// Concepts and traits for use with iterators -*- C++ -*-
// Copyright (C) 2019-2024 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file bits/iterator_concepts.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{iterator}
*/
#ifndef _ITERATOR_CONCEPTS_H
#define _ITERATOR_CONCEPTS_H 1
#pragma GCC system_header
#if __cplusplus >= 202002L
#include
#include // to_address
#include // identity, ranges::less
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/** A sentinel type that can be used to check for the end of a range.
*
* For some iterator types the past-the-end sentinel value is independent
* of the underlying sequence, and a default sentinel can be used with them.
* For example, a `std::counted_iterator` keeps a count of how many elements
* remain, and so checking for the past-the-end value only requires checking
* if that count has reached zero. A past-the-end `std::istream_iterator` is
* equal to the default-constructed value, which can be easily checked.
*
* Comparing iterators of these types to `std::default_sentinel` is a
* convenient way to check if the end has been reached.
*
* @since C++20
*/
struct default_sentinel_t { };
/// A default sentinel value.
inline constexpr default_sentinel_t default_sentinel{};
#if __cpp_lib_concepts
struct input_iterator_tag;
struct output_iterator_tag;
struct forward_iterator_tag;
struct bidirectional_iterator_tag;
struct random_access_iterator_tag;
struct contiguous_iterator_tag;
template
struct iterator_traits;
template requires is_object_v<_Tp>
struct iterator_traits<_Tp*>;
template
struct __iterator_traits;
namespace __detail
{
template
using __with_ref = _Tp&;
template
concept __can_reference = requires { typename __with_ref<_Tp>; };
template
concept __dereferenceable = requires(_Tp& __t)
{
{ *__t } -> __can_reference;
};
} // namespace __detail
template<__detail::__dereferenceable _Tp>
using iter_reference_t = decltype(*std::declval<_Tp&>());
namespace ranges
{
/// @cond undocumented
namespace __imove
{
void iter_move() = delete;
template
concept __adl_imove
= (std::__detail::__class_or_enum>)
&& requires(_Tp&& __t) { iter_move(static_cast<_Tp&&>(__t)); };
struct _IterMove
{
private:
template
struct __result
{ using type = iter_reference_t<_Tp>; };
template
requires __adl_imove<_Tp>
struct __result<_Tp>
{ using type = decltype(iter_move(std::declval<_Tp>())); };
template
requires (!__adl_imove<_Tp>)
&& is_lvalue_reference_v>
struct __result<_Tp>
{ using type = remove_reference_t>&&; };
template
static constexpr bool
_S_noexcept()
{
if constexpr (__adl_imove<_Tp>)
return noexcept(iter_move(std::declval<_Tp>()));
else
return noexcept(*std::declval<_Tp>());
}
public:
// The result type of iter_move(std::declval<_Tp>())
template
using __type = typename __result<_Tp>::type;
template
[[nodiscard]]
constexpr __type<_Tp>
operator()(_Tp&& __e) const
noexcept(_S_noexcept<_Tp>())
{
if constexpr (__adl_imove<_Tp>)
return iter_move(static_cast<_Tp&&>(__e));
else if constexpr (is_lvalue_reference_v>)
return static_cast<__type<_Tp>>(*__e);
else
return *__e;
}
};
} // namespace __imove
/// @endcond
inline namespace _Cpo {
inline constexpr __imove::_IterMove iter_move{};
}
} // namespace ranges
template<__detail::__dereferenceable _Tp>
requires __detail::__can_reference>
using iter_rvalue_reference_t = ranges::__imove::_IterMove::__type<_Tp&>;
template struct incrementable_traits { };
template requires is_object_v<_Tp>
struct incrementable_traits<_Tp*>
{ using difference_type = ptrdiff_t; };
template
struct incrementable_traits
: incrementable_traits<_Iter> { };
template requires requires { typename _Tp::difference_type; }
struct incrementable_traits<_Tp>
{ using difference_type = typename _Tp::difference_type; };
template
requires (!requires { typename _Tp::difference_type; }
&& requires(const _Tp& __a, const _Tp& __b)
{ { __a - __b } -> integral; })
struct incrementable_traits<_Tp>
{
using difference_type
= make_signed_t() - std::declval<_Tp>())>;
};
#if defined __STRICT_ANSI__ && defined __SIZEOF_INT128__
// __int128 is incrementable even if !integral<__int128>
template<>
struct incrementable_traits<__int128>
{ using difference_type = __int128; };
template<>
struct incrementable_traits
{ using difference_type = __int128; };
#endif
namespace __detail
{
// An iterator such that iterator_traits<_Iter> names a specialization
// generated from the primary template.
template
concept __primary_traits_iter
= __is_base_of(__iterator_traits<_Iter, void>, iterator_traits<_Iter>);
template
struct __iter_traits_impl
{ using type = iterator_traits<_Iter>; };
template
requires __primary_traits_iter<_Iter>
struct __iter_traits_impl<_Iter, _Tp>
{ using type = _Tp; };
// ITER_TRAITS
template
using __iter_traits = typename __iter_traits_impl<_Iter, _Tp>::type;
template
using __iter_diff_t = typename
__iter_traits<_Tp, incrementable_traits<_Tp>>::difference_type;
} // namespace __detail
template
using iter_difference_t = __detail::__iter_diff_t>;
namespace __detail
{
template struct __cond_value_type { };
template requires is_object_v<_Tp>
struct __cond_value_type<_Tp>
{ using value_type = remove_cv_t<_Tp>; };
template
concept __has_member_value_type
= requires { typename _Tp::value_type; };
template
concept __has_member_element_type
= requires { typename _Tp::element_type; };
} // namespace __detail
template struct indirectly_readable_traits { };
template
struct indirectly_readable_traits<_Tp*>
: __detail::__cond_value_type<_Tp>
{ };
template requires is_array_v<_Iter>
struct indirectly_readable_traits<_Iter>
{ using value_type = remove_cv_t>; };
template
struct indirectly_readable_traits
: indirectly_readable_traits<_Iter>
{ };
template<__detail::__has_member_value_type _Tp>
struct indirectly_readable_traits<_Tp>
: __detail::__cond_value_type
{ };
template<__detail::__has_member_element_type _Tp>
struct indirectly_readable_traits<_Tp>
: __detail::__cond_value_type
{ };
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 3446. indirectly_readable_traits ambiguity for types with both [...]
template<__detail::__has_member_value_type _Tp>
requires __detail::__has_member_element_type<_Tp>
&& same_as,
remove_cv_t>
struct indirectly_readable_traits<_Tp>
: __detail::__cond_value_type
{ };
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 3541. indirectly_readable_traits should be SFINAE-friendly for all types
template<__detail::__has_member_value_type _Tp>
requires __detail::__has_member_element_type<_Tp>
struct indirectly_readable_traits<_Tp>
{ };
namespace __detail
{
template
using __iter_value_t = typename
__iter_traits<_Tp, indirectly_readable_traits<_Tp>>::value_type;
} // namespace __detail
template
using iter_value_t = __detail::__iter_value_t>;
namespace __detail
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 3420. cpp17-iterator should check [type] looks like an iterator first
template
concept __cpp17_iterator = requires(_Iter __it)
{
{ *__it } -> __can_reference;
{ ++__it } -> same_as<_Iter&>;
{ *__it++ } -> __can_reference;
} && copyable<_Iter>;
template
concept __cpp17_input_iterator = __cpp17_iterator<_Iter>
&& equality_comparable<_Iter>
&& requires(_Iter __it)
{
typename incrementable_traits<_Iter>::difference_type;
typename indirectly_readable_traits<_Iter>::value_type;
typename common_reference_t&&,
typename indirectly_readable_traits<_Iter>::value_type&>;
typename common_reference_t::value_type&>;
requires signed_integral<
typename incrementable_traits<_Iter>::difference_type>;
};
template
concept __cpp17_fwd_iterator = __cpp17_input_iterator<_Iter>
&& constructible_from<_Iter>
&& is_lvalue_reference_v>
&& same_as>,
typename indirectly_readable_traits<_Iter>::value_type>
&& requires(_Iter __it)
{
{ __it++ } -> convertible_to;
{ *__it++ } -> same_as>;
};
template
concept __cpp17_bidi_iterator = __cpp17_fwd_iterator<_Iter>
&& requires(_Iter __it)
{
{ --__it } -> same_as<_Iter&>;
{ __it-- } -> convertible_to;
{ *__it-- } -> same_as>;
};
template
concept __cpp17_randacc_iterator = __cpp17_bidi_iterator<_Iter>
&& totally_ordered<_Iter>
&& requires(_Iter __it,
typename incrementable_traits<_Iter>::difference_type __n)
{
{ __it += __n } -> same_as<_Iter&>;
{ __it -= __n } -> same_as<_Iter&>;
{ __it + __n } -> same_as<_Iter>;
{ __n + __it } -> same_as<_Iter>;
{ __it - __n } -> same_as<_Iter>;
{ __it - __it } -> same_as;
{ __it[__n] } -> convertible_to>;
};
template
concept __iter_with_nested_types = requires {
typename _Iter::iterator_category;
typename _Iter::value_type;
typename _Iter::difference_type;
typename _Iter::reference;
};
template
concept __iter_without_nested_types = !__iter_with_nested_types<_Iter>;
template
concept __iter_without_category
= !requires { typename _Iter::iterator_category; };
} // namespace __detail
template
requires __detail::__iter_with_nested_types<_Iterator>
struct __iterator_traits<_Iterator, void>
{
private:
template
struct __ptr
{ using type = void; };
template requires requires { typename _Iter::pointer; }
struct __ptr<_Iter>
{ using type = typename _Iter::pointer; };
public:
using iterator_category = typename _Iterator::iterator_category;
using value_type = typename _Iterator::value_type;
using difference_type = typename _Iterator::difference_type;
using pointer = typename __ptr<_Iterator>::type;
using reference = typename _Iterator::reference;
};
template
requires __detail::__iter_without_nested_types<_Iterator>
&& __detail::__cpp17_input_iterator<_Iterator>
struct __iterator_traits<_Iterator, void>
{
private:
template
struct __cat
{ using type = input_iterator_tag; };
template
requires requires { typename _Iter::iterator_category; }
struct __cat<_Iter>
{ using type = typename _Iter::iterator_category; };
template
requires __detail::__iter_without_category<_Iter>
&& __detail::__cpp17_randacc_iterator<_Iter>
struct __cat<_Iter>
{ using type = random_access_iterator_tag; };
template
requires __detail::__iter_without_category<_Iter>
&& __detail::__cpp17_bidi_iterator<_Iter>
struct __cat<_Iter>
{ using type = bidirectional_iterator_tag; };
template
requires __detail::__iter_without_category<_Iter>
&& __detail::__cpp17_fwd_iterator<_Iter>
struct __cat<_Iter>
{ using type = forward_iterator_tag; };
template
struct __ptr
{ using type = void; };
template requires requires { typename _Iter::pointer; }
struct __ptr<_Iter>
{ using type = typename _Iter::pointer; };
template
requires (!requires { typename _Iter::pointer; }
&& requires(_Iter& __it) { __it.operator->(); })
struct __ptr<_Iter>
{ using type = decltype(std::declval<_Iter&>().operator->()); };
template
struct __ref
{ using type = iter_reference_t<_Iter>; };
template requires requires { typename _Iter::reference; }
struct __ref<_Iter>
{ using type = typename _Iter::reference; };
public:
using iterator_category = typename __cat<_Iterator>::type;
using value_type
= typename indirectly_readable_traits<_Iterator>::value_type;
using difference_type
= typename incrementable_traits<_Iterator>::difference_type;
using pointer = typename __ptr<_Iterator>::type;
using reference = typename __ref<_Iterator>::type;
};
template
requires __detail::__iter_without_nested_types<_Iterator>
&& __detail::__cpp17_iterator<_Iterator>
struct __iterator_traits<_Iterator, void>
{
private:
template
struct __diff
{ using type = void; };
template
requires requires
{ typename incrementable_traits<_Iter>::difference_type; }
struct __diff<_Iter>
{
using type = typename incrementable_traits<_Iter>::difference_type;
};
public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = typename __diff<_Iterator>::type;
using pointer = void;
using reference = void;
};
namespace __detail
{
template
struct __iter_concept_impl;
// ITER_CONCEPT(I) is ITER_TRAITS(I)::iterator_concept if that is valid.
template
requires requires { typename __iter_traits<_Iter>::iterator_concept; }
struct __iter_concept_impl<_Iter>
{ using type = typename __iter_traits<_Iter>::iterator_concept; };
// Otherwise, ITER_TRAITS(I)::iterator_category if that is valid.
template
requires (!requires { typename __iter_traits<_Iter>::iterator_concept; }
&& requires { typename __iter_traits<_Iter>::iterator_category; })
struct __iter_concept_impl<_Iter>
{ using type = typename __iter_traits<_Iter>::iterator_category; };
// Otherwise, random_access_tag if iterator_traits is not specialized.
template
requires (!requires { typename __iter_traits<_Iter>::iterator_concept; }
&& !requires { typename __iter_traits<_Iter>::iterator_category; }
&& __primary_traits_iter<_Iter>)
struct __iter_concept_impl<_Iter>
{ using type = random_access_iterator_tag; };
// Otherwise, there is no ITER_CONCEPT(I) type.
template
struct __iter_concept_impl
{ };
// ITER_CONCEPT
template
using __iter_concept = typename __iter_concept_impl<_Iter>::type;
template
concept __indirectly_readable_impl = requires
{
typename iter_value_t<_In>;
typename iter_reference_t<_In>;
typename iter_rvalue_reference_t<_In>;
requires same_as,
iter_reference_t<_In>>;
requires same_as,
iter_rvalue_reference_t<_In>>;
}
&& common_reference_with&&, iter_value_t<_In>&>
&& common_reference_with&&,
iter_rvalue_reference_t<_In>&&>
&& common_reference_with&&,
const iter_value_t<_In>&>;
} // namespace __detail
/// Requirements for types that are readable by applying operator*.
template
concept indirectly_readable
= __detail::__indirectly_readable_impl>;
template
using iter_common_reference_t
= common_reference_t, iter_value_t<_Tp>&>;
/// Requirements for writing a value into an iterator's referenced object.
template
concept indirectly_writable = requires(_Out&& __o, _Tp&& __t)
{
*__o = std::forward<_Tp>(__t);
*std::forward<_Out>(__o) = std::forward<_Tp>(__t);
const_cast&&>(*__o)
= std::forward<_Tp>(__t);
const_cast&&>(*std::forward<_Out>(__o))
= std::forward<_Tp>(__t);
};
namespace ranges::__detail
{
class __max_diff_type;
class __max_size_type;
__extension__
template
concept __is_signed_int128
#if __SIZEOF_INT128__
= same_as<_Tp, __int128>;
#else
= false;
#endif
__extension__
template
concept __is_unsigned_int128
#if __SIZEOF_INT128__
= same_as<_Tp, unsigned __int128>;
#else
= false;
#endif
template
concept __cv_bool = same_as;
template
concept __integral_nonbool = integral<_Tp> && !__cv_bool<_Tp>;
template
concept __is_int128 = __is_signed_int128<_Tp> || __is_unsigned_int128<_Tp>;
template
concept __is_integer_like = __integral_nonbool<_Tp>
|| __is_int128<_Tp>
|| same_as<_Tp, __max_diff_type> || same_as<_Tp, __max_size_type>;
template
concept __is_signed_integer_like = signed_integral<_Tp>
|| __is_signed_int128<_Tp>
|| same_as<_Tp, __max_diff_type>;
} // namespace ranges::__detail
namespace __detail { using ranges::__detail::__is_signed_integer_like; }
/// Requirements on types that can be incremented with ++.
template
concept weakly_incrementable = movable<_Iter>
&& requires(_Iter __i)
{
typename iter_difference_t<_Iter>;
requires __detail::__is_signed_integer_like>;
{ ++__i } -> same_as<_Iter&>;
__i++;
};
template
concept incrementable = regular<_Iter> && weakly_incrementable<_Iter>
&& requires(_Iter __i) { { __i++ } -> same_as<_Iter>; };
template
concept input_or_output_iterator
= requires(_Iter __i) { { *__i } -> __detail::__can_reference; }
&& weakly_incrementable<_Iter>;
template
concept sentinel_for = semiregular<_Sent>
&& input_or_output_iterator<_Iter>
&& __detail::__weakly_eq_cmp_with<_Sent, _Iter>;
template
inline constexpr bool disable_sized_sentinel_for = false;
template
concept sized_sentinel_for = sentinel_for<_Sent, _Iter>
&& !disable_sized_sentinel_for, remove_cv_t<_Iter>>
&& requires(const _Iter& __i, const _Sent& __s)
{
{ __s - __i } -> same_as>;
{ __i - __s } -> same_as>;
};
template
concept input_iterator = input_or_output_iterator<_Iter>
&& indirectly_readable<_Iter>
&& requires { typename __detail::__iter_concept<_Iter>; }
&& derived_from<__detail::__iter_concept<_Iter>, input_iterator_tag>;
template
concept output_iterator = input_or_output_iterator<_Iter>
&& indirectly_writable<_Iter, _Tp>
&& requires(_Iter __i, _Tp&& __t) { *__i++ = std::forward<_Tp>(__t); };
template
concept forward_iterator = input_iterator<_Iter>
&& derived_from<__detail::__iter_concept<_Iter>, forward_iterator_tag>
&& incrementable<_Iter> && sentinel_for<_Iter, _Iter>;
template
concept bidirectional_iterator = forward_iterator<_Iter>
&& derived_from<__detail::__iter_concept<_Iter>,
bidirectional_iterator_tag>
&& requires(_Iter __i)
{
{ --__i } -> same_as<_Iter&>;
{ __i-- } -> same_as<_Iter>;
};
template
concept random_access_iterator = bidirectional_iterator<_Iter>
&& derived_from<__detail::__iter_concept<_Iter>,
random_access_iterator_tag>
&& totally_ordered<_Iter> && sized_sentinel_for<_Iter, _Iter>
&& requires(_Iter __i, const _Iter __j,
const iter_difference_t<_Iter> __n)
{
{ __i += __n } -> same_as<_Iter&>;
{ __j + __n } -> same_as<_Iter>;
{ __n + __j } -> same_as<_Iter>;
{ __i -= __n } -> same_as<_Iter&>;
{ __j - __n } -> same_as<_Iter>;
{ __j[__n] } -> same_as>;
};
template
concept contiguous_iterator = random_access_iterator<_Iter>
&& derived_from<__detail::__iter_concept<_Iter>, contiguous_iterator_tag>
&& is_lvalue_reference_v>
&& same_as, remove_cvref_t>>
&& requires(const _Iter& __i)
{
{ std::to_address(__i) }
-> same_as>>;
};
// [indirectcallable], indirect callable requirements
// [indirectcallable.indirectinvocable], indirect callables
template
concept indirectly_unary_invocable = indirectly_readable<_Iter>
&& copy_constructible<_Fn> && invocable<_Fn&, iter_value_t<_Iter>&>
&& invocable<_Fn&, iter_reference_t<_Iter>>
&& invocable<_Fn&, iter_common_reference_t<_Iter>>
&& common_reference_with&>,
invoke_result_t<_Fn&, iter_reference_t<_Iter>>>;
template
concept indirectly_regular_unary_invocable = indirectly_readable<_Iter>
&& copy_constructible<_Fn>
&& regular_invocable<_Fn&, iter_value_t<_Iter>&>
&& regular_invocable<_Fn&, iter_reference_t<_Iter>>
&& regular_invocable<_Fn&, iter_common_reference_t<_Iter>>
&& common_reference_with&>,
invoke_result_t<_Fn&, iter_reference_t<_Iter>>>;
template
concept indirect_unary_predicate = indirectly_readable<_Iter>
&& copy_constructible<_Fn> && predicate<_Fn&, iter_value_t<_Iter>&>
&& predicate<_Fn&, iter_reference_t<_Iter>>
&& predicate<_Fn&, iter_common_reference_t<_Iter>>;
template
concept indirect_binary_predicate
= indirectly_readable<_I1> && indirectly_readable<_I2>
&& copy_constructible<_Fn>
&& predicate<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&>
&& predicate<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>>
&& predicate<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&>
&& predicate<_Fn&, iter_reference_t<_I1>, iter_reference_t<_I2>>
&& predicate<_Fn&, iter_common_reference_t<_I1>,
iter_common_reference_t<_I2>>;
template
concept indirect_equivalence_relation
= indirectly_readable<_I1> && indirectly_readable<_I2>
&& copy_constructible<_Fn>
&& equivalence_relation<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&>
&& equivalence_relation<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>>
&& equivalence_relation<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&>
&& equivalence_relation<_Fn&, iter_reference_t<_I1>,
iter_reference_t<_I2>>
&& equivalence_relation<_Fn&, iter_common_reference_t<_I1>,
iter_common_reference_t<_I2>>;
template
concept indirect_strict_weak_order
= indirectly_readable<_I1> && indirectly_readable<_I2>
&& copy_constructible<_Fn>
&& strict_weak_order<_Fn&, iter_value_t<_I1>&, iter_value_t<_I2>&>
&& strict_weak_order<_Fn&, iter_value_t<_I1>&, iter_reference_t<_I2>>
&& strict_weak_order<_Fn&, iter_reference_t<_I1>, iter_value_t<_I2>&>
&& strict_weak_order<_Fn&, iter_reference_t<_I1>, iter_reference_t<_I2>>
&& strict_weak_order<_Fn&, iter_common_reference_t<_I1>,
iter_common_reference_t<_I2>>;
template
requires (indirectly_readable<_Is> && ...)
&& invocable<_Fn, iter_reference_t<_Is>...>
using indirect_result_t = invoke_result_t<_Fn, iter_reference_t<_Is>...>;
namespace __detail
{
template
struct __projected
{
struct __type
{
using value_type = remove_cvref_t>;
indirect_result_t<_Proj&, _Iter> operator*() const; // not defined
};
};
template
struct __projected<_Iter, _Proj>
{
struct __type
{
using value_type = remove_cvref_t>;
using difference_type = iter_difference_t<_Iter>;
indirect_result_t<_Proj&, _Iter> operator*() const; // not defined
};
};
} // namespace __detail
/// [projected], projected
template _Proj>
using projected = typename __detail::__projected<_Iter, _Proj>::__type;
// [alg.req], common algorithm requirements
/// [alg.req.ind.move], concept `indirectly_movable`
template
concept indirectly_movable = indirectly_readable<_In>
&& indirectly_writable<_Out, iter_rvalue_reference_t<_In>>;
template
concept indirectly_movable_storable = indirectly_movable<_In, _Out>
&& indirectly_writable<_Out, iter_value_t<_In>>
&& movable>
&& constructible_from, iter_rvalue_reference_t<_In>>
&& assignable_from&, iter_rvalue_reference_t<_In>>;
/// [alg.req.ind.copy], concept `indirectly_copyable`
template
concept indirectly_copyable = indirectly_readable<_In>
&& indirectly_writable<_Out, iter_reference_t<_In>>;
template
concept indirectly_copyable_storable = indirectly_copyable<_In, _Out>
&& indirectly_writable<_Out, iter_value_t<_In>&>
&& indirectly_writable<_Out, const iter_value_t<_In>&>
&& indirectly_writable<_Out, iter_value_t<_In>&&>
&& indirectly_writable<_Out, const iter_value_t<_In>&&>
&& copyable>
&& constructible_from, iter_reference_t<_In>>
&& assignable_from&, iter_reference_t<_In>>;
namespace ranges
{
/// @cond undocumented
namespace __iswap
{
template
void iter_swap(_It1, _It2) = delete;
template
concept __adl_iswap
= (std::__detail::__class_or_enum>
|| std::__detail::__class_or_enum>)
&& requires(_Tp&& __t, _Up&& __u) {
iter_swap(static_cast<_Tp&&>(__t), static_cast<_Up&&>(__u));
};
template
constexpr iter_value_t<_Xp>
__iter_exchange_move(_Xp&& __x, _Yp&& __y)
noexcept(noexcept(iter_value_t<_Xp>(iter_move(__x)))
&& noexcept(*__x = iter_move(__y)))
{
iter_value_t<_Xp> __old_value(iter_move(__x));
*__x = iter_move(__y);
return __old_value;
}
struct _IterSwap
{
private:
template
static constexpr bool
_S_noexcept()
{
if constexpr (__adl_iswap<_Tp, _Up>)
return noexcept(iter_swap(std::declval<_Tp>(),
std::declval<_Up>()));
else if constexpr (indirectly_readable<_Tp>
&& indirectly_readable<_Up>
&& swappable_with, iter_reference_t<_Up>>)
return noexcept(ranges::swap(*std::declval<_Tp>(),
*std::declval<_Up>()));
else
return noexcept(*std::declval<_Tp>()
= __iswap::__iter_exchange_move(std::declval<_Up>(),
std::declval<_Tp>()));
}
public:
template
requires __adl_iswap<_Tp, _Up>
|| (indirectly_readable>
&& indirectly_readable>
&& swappable_with, iter_reference_t<_Up>>)
|| (indirectly_movable_storable<_Tp, _Up>
&& indirectly_movable_storable<_Up, _Tp>)
constexpr void
operator()(_Tp&& __e1, _Up&& __e2) const
noexcept(_S_noexcept<_Tp, _Up>())
{
if constexpr (__adl_iswap<_Tp, _Up>)
