the value again because we expect the caller // to have done it recently. // memory_order_relaxed is sufficient because we can rely on just the // modification order (store_notify uses an atomic RMW operation too), // and the futex syscalls synchronize between themselves. _M_data.fetch_or(_Waiter_bit, memory_order_relaxed); bool __ret = _M_futex_wait_until((unsigned*)(void*)&_M_data, __assumed | _Waiter_bit, __has_timeout, __s, __ns); // Fetch the current value after waiting (clears _Waiter_bit). __assumed = _M_load(__mo); if (!__ret || ((__operand == __assumed) == __equal)) return __assumed; // TODO adapt wait time } } // If a timeout occurs, returns a current value after the timeout; // otherwise, returns the operand's value if equal is true or a different // value if equal is false. // The assumed value is the caller's assumption about the current value // when making the call. // __s and __ns are measured against CLOCK_MONOTONIC. unsigned _M_load_and_test_until_steady(unsigned __assumed, unsigned __operand, bool __equal, memory_order __mo, bool __has_timeout, chrono::seconds __s, chrono::nanoseconds __ns) { for (;;) { // Don't bother checking the value again because we expect the caller // to have done it recently. // memory_order_relaxed is sufficient because we can rely on just the // modification order (store_notify uses an atomic RMW operation too), // and the futex syscalls synchronize between themselves. _M_data.fetch_or(_Waiter_bit, memory_order_relaxed); bool __ret = _M_futex_wait_until_steady((unsigned*)(void*)&_M_data, __assumed | _Waiter_bit, __has_timeout, __s, __ns); // Fetch the current value after waiting (clears _Waiter_bit). __assumed = _M_load(__mo); if (!__ret || ((__operand == __assumed) == __equal)) return __assumed; // TODO adapt wait time } } // Returns the operand's value if equal is true or a different value if // equal is false. // The assumed value is the caller's assumption about the current value // when making the call. unsigned _M_load_and_test(unsigned __assumed, unsigned __operand, bool __equal, memory_order __mo) { return _M_load_and_test_until(__assumed, __operand, __equal, __mo, false, {}, {}); } // If a timeout occurs, returns a current value after the timeout; // otherwise, returns the operand's value if equal is true or a different // value if equal is false. // The assumed value is the caller's assumption about the current value // when making the call. template unsigned _M_load_and_test_until_impl(unsigned __assumed, unsigned __operand, bool __equal, memory_order __mo, const chrono::time_point& __atime) { auto __s = chrono::time_point_cast(__atime); auto __ns = chrono::duration_cast(__atime - __s); // XXX correct? return _M_load_and_test_until(__assumed, __operand, __equal, __mo, true, __s.time_since_epoch(), __ns); } template unsigned _M_load_and_test_until_impl(unsigned __assumed, unsigned __operand, bool __equal, memory_order __mo, const chrono::time_point& __atime) { auto __s = chrono::time_point_cast(__atime); auto __ns = chrono::duration_cast(__atime - __s); // XXX correct? return _M_load_and_test_until_steady(__assumed, __operand, __equal, __mo, true, __s.time_since_epoch(), __ns); } public: _GLIBCXX_ALWAYS_INLINE unsigned _M_load_when_not_equal(unsigned __val, memory_order __mo) { unsigned __i = _M_load(__mo); if ((__i & ~_Waiter_bit) != __val) return (__i & ~_Waiter_bit); // TODO Spin-wait first. return _M_load_and_test(__i, __val, false, __mo); } _GLIBCXX_ALWAYS_INLINE void _M_load_when_equal(unsigned __val, memory_order __mo) { unsigned __i = _M_load(__mo); if ((__i & ~_Waiter_bit) == __val) return; // TODO Spin-wait first. _M_load_and_test(__i, __val, true, __mo); } // Returns false iff a timeout