// Concepts and traits for use with iterators -*- C++ -*- // Copyright (C) 2019-2024 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/iterator_concepts.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{iterator} */ #ifndef _ITERATOR_CONCEPTS_H #define _ITERATOR_CONCEPTS_H 1 #pragma GCC system_header #if __cplusplus >= 202002L #include #include // to_address #include // identity, ranges::less namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** A sentinel type that can be used to check for the end of a range. * * For some iterator types the past-the-end sentinel value is independent * of the underlying sequence, and a default sentinel can be used with them. * For example, a `std::counted_iterator` keeps a count of how many elements * remain, and so checking for the past-the-end value only requires checking * if that count has reached zero. A past-the-end `std::istream_iterator` is * equal to the default-constructed value, which can be easily checked. * * Comparing iterators of these types to `std::default_sentinel` is a * convenient way to check if the end has been reached. * * @since C++20 */ struct default_sentinel_t { }; /// A default sentinel value. inline constexpr default_sentinel_t default_sentinel{}; #if __cpp_lib_concepts struct input_iterator_tag; struct output_iterator_tag; struct forward_iterator_tag; struct bidirectional_iterator_tag; struct random_access_iterator_tag; struct contiguous_iterator_tag; template struct iterator_traits; template requires is_object_v<_Tp> struct iterator_traits<_Tp*>; template struct __iterator_traits; namespace __detail { template using __with_ref = _Tp&; template concept __can_reference = requires { typename __with_ref<_Tp>; }; template concept __dereferenceable = requires(_Tp& __t) { { *__t } -> __can_reference; }; } // namespace __detail template<__detail::__dereferenceable _Tp> using iter_reference_t = decltype(*std::declval<_Tp&>()); namespace ranges { /// @cond undocumented namespace __imove { void iter_move() = delete; template concept __adl_imove = (std::__detail::__class_or_enum>) && requires(_Tp&& __t) { iter_move(static_cast<_Tp&&>(__t)); }; struct _IterMove { private: template struct __result { using type = iter_reference_t<_Tp>; }; template requires __adl_imove<_Tp> struct __result<_Tp> { using type = decltype(iter_move(std::declval<_Tp>())); }; template requires (!__adl_imove<_Tp>) && is_lvalue_reference_v> struct __result<_Tp> { using type = remove_reference_t>&&; }; template static constexpr bool _S_noexcept() { if constexpr (__adl_imove<_Tp>) return noexcept(iter_move(std::declval<_Tp>())); else return noexcept(*std::declval<_Tp>()); } public: // The result type of iter_move(std::declval<_Tp>()) template using __type = typename __result<_Tp>::type; template [[nodiscard]] constexpr __type<_Tp> operator()(_Tp&& __e) const noexcept(_S_noexcept<_Tp>()) { if constexpr (__adl_imove<_Tp>) return iter_move(static_cast<_Tp&&>(__e)); else if constexpr (is_lvalue_reference_v>) return static_cast<__type<_Tp>>(*__e); else return *__e; } }; } // namespace __imove /// @endcond inline namespace _Cpo { inline constexpr __imove::_IterMove iter_move{}; } } // namespace ranges template<__detail::__dereferenceable _Tp> requires __detail::__can_reference> using iter_rvalue_reference_t = ranges::__imove::_IterMove::__type<_Tp&>; template struct incrementable_traits { }; template requires is_object_v<_Tp> struct incrementable_traits<_Tp*> { using difference_type = ptrdiff_t; }; template struct incrementable_traits : incrementable_traits<_Iter> { }; template requires requires { typename _Tp::difference_type; } struct incrementable_traits<_Tp> { using difference_type = typename _Tp::difference_type; }; template requires (!requires { typename _Tp::difference_type; } && requires(const _Tp& __a, const _Tp& __b) { { __a - __b } -> integral; }) struct incrementable_traits<_Tp> { using difference_type = make_signed_t() - std::declval<_Tp>())>; }; #if defined __STRICT_ANSI__ && defined __SIZEOF_INT128__ // __int128 is incrementable even if !integral<__int128> template<> struct incrementable_traits<__int128> { using difference_type = __int128; }; template<> struct incrementable_traits { using difference_type = __int128; }; #endif namespace __detail { // An iterator such that iterator_traits<_Iter> names a specialization // generated from the primary template. template concept __primary_traits_iter = __is_base_of(__iterator_traits<_Iter, void>, iterator_traits<_Iter>); template struct __iter_traits_impl { using type = iterator_traits<_Iter>; }; template requires __primary_traits_iter<_Iter> struct __iter_traits_impl<_Iter, _Tp> { using type = _Tp; }; // ITER_TRAITS template using __iter_traits = typename __iter_traits_impl<_Iter, _Tp>::type; template using __iter_diff_t = typename __iter_traits<_Tp, incrementable_traits<_Tp>>::difference_type; } // namespace __detail template using iter_difference_t = __detail::__iter_diff_t>; namespace __detail { template struct __cond_value_type { }; template requires is_object_v<_Tp> struct __cond_value_type<_Tp> { using value_type = remove_cv_t<_Tp>; }; template concept __has_member_value_type = requires { typename _Tp::value_type; }; template concept __has_member_element_type = requires { typename _Tp::element_type; }; } // namespace __detail template struct indirectly_readable_traits { }; template struct indirectly_readable_traits<_Tp*> : __detail::__cond_value_type<_Tp> { }; template requires is_array_v<_Iter> struct indirectly_readable_traits<_Iter> { using value_type = remove_cv_t>; }; template struct indirectly_readable_traits : indirectly_readable_traits<_Iter> { }; template<__detail::__has_member_value_type _Tp> struct indirectly_readable_traits<_Tp> : __detail::__cond_value_type { }; template<__detail::__has_member_element_type _Tp> struct indirectly_readable_traits<_Tp> : __detail::__cond_value_type { }; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3446. indirectly_readable_traits ambiguity for types with both [...] template<__detail::__has_member_value_type _Tp> requires __detail::__has_member_element_type<_Tp> && same_as, remove_cv_t> struct indirectly_readable_traits<_Tp> : __detail::__cond_value_type { }; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3541. indirectly_readable_traits should be SFINAE-friendly for all types template<__detail::__has_member_value_type _Tp> requires __detail::__has_member_element_type<_Tp> struct indirectly_readable_traits<_Tp> { }; namespace __detail { template using __iter_value_t = typename __iter_traits<_Tp, indirectly_readable_traits<_Tp>>::value_type; } // namespace __detail template using iter_value_t = __detail::__iter_value_t>; namespace __detail { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3420. cpp17-iterator should check [type] looks like an iterator first template concept __cpp17_iterator = requires(_Iter __it) { { *__it } -> __can_reference; { ++__it } -> same_as<_Iter&>; { *__it++ } -> __can_reference; } && copyable<_Iter>; template concept __cpp17_input_iterator = __cpp17_iterator<_Iter> && equality_comparable<_Iter> && requires(_Iter __it) { typename incrementable_traits<_Iter>::difference_type; typename indirectly_readable_traits<_Iter>::value_type; typename common_reference_t&&, typename indirectly_readable_traits<_Iter>::value_type&>; typename common_reference_t::value_type&>; requires signed_integral< typename incrementable_traits<_Iter>::difference_type>; }; template concept __cpp17_fwd_iterator = __cpp17_input_iterator<_Iter> && constructible_from<_Iter> && is_lvalue_reference_v> && same_as>, typename indirectly_readable_traits<_Iter>::value_type> && requires(_Iter __it) { { __it++ } -> convertible_to; { *__it++ } -> same_as>; }; template concept __cpp17_bidi_iterator = __cpp17_fwd_iterator<_Iter> && requires(_Iter __it) { { --__it } -> same_as<_Iter&>; { __it-- } -> convertible_to; { *__it-- } -> same_as>; }; template concept __cpp17_randacc_iterator = __cpp17_bidi_iterator<_Iter> && totally_ordered<_Iter> && requires(_Iter __it, typename incrementable_traits<_Iter>::difference_type __n) { { __it += __n } -> same_as<_Iter&>; { __it -= __n } -> same_as<_Iter&>; { __it + __n } -> same_as<_Iter>; { __n + __it } -> same_as<_Iter>; { __it - __n } -> same_as<_Iter>; { __it - __it } -> same_as; { __it[__n] } -> convertible_to>; }; template concept __iter_with_nested_types = requires { typename _Iter::iterator_category; typename _Iter::value_type; typename _Iter::difference_type; typename _Iter::reference; }; template concept __iter_without_nested_types = !__iter_with_nested_types<_Iter>; template concept __iter_without_category = !requires { typename _Iter::iterator_category; }; } // namespace __detail template requires __detail::__iter_with_nested_types<_Iterator> struct __iterator_traits<_Iterator, void> { private: template struct __ptr { using type = void; }; template requires requires { typename _Iter::pointer; } struct __ptr<_Iter> { using type = typename _Iter::pointer; }; public: using iterator_category = typename _Iterator::iterator_category; using value_type = typename _Iterator::value_type; using difference_type = typename _Iterator::difference_type; using pointer = typename __ptr<_Iterator>::type; using reference = typename _Iterator::reference; }; template requires __detail::__iter_without_nested_types<_Iterator> && __detail::__cpp17_input_iterator<_Iterator> struct __iterator_traits<_Iterator, void> { private: template struct __cat { using type = input_iterator_tag; }; template requires requires { typename _Iter::iterator_category; } struct __cat<_Iter> { using type = typename _Iter::iterator_category; }; template requires __detail::__iter_without_category<_Iter> && __detail::__cpp17_randacc_iterator<_Iter> struct __cat<_Iter> { using type = random_access_iterator_tag; }; template requires __detail::__iter_without_category<_Iter> && __detail::__cpp17_bidi_iterator<_Iter> struct __cat<_Iter> { using type = bidirectional_iterator_tag; }; template requires __detail::__iter_without_category<_Iter> && __detail::__cpp17_fwd_iterator<_Iter> struct __cat<_Iter> { using type = forward_iterator_tag; }; template struct __ptr { using type = void; }; template requires requires { typename _Iter::pointer; } struct __ptr<_Iter> { using type = typename _Iter::pointer; }; template requires (!requires { typename _Iter::pointer; } && requires(_Iter& __it) { __it.operator->(); }) struct __ptr<_Iter> { using type = decltype(std::declval<_Iter&>().operator->()); }; template struct __ref { using type = iter_reference_t<_Iter>; }; template requires requires { typename _Iter::reference; } struct __ref<_Iter> { using type = typename _Iter::reference; }; public: using iterator_category = typename __cat<_Iterator>::type; using value_type = typename indirectly_readable_traits<_Iterator>::value_type; using difference_type = typename incrementable_traits<_Iterator>::difference_type; using pointer = typename __ptr<_Iterator>::type; using reference = typename __ref<_Iterator>::type; }; template requires __detail::__iter_without_nested_types<_Iterator> && __detail::__cpp17_iterator<_Iterator> struct __iterator_traits<_Iterator, void> { private: template struct __diff { using type = void; }; template requires requires { typename incrementable_traits<_Iter>::difference_type; } struct __diff<_Iter> { using type = typename incrementable_traits<_Iter>::difference_type; }; public: using iterator_category = output_iterator_tag; using value_type = void; using difference_type = typename __diff<_Iterator>::type; using pointer = void; using reference = void; }; namespace __detail { template struct __iter_concept_impl; // ITER_CONCEPT(I) is ITER_TRAITS(I)::iterator_concept if that is valid. template requires requires { typename __iter_traits<_Iter>::iterator_concept; } struct __iter_concept_impl<_Iter> { using type = typename __iter_traits<_Iter>::iterator_concept; }; // Otherwise, ITER_TRAITS(I)::iterator_category if that is valid. template requires (!requires { typename __iter_traits<_Iter>::iterator_concept; } && requires { typename __iter_traits<_Iter>::iterator_category; }) struct __iter_concept_impl<_Iter> { using type = typename __iter_traits<_Iter>::iterator_category; }; // Otherwise, random_access_tag if iterator_traits is not specialized. template requires (!requires { typename __iter_traits<_Iter>::iterator_concept; } && !requires { typename __iter_traits<_Iter>::iterator_category; } && __primary_traits_iter<_Iter>) struct __iter_concept_impl<_Iter> { using type = random_access_iterator_tag; }; // Otherwise, there is no ITER_CONCEPT(I) type. template struct __iter_concept_impl { }; // ITER_CONCEPT template using __iter_concept = typename __iter_concept_impl<_Iter>::type; template concept __indirectly_readable_impl = requires { typename iter_value_t<_In>; typename iter_reference_t<_In>; typename iter_rvalue_reference_t<_In>; requires same_as, iter_reference_t<_In>>; requires same_as, iter_rvalue_reference_t<_In>>; } && common_reference_with&&, iter_value_t<_In>&> && common_reference_with&&, iter_rvalue_reference_t<_In>&&> && common_reference_with&&, const iter_value_t<_In>&>; } // namespace __detail /// Requirements for types that are readable by applying operator*. template concept indirectly_readable = __detail::__indirectly_readable_impl>; template using iter_common_reference_t = common_reference_t, iter_value_t<_Tp>&>; /// Requirements for writing a value into an iterator's referenced object. template concept indirectly_writable = requires(_Out&& __o, _Tp&& __t) { *__o = std::forward<_Tp>(__t); *std::forward<_Out>(__o) = std::forward<_Tp>(__t); const_cast&&>(*__o) = std::forward<_Tp>(__t); const_cast&&>(*std::forward<_Out>(__o)) = std::forward<_Tp>(__t); }; namespace ranges::__detail { class __max_diff_type; class __max_size_type; __extension__ template concept __is_signed_int128 #if __SIZEOF_INT128__ = same_as<_Tp, __int128>; #else = false; #endif __extension__ template concept __is_unsigned_int128 #if __SIZEOF_INT128__ = same_as<_Tp, unsigned __int128>; #else = false; #endif template concept __cv_bool = same_as; template concept __integral_nonbool = integral<_Tp> && !__cv_bool<_Tp>; template concept __is_int128 = __is_signed_int128<_Tp> || __is_unsigned_int128<_Tp>; template concept __is_integer_like = __integral_nonbool<_Tp> || __is_int128<_Tp> || same_as<_Tp, __max_diff_type> || same_as<_Tp, __max_size_type>; template concept __is_signed_integer_like = signed_integral<_Tp> || __is_signed_int128<_Tp> || same_as<_Tp, __max_diff_type>; } // namespace ranges::__detail namespace __detail { using ranges::__detail::__is_signed_integer_like; } /// Requirements on types that can be incremented with ++. template concept weakly_incrementable = movable<_Iter> && requires(_Iter __i) { typename iter_difference_t<_Iter>; requires __detail::__is_signed_integer_like>; { ++__i } -> same_as<_Iter&>; __i++; }; template concept incrementable = regular<_Iter> && weakly_incrementable<_Iter> && requires(_Iter __i) { { __i++ } -> same_as<_Iter>; }; template concept input_or_output_iterator = requires(_Iter __i) { { *__i } -> __detail::__can_reference; } && weakly_incrementable<_Iter>; template concept sentinel_for = semiregular<_Sent> && input_or_output_iterator<_Iter> && __detail::__weakly_eq_cmp_with<_Sent, _Iter>; template inline constexpr bool disable_sized_sentinel_for = false; template concept sized_sentinel_for = sentinel_for<_Sent, _Iter> && !disable_sized_sentinel_for, remove_cv_t<_Iter>> && requires(const _Iter& __i, const _Sent& __s) { { __s - __i } -> same_as>; { __i - __s } -> same_as>; }; template concept input_iterator = input_or_output_iterator<_Iter> && indirectly_readable<_Iter> && requires { typename __detail::__iter_concept<_Iter>; } && derived_from<__detail::__iter_concept<_Iter>, input_iterator_tag>; template concept output_iterator = input_or_output_iterator<_Iter> && indirectly_writable<_Iter, _Tp> && requires(_Iter __i, _Tp&& __t) { *__i++ = std::forward<_Tp>(__t); }; template concept forward_iterator = input_iterator<_Iter> && derived_from<__detail::__iter_concept<_Iter>, forward_iterator_tag> && incrementable<_Iter> && sentinel_for<_Iter, _Iter>; template concept bidirectional_iterator = forward_iterator<_Iter> && derived_from<__detail::__iter_concept<_Iter>, bidirectional_iterator_tag> && requires(_Iter __i) { { --__i } -> same_as<_Iter&>; { __i-- } -> same_as<_Iter>; }; template concept random_access_iterator = bidirectional_iterator<_Iter> && derived_from<__detail::__iter_concept<_Iter>, random_access_iterator_tag> && totally_ordered<_Iter> && sized_sentinel_for<_Iter, _Iter> && requires(_Iter __i, const _Iter __j, const iter_difference_t<_Iter> __n) { { __i += __n } -> same_as<_Iter&>; { __j + __n } -> same_as<_Iter>; { __n + __j } -> same_as<_Iter>; { __i -= __n } -> same_as<_Iter&>; { __j - __n } -> same_as<_Iter>; { __j[__n] } -> same_as>; }; template concept contiguous_iterator = random_access_iterator<_Iter> && derived_from<__detail::__iter_concept<_Iter>, contiguous_iterator_tag> && is_lvalue_reference_v> && same_as, remove_cvref_t>> && requires(const _Iter& __i) { { std::to_address(__i) } -> same_as>>; }; // [indirectcallable], indirect callable requirements // [indirectcallable.indirectinvocable], indirect callables template concept indirectly_unary_invocable = indirectly_readable<_Iter> && copy_constructible<_Fn> && invocable<_Fn&, iter_value_t<_Iter>&> && invocable<_Fn&, iter_reference_t<_Iter>> && invocable<_Fn&, iter_common_reference_t<_Iter>> && common_reference_with&>, invoke_result_t<_Fn&, iter_reference_t<_Iter>>>; template concept indirectly_regular_unary_invocable = indirectly_readable<_Iter> && copy_constructible<_Fn> && regular_invocable<_Fn&, iter_value_t<_Iter>&> && regular_invocable<_Fn&, iter_reference_t<_Iter>> && regular_invocable<_Fn&, iter_common_reference_t<_Iter>> && common_reference_with&>, invoke_result_t<_Fn&, iter_reference_t<_Iter>>>; template concept indirect_unary_predicate = indirectly_readable<_Iter> && copy_constructible<_Fn> && predicate<_Fn&, iter_value_t<_Iter>&> && predicate<_Fn&, iter_reference_t<_Iter>> && predicate<_Fn&, iter_common_reference_t<_Iter>>; template concept indirect_binary_predicate = indirectly_readable<_I1> && indirectly_readable<_I2> && copy_constructible<_Fn> && predicate<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&> && predicate<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>> && predicate<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&> && predicate<_Fn&, iter_reference_t<_I1>, iter_reference_t<_I2>> && predicate<_Fn&, iter_common_reference_t<_I1>, iter_common_reference_t<_I2>>; template concept indirect_equivalence_relation = indirectly_readable<_I1> && indirectly_readable<_I2> && copy_constructible<_Fn> && equivalence_relation<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&> && equivalence_relation<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>> && equivalence_relation<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&> && equivalence_relation<_Fn&, iter_reference_t<_I1>, iter_reference_t<_I2>> && equivalence_relation<_Fn&, iter_common_reference_t<_I1>, iter_common_reference_t<_I2>>; template concept indirect_strict_weak_order = indirectly_readable<_I1> && indirectly_readable<_I2> && copy_constructible<_Fn> && strict_weak_order<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&> && strict_weak_order<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>> && strict_weak_order<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&> && strict_weak_order<_Fn&, iter_reference_t<_I1>, iter_reference_t<_I2>> && strict_weak_order<_Fn&, iter_common_reference_t<_I1>, iter_common_reference_t<_I2>>; template requires (indirectly_readable<_Is> && ...) && invocable<_Fn, iter_reference_t<_Is>...> using indirect_result_t = invoke_result_t<_Fn, iter_reference_t<_Is>...>; namespace __detail { template struct __projected { struct __type { using value_type = remove_cvref_t>; indirect_result_t<_Proj&, _Iter> operator*() const; // not defined }; }; template struct __projected<_Iter, _Proj> { struct __type { using value_type = remove_cvref_t>; using difference_type = iter_difference_t<_Iter>; indirect_result_t<_Proj&, _Iter> operator*() const; // not defined }; }; } // namespace __detail /// [projected], projected template _Proj> using projected = typename __detail::__projected<_Iter, _Proj>::__type; // [alg.req], common algorithm requirements /// [alg.req.ind.move], concept `indirectly_movable` template concept indirectly_movable = indirectly_readable<_In> && indirectly_writable<_Out, iter_rvalue_reference_t<_In>>; template concept indirectly_movable_storable = indirectly_movable<_In, _Out> && indirectly_writable<_Out, iter_value_t<_In>> && movable> && constructible_from, iter_rvalue_reference_t<_In>> && assignable_from&, iter_rvalue_reference_t<_In>>; /// [alg.req.ind.copy], concept `indirectly_copyable` template concept indirectly_copyable = indirectly_readable<_In> && indirectly_writable<_Out, iter_reference_t<_In>>; template concept indirectly_copyable_storable = indirectly_copyable<_In, _Out> && indirectly_writable<_Out, iter_value_t<_In>&> && indirectly_writable<_Out, const iter_value_t<_In>&> && indirectly_writable<_Out, iter_value_t<_In>&&> && indirectly_writable<_Out, const iter_value_t<_In>&&> && copyable> && constructible_from, iter_reference_t<_In>> && assignable_from&, iter_reference_t<_In>>; namespace ranges { /// @cond undocumented namespace __iswap { template void iter_swap(_It1, _It2) = delete; template concept __adl_iswap = (std::__detail::__class_or_enum> || std::__detail::__class_or_enum>) && requires(_Tp&& __t, _Up&& __u) { iter_swap(static_cast<_Tp&&>(__t), static_cast<_Up&&>(__u)); }; template constexpr iter_value_t<_Xp> __iter_exchange_move(_Xp&& __x, _Yp&& __y) noexcept(noexcept(iter_value_t<_Xp>(iter_move(__x))) && noexcept(*__x = iter_move(__y))) { iter_value_t<_Xp> __old_value(iter_move(__x)); *__x = iter_move(__y); return __old_value; } struct _IterSwap { private: template static constexpr bool _S_noexcept() { if constexpr (__adl_iswap<_Tp, _Up>) return noexcept(iter_swap(std::declval<_Tp>(), std::declval<_Up>())); else if constexpr (indirectly_readable<_Tp> && indirectly_readable<_Up> && swappable_with, iter_reference_t<_Up>>) return noexcept(ranges::swap(*std::declval<_Tp>(), *std::declval<_Up>())); else return noexcept(*std::declval<_Tp>() = __iswap::__iter_exchange_move(std::declval<_Up>(), std::declval<_Tp>())); } public: template requires __adl_iswap<_Tp, _Up> || (indirectly_readable> && indirectly_readable> && swappable_with, iter_reference_t<_Up>>) || (indirectly_movable_storable<_Tp, _Up> && indirectly_movable_storable<_Up, _Tp>) constexpr void operator()(_Tp&& __e1, _Up&& __e2) const noexcept(_S_noexcept<_Tp, _Up>()) { if constexpr (__adl_iswap<_Tp, _Up>) iter_swap(static_cast<_Tp&&>(__e1), static_cast<_Up&&>(__e2)); else if constexpr (indirectly_readable<_Tp> && indirectly_readable<_Up> && swappable_with, iter_reference_t<_Up>>) ranges::swap(*__e1, *__e2); else *__e1 = __iswap::__iter_exchange_move(__e2, __e1); } }; } // namespace __iswap /// @endcond inline namespace _Cpo { inline constexpr __iswap::_IterSwap iter_swap{}; } } // namespace ranges /// [alg.req.ind.swap], concept `indirectly_swappable` template concept indirectly_swappable = indirectly_readable<_I1> && indirectly_readable<_I2> && requires(const _I1 __i1, const _I2 __i2) { ranges::iter_swap(__i1, __i1); ranges::iter_swap(__i2, __i2); ranges::iter_swap(__i1, __i2); ranges::iter_swap(__i2, __i1); }; /// [alg.req.ind.cmp], concept `indirectly_comparable` template concept indirectly_comparable = indirect_binary_predicate<_Rel, projected<_I1, _P1>, projected<_I2, _P2>>; /// [alg.req.permutable], concept `permutable` template concept permutable = forward_iterator<_Iter> && indirectly_movable_storable<_Iter, _Iter> && indirectly_swappable<_Iter, _Iter>; /// [alg.req.mergeable], concept `mergeable` template concept mergeable = input_iterator<_I1> && input_iterator<_I2> && weakly_incrementable<_Out> && indirectly_copyable<_I1, _Out> && indirectly_copyable<_I2, _Out> && indirect_strict_weak_order<_Rel, projected<_I1, _P1>, projected<_I2, _P2>>; /// [alg.req.sortable], concept `sortable` template concept sortable = permutable<_Iter> && indirect_strict_weak_order<_Rel, projected<_Iter, _Proj>>; struct unreachable_sentinel_t { template friend constexpr bool operator==(unreachable_sentinel_t, const _It&) noexcept { return false; } }; inline constexpr unreachable_sentinel_t unreachable_sentinel{}; // This is the namespace for [range.access] CPOs. namespace ranges::__access { using std::__detail::__class_or_enum; struct _Decay_copy final { template constexpr decay_t<_Tp> operator()(_Tp&& __t) const noexcept(is_nothrow_convertible_v<_Tp, decay_t<_Tp>>) { return std::forward<_Tp>(__t); } } inline constexpr __decay_copy{}; template concept __member_begin = requires(_Tp& __t) { { __decay_copy(__t.begin()) } -> input_or_output_iterator; }; // Poison pill so that unqualified lookup doesn't find std::begin. void begin() = delete; template concept __adl_begin = __class_or_enum> && requires(_Tp& __t) { { __decay_copy(begin(__t)) } -> input_or_output_iterator; }; // Simplified version of std::ranges::begin that only supports lvalues, // for use by __range_iter_t below. template requires is_array_v<_Tp> || __member_begin<_Tp&> || __adl_begin<_Tp&> auto __begin(_Tp& __t) { if constexpr (is_array_v<_Tp>) return __t + 0; else if constexpr (__member_begin<_Tp&>) return __t.begin(); else return begin(__t); } } // namespace ranges::__access namespace __detail { // Implementation of std::ranges::iterator_t, without using ranges::begin. template using __range_iter_t = decltype(ranges::__access::__begin(std::declval<_Tp&>())); } // namespace __detail #endif // C++20 library concepts _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++20 #endif // _ITERATOR_CONCEPTS_H