// -*- C++ -*- //===-- algorithm_impl.h --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _PSTL_ALGORITHM_IMPL_H #define _PSTL_ALGORITHM_IMPL_H #include #include #include #include #include #include "execution_impl.h" #include "memory_impl.h" #include "parallel_backend_utils.h" #include "parallel_backend.h" #include "parallel_impl.h" #include "unseq_backend_simd.h" namespace __pstl { namespace __internal { //------------------------------------------------------------------------ // any_of //------------------------------------------------------------------------ template bool __brick_any_of(const _ForwardIterator __first, const _ForwardIterator __last, _Pred __pred, /*__is_vector=*/std::false_type) noexcept { return std::any_of(__first, __last, __pred); }; template bool __brick_any_of(const _RandomAccessIterator __first, const _RandomAccessIterator __last, _Pred __pred, /*__is_vector=*/std::true_type) noexcept { return __unseq_backend::__simd_or(__first, __last - __first, __pred); }; template bool __pattern_any_of(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Pred __pred) noexcept { return __internal::__brick_any_of(__first, __last, __pred, typename _Tag::__is_vector{}); } template bool __pattern_any_of(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Pred __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return __internal::__parallel_or(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__pred](_RandomAccessIterator __i, _RandomAccessIterator __j) { return __internal::__brick_any_of(__i, __j, __pred, _IsVector{}); }); }); } // [alg.foreach] // for_each_n with no policy template _ForwardIterator __for_each_n_it_serial(_ForwardIterator __first, _Size __n, _Function __f) { for (; __n > 0; ++__first, --__n) __f(__first); return __first; } //------------------------------------------------------------------------ // walk1 (pseudo) // // walk1 evaluates f(x) for each dereferenced value x drawn from [first,last) //------------------------------------------------------------------------ template void __brick_walk1(_ForwardIterator __first, _ForwardIterator __last, _Function __f, /*vector=*/std::false_type) noexcept { std::for_each(__first, __last, __f); } template void __brick_walk1(_RandomAccessIterator __first, _RandomAccessIterator __last, _Function __f, /*vector=*/std::true_type) noexcept { __unseq_backend::__simd_walk_1(__first, __last - __first, __f); } template void __pattern_walk1(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Function __f) noexcept { __internal::__brick_walk1(__first, __last, __f, typename _Tag::__is_vector{}); } template void __pattern_walk1(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Function __f) { using __backend_tag = typename decltype(__tag)::__backend_tag; __internal::__except_handler( [&]() { __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__f](_RandomAccessIterator __i, _RandomAccessIterator __j) { __internal::__brick_walk1(__i, __j, __f, _IsVector{}); }); }); } template void __pattern_walk_brick(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Brick __brick) noexcept { __brick(__first, __last); } template void __pattern_walk_brick(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Brick __brick) { using __backend_tag = typename decltype(__tag)::__backend_tag; __internal::__except_handler( [&]() { __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__brick](_RandomAccessIterator __i, _RandomAccessIterator __j) { __brick(__i, __j); }); }); } //------------------------------------------------------------------------ // walk1_n //------------------------------------------------------------------------ template _ForwardIterator __brick_walk1_n(_ForwardIterator __first, _Size __n, _Function __f, /*_IsVectorTag=*/std::false_type) { return __internal::__for_each_n_it_serial(__first, __n, [&__f](_ForwardIterator __it) { __f(*__it); }); // calling serial version } template _RandomAccessIterator __brick_walk1_n(_RandomAccessIterator __first, _DifferenceType __n, _Function __f, /*vectorTag=*/std::true_type) noexcept { return __unseq_backend::__simd_walk_1(__first, __n, __f); } template _ForwardIterator __pattern_walk1_n(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _Size __n, _Function __f) noexcept { return __internal::__brick_walk1_n(__first, __n, __f, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_walk1_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _Size __n, _Function __f) { __internal::__pattern_walk1(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __first + __n, __f); return __first + __n; } template _ForwardIterator __pattern_walk_brick_n(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _Size __n, _Brick __brick) noexcept { return __brick(__first, __n); } template _RandomAccessIterator __pattern_walk_brick_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _Size __n, _Brick __brick) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __first + __n, [__brick](_RandomAccessIterator __i, _RandomAccessIterator __j) { __brick(__i, __j - __i); }); return __first + __n; }); } //------------------------------------------------------------------------ // walk2 (pseudo) // // walk2 evaluates f(x,y) for deferenced values (x,y) drawn from [first1,last1) and [first2,...) //------------------------------------------------------------------------ template _ForwardIterator2 __brick_walk2(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _Function __f, /*vector=*/std::false_type) noexcept { for (; __first1 != __last1; ++__first1, ++__first2) __f(*__first1, *__first2); return __first2; } template _RandomAccessIterator2 __brick_walk2(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _Function __f, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_walk_2(__first1, __last1 - __first1, __first2, __f); } template _ForwardIterator2 __brick_walk2_n(_ForwardIterator1 __first1, _Size __n, _ForwardIterator2 __first2, _Function __f, /*vector=*/std::false_type) noexcept { for (; __n > 0; --__n, ++__first1, ++__first2) __f(*__first1, *__first2); return __first2; } template _RandomAccessIterator2 __brick_walk2_n(_RandomAccessIterator1 __first1, _Size __n, _RandomAccessIterator2 __first2, _Function __f, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_walk_2(__first1, __n, __first2, __f); } template _ForwardIterator2 __pattern_walk2(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _Function __f) noexcept { return __internal::__brick_walk2(__first1, __last1, __first2, __f, typename _Tag::__is_vector{}); } template _RandomAccessIterator2 __pattern_walk2(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _Function __f) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, [__f, __first1, __first2](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { __internal::__brick_walk2(__i, __j, __first2 + (__i - __first1), __f, _IsVector{}); }); return __first2 + (__last1 - __first1); }); } template _ForwardIterator2 __pattern_walk2_n(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _Size __n, _ForwardIterator2 __first2, _Function __f) noexcept { return __internal::__brick_walk2_n(__first1, __n, __first2, __f, typename _Tag::__is_vector{}); } template _RandomAccessIterator2 __pattern_walk2_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _Size __n, _RandomAccessIterator2 __first2, _Function __f) { return __internal::__pattern_walk2(__tag, std::forward<_ExecutionPolicy>(__exec), __first1, __first1 + __n, __first2, __f); } template _ForwardIterator2 __pattern_walk2_brick(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _Brick __brick) noexcept { return __brick(__first1, __last1, __first2); } template _RandomAccessIterator2 __pattern_walk2_brick(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _Brick __brick) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, [__first1, __first2, __brick](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { __brick(__i, __j, __first2 + (__i - __first1)); }); return __first2 + (__last1 - __first1); }); } template _ForwardIterator2 __pattern_walk2_brick_n(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _Size __n, _ForwardIterator2 __first2, _Brick __brick) noexcept { return __brick(__first1, __n, __first2); } template _RandomAccessIterator2 __pattern_walk2_brick_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _Size __n, _RandomAccessIterator2 __first2, _Brick __brick) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __first1 + __n, [__first1, __first2, __brick](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { __brick(__i, __j - __i, __first2 + (__i - __first1)); }); return __first2 + __n; }); } //------------------------------------------------------------------------ // walk3 (pseudo) // // walk3 evaluates f(x,y,z) for (x,y,z) drawn from [first1,last1), [first2,...), [first3,...) //------------------------------------------------------------------------ template _ForwardIterator3 __brick_walk3(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator3 __first3, _Function __f, /*vector=*/std::false_type) noexcept { for (; __first1 != __last1; ++__first1, ++__first2, ++__first3) __f(*__first1, *__first2, *__first3); return __first3; } template _RandomAccessIterator3 __brick_walk3(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator3 __first3, _Function __f, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_walk_3(__first1, __last1 - __first1, __first2, __first3, __f); } template _ForwardIterator3 __pattern_walk3(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator3 __first3, _Function __f) noexcept { return __internal::__brick_walk3(__first1, __last1, __first2, __first3, __f, typename _Tag::__is_vector{}); } template _RandomAccessIterator3 __pattern_walk3(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator3 __first3, _Function __f) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, [__f, __first1, __first2, __first3](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { __internal::__brick_walk3(__i, __j, __first2 + (__i - __first1), __first3 + (__i - __first1), __f, _IsVector{}); }); return __first3 + (__last1 - __first1); }); } //------------------------------------------------------------------------ // equal //------------------------------------------------------------------------ template bool __brick_equal(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __p, /* IsVector = */ std::false_type) noexcept { return std::equal(__first1, __last1, __first2, __last2, __p); } template bool __brick_equal(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _BinaryPredicate __p, /* is_vector = */ std::true_type) noexcept { if (__last1 - __first1 != __last2 - __first2) return false; return __unseq_backend::__simd_first(__first1, __last1 - __first1, __first2, std::not_fn(__p)).first == __last1; } template bool __pattern_equal(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __p) noexcept { return __internal::__brick_equal(__first1, __last1, __first2, __last2, __p, typename _Tag::__is_vector{}); } template bool __pattern_equal(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _BinaryPredicate __p) { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__last1 - __first1 != __last2 - __first2) return false; return __internal::__except_handler( [&]() { return !__internal::__parallel_or( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, [__first1, __first2, __p](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return !__internal::__brick_equal(__i, __j, __first2 + (__i - __first1), __first2 + (__j - __first1), __p, _IsVector{}); }); }); } //------------------------------------------------------------------------ // equal version for sequences with equal length //------------------------------------------------------------------------ template bool __brick_equal(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _BinaryPredicate __p, /* IsVector = */ std::false_type) noexcept { return std::equal(__first1, __last1, __first2, __p); } template bool __brick_equal(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _BinaryPredicate __p, /* is_vector = */ std::true_type) noexcept { return __unseq_backend::__simd_first(__first1, __last1 - __first1, __first2, std::not_fn(__p)).first == __last1; } template bool __pattern_equal(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _BinaryPredicate __p) noexcept { return __internal::__brick_equal(__first1, __last1, __first2, __p, typename _Tag::__is_vector{}); } template bool __pattern_equal(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _BinaryPredicate __p) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return !__internal::__parallel_or( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, [__first1, __first2, __p](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return !__internal::__brick_equal(__i, __j, __first2 + (__i - __first1), __p, _IsVector{}); }); }); } //------------------------------------------------------------------------ // find_if //------------------------------------------------------------------------ template _ForwardIterator __brick_find_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, /*is_vector=*/std::false_type) noexcept { return std::find_if(__first, __last, __pred); } template _RandomAccessIterator __brick_find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, /*is_vector=*/std::true_type) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _SizeType; return __unseq_backend::__simd_first( __first, _SizeType(0), __last - __first, [&__pred](_RandomAccessIterator __it, _SizeType __i) { return __pred(__it[__i]); }); } template _ForwardIterator __pattern_find_if(_Tag __tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) noexcept { return __internal::__brick_find_if(__first, __last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_find_if(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__pred](_RandomAccessIterator __i, _RandomAccessIterator __j) { return __internal::__brick_find_if(__i, __j, __pred, _IsVector{}); }, std::less::difference_type>(), /*is_first=*/true); }); } //------------------------------------------------------------------------ // find_end //------------------------------------------------------------------------ // find the first occurrence of the subsequence [s_first, s_last) // or the last occurrence of the subsequence in the range [first, last) // b_first determines what occurrence we want to find (first or last) template _RandomAccessIterator1 __find_subrange(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator1 __global_last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred, bool __b_first, _IsVector __is_vector) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator2>::value_type _ValueType; auto __n2 = __s_last - __s_first; if (__n2 < 1) { return __b_first ? __first : __last; } auto __n1 = __global_last - __first; if (__n1 < __n2) { return __last; } auto __cur = __last; while (__first != __last && (__global_last - __first >= __n2)) { // find position of *s_first in [first, last) (it can be start of subsequence) __first = __internal::__brick_find_if( __first, __last, __equal_value_by_pred<_ValueType, _BinaryPredicate>(*__s_first, __pred), __is_vector); // if position that was found previously is the start of subsequence // then we can exit the loop (b_first == true) or keep the position // (b_first == false) if (__first != __last && (__global_last - __first >= __n2) && __internal::__brick_equal(__s_first + 1, __s_last, __first + 1, __pred, __is_vector)) { if (__b_first) { return __first; } else { __cur = __first; } } else if (__first == __last) { break; } else { } // in case of b_first == false we try to find new start position // for the next subsequence ++__first; } return __cur; } template _RandomAccessIterator __find_subrange(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomAccessIterator __global_last, _Size __count, const _Tp& __value, _BinaryPredicate __pred, _IsVector __is_vector) noexcept { if (static_cast<_Size>(__global_last - __first) < __count || __count < 1) { return __last; // According to the standard last shall be returned when count < 1 } auto __unary_pred = __equal_value_by_pred<_Tp, _BinaryPredicate>(__value, __pred); while (__first != __last && (static_cast<_Size>(__global_last - __first) >= __count)) { __first = __internal::__brick_find_if(__first, __last, __unary_pred, __is_vector); // check that all of elements in [first+1, first+count) equal to value if (__first != __last && (static_cast<_Size>(__global_last - __first) >= __count) && !__internal::__brick_any_of(__first + 1, __first + __count, std::not_fn(__unary_pred), __is_vector)) { return __first; } else if (__first == __last) { break; } else { ++__first; } } return __last; } template _ForwardIterator1 __brick_find_end(_ForwardIterator1 __first, _ForwardIterator1 __last, _ForwardIterator2 __s_first, _ForwardIterator2 __s_last, _BinaryPredicate __pred, /*__is_vector=*/std::false_type) noexcept { return std::find_end(__first, __last, __s_first, __s_last, __pred); } template _RandomAccessIterator1 __brick_find_end(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred, /*__is_vector=*/std::true_type) noexcept { return __find_subrange(__first, __last, __last, __s_first, __s_last, __pred, false, std::true_type()); } template _ForwardIterator1 __pattern_find_end(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first, _ForwardIterator1 __last, _ForwardIterator2 __s_first, _ForwardIterator2 __s_last, _BinaryPredicate __pred) noexcept { return __internal::__brick_find_end(__first, __last, __s_first, __s_last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator1 __pattern_find_end(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__last - __first == __s_last - __s_first) { const bool __res = __internal::__pattern_equal(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __last, __s_first, __pred); return __res ? __first : __last; } else { return __internal::__except_handler( [&]() { return __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__last, __s_first, __s_last, __pred](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return __internal::__find_subrange(__i, __j, __last, __s_first, __s_last, __pred, false, _IsVector{}); }, std::greater::difference_type>(), /*is_first=*/false); }); } } //------------------------------------------------------------------------ // find_first_of //------------------------------------------------------------------------ template _ForwardIterator1 __brick_find_first_of(_ForwardIterator1 __first, _ForwardIterator1 __last, _ForwardIterator2 __s_first, _ForwardIterator2 __s_last, _BinaryPredicate __pred, /*__is_vector=*/std::false_type) noexcept { return std::find_first_of(__first, __last, __s_first, __s_last, __pred); } template _RandomAccessIterator1 __brick_find_first_of(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred, /*__is_vector=*/std::true_type) noexcept { return __unseq_backend::__simd_find_first_of(__first, __last, __s_first, __s_last, __pred); } template _ForwardIterator1 __pattern_find_first_of(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first, _ForwardIterator1 __last, _ForwardIterator2 __s_first, _ForwardIterator2 __s_last, _BinaryPredicate __pred) noexcept { return __internal::__brick_find_first_of(__first, __last, __s_first, __s_last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator1 __pattern_find_first_of(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__s_first, __s_last, __pred](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return __internal::__brick_find_first_of(__i, __j, __s_first, __s_last, __pred, _IsVector{}); }, std::less::difference_type>(), /*is_first=*/true); }); } //------------------------------------------------------------------------ // search //------------------------------------------------------------------------ template _RandomAccessIterator1 __brick_search(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred, /*vector=*/std::false_type) noexcept { return std::search(__first, __last, __s_first, __s_last, __pred); } template _RandomAccessIterator1 __brick_search(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred, /*vector=*/std::true_type) noexcept { return __internal::__find_subrange(__first, __last, __last, __s_first, __s_last, __pred, true, std::true_type()); } template _ForwardIterator1 __pattern_search(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first, _ForwardIterator1 __last, _ForwardIterator2 __s_first, _ForwardIterator2 __s_last, _BinaryPredicate __pred) noexcept { return __internal::__brick_search(__first, __last, __s_first, __s_last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator1 __pattern_search(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __s_first, _RandomAccessIterator2 __s_last, _BinaryPredicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__last - __first == __s_last - __s_first) { const bool __res = __internal::__pattern_equal(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __last, __s_first, __pred); return __res ? __first : __last; } else { return __internal::__except_handler( [&]() { return __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__last, __s_first, __s_last, __pred](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return __internal::__find_subrange(__i, __j, __last, __s_first, __s_last, __pred, true, _IsVector{}); }, std::less::difference_type>(), /*is_first=*/true); }); } } //------------------------------------------------------------------------ // search_n //------------------------------------------------------------------------ template _ForwardIterator __brick_search_n(_ForwardIterator __first, _ForwardIterator __last, _Size __count, const _Tp& __value, _BinaryPredicate __pred, /*vector=*/std::false_type) noexcept { return std::search_n(__first, __last, __count, __value, __pred); } template _RandomAccessIterator __brick_search_n(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __count, const _Tp& __value, _BinaryPredicate __pred, /*vector=*/std::true_type) noexcept { return __internal::__find_subrange(__first, __last, __last, __count, __value, __pred, std::true_type()); } template _ForwardIterator __pattern_search_n(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Size __count, const _Tp& __value, _BinaryPredicate __pred) noexcept { return __internal::__brick_search_n(__first, __last, __count, __value, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_search_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Size __count, const _Tp& __value, _BinaryPredicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; if (static_cast<_Size>(__last - __first) == __count) { const bool __result = !__internal::__pattern_any_of(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __last, [&__value, &__pred](const _Tp& __val) { return !__pred(__val, __value); }); return __result ? __first : __last; } else { return __internal::__except_handler( [&__exec, __first, __last, __count, &__value, __pred]() { return __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__last, __count, &__value, __pred](_RandomAccessIterator __i, _RandomAccessIterator __j) { return __internal::__find_subrange(__i, __j, __last, __count, __value, __pred, _IsVector{}); }, std::less::difference_type>(), /*is_first=*/true); }); } } //------------------------------------------------------------------------ // copy_n //------------------------------------------------------------------------ template _OutputIterator __brick_copy_n(_ForwardIterator __first, _Size __n, _OutputIterator __result, /*vector=*/std::false_type) noexcept { return std::copy_n(__first, __n, __result); } template _RandomAccessIterator2 __brick_copy_n(_RandomAccessIterator1 __first, _Size __n, _RandomAccessIterator2 __result, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_assign( __first, __n, __result, [](_RandomAccessIterator1 __first, _RandomAccessIterator2 __result) { *__result = *__first; }); } //------------------------------------------------------------------------ // copy //------------------------------------------------------------------------ template _OutputIterator __brick_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, /*vector=*/std::false_type) noexcept { return std::copy(__first, __last, __result); } template _RandomAccessIterator2 __brick_copy(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_assign( __first, __last - __first, __result, [](_RandomAccessIterator1 __first, _RandomAccessIterator2 __result) { *__result = *__first; }); } //------------------------------------------------------------------------ // move //------------------------------------------------------------------------ template _OutputIterator __brick_move(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, /*vector=*/std::false_type) noexcept { return std::move(__first, __last, __result); } template _RandomAccessIterator2 __brick_move(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_assign( __first, __last - __first, __result, [](_RandomAccessIterator1 __first, _RandomAccessIterator2 __result) { *__result = std::move(*__first); }); } struct __brick_move_destroy { template _RandomAccessIterator2 operator()(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*vec*/ std::true_type) const { using _IteratorValueType = typename std::iterator_traits<_RandomAccessIterator1>::value_type; return __unseq_backend::__simd_assign(__first, __last - __first, __result, [](_RandomAccessIterator1 __first, _RandomAccessIterator2 __result) { *__result = std::move(*__first); (*__first).~_IteratorValueType(); }); } template _RandomAccessIterator2 operator()(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*vec*/ std::false_type) const { using _IteratorValueType = typename std::iterator_traits<_RandomAccessIterator1>::value_type; for (; __first != __last; ++__first, ++__result) { *__result = std::move(*__first); (*__first).~_IteratorValueType(); } return __result; } }; //------------------------------------------------------------------------ // swap_ranges //------------------------------------------------------------------------ template _OutputIterator __brick_swap_ranges(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, /*vector=*/std::false_type) noexcept { return std::swap_ranges(__first, __last, __result); } template _RandomAccessIterator2 __brick_swap_ranges(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*vector=*/std::true_type) noexcept { using std::iter_swap; return __unseq_backend::__simd_assign(__first, __last - __first, __result, iter_swap<_RandomAccessIterator1, _RandomAccessIterator2>); } //------------------------------------------------------------------------ // copy_if //------------------------------------------------------------------------ template _OutputIterator __brick_copy_if(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _UnaryPredicate __pred, /*vector=*/std::false_type) noexcept { return std::copy_if(__first, __last, __result, __pred); } template _RandomAccessIterator2 __brick_copy_if(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _UnaryPredicate __pred, /*vector=*/std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) return __unseq_backend::__simd_copy_if(__first, __last - __first, __result, __pred); #else return std::copy_if(__first, __last, __result, __pred); #endif } // TODO: Try to use transform_reduce for combining __brick_copy_if_phase1 on IsVector. template std::pair<_DifferenceType, _DifferenceType> __brick_calc_mask_1(_ForwardIterator __first, _ForwardIterator __last, bool* __restrict __mask, _UnaryPredicate __pred, /*vector=*/std::false_type) noexcept { auto __count_true = _DifferenceType(0); auto __size = __last - __first; static_assert(__are_random_access_iterators<_ForwardIterator>::value, "Pattern-brick error. Should be a random access iterator."); for (; __first != __last; ++__first, ++__mask) { *__mask = __pred(*__first); if (*__mask) { ++__count_true; } } return std::make_pair(__count_true, __size - __count_true); } template std::pair<_DifferenceType, _DifferenceType> __brick_calc_mask_1(_RandomAccessIterator __first, _RandomAccessIterator __last, bool* __mask, _UnaryPredicate __pred, /*vector=*/std::true_type) noexcept { auto __result = __unseq_backend::__simd_calc_mask_1(__first, __last - __first, __mask, __pred); return std::make_pair(__result, (__last - __first) - __result); } template void __brick_copy_by_mask(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, bool* __mask, _Assigner __assigner, /*vector=*/std::false_type) noexcept { for (; __first != __last; ++__first, ++__mask) { if (*__mask) { __assigner(__first, __result); ++__result; } } } template void __brick_copy_by_mask(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, bool* __restrict __mask, _Assigner __assigner, /*vector=*/std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) __unseq_backend::__simd_copy_by_mask(__first, __last - __first, __result, __mask, __assigner); #else __internal::__brick_copy_by_mask(__first, __last, __result, __mask, __assigner, std::false_type()); #endif } template void __brick_partition_by_mask(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator1 __out_true, _OutputIterator2 __out_false, bool* __mask, /*vector=*/std::false_type) noexcept { for (; __first != __last; ++__first, ++__mask) { if (*__mask) { *__out_true = *__first; ++__out_true; } else { *__out_false = *__first; ++__out_false; } } } template void __brick_partition_by_mask(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __out_true, _RandomAccessIterator3 __out_false, bool* __mask, /*vector=*/std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) __unseq_backend::__simd_partition_by_mask(__first, __last - __first, __out_true, __out_false, __mask); #else __internal::__brick_partition_by_mask(__first, __last, __out_true, __out_false, __mask, std::false_type()); #endif } template _OutputIterator __pattern_copy_if(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _UnaryPredicate __pred) noexcept { return __internal::__brick_copy_if(__first, __last, __result, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator2 __pattern_copy_if(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _UnaryPredicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType; const _DifferenceType __n = __last - __first; if (_DifferenceType(1) < __n) { __par_backend::__buffer __mask_buf(__n); return __internal::__except_handler( [&__exec, __n, __first, __result, __pred, &__mask_buf]() { bool* __mask = __mask_buf.get(); _DifferenceType __m{}; __par_backend::__parallel_strict_scan( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __n, _DifferenceType(0), [=](_DifferenceType __i, _DifferenceType __len) { // Reduce return __internal::__brick_calc_mask_1<_DifferenceType>(__first + __i, __first + (__i + __len), __mask + __i, __pred, _IsVector{}) .first; }, std::plus<_DifferenceType>(), // Combine [=](_DifferenceType __i, _DifferenceType __len, _DifferenceType __initial) { // Scan __internal::__brick_copy_by_mask( __first + __i, __first + (__i + __len), __result + __initial, __mask + __i, [](_RandomAccessIterator1 __x, _RandomAccessIterator2 __z) { *__z = *__x; }, _IsVector{}); }, [&__m](_DifferenceType __total) { __m = __total; }); return __result + __m; }); } // trivial sequence - use serial algorithm return __internal::__brick_copy_if(__first, __last, __result, __pred, _IsVector{}); } //------------------------------------------------------------------------ // count //------------------------------------------------------------------------ template typename std::iterator_traits<_RandomAccessIterator>::difference_type __brick_count(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, /* is_vector = */ std::true_type) noexcept { return __unseq_backend::__simd_count(__first, __last - __first, __pred); } template typename std::iterator_traits<_ForwardIterator>::difference_type __brick_count(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, /* is_vector = */ std::false_type) noexcept { return std::count_if(__first, __last, __pred); } template typename std::iterator_traits<_ForwardIterator>::difference_type __pattern_count(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) noexcept { return __internal::__brick_count(__first, __last, __pred, typename _Tag::__is_vector{}); } template typename std::iterator_traits<_RandomAccessIterator>::difference_type __pattern_count(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _SizeType; return __internal::__except_handler( [&]() { return __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, _SizeType(0), [__pred](_RandomAccessIterator __begin, _RandomAccessIterator __end, _SizeType __value) -> _SizeType { return __value + __internal::__brick_count(__begin, __end, __pred, _IsVector{}); }, std::plus<_SizeType>()); }); } //------------------------------------------------------------------------ // unique //------------------------------------------------------------------------ template _RandomAccessIterator __brick_unique(_RandomAccessIterator __first, _RandomAccessIterator __last, _BinaryPredicate __pred, /*is_vector=*/std::false_type) noexcept { return std::unique(__first, __last, __pred); } template _RandomAccessIterator __brick_unique(_RandomAccessIterator __first, _RandomAccessIterator __last, _BinaryPredicate __pred, /*is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::unique(__first, __last, __pred); } template _ForwardIterator __pattern_unique(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __pred) noexcept { return __internal::__brick_unique(__first, __last, __pred, typename _Tag::__is_vector{}); } // That function is shared between two algorithms - remove_if (__pattern_remove_if) and unique (pattern unique). But a mask calculation is different. // So, a caller passes _CalcMask brick into remove_elements. template _ForwardIterator __remove_elements(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _ForwardIterator __first, _ForwardIterator __last, _CalcMask __calc_mask) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_ForwardIterator>::difference_type _DifferenceType; typedef typename std::iterator_traits<_ForwardIterator>::value_type _Tp; _DifferenceType __n = __last - __first; __par_backend::__buffer __mask_buf(__n); // 1. find a first iterator that should be removed return __internal::__except_handler([&]() { bool* __mask = __mask_buf.get(); _DifferenceType __min = __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), _DifferenceType(0), __n, __n, [__first, __mask, &__calc_mask](_DifferenceType __i, _DifferenceType __j, _DifferenceType __local_min) -> _DifferenceType { // Create mask __calc_mask(__mask + __i, __mask + __j, __first + __i); // if minimum was found in a previous range we shouldn't do anymore if (__local_min < __i) { return __local_min; } // find first iterator that should be removed bool* __result = __internal::__brick_find_if( __mask + __i, __mask + __j, [](bool __val) { return !__val; }, _IsVector{}); if (__result - __mask == __j) { return __local_min; } return std::min(__local_min, _DifferenceType(__result - __mask)); }, [](_DifferenceType __local_min1, _DifferenceType __local_min2) -> _DifferenceType { return std::min(__local_min1, __local_min2); }); // No elements to remove - exit if (__min == __n) { return __last; } __n -= __min; __first += __min; __par_backend::__buffer<_Tp> __buf(__n); _Tp* __result = __buf.get(); __mask += __min; _DifferenceType __m{}; // 2. Elements that doesn't satisfy pred are moved to result __par_backend::__parallel_strict_scan( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __n, _DifferenceType(0), [__mask](_DifferenceType __i, _DifferenceType __len) { return __internal::__brick_count( __mask + __i, __mask + __i + __len, [](bool __val) { return __val; }, _IsVector{}); }, std::plus<_DifferenceType>(), [=](_DifferenceType __i, _DifferenceType __len, _DifferenceType __initial) { __internal::__brick_copy_by_mask( __first + __i, __first + __i + __len, __result + __initial, __mask + __i, [](_ForwardIterator __x, _Tp* __z) { __internal::__invoke_if_else( std::is_trivial<_Tp>(), [&]() { *__z = std::move(*__x); }, [&]() { ::new (std::addressof(*__z)) _Tp(std::move(*__x)); }); }, _IsVector{}); }, [&__m](_DifferenceType __total) { __m = __total; }); // 3. Elements from result are moved to [first, last) __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __result, __result + __m, [__result, __first](_Tp* __i, _Tp* __j) { __invoke_if_else( std::is_trivial<_Tp>(), [&]() { __brick_move(__i, __j, __first + (__i - __result), _IsVector{}); }, [&]() { __brick_move_destroy()(__i, __j, __first + (__i - __result), _IsVector{}); }); }); return __first + __m; }); } template _RandomAccessIterator __pattern_unique(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _BinaryPredicate __pred) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::reference _ReferenceType; if (__first == __last) { return __last; } if (__first + 1 == __last || __first + 2 == __last) { // Trivial sequence - use serial algorithm return __internal::__brick_unique(__first, __last, __pred, _IsVector{}); } return __internal::__remove_elements( __tag, std::forward<_ExecutionPolicy>(__exec), ++__first, __last, [&__pred](bool* __b, bool* __e, _RandomAccessIterator __it) { __internal::__brick_walk3( __b, __e, __it - 1, __it, [&__pred](bool& __x, _ReferenceType __y, _ReferenceType __z) { __x = !__pred(__y, __z); }, _IsVector{}); }); } //------------------------------------------------------------------------ // unique_copy //------------------------------------------------------------------------ template _OutputIterator __brick_unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __pred, /*vector=*/std::false_type) noexcept { return std::unique_copy(__first, __last, __result, __pred); } template _RandomAccessIterator2 __brick_unique_copy(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _BinaryPredicate __pred, /*vector=*/std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) return __unseq_backend::__simd_unique_copy(__first, __last - __first, __result, __pred); #else return std::unique_copy(__first, __last, __result, __pred); #endif } template _OutputIterator __pattern_unique_copy(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __pred) noexcept { return __internal::__brick_unique_copy(__first, __last, __result, __pred, typename _Tag::__is_vector{}); } template _DifferenceType __brick_calc_mask_2(_RandomAccessIterator __first, _RandomAccessIterator __last, bool* __restrict __mask, _BinaryPredicate __pred, /*vector=*/std::false_type) noexcept { _DifferenceType __count = 0; for (; __first != __last; ++__first, ++__mask) { *__mask = !__pred(*__first, *(__first - 1)); __count += *__mask; } return __count; } template _DifferenceType __brick_calc_mask_2(_RandomAccessIterator __first, _RandomAccessIterator __last, bool* __restrict __mask, _BinaryPredicate __pred, /*vector=*/std::true_type) noexcept { return __unseq_backend::__simd_calc_mask_2(__first, __last - __first, __mask, __pred); } template _RandomAccessIterator2 __pattern_unique_copy(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _BinaryPredicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType; const _DifferenceType __n = __last - __first; if (_DifferenceType(2) < __n) { __par_backend::__buffer __mask_buf(__n); if (_DifferenceType(2) < __n) { return __internal::__except_handler( [&__exec, __n, __first, __result, __pred, &__mask_buf]() { bool* __mask = __mask_buf.get(); _DifferenceType __m{}; __par_backend::__parallel_strict_scan( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __n, _DifferenceType(0), [=](_DifferenceType __i, _DifferenceType __len) -> _DifferenceType { // Reduce _DifferenceType __extra = 0; if (__i == 0) { // Special boundary case __mask[__i] = true; if (--__len == 0) return 1; ++__i; ++__extra; } return __internal::__brick_calc_mask_2<_DifferenceType>( __first + __i, __first + (__i + __len), __mask + __i, __pred, _IsVector{}) + __extra; }, std::plus<_DifferenceType>(), // Combine [=](_DifferenceType __i, _DifferenceType __len, _DifferenceType __initial) { // Scan // Phase 2 is same as for __pattern_copy_if __internal::__brick_copy_by_mask( __first + __i, __first + (__i + __len), __result + __initial, __mask + __i, [](_RandomAccessIterator1 __x, _RandomAccessIterator2 __z) { *__z = *__x; }, _IsVector{}); }, [&__m](_DifferenceType __total) { __m = __total; }); return __result + __m; }); } } // trivial sequence - use serial algorithm return __internal::__brick_unique_copy(__first, __last, __result, __pred, _IsVector{}); } //------------------------------------------------------------------------ // reverse //------------------------------------------------------------------------ template void __brick_reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, /*__is_vector=*/std::false_type) noexcept { std::reverse(__first, __last); } template void __brick_reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, /*__is_vector=*/std::true_type) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::reference _ReferenceType; const auto __n = (__last - __first) / 2; __unseq_backend::__simd_walk_2(__first, __n, std::reverse_iterator<_RandomAccessIterator>(__last), [](_ReferenceType __x, _ReferenceType __y) { using std::swap; swap(__x, __y); }); } // this brick is called in parallel version, so we can use iterator arithmetic template void __brick_reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, _BidirectionalIterator __d_last, /*is_vector=*/std::false_type) noexcept { for (--__d_last; __first != __last; ++__first, --__d_last) { using std::iter_swap; iter_swap(__first, __d_last); } } // this brick is called in parallel version, so we can use iterator arithmetic template void __brick_reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomAccessIterator __d_last, /*is_vector=*/std::true_type) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::reference _ReferenceType; __unseq_backend::__simd_walk_2(__first, __last - __first, std::reverse_iterator<_RandomAccessIterator>(__d_last), [](_ReferenceType __x, _ReferenceType __y) { using std::swap; swap(__x, __y); }); } template void __pattern_reverse(_Tag, _ExecutionPolicy&&, _BidirectionalIterator __first, _BidirectionalIterator __last) noexcept { __internal::__brick_reverse(__first, __last, typename _Tag::__is_vector{}); } template void __pattern_reverse(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last) { using __backend_tag = typename decltype(__tag)::__backend_tag; __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __first + (__last - __first) / 2, [__first, __last](_RandomAccessIterator __inner_first, _RandomAccessIterator __inner_last) { __internal::__brick_reverse(__inner_first, __inner_last, __last - (__inner_first - __first), _IsVector{}); }); } //------------------------------------------------------------------------ // reverse_copy //------------------------------------------------------------------------ template _OutputIterator __brick_reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __d_first, /*is_vector=*/std::false_type) noexcept { return std::reverse_copy(__first, __last, __d_first); } template _RandomAccessIterator2 __brick_reverse_copy(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __d_first, /*is_vector=*/std::true_type) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator1>::reference _ReferenceType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::reference _ReferenceType2; return __unseq_backend::__simd_walk_2(std::reverse_iterator<_RandomAccessIterator1>(__last), __last - __first, __d_first, [](_ReferenceType1 __x, _ReferenceType2 __y) { __y = __x; }); } template _OutputIterator __pattern_reverse_copy(_Tag, _ExecutionPolicy&&, _BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __d_first) noexcept { return __internal::__brick_reverse_copy(__first, __last, __d_first, typename _Tag::__is_vector{}); } template _RandomAccessIterator2 __pattern_reverse_copy(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __d_first) { using __backend_tag = typename decltype(__tag)::__backend_tag; auto __len = __last - __first; __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__first, __len, __d_first](_RandomAccessIterator1 __inner_first, _RandomAccessIterator1 __inner_last) { __internal::__brick_reverse_copy(__inner_first, __inner_last, __d_first + (__len - (__inner_last - __first)), _IsVector{}); }); return __d_first + __len; } //------------------------------------------------------------------------ // rotate //------------------------------------------------------------------------ template _ForwardIterator __brick_rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, /*is_vector=*/std::false_type) noexcept { #if defined(_PSTL_CPP11_STD_ROTATE_BROKEN) std::rotate(__first, __middle, __last); return std::next(__first, std::distance(__middle, __last)); #else return std::rotate(__first, __middle, __last); #endif } template _RandomAccessIterator __brick_rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, /*is_vector=*/std::true_type) noexcept { auto __n = __last - __first; auto __m = __middle - __first; const _RandomAccessIterator __ret = __first + (__last - __middle); bool __is_left = (__m <= __n / 2); if (!__is_left) __m = __n - __m; while (__n > 1 && __m > 0) { using std::iter_swap; const auto __m_2 = __m * 2; if (__is_left) { for (; __last - __first >= __m_2; __first += __m) { __unseq_backend::__simd_assign(__first, __m, __first + __m, iter_swap<_RandomAccessIterator, _RandomAccessIterator>); } } else { for (; __last - __first >= __m_2; __last -= __m) { __unseq_backend::__simd_assign(__last - __m, __m, __last - __m_2, iter_swap<_RandomAccessIterator, _RandomAccessIterator>); } } __is_left = !__is_left; __m = __n % __m; __n = __last - __first; } return __ret; } template _ForwardIterator __pattern_rotate(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) noexcept { return __internal::__brick_rotate(__first, __middle, __last, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_rotate(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _Tp; auto __n = __last - __first; auto __m = __middle - __first; if (__m <= __n / 2) { __par_backend::__buffer<_Tp> __buf(__n - __m); return __internal::__except_handler( [&__exec, __n, __m, __first, __middle, __last, &__buf]() { _Tp* __result = __buf.get(); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __middle, __last, [__middle, __result](_RandomAccessIterator __b, _RandomAccessIterator __e) { __internal::__brick_uninitialized_move(__b, __e, __result + (__b - __middle), _IsVector{}); }); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __middle, [__last, __middle](_RandomAccessIterator __b, _RandomAccessIterator __e) { __internal::__brick_move(__b, __e, __b + (__last - __middle), _IsVector{}); }); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __result, __result + (__n - __m), [__first, __result](_Tp* __b, _Tp* __e) { __brick_move_destroy()(__b, __e, __first + (__b - __result), _IsVector{}); }); return __first + (__last - __middle); }); } else { __par_backend::__buffer<_Tp> __buf(__m); return __internal::__except_handler( [&__exec, __n, __m, __first, __middle, __last, &__buf]() { _Tp* __result = __buf.get(); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __middle, [__first, __result](_RandomAccessIterator __b, _RandomAccessIterator __e) { __internal::__brick_uninitialized_move(__b, __e, __result + (__b - __first), _IsVector{}); }); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __middle, __last, [__first, __middle](_RandomAccessIterator __b, _RandomAccessIterator __e) { __internal::__brick_move(__b, __e, __first + (__b - __middle), _IsVector{}); }); __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __result, __result + __m, [__n, __m, __first, __result](_Tp* __b, _Tp* __e) { __brick_move_destroy()(__b, __e, __first + ((__n - __m) + (__b - __result)), _IsVector{}); }); return __first + (__last - __middle); }); } } //------------------------------------------------------------------------ // rotate_copy //------------------------------------------------------------------------ template _OutputIterator __brick_rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result, /*__is_vector=*/std::false_type) noexcept { return std::rotate_copy(__first, __middle, __last, __result); } template _RandomAccessIterator2 __brick_rotate_copy(_RandomAccessIterator1 __first, _RandomAccessIterator1 __middle, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, /*__is_vector=*/std::true_type) noexcept { _RandomAccessIterator2 __res = __internal::__brick_copy(__middle, __last, __result, std::true_type()); return __internal::__brick_copy(__first, __middle, __res, std::true_type()); } template _OutputIterator __pattern_rotate_copy(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) noexcept { return __internal::__brick_rotate_copy(__first, __middle, __last, __result, typename _Tag::__is_vector{}); } template _RandomAccessIterator2 __pattern_rotate_copy(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __middle, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result) { using __backend_tag = typename decltype(__tag)::__backend_tag; __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__first, __last, __middle, __result](_RandomAccessIterator1 __b, _RandomAccessIterator1 __e) { if (__b > __middle) { __internal::__brick_copy(__b, __e, __result + (__b - __middle), _IsVector{}); } else { _RandomAccessIterator2 __new_result = __result + ((__last - __middle) + (__b - __first)); if (__e < __middle) { __internal::__brick_copy(__b, __e, __new_result, _IsVector{}); } else { __internal::__brick_copy(__b, __middle, __new_result, _IsVector{}); __internal::__brick_copy(__middle, __e, __result, _IsVector{}); } } }); return __result + (__last - __first); } //------------------------------------------------------------------------ // is_partitioned //------------------------------------------------------------------------ template bool __brick_is_partitioned(_ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred, /*is_vector=*/std::false_type) noexcept { return std::is_partitioned(__first, __last, __pred); } template bool __brick_is_partitioned(_RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred, /*is_vector=*/std::true_type) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _SizeType; if (__first == __last) { return true; } else { _RandomAccessIterator __result = __unseq_backend::__simd_first( __first, _SizeType(0), __last - __first, [&__pred](_RandomAccessIterator __it, _SizeType __i) { return !__pred(__it[__i]); }); if (__result == __last) { return true; } else { ++__result; return !__unseq_backend::__simd_or(__result, __last - __result, __pred); } } } template bool __pattern_is_partitioned(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred) noexcept { return __internal::__brick_is_partitioned(__first, __last, __pred, typename _Tag::__is_vector{}); } template bool __pattern_is_partitioned(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred) { if (__first == __last) { return true; } else { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler([&]() { // State of current range: // broken - current range is not partitioned by pred // all_true - all elements in current range satisfy pred // all_false - all elements in current range don't satisfy pred // true_false - elements satisfy pred are placed before elements that don't satisfy pred enum _ReduceType { __not_init = -1, __broken, __all_true, __all_false, __true_false }; _ReduceType __init = __not_init; // Array with states that we'll have when state from the left branch is merged with state from the right branch. // State is calculated by formula: new_state = table[left_state * 4 + right_state] _ReduceType __table[] = {__broken, __broken, __broken, __broken, __broken, __all_true, __true_false, __true_false, __broken, __broken, __all_false, __broken, __broken, __broken, __true_false, __broken}; __init = __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __init, [&__pred, &__table](_RandomAccessIterator __i, _RandomAccessIterator __j, _ReduceType __value) -> _ReduceType { if (__value == __broken) { return __broken; } _ReduceType __res = __not_init; // if first element satisfy pred if (__pred(*__i)) { // find first element that don't satisfy pred _RandomAccessIterator __x = __internal::__brick_find_if(__i + 1, __j, std::not_fn(__pred), _IsVector{}); if (__x != __j) { // find first element after "x" that satisfy pred _RandomAccessIterator __y = __internal::__brick_find_if(__x + 1, __j, __pred, _IsVector{}); // if it was found then range isn't partitioned by pred if (__y != __j) { return __broken; } else { __res = __true_false; } } else { __res = __all_true; } } else { // if first element doesn't satisfy pred // then we should find the first element that satisfy pred. // If we found it then range isn't partitioned by pred if (__internal::__brick_find_if(__i + 1, __j, __pred, _IsVector{}) != __j) { return __broken; } else { __res = __all_false; } } // if we have value from left range then we should calculate the result return (__value == -1) ? __res : __table[__value * 4 + __res]; }, [&__table](_ReduceType __val1, _ReduceType __val2) -> _ReduceType { if (__val1 == __broken || __val2 == __broken) { return __broken; } // calculate the result for new big range return __table[__val1 * 4 + __val2]; }); return __init != __broken; }); } } //------------------------------------------------------------------------ // partition //------------------------------------------------------------------------ template _ForwardIterator __brick_partition(_ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred, /*is_vector=*/std::false_type) noexcept { return std::partition(__first, __last, __pred); } template _RandomAccessIterator __brick_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred, /*is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::partition(__first, __last, __pred); } template _ForwardIterator __pattern_partition(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred) noexcept { return __internal::__brick_partition(__first, __last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_partition(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; // partitioned range: elements before pivot satisfy pred (true part), // elements after pivot don't satisfy pred (false part) struct _PartitionRange { _RandomAccessIterator __begin; _RandomAccessIterator __pivot; _RandomAccessIterator __end; }; return __internal::__except_handler([&]() { _PartitionRange __init{__last, __last, __last}; // lambda for merging two partitioned ranges to one partitioned range auto __reductor = [&__exec](_PartitionRange __val1, _PartitionRange __val2) -> _PartitionRange { auto __size1 = __val1.__end - __val1.__pivot; auto __size2 = __val2.__pivot - __val2.__begin; auto __new_begin = __val2.__begin - (__val1.__end - __val1.__begin); // if all elements in left range satisfy pred then we can move new pivot to pivot of right range if (__val1.__end == __val1.__pivot) { return {__new_begin, __val2.__pivot, __val2.__end}; } // if true part of right range greater than false part of left range // then we should swap the false part of left range and last part of true part of right range else if (__size2 > __size1) { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __val1.__pivot, __val1.__pivot + __size1, [__val1, __val2, __size1](_RandomAccessIterator __i, _RandomAccessIterator __j) { __internal::__brick_swap_ranges(__i, __j, (__val2.__pivot - __size1) + (__i - __val1.__pivot), _IsVector{}); }); return {__new_begin, __val2.__pivot - __size1, __val2.__end}; } // else we should swap the first part of false part of left range and true part of right range else { __par_backend::__parallel_for( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __val1.__pivot, __val1.__pivot + __size2, [__val1, __val2](_RandomAccessIterator __i, _RandomAccessIterator __j) { __internal::__brick_swap_ranges(__i, __j, __val2.__begin + (__i - __val1.__pivot), _IsVector{}); }); return {__new_begin, __val1.__pivot + __size2, __val2.__end}; } }; _PartitionRange __result = __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __init, [__pred, __reductor](_RandomAccessIterator __i, _RandomAccessIterator __j, _PartitionRange __value) -> _PartitionRange { //1. serial partition _RandomAccessIterator __pivot = __internal::__brick_partition(__i, __j, __pred, _IsVector{}); // 2. merging of two ranges (left and right respectively) return __reductor(__value, {__i, __pivot, __j}); }, __reductor); return __result.__pivot; }); } //------------------------------------------------------------------------ // stable_partition //------------------------------------------------------------------------ template _BidirectionalIterator __brick_stable_partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _UnaryPredicate __pred, /*__is_vector=*/std::false_type) noexcept { return std::stable_partition(__first, __last, __pred); } template _RandomAccessIterator __brick_stable_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred, /*__is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::stable_partition(__first, __last, __pred); } template _BidirectionalIterator __pattern_stable_partition(_Tag, _ExecutionPolicy&&, _BidirectionalIterator __first, _BidirectionalIterator __last, _UnaryPredicate __pred) noexcept { return __internal::__brick_stable_partition(__first, __last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_stable_partition(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; // partitioned range: elements before pivot satisfy pred (true part), // elements after pivot don't satisfy pred (false part) struct _PartitionRange { _RandomAccessIterator __begin; _RandomAccessIterator __pivot; _RandomAccessIterator __end; }; return __internal::__except_handler([&]() { _PartitionRange __init{__last, __last, __last}; // lambda for merging two partitioned ranges to one partitioned range auto __reductor = [](_PartitionRange __val1, _PartitionRange __val2) -> _PartitionRange { auto __size1 = __val1.__end - __val1.__pivot; auto __new_begin = __val2.__begin - (__val1.__end - __val1.__begin); // if all elements in left range satisfy pred then we can move new pivot to pivot of right range if (__val1.__end == __val1.__pivot) { return {__new_begin, __val2.__pivot, __val2.__end}; } // if true part of right range greater than false part of left range // then we should swap the false part of left range and last part of true part of right range else { __internal::__brick_rotate(__val1.__pivot, __val2.__begin, __val2.__pivot, _IsVector{}); return {__new_begin, __val2.__pivot - __size1, __val2.__end}; } }; _PartitionRange __result = __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __init, [&__pred, __reductor](_RandomAccessIterator __i, _RandomAccessIterator __j, _PartitionRange __value) -> _PartitionRange { //1. serial stable_partition _RandomAccessIterator __pivot = __internal::__brick_stable_partition(__i, __j, __pred, _IsVector{}); // 2. merging of two ranges (left and right respectively) return __reductor(__value, {__i, __pivot, __j}); }, __reductor); return __result.__pivot; }); } //------------------------------------------------------------------------ // partition_copy //------------------------------------------------------------------------ template std::pair<_OutputIterator1, _OutputIterator2> __brick_partition_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator1 __out_true, _OutputIterator2 __out_false, _UnaryPredicate __pred, /*is_vector=*/std::false_type) noexcept { return std::partition_copy(__first, __last, __out_true, __out_false, __pred); } template std::pair<_RandomAccessIterator2, _RandomAccessIterator3> __brick_partition_copy(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __out_true, _RandomAccessIterator3 __out_false, _UnaryPredicate __pred, /*is_vector=*/std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) return __unseq_backend::__simd_partition_copy(__first, __last - __first, __out_true, __out_false, __pred); #else return std::partition_copy(__first, __last, __out_true, __out_false, __pred); #endif } template std::pair<_OutputIterator1, _OutputIterator2> __pattern_partition_copy(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _OutputIterator1 __out_true, _OutputIterator2 __out_false, _UnaryPredicate __pred) noexcept { return __internal::__brick_partition_copy(__first, __last, __out_true, __out_false, __pred, typename _Tag::__is_vector{}); } template std::pair<_RandomAccessIterator2, _RandomAccessIterator3> __pattern_partition_copy(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __out_true, _RandomAccessIterator3 __out_false, _UnaryPredicate __pred) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType; typedef std::pair<_DifferenceType, _DifferenceType> _ReturnType; const _DifferenceType __n = __last - __first; if (_DifferenceType(1) < __n) { __par_backend::__buffer __mask_buf(__n); return __internal::__except_handler( [&__exec, __n, __first, __out_true, __out_false, __pred, &__mask_buf]() { bool* __mask = __mask_buf.get(); _ReturnType __m{}; __par_backend::__parallel_strict_scan( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __n, std::make_pair(_DifferenceType(0), _DifferenceType(0)), [=](_DifferenceType __i, _DifferenceType __len) { // Reduce return __internal::__brick_calc_mask_1<_DifferenceType>(__first + __i, __first + (__i + __len), __mask + __i, __pred, _IsVector{}); }, [](const _ReturnType& __x, const _ReturnType& __y) -> _ReturnType { return std::make_pair(__x.first + __y.first, __x.second + __y.second); }, // Combine [=](_DifferenceType __i, _DifferenceType __len, _ReturnType __initial) { // Scan __internal::__brick_partition_by_mask( __first + __i, __first + (__i + __len), __out_true + __initial.first, __out_false + __initial.second, __mask + __i, _IsVector{}); }, [&__m](_ReturnType __total) { __m = __total; }); return std::make_pair(__out_true + __m.first, __out_false + __m.second); }); } // trivial sequence - use serial algorithm return __internal::__brick_partition_copy(__first, __last, __out_true, __out_false, __pred, _IsVector{}); } //------------------------------------------------------------------------ // sort //------------------------------------------------------------------------ template void __pattern_sort(_Tag, _ExecutionPolicy&&, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, _IsMoveConstructible) noexcept { std::sort(__first, __last, __comp); } template void __pattern_sort(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, /*is_move_constructible=*/std::true_type) { using __backend_tag = typename decltype(__tag)::__backend_tag; __internal::__except_handler( [&]() { __par_backend::__parallel_stable_sort( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __comp, [](_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { std::sort(__first, __last, __comp); }); }); } //------------------------------------------------------------------------ // stable_sort //------------------------------------------------------------------------ template void __pattern_stable_sort(_Tag, _ExecutionPolicy&&, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) noexcept { std::stable_sort(__first, __last, __comp); } template void __pattern_stable_sort(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; __internal::__except_handler( [&]() { __par_backend::__parallel_stable_sort( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __comp, [](_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { std::stable_sort(__first, __last, __comp); }); }); } //------------------------------------------------------------------------ // partial_sort //------------------------------------------------------------------------ template void __pattern_partial_sort(_Tag, _ExecutionPolicy&&, _RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) noexcept { std::partial_sort(__first, __middle, __last, __comp); } template void __pattern_partial_sort(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; const auto __n = __middle - __first; if (__n == 0) return; __internal::__except_handler( [&]() { __par_backend::__parallel_stable_sort( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __comp, [__n](_RandomAccessIterator __begin, _RandomAccessIterator __end, _Compare __comp) { if (__n < __end - __begin) std::partial_sort(__begin, __begin + __n, __end, __comp); else std::sort(__begin, __end, __comp); }, __n); }); } //------------------------------------------------------------------------ // partial_sort_copy //------------------------------------------------------------------------ template _RandomAccessIterator __pattern_partial_sort_copy(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _RandomAccessIterator __d_first, _RandomAccessIterator __d_last, _Compare __comp) noexcept { return std::partial_sort_copy(__first, __last, __d_first, __d_last, __comp); } template _RandomAccessIterator2 __pattern_partial_sort_copy(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __d_first, _RandomAccessIterator2 __d_last, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__last == __first || __d_last == __d_first) { return __d_first; } auto __n1 = __last - __first; auto __n2 = __d_last - __d_first; return __internal::__except_handler([&]() { if (__n2 >= __n1) { __par_backend::__parallel_stable_sort( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __d_first, __d_first + __n1, __comp, [__first, __d_first](_RandomAccessIterator2 __i, _RandomAccessIterator2 __j, _Compare __comp) { _RandomAccessIterator1 __i1 = __first + (__i - __d_first); _RandomAccessIterator1 __j1 = __first + (__j - __d_first); // 1. Copy elements from input to output #if !defined(_PSTL_ICC_18_OMP_SIMD_BROKEN) __internal::__brick_copy(__i1, __j1, __i, _IsVector{}); #else std::copy(__i1, __j1, __i); #endif // 2. Sort elements in output sequence std::sort(__i, __j, __comp); }, __n1); return __d_first + __n1; } else { typedef typename std::iterator_traits<_RandomAccessIterator1>::value_type _T1; typedef typename std::iterator_traits<_RandomAccessIterator2>::value_type _T2; __par_backend::__buffer<_T1> __buf(__n1); _T1* __r = __buf.get(); __par_backend::__parallel_stable_sort( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __r, __r + __n1, __comp, [__n2, __first, __r](_T1* __i, _T1* __j, _Compare __comp) { _RandomAccessIterator1 __it = __first + (__i - __r); // 1. Copy elements from input to raw memory for (_T1* __k = __i; __k != __j; ++__k, ++__it) { ::new (__k) _T2(*__it); } // 2. Sort elements in temporary __buffer if (__n2 < __j - __i) std::partial_sort(__i, __i + __n2, __j, __comp); else std::sort(__i, __j, __comp); }, __n2); // 3. Move elements from temporary __buffer to output __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __r, __r + __n2, [__r, __d_first](_T1* __i, _T1* __j) { __brick_move_destroy()(__i, __j, __d_first + (__i - __r), _IsVector{}); }); __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __r + __n2, __r + __n1, [](_T1* __i, _T1* __j) { __brick_destroy(__i, __j, _IsVector{}); }); return __d_first + __n2; } }); } //------------------------------------------------------------------------ // adjacent_find //------------------------------------------------------------------------ template _RandomAccessIterator __brick_adjacent_find(_RandomAccessIterator __first, _RandomAccessIterator __last, _BinaryPredicate __pred, /* IsVector = */ std::true_type, bool __or_semantic) noexcept { return __unseq_backend::__simd_adjacent_find(__first, __last, __pred, __or_semantic); } template _ForwardIterator __brick_adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __pred, /* IsVector = */ std::false_type, bool) noexcept { return std::adjacent_find(__first, __last, __pred); } template _ForwardIterator __pattern_adjacent_find(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __pred, bool __or_semantic) noexcept { return __internal::__brick_adjacent_find(__first, __last, __pred, typename _Tag::__is_vector{}, __or_semantic); } template _RandomAccessIterator __pattern_adjacent_find(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _BinaryPredicate __pred, bool __or_semantic) { if (__last - __first < 2) return __last; using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, __last, [__last, __pred, __or_semantic](_RandomAccessIterator __begin, _RandomAccessIterator __end, _RandomAccessIterator __value) -> _RandomAccessIterator { // TODO: investigate performance benefits from the use of shared variable for the result, // checking (compare_and_swap idiom) its __value at __first. if (__or_semantic && __value < __last) { //found __par_backend::__cancel_execution(); return __value; } if (__value > __begin) { // modify __end to check the predicate on the boundary __values; // TODO: to use a custom range with boundaries overlapping // TODO: investigate what if we remove "if" below and run algorithm on range [__first, __last-1) // then check the pair [__last-1, __last) if (__end != __last) ++__end; //correct the global result iterator if the "brick" returns a local "__last" const _RandomAccessIterator __res = __internal::__brick_adjacent_find(__begin, __end, __pred, _IsVector{}, __or_semantic); if (__res < __end) __value = __res; } return __value; }, [](_RandomAccessIterator __x, _RandomAccessIterator __y) -> _RandomAccessIterator { return __x < __y ? __x : __y; } //reduce a __value ); }); } //------------------------------------------------------------------------ // nth_element //------------------------------------------------------------------------ template void __pattern_nth_element(_Tag, _ExecutionPolicy&&, _RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) noexcept { std::nth_element(__first, __nth, __last, __comp); } template void __pattern_nth_element(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) noexcept { if (__first == __last || __nth == __last) { return; } using std::iter_swap; typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _Tp; _RandomAccessIterator __x; do { __x = __internal::__pattern_partition(__tag, std::forward<_ExecutionPolicy>(__exec), __first + 1, __last, [&__comp, __first](const _Tp& __x) { return __comp(__x, *__first); }); --__x; if (__x != __first) { iter_swap(__first, __x); } // if x > nth then our new range for partition is [first, x) if (__x - __nth > 0) { __last = __x; } // if x < nth then our new range for partition is [x, last) else if (__x - __nth < 0) { // if *x == *nth then we can start new partition with x+1 if (!