occurred. template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_for(unsigned __val, memory_order __mo, const chrono::duration<_Rep, _Period>& __rtime) { using __dur = typename __clock_t::duration; return _M_load_when_equal_until(__val, __mo, __clock_t::now() + chrono::__detail::ceil<__dur>(__rtime)); } // Returns false iff a timeout occurred. template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_until(unsigned __val, memory_order __mo, const chrono::time_point<_Clock, _Duration>& __atime) { typename _Clock::time_point __c_entry = _Clock::now(); do { const __clock_t::time_point __s_entry = __clock_t::now(); const auto __delta = __atime - __c_entry; const auto __s_atime = __s_entry + chrono::__detail::ceil<__clock_t::duration>(__delta); if (_M_load_when_equal_until(__val, __mo, __s_atime)) return true; __c_entry = _Clock::now(); } while (__c_entry < __atime); return false; } // Returns false iff a timeout occurred. template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_until(unsigned __val, memory_order __mo, const chrono::time_point& __atime) { unsigned __i = _M_load(__mo); if ((__i & ~_Waiter_bit) == __val) return true; // TODO Spin-wait first. Ignore effect on timeout. __i = _M_load_and_test_until_impl(__i, __val, true, __mo, __atime); return (__i & ~_Waiter_bit) == __val; } // Returns false iff a timeout occurred. template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_until(unsigned __val, memory_order __mo, const chrono::time_point& __atime) { unsigned __i = _M_load(__mo); if ((__i & ~_Waiter_bit) == __val) return true; // TODO Spin-wait first. Ignore effect on timeout. __i = _M_load_and_test_until_impl(__i, __val, true, __mo, __atime); return (__i & ~_Waiter_bit) == __val; } _GLIBCXX_ALWAYS_INLINE void _M_store_notify_all(unsigned __val, memory_order __mo) { unsigned* __futex = (unsigned *)(void *)&_M_data; if (_M_data.exchange(__val, __mo) & _Waiter_bit) _M_futex_notify_all(__futex); } }; #else // ! (_GLIBCXX_HAVE_LINUX_FUTEX && ATOMIC_INT_LOCK_FREE > 1) // If futexes are not available, use a mutex and a condvar to wait. // Because we access the data only within critical sections, all accesses // are sequentially consistent; thus, we satisfy any provided memory_order. template class __atomic_futex_unsigned { typedef chrono::system_clock __clock_t; unsigned _M_data; mutex _M_mutex; condition_variable _M_condvar; public: explicit __atomic_futex_unsigned(unsigned __data) : _M_data(__data) { } _GLIBCXX_ALWAYS_INLINE unsigned _M_load(memory_order __mo) { unique_lock __lock(_M_mutex); return _M_data; } _GLIBCXX_ALWAYS_INLINE unsigned _M_load_when_not_equal(unsigned __val, memory_order __mo) { unique_lock __lock(_M_mutex); while (_M_data == __val) _M_condvar.wait(__lock); return _M_data; } _GLIBCXX_ALWAYS_INLINE void _M_load_when_equal(unsigned __val, memory_order __mo) { unique_lock __lock(_M_mutex); while (_M_data != __val) _M_condvar.wait(__lock); } template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_for(unsigned __val, memory_order __mo, const chrono::duration<_Rep, _Period>& __rtime) { unique_lock __lock(_M_mutex); return _M_condvar.wait_for(__lock, __rtime, [&] { return _M_data == __val;}); } template _GLIBCXX_ALWAYS_INLINE bool _M_load_when_equal_until(unsigned __val, memory_order __mo, const chrono::time_point<_Clock, _Duration>& __atime) { unique_lock __lock(_M_mutex); return _M_condvar.wait_until(__lock, __atime, [&] { return _M_data == __val;}); } _GLIBCXX_ALWAYS_INLINE void _M_store_notify_all(unsigned __val, memory_order __mo) { unique_lock __lock(_M_mutex); _M_data = __val; _M_condvar.notify_all(); } }; #endif // _GLIBCXX_HAVE_LINUX_FUTEX && ATOMIC_INT_LOCK_FREE > 1 #endif // _GLIBCXX_HAS_GTHREADS _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif