// -*- C++ -*- //===-- parallel_backend_tbb.h --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _PSTL_PARALLEL_BACKEND_TBB_H #define _PSTL_PARALLEL_BACKEND_TBB_H #include #include #include "parallel_backend_utils.h" #ifndef TBB_SUPPRESS_DEPRECATED_MESSAGES # define TBB_SUPPRESS_DEPRECATED_MESSAGES 1 # define _GLIBCXX_UNDEF_SUPPRESS #endif // Bring in minimal required subset of Intel TBB #include #include #include #include #include #include #include #include #ifdef _GLIBCXX_UNDEF_SUPPRESS # undef TBB_SUPPRESS_DEPRECATED_MESSAGES # undef _GLIBCXX_UNDEF_SUPPRESS #endif #if TBB_INTERFACE_VERSION < 10000 # error Intel(R) Threading Building Blocks 2018 is required; older versions are not supported. #endif namespace __pstl { namespace __tbb_backend { //! Raw memory buffer with automatic freeing and no exceptions. /** Some of our algorithms need to start with raw memory buffer, not an initialize array, because initialization/destruction would make the span be at least O(N). */ // tbb::allocator can improve performance in some cases. template class __buffer { tbb::tbb_allocator<_Tp> _M_allocator; _Tp* _M_ptr; const std::size_t _M_buf_size; __buffer(const __buffer&) = delete; void operator=(const __buffer&) = delete; public: //! Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t n) : _M_allocator(), _M_ptr(_M_allocator.allocate(n)), _M_buf_size(n) {} //! True if buffer was successfully obtained, zero otherwise. operator bool() const { return _M_ptr != NULL; } //! Return pointer to buffer, or NULL if buffer could not be obtained. _Tp* get() const { return _M_ptr; } //! Destroy buffer ~__buffer() { _M_allocator.deallocate(_M_ptr, _M_buf_size); } }; // Wrapper for tbb::task inline void __cancel_execution() { #if TBB_INTERFACE_VERSION <= 12000 tbb::task::self().group()->cancel_group_execution(); #else tbb::task::current_context()->cancel_group_execution(); #endif } //------------------------------------------------------------------------ // parallel_for //------------------------------------------------------------------------ template class __parallel_for_body { public: __parallel_for_body(const _RealBody& __body) : _M_body(__body) {} __parallel_for_body(const __parallel_for_body& __body) : _M_body(__body._M_body) {} void operator()(const tbb::blocked_range<_Index>& __range) const { _M_body(__range.begin(), __range.end()); } private: _RealBody _M_body; }; //! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last) // wrapper over tbb::parallel_for template void __parallel_for(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _Index __first, _Index __last, _Fp __f) { tbb::this_task_arena::isolate([=]() { tbb::parallel_for(tbb::blocked_range<_Index>(__first, __last), __parallel_for_body<_Index, _Fp>(__f)); }); } //! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last) // wrapper over tbb::parallel_reduce template _Value __parallel_reduce(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _Index __first, _Index __last, const _Value& __identity, const _RealBody& __real_body, const _Reduction& __reduction) { return tbb::this_task_arena::isolate([__first, __last, &__identity, &__real_body, &__reduction]() -> _Value { return tbb::parallel_reduce( tbb::blocked_range<_Index>(__first, __last), __identity, [__real_body](const tbb::blocked_range<_Index>& __r, const _Value& __value) -> _Value { return __real_body(__r.begin(), __r.end(), __value); }, __reduction); }); } //------------------------------------------------------------------------ // parallel_transform_reduce // // Notation: // r(i,j,init) returns reduction of init with reduction over [i,j) // u(i) returns f(i,i+1,identity) for a hypothetical left identity element of r // c(x,y) combines values x and y that were the result of r or u //------------------------------------------------------------------------ template struct __par_trans_red_body { alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true _Rp _M_brick_reduce; // Most likely to have non-empty layout _Up _M_u; _Cp _M_combine; bool _M_has_sum; // Put last to minimize size of class _Tp& sum() { _PSTL_ASSERT_MSG(_M_has_sum, "sum expected"); return *(_Tp*)_M_sum_storage; } __par_trans_red_body(_Up __u, _Tp __init, _Cp __c, _Rp __r) : _M_brick_reduce(__r), _M_u(__u), _M_combine(__c), _M_has_sum(true) { new (_M_sum_storage) _Tp(__init); } __par_trans_red_body(__par_trans_red_body& __left, tbb::split) : _M_brick_reduce(__left._M_brick_reduce), _M_u(__left._M_u), _M_combine(__left._M_combine), _M_has_sum(false) { } ~__par_trans_red_body() { // 17.6.5.12 tells us to not worry about catching exceptions from destructors. if (_M_has_sum) sum().