__comp(*__nth, *__x) && !__comp(*__x, *__nth)) { ++__x; } else { iter_swap(__nth, __x); } __first = __x; } } while (__x != __nth); } //------------------------------------------------------------------------ // fill, fill_n //------------------------------------------------------------------------ template void __brick_fill(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __value, /* __is_vector = */ std::true_type) noexcept { __unseq_backend::__simd_fill_n(__first, __last - __first, __value); } template void __brick_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value, /* __is_vector = */ std::false_type) noexcept { std::fill(__first, __last, __value); } template void __pattern_fill(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) noexcept { __internal::__brick_fill(__first, __last, __value, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_fill(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __value) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&__exec, __first, __last, &__value]() { __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [&__value](_RandomAccessIterator __begin, _RandomAccessIterator __end) { __internal::__brick_fill(__begin, __end, __value, _IsVector{}); }); return __last; }); } template _RandomAccessIterator __brick_fill_n(_RandomAccessIterator __first, _Size __count, const _Tp& __value, /* __is_vector = */ std::true_type) noexcept { return __unseq_backend::__simd_fill_n(__first, __count, __value); } template _OutputIterator __brick_fill_n(_OutputIterator __first, _Size __count, const _Tp& __value, /* __is_vector = */ std::false_type) noexcept { return std::fill_n(__first, __count, __value); } template _OutputIterator __pattern_fill_n(_Tag, _ExecutionPolicy&&, _OutputIterator __first, _Size __count, const _Tp& __value) noexcept { return __internal::__brick_fill_n(__first, __count, __value, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_fill_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _Size __count, const _Tp& __value) { return __internal::__pattern_fill(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __first + __count, __value); } //------------------------------------------------------------------------ // generate, generate_n //------------------------------------------------------------------------ template void __brick_generate(_RandomAccessIterator __first, _RandomAccessIterator __last, _Generator __g, /* is_vector = */ std::true_type) noexcept { __unseq_backend::__simd_generate_n(__first, __last - __first, __g); } template void __brick_generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __g, /* is_vector = */ std::false_type) noexcept { std::generate(__first, __last, __g); } template void __pattern_generate(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Generator __g) noexcept { __internal::__brick_generate(__first, __last, __g, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_generate(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Generator __g) { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__g](_RandomAccessIterator __begin, _RandomAccessIterator __end) { __internal::__brick_generate(__begin, __end, __g, _IsVector{}); }); return __last; }); } template _RandomAccessIterator __brick_generate_n(_RandomAccessIterator __first, _Size __count, _Generator __g, /* is_vector = */ std::true_type) noexcept { return __unseq_backend::__simd_generate_n(__first, __count, __g); } template _OutputIterator __brick_generate_n(_OutputIterator __first, _Size __count, _Generator __g, /* is_vector = */ std::false_type) noexcept { return std::generate_n(__first, __count, __g); } template _OutputIterator __pattern_generate_n(_Tag, _ExecutionPolicy&&, _OutputIterator __first, _Size __count, _Generator __g) noexcept { return __internal::__brick_generate_n(__first, __count, __g, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_generate_n(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _Size __count, _Generator __g) { static_assert(__are_random_access_iterators<_RandomAccessIterator>::value, "Pattern-brick error. Should be a random access iterator."); return __internal::__pattern_generate(__tag, std::forward<_ExecutionPolicy>(__exec), __first, __first + __count, __g); } //------------------------------------------------------------------------ // remove //------------------------------------------------------------------------ template _ForwardIterator __brick_remove_if(_ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred, /* __is_vector = */ std::false_type) noexcept { return std::remove_if(__first, __last, __pred); } template _RandomAccessIterator __brick_remove_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred, /* __is_vector = */ std::true_type) noexcept { #if defined(_PSTL_MONOTONIC_PRESENT) return __unseq_backend::__simd_remove_if(__first, __last - __first, __pred); #else return std::remove_if(__first, __last, __pred); #endif } template _ForwardIterator __pattern_remove_if(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _UnaryPredicate __pred) noexcept { return __internal::__brick_remove_if(__first, __last, __pred, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_remove_if(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _UnaryPredicate __pred) noexcept { typedef typename std::iterator_traits<_RandomAccessIterator>::reference _ReferenceType; if (__first == __last || __first + 1 == __last) { // Trivial sequence - use serial algorithm return __internal::__brick_remove_if(__first, __last, __pred, _IsVector{}); } return __internal::__remove_elements( __tag, std::forward<_ExecutionPolicy>(__exec), __first, __last, [&__pred](bool* __b, bool* __e, _RandomAccessIterator __it) { __internal::__brick_walk2( __b, __e, __it, [&__pred](bool& __x, _ReferenceType __y) { __x = !__pred(__y); }, _IsVector{}); }); } //------------------------------------------------------------------------ // merge //------------------------------------------------------------------------ template _OutputIterator __brick_merge(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __d_first, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { return std::merge(__first1, __last1, __first2, __last2, __d_first, __comp); } template _RandomAccessIterator3 __brick_merge(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __d_first, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::merge(__first1, __last1, __first2, __last2, __d_first, __comp); } template _OutputIterator __pattern_merge(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __d_first, _Compare __comp) noexcept { return __internal::__brick_merge(__first1, __last1, __first2, __last2, __d_first, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator3 __pattern_merge(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __d_first, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; __par_backend::__parallel_merge( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __first2, __last2, __d_first, __comp, [](_RandomAccessIterator1 __f1, _RandomAccessIterator1 __l1, _RandomAccessIterator2 __f2, _RandomAccessIterator2 __l2, _RandomAccessIterator3 __f3, _Compare __comp) { return __internal::__brick_merge(__f1, __l1, __f2, __l2, __f3, __comp, _IsVector{}); }); return __d_first + (__last1 - __first1) + (__last2 - __first2); } //------------------------------------------------------------------------ // inplace_merge //------------------------------------------------------------------------ template void __brick_inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { std::inplace_merge(__first, __middle, __last, __comp); } template void __brick_inplace_merge(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial") std::inplace_merge(__first, __middle, __last, __comp); } template void __pattern_inplace_merge(_Tag, _ExecutionPolicy&&, _BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) noexcept { __internal::__brick_inplace_merge(__first, __middle, __last, __comp, typename _Tag::__is_vector{}); } template void __pattern_inplace_merge(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__first == __last || __first == __middle || __middle == __last) { return; } typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _Tp; auto __n = __last - __first; __par_backend::__buffer<_Tp> __buf(__n); _Tp* __r = __buf.get(); __internal::__except_handler( [&]() { auto __move_values = [](_RandomAccessIterator __x, _Tp* __z) { __internal::__invoke_if_else( std::is_trivial<_Tp>(), [&]() { *__z = std::move(*__x); }, [&]() { ::new (std::addressof(*__z)) _Tp(std::move(*__x)); }); }; auto __move_sequences = [](_RandomAccessIterator __first1, _RandomAccessIterator __last1, _Tp* __first2) { return __internal::__brick_uninitialized_move(__first1, __last1, __first2, _IsVector()); }; __par_backend::__parallel_merge( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __middle, __middle, __last, __r, __comp, [__n, __move_values, __move_sequences](_RandomAccessIterator __f1, _RandomAccessIterator __l1, _RandomAccessIterator __f2, _RandomAccessIterator __l2, _Tp* __f3, _Compare __comp) { (__utils::__serial_move_merge(__n))(__f1, __l1, __f2, __l2, __f3, __comp, __move_values, __move_values, __move_sequences, __move_sequences); return __f3 + (__l1 - __f1) + (__l2 - __f2); }); __par_backend::__parallel_for(__backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __r, __r + __n, [__r, __first](_Tp* __i, _Tp* __j) { __brick_move_destroy()(__i, __j, __first + (__i - __r), _IsVector{}); }); }); } //------------------------------------------------------------------------ // includes //------------------------------------------------------------------------ template bool __pattern_includes(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _Compare __comp) noexcept { return std::includes(__first1, __last1, __first2, __last2, __comp); } template bool __pattern_includes(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Compare __comp) { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__first2 >= __last2) return true; if (__first1 >= __last1 || __comp(*__first2, *__first1) || __comp(*(__last1 - 1), *(__last2 - 1))) return false; __first1 = std::lower_bound(__first1, __last1, *__first2, __comp); if (__first1 == __last1) return false; if (__last2 - __first2 == 1) return !__comp(*__first1, *__first2) && !__comp(*__first2, *__first1); return __internal::__except_handler( [&]() { return !__internal::__parallel_or( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first2, __last2, [__first1, __last1, __first2, __last2, &__comp](_RandomAccessIterator2 __i, _RandomAccessIterator2 __j) { _PSTL_ASSERT(__j > __i); //_PSTL_ASSERT(__j - __i > 1); //1. moving boundaries to "consume" subsequence of equal elements auto __is_equal = [&__comp](_RandomAccessIterator2 __a, _RandomAccessIterator2 __b) -> bool { return !__comp(*__a, *__b) && !__comp(*__b, *__a); }; //1.1 left bound, case "aaa[aaaxyz...]" - searching "x" if (__i > __first2 && __is_equal(__i, __i - 1)) { //whole subrange continues to content equal elements - return "no op" if (__is_equal(__i, __j - 1)) return false; __i = std::upper_bound(__i, __last2, *__i, __comp); } //1.2 right bound, case "[...aaa]aaaxyz" - searching "x" if (__j < __last2 && __is_equal(__j - 1, __j)) __j = std::upper_bound(__j, __last2, *__j, __comp); //2. testing is __a subsequence of the second range included into the first range auto __b = std::lower_bound(__first1, __last1, *__i, __comp); _PSTL_ASSERT(!__comp(*(__last1 - 1), *__b)); _PSTL_ASSERT(!__comp(*(__j - 1), *__i)); return !std::includes(__b, __last1, __i, __j, __comp); }); }); } constexpr auto __set_algo_cut_off = 1000; template _OutputIterator __parallel_set_op(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, _SizeFunction __size_func, _SetOP __set_op) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_ForwardIterator1>::difference_type _DifferenceType; typedef typename std::iterator_traits<_OutputIterator>::value_type _Tp; struct _SetRange { _DifferenceType __pos, __len, __buf_pos; bool empty() const { return __len == 0; } }; const _DifferenceType __n1 = __last1 - __first1; const _DifferenceType __n2 = __last2 - __first2; __par_backend::__buffer<_Tp> __buf(__size_func(__n1, __n2)); return __internal::__except_handler( [&__exec, __n1, __first1, __last1, __first2, __last2, __result, __comp, __size_func, __set_op, &__buf]() { auto __buffer = __buf.get(); _DifferenceType __m{}; auto __scan = [=](_DifferenceType, _DifferenceType, const _SetRange& __s) { // Scan if (!