iter_swap(static_cast<_Tp&&>(__e1), static_cast<_Up&&>(__e2));
else if constexpr (indirectly_readable<_Tp>
&& indirectly_readable<_Up>
&& swappable_with, iter_reference_t<_Up>>)
ranges::swap(*__e1, *__e2);
else
*__e1 = __iswap::__iter_exchange_move(__e2, __e1);
}
};
} // namespace __iswap
/// @endcond
inline namespace _Cpo {
inline constexpr __iswap::_IterSwap iter_swap{};
}
} // namespace ranges
/// [alg.req.ind.swap], concept `indirectly_swappable`
template
concept indirectly_swappable
= indirectly_readable<_I1> && indirectly_readable<_I2>
&& requires(const _I1 __i1, const _I2 __i2)
{
ranges::iter_swap(__i1, __i1);
ranges::iter_swap(__i2, __i2);
ranges::iter_swap(__i1, __i2);
ranges::iter_swap(__i2, __i1);
};
/// [alg.req.ind.cmp], concept `indirectly_comparable`
template
concept indirectly_comparable
= indirect_binary_predicate<_Rel, projected<_I1, _P1>,
projected<_I2, _P2>>;
/// [alg.req.permutable], concept `permutable`
template
concept permutable = forward_iterator<_Iter>
&& indirectly_movable_storable<_Iter, _Iter>
&& indirectly_swappable<_Iter, _Iter>;
/// [alg.req.mergeable], concept `mergeable`
template
concept mergeable = input_iterator<_I1> && input_iterator<_I2>
&& weakly_incrementable<_Out> && indirectly_copyable<_I1, _Out>
&& indirectly_copyable<_I2, _Out>
&& indirect_strict_weak_order<_Rel, projected<_I1, _P1>,
projected<_I2, _P2>>;
/// [alg.req.sortable], concept `sortable`
template
concept sortable = permutable<_Iter>
&& indirect_strict_weak_order<_Rel, projected<_Iter, _Proj>>;
struct unreachable_sentinel_t
{
template
friend constexpr bool
operator==(unreachable_sentinel_t, const _It&) noexcept
{ return false; }
};
inline constexpr unreachable_sentinel_t unreachable_sentinel{};
// This is the namespace for [range.access] CPOs.
namespace ranges::__access
{
using std::__detail::__class_or_enum;
struct _Decay_copy final
{
template
constexpr decay_t<_Tp>
operator()(_Tp&& __t) const
noexcept(is_nothrow_convertible_v<_Tp, decay_t<_Tp>>)
{ return std::forward<_Tp>(__t); }
} inline constexpr __decay_copy{};
template
concept __member_begin = requires(_Tp& __t)
{
{ __decay_copy(__t.begin()) } -> input_or_output_iterator;
};
// Poison pill so that unqualified lookup doesn't find std::begin.
void begin() = delete;
template
concept __adl_begin = __class_or_enum>
&& requires(_Tp& __t)
{
{ __decay_copy(begin(__t)) } -> input_or_output_iterator;
};
// Simplified version of std::ranges::begin that only supports lvalues,
// for use by __range_iter_t below.
template
requires is_array_v<_Tp> || __member_begin<_Tp&> || __adl_begin<_Tp&>
auto
__begin(_Tp& __t)
{
if constexpr (is_array_v<_Tp>)
return __t + 0;
else if constexpr (__member_begin<_Tp&>)
return __t.begin();
else
return begin(__t);
}
} // namespace ranges::__access
namespace __detail
{
// Implementation of std::ranges::iterator_t, without using ranges::begin.
template
using __range_iter_t
= decltype(ranges::__access::__begin(std::declval<_Tp&>()));
} // namespace __detail
#endif // C++20 library concepts
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif // C++20
#endif // _ITERATOR_CONCEPTS_H