~_Tp(); } void join(__par_trans_red_body& __rhs) { sum() = _M_combine(sum(), __rhs.sum()); } void operator()(const tbb::blocked_range<_Index>& __range) { _Index __i = __range.begin(); _Index __j = __range.end(); if (!_M_has_sum) { _PSTL_ASSERT_MSG(__range.size() > 1, "there should be at least 2 elements"); new (&_M_sum_storage) _Tp(_M_combine(_M_u(__i), _M_u(__i + 1))); // The condition i+1 < j is provided by the grain size of 3 _M_has_sum = true; std::advance(__i, 2); if (__i == __j) return; } sum() = _M_brick_reduce(__i, __j, sum()); } }; template _Tp __parallel_transform_reduce(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _Index __first, _Index __last, _Up __u, _Tp __init, _Cp __combine, _Rp __brick_reduce) { __tbb_backend::__par_trans_red_body<_Index, _Up, _Tp, _Cp, _Rp> __body(__u, __init, __combine, __brick_reduce); // The grain size of 3 is used in order to provide mininum 2 elements for each body tbb::this_task_arena::isolate( [__first, __last, &__body]() { tbb::parallel_reduce(tbb::blocked_range<_Index>(__first, __last, 3), __body); }); return __body.sum(); } //------------------------------------------------------------------------ // parallel_scan //------------------------------------------------------------------------ template class __trans_scan_body { alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true _Rp _M_brick_reduce; // Most likely to have non-empty layout _Up _M_u; _Cp _M_combine; _Sp _M_scan; bool _M_has_sum; // Put last to minimize size of class public: __trans_scan_body(_Up __u, _Tp __init, _Cp __combine, _Rp __reduce, _Sp __scan) : _M_brick_reduce(__reduce), _M_u(__u), _M_combine(__combine), _M_scan(__scan), _M_has_sum(true) { new (_M_sum_storage) _Tp(__init); } __trans_scan_body(__trans_scan_body& __b, tbb::split) : _M_brick_reduce(__b._M_brick_reduce), _M_u(__b._M_u), _M_combine(__b._M_combine), _M_scan(__b._M_scan), _M_has_sum(false) { } ~__trans_scan_body() { // 17.6.5.12 tells us to not worry about catching exceptions from destructors. if (_M_has_sum) sum().~_Tp(); } _Tp& sum() const { _PSTL_ASSERT_MSG(_M_has_sum, "sum expected"); return *const_cast<_Tp*>(reinterpret_cast<_Tp const*>(_M_sum_storage)); } void operator()(const tbb::blocked_range<_Index>& __range, tbb::pre_scan_tag) { _Index __i = __range.begin(); _Index __j = __range.end(); if (!_M_has_sum) { new (&_M_sum_storage) _Tp(_M_u(__i)); _M_has_sum = true; ++__i; if (__i == __j) return; } sum() = _M_brick_reduce(__i, __j, sum()); } void operator()(const tbb::blocked_range<_Index>& __range, tbb::final_scan_tag) { sum() = _M_scan(__range.begin(), __range.end(), sum()); } void reverse_join(__trans_scan_body& __a) { if (_M_has_sum) { sum() = _M_combine(__a.sum(), sum()); } else { new (&_M_sum_storage) _Tp(__a.sum()); _M_has_sum = true; } } void assign(__trans_scan_body& __b) { sum() = __b.sum(); } }; template _Index __split(_Index __m) { _Index __k = 1; while (2 * __k < __m) __k *= 2; return __k; } //------------------------------------------------------------------------ // __parallel_strict_scan //------------------------------------------------------------------------ template void __upsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Rp __reduce, _Cp __combine) { if (__m == 1) __r[0] = __reduce(__i * __tilesize, __lastsize); else { _Index __k = __split(__m); tbb::parallel_invoke( [=] { __tbb_backend::__upsweep(__i, __k, __tilesize, __r, __tilesize, __reduce, __combine); }, [=] { __tbb_backend::__upsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize, __reduce, __combine); }); if (__m == 2 * __k) __r[__m - 1] = __combine(__r[__k - 1], __r[__m - 1]); } } template void __downsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Tp __initial, _Cp __combine, _Sp __scan) { if (__m == 1) __scan(__i * __tilesize, __lastsize, __initial); else { const _Index __k = __split(__m); tbb::parallel_invoke( [=] { __tbb_backend::__downsweep(__i, __k, __tilesize, __r, __tilesize, __initial, __combine, __scan); }, // Assumes that __combine never throws. //TODO: Consider adding a requirement for user functors to be constant. [=, &__combine] { __tbb_backend::__downsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize, __combine(__initial, __r[__k - 1]), __combine, __scan); }); } } // Adapted from Intel(R) Cilk(TM) version from cilkpub. // Let i:len denote a counted interval of length n starting at i. s denotes a generalized-sum value. // Expected actions of the functors are: // reduce(i,len) -> s -- return reduction value of i:len. // combine(s1,s2) -> s -- return merged sum // apex(s) -- do any processing necessary between reduce and scan. // scan(i,len,initial) -- perform scan over i:len starting with initial. // The initial range 0:n is partitioned into consecutive subranges. // reduce and scan are each called exactly once per subrange. // Thus callers can rely upon side effects in reduce. // combine must not throw an exception. // apex is called exactly once, after all calls to reduce and before all calls to scan. // For example, it's useful for allocating a __buffer used by scan but whose size is the sum of all reduction values. // T must have a trivial constructor and destructor. template void __parallel_strict_scan(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _Index __n, _Tp __initial, _Rp __reduce, _Cp __combine, _Sp __scan, _Ap __apex) { tbb::this_task_arena::isolate([=, &__combine]() { if (__n > 1) { _Index __p = tbb::this_task_arena::max_concurrency(); const _Index __slack = 4; _Index __tilesize = (__n - 1) / (__slack * __p) + 1; _Index __m = (__n - 1) / __tilesize; __buffer<_Tp> __buf(__m + 1); _Tp* __r = __buf.get(); __tbb_backend::__upsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __reduce, __combine); // When __apex is a no-op and __combine has no side effects, a good optimizer // should be able to eliminate all code between here and __apex. // Alternatively, provide a default value for __apex that can be // recognized by metaprogramming that conditionlly executes the following. size_t __k = __m + 1; _Tp __t = __r[__k - 1]; while ((__k &= __k - 1)) __t = __combine(__r[__k - 1], __t); __apex(__combine(__initial, __t)); __tbb_backend::__downsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __initial, __combine, __scan); return; } // Fewer than 2 elements in sequence, or out of memory. Handle has single block. _Tp __sum = __initial; if (__n) __sum = __combine(__sum, __reduce(_Index(0), __n)); __apex(__sum); if (__n) __scan(_Index(0), __n, __initial); }); } template _Tp __parallel_transform_scan(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _Index __n, _Up __u, _Tp __init, _Cp __combine, _Rp __brick_reduce, _Sp __scan) { __trans_scan_body<_Index, _Up, _Tp, _Cp, _Rp, _Sp> __body(__u, __init, __combine, __brick_reduce, __scan); auto __range = tbb::blocked_range<_Index>(0, __n); tbb::this_task_arena::isolate([__range, &__body]() { tbb::parallel_scan(__range, __body); }); return __body.sum(); } //------------------------------------------------------------------------ // parallel_stable_sort //------------------------------------------------------------------------ //------------------------------------------------------------------------ // stable_sort utilities // // These are used by parallel implementations but do not depend on them. //------------------------------------------------------------------------ #define _PSTL_MERGE_CUT_OFF 2000 template class __func_task; template class __root_task; #if TBB_INTERFACE_VERSION <= 12000 class __task : public tbb::task { public: template __task* make_continuation(_Fn&& __f) { return new (allocate_continuation()) __func_task::type>(std::forward<_Fn>(__f)); } template __task* make_child_of(__task* parent, _Fn&& __f) { return new (parent->allocate_child()) __func_task::type>(std::forward<_Fn>(__f)); } template __task* make_additional_child_of(tbb::task* parent, _Fn&& __f) { return new (tbb::task::allocate_additional_child_of(*parent)) __func_task::type>(std::forward<_Fn>(__f)); } inline void recycle_as_continuation() { tbb::task::recycle_as_continuation(); } inline void recycle_as_child_of(__task* parent) { tbb::task::recycle_as_child_of(*parent); } inline void spawn(__task* __t) { tbb::task::spawn(*__t); } template static inline void spawn_root_and_wait(__root_task<_Fn>& __root) { tbb::task::spawn_root_and_wait(*__root._M_task); } }; template class __func_task : public __task { _Func _M_func; tbb::task* execute() { return _M_func(this); }; public: template __func_task(_Fn&& __f) : _M_func{std::forward<_Fn>(__f)} { } _Func& body() { return _M_func; } }; template class __root_task { tbb::task* _M_task; public: template __root_task(Args&&... args) : _M_task{new (tbb::task::allocate_root()) __func_task<_Func>{_Func(std::forward(args)...)}} { } friend class __task; friend class __func_task<_Func>; }; #else // TBB_INTERFACE_VERSION <= 12000 class __task : public tbb::detail::d1::task { protected: tbb::detail::d1::small_object_allocator _M_allocator{}; tbb::detail::d1::execution_data* _M_execute_data{}; __task* _M_parent{}; std::atomic _M_refcount{}; bool _M_recycle{}; template __task* allocate_func_task(_Fn&& __f) { _PSTL_ASSERT(_M_execute_data != nullptr); tbb::detail::d1::small_object_allocator __alloc{}; auto __t = __alloc.new_object<__func_task::type>>(*_M_execute_data, std::forward<_Fn>(__f)); __t->_M_allocator = __alloc; return __t; } public: __task* parent() { return _M_parent; } void set_ref_count(int __n) { _M_refcount.store(__n, std::memory_order_release); } template __task* make_continuation(_Fn&& __f) { auto __t = allocate_func_task(std::forward<_Fn&&>(__f)); __t->_M_parent = _M_parent; _M_parent = nullptr; return __t; } template __task* make_child_of(__task* __parent, _Fn&& __f) { auto __t = allocate_func_task(std::forward<_Fn&&>(__f)); __t->_M_parent = __parent; return __t; } template __task* make_additional_child_of(__task* __parent, _Fn&& __f) { auto __t = make_child_of(__parent, std::forward<_Fn>(__f)); _PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0); ++__parent->_M_refcount; return __t; } inline void recycle_as_continuation() { _M_recycle = true; } inline void recycle_as_child_of(__task* parent) { _M_recycle = true; _M_parent = parent; } inline void spawn(__task* __t) { _PSTL_ASSERT(_M_execute_data != nullptr); tbb::detail::d1::spawn(*__t, *_M_execute_data->context); } template static inline void spawn_root_and_wait(__root_task<_Fn>& __root) { tbb::detail::d1::execute_and_wait(*__root._M_func_task, __root._M_context, __root._M_wait_object, __root._M_context); } template friend class __func_task; }; template class __func_task : public __task { _Func _M_func; __task* execute(tbb::detail::d1::execution_data& __ed) override { _M_execute_data = &__ed; _M_recycle = false; __task* __next = _M_func(this); return finalize(__next); }; __task* cancel(tbb::detail::d1::execution_data& __ed) override { return finalize(nullptr); } __task* finalize(__task* __next) { bool __recycle = _M_recycle; _M_recycle = false; if (__recycle) { return __next; } auto __parent = _M_parent; auto __alloc = _M_allocator; auto __ed = _M_execute_data; this->~__func_task(); _PSTL_ASSERT(__parent != nullptr); _PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0); if (--__parent->_M_refcount == 0) { _PSTL_ASSERT(__next == nullptr); __alloc.deallocate(this, *__ed); return __parent; } return __next; } friend class __root_task<_Func>; public: template __func_task(_Fn&& __f) : _M_func(std::forward<_Fn>(__f)) { } _Func& body() { return _M_func; } }; template class __root_task : public __task { __task* execute(tbb::detail::d1::execution_data& __ed) override { _M_wait_object.release(); return nullptr; }; __task* cancel(tbb::detail::d1::execution_data& __ed) override { _M_wait_object.release(); return nullptr; } __func_task<_Func>* _M_func_task{}; tbb::detail::d1::wait_context _M_wait_object{0}; tbb::task_group_context _M_context{}; public: template __root_task(Args&&... args) : _M_wait_object{1} { tbb::detail::d1::small_object_allocator __alloc{}; _M_func_task = __alloc.new_object<__func_task<_Func>>(_Func(std::forward(args)...)); _M_func_task->_M_allocator = __alloc; _M_func_task->_M_parent = this; _M_refcount.store(1, std::memory_order_relaxed); } friend class __task; }; #endif // TBB_INTERFACE_VERSION <= 12000 template class __merge_func { typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; typedef typename std::iterator_traits<_RandomAccessIterator1>::value_type _ValueType; _RandomAccessIterator1 _M_x_beg; _RandomAccessIterator2 _M_z_beg; _SizeType _M_xs, _M_xe; _SizeType _M_ys, _M_ye; _SizeType _M_zs; _Compare _M_comp; _LeafMerge _M_leaf_merge; _SizeType _M_nsort; //number of elements to be sorted for partial_sort alforithm static const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; bool _root; //means a task is merging root task bool _x_orig; //"true" means X(or left ) subrange is in the original container; false - in the buffer bool _y_orig; //"true" means Y(or right) subrange is in the original container; false - in the buffer bool _split; //"true" means a merge task is a split task for parallel merging, the execution logic differs bool is_partial() const { return _M_nsort > 0; } struct __move_value { template void operator()(Iterator1 __x, Iterator2 __z) { *__z = std::move(*__x); } }; struct __move_value_construct { template void operator()(Iterator1 __x, Iterator2 __z) { ::new (std::addressof(*__z)) _ValueType(std::move(*__x)); } }; struct __move_range { template Iterator2 operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2) { if (__last1 - __first1 < __merge_cut_off) return std::move(__first1, __last1, __first2); auto __n = __last1 - __first1; tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), [__first1, __first2](const tbb::blocked_range<_SizeType>& __range) { std::move(__first1 + __range.begin(), __first1 + __range.end(), __first2 + __range.begin()); }); return __first2 + __n; } }; struct __move_range_construct { template Iterator2 operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2) { if (__last1 - __first1 < __merge_cut_off) { for (; __first1 != __last1; ++__first1, ++__first2) __move_value_construct()(__first1, __first2); return __first2; } auto __n = __last1 - __first1; tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), [__first1, __first2](const tbb::blocked_range<_SizeType>& __range) { for (auto i = __range.begin(); i != __range.end(); ++i) __move_value_construct()(__first1 + i, __first2 + i); }); return __first2 + __n; } }; struct __cleanup_range { template void operator()(_Iterator __first, _Iterator __last) { if (__last - __first < __merge_cut_off) _Cleanup()(__first, __last); else { auto __n = __last - __first; tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), [__first](const tbb::blocked_range<_SizeType>& __range) { _Cleanup()(__first + __range.begin(), __first + __range.end()); }); } } }; public: __merge_func(_SizeType __xs, _SizeType __xe, _SizeType __ys, _SizeType __ye, _SizeType __zs, _Compare __comp, _Cleanup, _LeafMerge __leaf_merge, _SizeType __nsort, _RandomAccessIterator1 __x_beg, _RandomAccessIterator2 __z_beg, bool __x_orig, bool __y_orig, bool __root) : _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_x_beg(__x_beg), _M_z_beg(__z_beg), _M_comp(__comp), _M_leaf_merge(__leaf_merge), _M_nsort(__nsort), _root(__root), _x_orig(__x_orig), _y_orig(__y_orig), _split(false) { } bool is_left(_SizeType __idx) const { return _M_xs == __idx; } template void set_odd(IndexType __idx, bool __on_off) { if (is_left(__idx)) _x_orig = __on_off; else _y_orig = __on_off; } __task* operator()(__task* __self); private: __merge_func* parent_merge(__task* __self) const { return _root ? nullptr : &static_cast<__func_task<__merge_func>*>(__self->parent())->body(); } bool x_less_y() { const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); _PSTL_ASSERT(__nx > 0 && __ny > 0); _PSTL_ASSERT(_x_orig == _y_orig); _PSTL_ASSERT(!is_partial()); if (_x_orig) { _PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_comp)); _PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_comp)); return !