__s.empty()) __brick_move_destroy()(__buffer + __s.__buf_pos, __buffer + (__s.__buf_pos + __s.__len), __result + __s.__pos, _IsVector{}); }; __par_backend::__parallel_strict_scan( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __n1, _SetRange{0, 0, 0}, //-1, 0}, [=](_DifferenceType __i, _DifferenceType __len) { // Reduce //[__b; __e) - a subrange of the first sequence, to reduce _ForwardIterator1 __b = __first1 + __i, __e = __first1 + (__i + __len); //try searching for the first element which not equal to *__b if (__b != __first1) __b = std::upper_bound(__b, __last1, *__b, __comp); //try searching for the first element which not equal to *__e if (__e != __last1) __e = std::upper_bound(__e, __last1, *__e, __comp); //check is [__b; __e) empty if (__e - __b < 1) { _ForwardIterator2 __bb = __last2; if (__b != __last1) __bb = std::lower_bound(__first2, __last2, *__b, __comp); const _DifferenceType __buf_pos = __size_func((__b - __first1), (__bb - __first2)); return _SetRange{0, 0, __buf_pos}; } //try searching for "corresponding" subrange [__bb; __ee) in the second sequence _ForwardIterator2 __bb = __first2; if (__b != __first1) __bb = std::lower_bound(__first2, __last2, *__b, __comp); _ForwardIterator2 __ee = __last2; if (__e != __last1) __ee = std::lower_bound(__bb, __last2, *__e, __comp); const _DifferenceType __buf_pos = __size_func((__b - __first1), (__bb - __first2)); auto __buffer_b = __buffer + __buf_pos; auto __res = __set_op(__b, __e, __bb, __ee, __buffer_b, __comp); return _SetRange{0, __res - __buffer_b, __buf_pos}; }, [](const _SetRange& __a, const _SetRange& __b) { // Combine if (__b.__buf_pos > __a.__buf_pos || ((__b.__buf_pos == __a.__buf_pos) && !__b.empty())) return _SetRange{__a.__pos + __a.__len + __b.__pos, __b.__len, __b.__buf_pos}; return _SetRange{__b.__pos + __b.__len + __a.__pos, __a.__len, __a.__buf_pos}; }, __scan, // Scan [&__m, &__scan](const _SetRange& __total) { // Apex //final scan __scan(0, 0, __total); __m = __total.__pos + __total.__len; }); return __result + __m; }); } //a shared parallel pattern for '__pattern_set_union' and '__pattern_set_symmetric_difference' template _OutputIterator __parallel_set_union_op(_Tag __tag, _ExecutionPolicy&& __exec, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, _SetUnionOp __set_union_op) { using __backend_tag = typename decltype(__tag)::__backend_tag; typedef typename std::iterator_traits<_ForwardIterator1>::difference_type _DifferenceType; const auto __n1 = __last1 - __first1; const auto __n2 = __last2 - __first2; auto copy_range1 = [](_ForwardIterator1 __begin, _ForwardIterator1 __end, _OutputIterator __res) { return __internal::__brick_copy(__begin, __end, __res, typename _Tag::__is_vector{}); }; auto copy_range2 = [](_ForwardIterator2 __begin, _ForwardIterator2 __end, _OutputIterator __res) { return __internal::__brick_copy(__begin, __end, __res, typename _Tag::__is_vector{}); }; // {1} {}: parallel copying just first sequence if (__n2 == 0) return __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result, copy_range1); // {} {2}: parallel copying justmake second sequence if (__n1 == 0) return __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first2, __last2, __result, copy_range2); // testing whether the sequences are intersected _ForwardIterator1 __left_bound_seq_1 = std::lower_bound(__first1, __last1, *__first2, __comp); if (__left_bound_seq_1 == __last1) { //{1} < {2}: seq2 is wholly greater than seq1, so, do parallel copying seq1 and seq2 __par_backend::__parallel_invoke( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result, copy_range1); }, [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first2, __last2, __result + __n1, copy_range2); }); return __result + __n1 + __n2; } // testing whether the sequences are intersected _ForwardIterator2 __left_bound_seq_2 = std::lower_bound(__first2, __last2, *__first1, __comp); if (__left_bound_seq_2 == __last2) { //{2} < {1}: seq2 is wholly greater than seq1, so, do parallel copying seq1 and seq2 __par_backend::__parallel_invoke( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first2, __last2, __result, copy_range2); }, [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result + __n2, copy_range1); }); return __result + __n1 + __n2; } const auto __m1 = __left_bound_seq_1 - __first1; if (__m1 > __set_algo_cut_off) { auto __res_or = __result; __result += __m1; //we know proper offset due to [first1; left_bound_seq_1) < [first2; last2) __par_backend::__parallel_invoke( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), //do parallel copying of [first1; left_bound_seq_1) [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first1, __left_bound_seq_1, __res_or, copy_range1); }, [=, &__result] { __result = __internal::__parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __left_bound_seq_1, __last1, __first2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType __m) { return __n + __m; }, __set_union_op); }); return __result; } const auto __m2 = __left_bound_seq_2 - __first2; _PSTL_ASSERT(__m1 == 0 || __m2 == 0); if (__m2 > __set_algo_cut_off) { auto __res_or = __result; __result += __m2; //we know proper offset due to [first2; left_bound_seq_2) < [first1; last1) __par_backend::__parallel_invoke( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), //do parallel copying of [first2; left_bound_seq_2) [=] { __internal::__pattern_walk2_brick(__tag, std::forward<_ExecutionPolicy>(__exec), __first2, __left_bound_seq_2, __res_or, copy_range2); }, [=, &__result] { __result = __internal::__parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __left_bound_seq_2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType __m) { return __n + __m; }, __set_union_op); }); return __result; } return __internal::__parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __first2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType __m) { return __n + __m; }, __set_union_op); } //------------------------------------------------------------------------ // set_union //------------------------------------------------------------------------ template _OutputIterator __brick_set_union(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, /*__is_vector=*/std::false_type) noexcept { return std::set_union(__first1, __last1, __first2, __last2, __result, __comp); } template struct __BrickCopyConstruct { template _OutputIterator operator()(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result) { return __brick_uninitialized_copy(__first, __last, __result, _IsVector()); } }; template _OutputIterator __brick_set_union(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _OutputIterator __result, _Compare __comp, /*__is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::set_union(__first1, __last1, __first2, __last2, __result, __comp); } template _OutputIterator __pattern_set_union(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp) noexcept { return __internal::__brick_set_union(__first1, __last1, __first2, __last2, __result, __comp, typename _Tag::__is_vector{}); } template _OutputIterator __pattern_set_union(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _OutputIterator __result, _Compare __comp) { const auto __n1 = __last1 - __first1; const auto __n2 = __last2 - __first2; // use serial algorithm if (__n1 + __n2 <= __set_algo_cut_off) return std::set_union(__first1, __last1, __first2, __last2, __result, __comp); typedef typename std::iterator_traits<_OutputIterator>::value_type _Tp; return __parallel_set_union_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __first2, __last2, __result, __comp, [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Tp* __result, _Compare __comp) { return __pstl::__utils::__set_union_construct(__first1, __last1, __first2, __last2, __result, __comp, __BrickCopyConstruct<_IsVector>()); }); } //------------------------------------------------------------------------ // set_intersection //------------------------------------------------------------------------ template _OutputIterator __brick_set_intersection(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, /*__is_vector=*/std::false_type) noexcept { return std::set_intersection(__first1, __last1, __first2, __last2, __result, __comp); } template _RandomAccessIterator3 __brick_set_intersection(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp, /*__is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::set_intersection(__first1, __last1, __first2, __last2, __result, __comp); } template _OutputIterator __pattern_set_intersection(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp) noexcept { return __internal::__brick_set_intersection(__first1, __last1, __first2, __last2, __result, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator3 __pattern_set_intersection(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp) { typedef typename std::iterator_traits<_RandomAccessIterator3>::value_type _Tp; typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType; const auto __n1 = __last1 - __first1; const auto __n2 = __last2 - __first2; // intersection is empty if (__n1 == 0 || __n2 == 0) return __result; // testing whether the sequences are intersected _RandomAccessIterator1 __left_bound_seq_1 = std::lower_bound(__first1, __last1, *__first2, __comp); //{1} < {2}: seq 2 is wholly greater than seq 1, so, the intersection is empty if (__left_bound_seq_1 == __last1) return __result; // testing whether the sequences are intersected _RandomAccessIterator2 __left_bound_seq_2 = std::lower_bound(__first2, __last2, *__first1, __comp); //{2} < {1}: seq 1 is wholly greater than seq 2, so, the intersection is empty if (__left_bound_seq_2 == __last2) return __result; const auto __m1 = __last1 - __left_bound_seq_1 + __n2; if (__m1 > __set_algo_cut_off) { //we know proper offset due to [first1; left_bound_seq_1) < [first2; last2) return __internal::__parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __left_bound_seq_1, __last1, __first2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType __m) { return std::min(__n, __m); }, [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Tp* __result, _Compare __comp) { return __pstl::__utils::__set_intersection_construct(__first1, __last1, __first2, __last2, __result, __comp); }); } const auto __m2 = __last2 - __left_bound_seq_2 + __n1; if (__m2 > __set_algo_cut_off) { //we know proper offset due to [first2; left_bound_seq_2) < [first1; last1) __result = __internal::__parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __left_bound_seq_2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType __m) { return std::min(__n, __m); }, [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Tp* __result, _Compare __comp) { return __pstl::__utils::__set_intersection_construct(__first2, __last2, __first1, __last1, __result, __comp); }); return __result; } // [left_bound_seq_1; last1) and [left_bound_seq_2; last2) - use serial algorithm return std::set_intersection(__left_bound_seq_1, __last1, __left_bound_seq_2, __last2, __result, __comp); } //------------------------------------------------------------------------ // set_difference //------------------------------------------------------------------------ template _OutputIterator __brick_set_difference(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, /*__is_vector=*/std::false_type) noexcept { return std::set_difference(__first1, __last1, __first2, __last2, __result, __comp); } template _RandomAccessIterator3 __brick_set_difference(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp, /*__is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::set_difference(__first1, __last1, __first2, __last2, __result, __comp); } template _OutputIterator __pattern_set_difference(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp) noexcept { return __internal::__brick_set_difference(__first1, __last1, __first2, __last2, __result, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator3 __pattern_set_difference(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp) { typedef typename std::iterator_traits<_RandomAccessIterator3>::value_type _Tp; typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType; const auto __n1 = __last1 - __first1; const auto __n2 = __last2 - __first2; // {} \ {2}: the difference is empty if (__n1 == 0) return __result; // {1} \ {}: parallel copying just first sequence if (__n2 == 0) return __internal::__pattern_walk2_brick( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result, [](_RandomAccessIterator1 __begin, _RandomAccessIterator1 __end, _RandomAccessIterator3 __res) { return __internal::__brick_copy(__begin, __end, __res, _IsVector{}); }); // testing whether the sequences are intersected _RandomAccessIterator1 __left_bound_seq_1 = std::lower_bound(__first1, __last1, *__first2, __comp); //{1} < {2}: seq 2 is wholly greater than seq 1, so, parallel copying just first sequence if (__left_bound_seq_1 == __last1) return __internal::__pattern_walk2_brick( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result, [](_RandomAccessIterator1 __begin, _RandomAccessIterator1 __end, _RandomAccessIterator3 __res) { return __internal::__brick_copy(__begin, __end, __res, _IsVector{}); }); // testing whether the sequences are intersected _RandomAccessIterator2 __left_bound_seq_2 = std::lower_bound(__first2, __last2, *__first1, __comp); //{2} < {1}: seq 1 is wholly greater than seq 2, so, parallel copying just first sequence if (__left_bound_seq_2 == __last2) return __internal::__pattern_walk2_brick( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __result, [](_RandomAccessIterator1 __begin, _RandomAccessIterator1 __end, _RandomAccessIterator3 __res) { return __internal::__brick_copy(__begin, __end, __res, _IsVector{}); }); if (__n1 + __n2 > __set_algo_cut_off) return __parallel_set_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __first2, __last2, __result, __comp, [](_DifferenceType __n, _DifferenceType) { return __n; }, [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Tp* __result, _Compare __comp) { return __pstl::__utils::__set_difference_construct(__first1, __last1, __first2, __last2, __result, __comp, __BrickCopyConstruct<_IsVector>()); }); // use serial algorithm return std::set_difference(__first1, __last1, __first2, __last2, __result, __comp); } //------------------------------------------------------------------------ // set_symmetric_difference //------------------------------------------------------------------------ template _OutputIterator __brick_set_symmetric_difference(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp, /*__is_vector=*/std::false_type) noexcept { return std::set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __comp); } template _RandomAccessIterator3 __brick_set_symmetric_difference(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp, /*__is_vector=*/std::true_type) noexcept { _PSTL_PRAGMA_MESSAGE("Vectorized algorithm unimplemented, redirected to serial"); return std::set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __comp); } template _OutputIterator __pattern_set_symmetric_difference(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _OutputIterator __result, _Compare __comp) noexcept { return __internal::__brick_set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator3 __pattern_set_symmetric_difference(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _RandomAccessIterator3 __result, _Compare __comp) { const auto __n1 = __last1 - __first1; const auto __n2 = __last2 - __first2; // use serial algorithm if (__n1 + __n2 <= __set_algo_cut_off) return std::set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __comp); typedef typename std::iterator_traits<_RandomAccessIterator3>::value_type _Tp; return __internal::__parallel_set_union_op( __tag, std::forward<_ExecutionPolicy>(__exec), __first1, __last1, __first2, __last2, __result, __comp, [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Tp* __result, _Compare __comp) { return __pstl::__utils::__set_symmetric_difference_construct(__first1, __last1, __first2, __last2, __result, __comp, __BrickCopyConstruct<_IsVector>()); }); } //------------------------------------------------------------------------ // is_heap_until //------------------------------------------------------------------------ template _RandomAccessIterator __brick_is_heap_until(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { return std::is_heap_until(__first, __last, __comp); } template _RandomAccessIterator __brick_is_heap_until(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { if (__last - __first < 2) return __last; typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _SizeType; return __unseq_backend::__simd_first( __first, _SizeType(0), __last - __first, [&__comp](_RandomAccessIterator __it, _SizeType __i) { return __comp(__it[(__i - 1) / 2], __it[__i]); }); } template _RandomAccessIterator __pattern_is_heap_until(_Tag, _ExecutionPolicy&&, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) noexcept { return __internal::__brick_is_heap_until(__first, __last, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator __is_heap_until_local(_RandomAccessIterator __first, _DifferenceType __begin, _DifferenceType __end, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { _DifferenceType __i = __begin; for (; __i < __end; ++__i) { if (__comp(__first[(__i - 1) / 2], __first[__i])) { break; } } return __first + __i; } template _RandomAccessIterator __is_heap_until_local(_RandomAccessIterator __first, _DifferenceType __begin, _DifferenceType __end, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { return __unseq_backend::__simd_first( __first, __begin, __end, [&__comp](_RandomAccessIterator __it, _DifferenceType __i) { return __comp(__it[(__i - 1) / 2], __it[__i]); }); } template _RandomAccessIterator __pattern_is_heap_until(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__last - __first < 2) return __last; return __internal::__except_handler( [&]() { return __parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first, __last, [__first, __comp](_RandomAccessIterator __i, _RandomAccessIterator __j) { return __internal::__is_heap_until_local(__first, __i - __first, __j - __first, __comp, _IsVector{}); }, std::less::difference_type>(), /*is_first=*/true); }); } //------------------------------------------------------------------------ // min_element //------------------------------------------------------------------------ template _ForwardIterator __brick_min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { return std::min_element(__first, __last, __comp); } template _RandomAccessIterator __brick_min_element(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { #if defined(_PSTL_UDR_PRESENT) return __unseq_backend::__simd_min_element(__first, __last - __first, __comp); #else return std::min_element(__first, __last, __comp); #endif } template _ForwardIterator __pattern_min_element(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Compare __comp) noexcept { return __internal::__brick_min_element(__first, __last, __comp, typename _Tag::__is_vector{}); } template _RandomAccessIterator __pattern_min_element(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return __last; using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler( [&]() { return __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first + 1, __last, __first, [=](_RandomAccessIterator __begin, _RandomAccessIterator __end, _RandomAccessIterator __init) -> _RandomAccessIterator { const _RandomAccessIterator subresult = __internal::__brick_min_element(__begin, __end, __comp, _IsVector{}); return __internal::__cmp_iterators_by_values(__init, subresult, __comp); }, [=](_RandomAccessIterator __it1, _RandomAccessIterator __it2) -> _RandomAccessIterator { return __internal::__cmp_iterators_by_values(__it1, __it2, __comp); }); }); } //------------------------------------------------------------------------ // minmax_element //------------------------------------------------------------------------ template std::pair<_ForwardIterator, _ForwardIterator> __brick_minmax_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { return std::minmax_element(__first, __last, __comp); } template std::pair<_RandomAccessIterator, _RandomAccessIterator> __brick_minmax_element(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { #if defined(_PSTL_UDR_PRESENT) return __unseq_backend::__simd_minmax_element(__first, __last - __first, __comp); #else return std::minmax_element(__first, __last, __comp); #endif } template std::pair<_ForwardIterator, _ForwardIterator> __pattern_minmax_element(_Tag, _ExecutionPolicy&&, _ForwardIterator __first, _ForwardIterator __last, _Compare __comp) noexcept { return __internal::__brick_minmax_element(__first, __last, __comp, typename _Tag::__is_vector{}); } template std::pair<_RandomAccessIterator, _RandomAccessIterator> __pattern_minmax_element(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return std::make_pair(__first, __first); using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler([&]() { typedef std::pair<_RandomAccessIterator, _RandomAccessIterator> _Result; return __par_backend::__parallel_reduce( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first + 1, __last, std::make_pair(__first, __first), [=](_RandomAccessIterator __begin, _RandomAccessIterator __end, _Result __init) -> _Result { const _Result __subresult = __internal::__brick_minmax_element(__begin, __end, __comp, _IsVector{}); return std::make_pair( __internal::__cmp_iterators_by_values(__subresult.first, __init.first, __comp), __internal::__cmp_iterators_by_values(__init.second, __subresult.second, std::not_fn(__comp))); }, [=](_Result __p1, _Result __p2) -> _Result { return std::make_pair( __internal::__cmp_iterators_by_values(__p1.first, __p2.first, __comp), __internal::__cmp_iterators_by_values(__p2.second, __p1.second, std::not_fn(__comp))); }); }); } //------------------------------------------------------------------------ // mismatch //------------------------------------------------------------------------ template std::pair<_ForwardIterator1, _ForwardIterator2> __mismatch_serial(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __pred) { #if defined(_PSTL_CPP14_2RANGE_MISMATCH_EQUAL_PRESENT) return std::mismatch(__first1, __last1, __first2, __last2, __pred); #else for (; __first1 != __last1 && __first2 != __last2 && __pred(*__first1, *__first2); ++__first1, ++__first2) { } return std::make_pair(__first1, __first2); #endif } template std::pair<_ForwardIterator1, _ForwardIterator2> __brick_mismatch(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _Predicate __pred, /* __is_vector = */ std::false_type) noexcept { return __mismatch_serial(__first1, __last1, __first2, __last2, __pred); } template std::pair<_RandomAccessIterator1, _RandomAccessIterator2> __brick_mismatch(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Predicate __pred, /* __is_vector = */ std::true_type) noexcept { auto __n = std::min(__last1 - __first1, __last2 - __first2); return __unseq_backend::__simd_first(__first1, __n, __first2, std::not_fn(__pred)); } template std::pair<_ForwardIterator1, _ForwardIterator2> __pattern_mismatch(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _Predicate __pred) noexcept { return __internal::__brick_mismatch(__first1, __last1, __first2, __last2, __pred, typename _Tag::__is_vector{}); } template std::pair<_RandomAccessIterator1, _RandomAccessIterator2> __pattern_mismatch(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Predicate __pred) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; return __internal::__except_handler([&]() { auto __n = std::min(__last1 - __first1, __last2 - __first2); auto __result = __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __first1 + __n, [__first1, __first2, __pred](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return __internal::__brick_mismatch(__i, __j, __first2 + (__i - __first1), __first2 + (__j - __first1), __pred, _IsVector{}) .first; }, std::less::difference_type>(), /*is_first=*/true); return std::make_pair(__result, __first2 + (__result - __first1)); }); } //------------------------------------------------------------------------ // lexicographical_compare //------------------------------------------------------------------------ template bool __brick_lexicographical_compare(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _Compare __comp, /* __is_vector = */ std::false_type) noexcept { return std::lexicographical_compare(__first1, __last1, __first2, __last2, __comp); } template bool __brick_lexicographical_compare(_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Compare __comp, /* __is_vector = */ std::true_type) noexcept { if (__first2 == __last2) { // if second sequence is empty return false; } else if (__first1 == __last1) { // if first sequence is empty return true; } else { typedef typename std::iterator_traits<_RandomAccessIterator1>::reference ref_type1; typedef typename std::iterator_traits<_RandomAccessIterator2>::reference ref_type2; --__last1; --__last2; auto __n = std::min(__last1 - __first1, __last2 - __first2); std::pair<_RandomAccessIterator1, _RandomAccessIterator2> __result = __unseq_backend::__simd_first( __first1, __n, __first2, [__comp](const ref_type1 __x, const ref_type2 __y) mutable { return __comp(__x, __y) || __comp(__y, __x); }); if (__result.first == __last1 && __result.second != __last2) { // if first sequence shorter than second return !__comp(*__result.second, *__result.first); } else { // if second sequence shorter than first or both have the same number of elements return __comp(*__result.first, *__result.second); } } } template bool __pattern_lexicographical_compare(_Tag, _ExecutionPolicy&&, _ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _Compare __comp) noexcept { return __internal::__brick_lexicographical_compare(__first1, __last1, __first2, __last2, __comp, typename _Tag::__is_vector{}); } template bool __pattern_lexicographical_compare(__parallel_tag<_IsVector> __tag, _ExecutionPolicy&& __exec, _RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1, _RandomAccessIterator2 __first2, _RandomAccessIterator2 __last2, _Compare __comp) noexcept { using __backend_tag = typename decltype(__tag)::__backend_tag; if (__first2 == __last2) { // if second sequence is empty return false; } else if (__first1 == __last1) { // if first sequence is empty return true; } else { typedef typename std::iterator_traits<_RandomAccessIterator1>::reference _RefType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::reference _RefType2; --__last1; --__last2; auto __n = std::min(__last1 - __first1, __last2 - __first2); auto __result = __internal::__parallel_find( __backend_tag{}, std::forward<_ExecutionPolicy>(__exec), __first1, __first1 + __n, [__first1, __first2, &__comp](_RandomAccessIterator1 __i, _RandomAccessIterator1 __j) { return __internal::__brick_mismatch( __i, __j, __first2 + (__i - __first1), __first2 + (__j - __first1), [&__comp](const _RefType1 __x, const _RefType2 __y) { return !__comp(__x, __y) && !__comp(__y, __x); }, _IsVector{}) .first; }, std::less::difference_type>(), /*is_first=*/true); if (__result == __last1 && __first2 + (__result - __first1) != __last2) { // if first sequence shorter than second return !__comp(*(__first2 + (__result - __first1)), *__result); } else { // if second sequence shorter than first or both have the same number of elements return __comp(*__result, *(__first2 + (__result - __first1))); } } } } // namespace __internal } // namespace __pstl #endif /* _PSTL_ALGORITHM_IMPL_H */