_M_comp(*(_M_x_beg + _M_ys), *(_M_x_beg + _M_xe - 1)); } _PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp)); _PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp)); return !_M_comp(*(_M_z_beg + _M_zs + __nx), *(_M_z_beg + _M_zs + __nx - 1)); } void move_x_range() { const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); _PSTL_ASSERT(__nx > 0 && __ny > 0); if (_x_orig) __move_range_construct()(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_z_beg + _M_zs); else { __move_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx, _M_x_beg + _M_xs); __cleanup_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx); } _x_orig = !_x_orig; } void move_y_range() { const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); if (_y_orig) __move_range_construct()(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs + __nx); else { __move_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny, _M_x_beg + _M_ys); __cleanup_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny); } _y_orig = !_y_orig; } __task* merge_ranges(__task* __self) { _PSTL_ASSERT(_x_orig == _y_orig); //two merged subrange must be lie into the same buffer const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); const auto __n = __nx + __ny; // need to merge {x} and {y} if (__n > __merge_cut_off) return split_merging(__self); //merge to buffer if (_x_orig) { _M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs, _M_comp, __move_value_construct(), __move_value_construct(), __move_range_construct(), __move_range_construct()); _PSTL_ASSERT(parent_merge(__self)); //not root merging task } //merge to "origin" else { _PSTL_ASSERT(_x_orig == _y_orig); _PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp)); _PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp)); const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); _M_leaf_merge(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_x_beg + _M_zs, _M_comp, __move_value(), __move_value(), __move_range(), __move_range()); __cleanup_range()(_M_z_beg + _M_xs, _M_z_beg + _M_xe); __cleanup_range()(_M_z_beg + _M_ys, _M_z_beg + _M_ye); } return nullptr; } __task* process_ranges(__task* __self) { _PSTL_ASSERT(_x_orig == _y_orig); _PSTL_ASSERT(!_split); auto p = parent_merge(__self); if (!p) { //root merging task //optimization, just for sort algorithm, //{x} <= {y} if (!is_partial() && x_less_y()) //we have a solution { if (!_x_orig) { //we have to move the solution to the origin move_x_range(); //parallel moving move_y_range(); //parallel moving } return nullptr; } //else: if we have data in the origin, //we have to move data to the buffer for final merging into the origin. if (_x_orig) { move_x_range(); //parallel moving move_y_range(); //parallel moving } // need to merge {x} and {y}. return merge_ranges(__self); } //else: not root merging task (parent_merge() == NULL) //optimization, just for sort algorithm, //{x} <= {y} if (!is_partial() && x_less_y()) { const auto id_range = _M_zs; p->set_odd(id_range, _x_orig); return nullptr; } //else: we have to revert "_x(y)_orig" flag of the parent merging task const auto id_range = _M_zs; p->set_odd(id_range, !_x_orig); return merge_ranges(__self); } //splitting as merge task into 2 of the same level __task* split_merging(__task* __self) { _PSTL_ASSERT(_x_orig == _y_orig); const auto __nx = (_M_xe - _M_xs); const auto __ny = (_M_ye - _M_ys); _SizeType __xm{}; _SizeType __ym{}; if (__nx < __ny) { __ym = _M_ys + __ny / 2; if (_x_orig) __xm = std::upper_bound(_M_x_beg + _M_xs, _M_x_beg + _M_xe, *(_M_x_beg + __ym), _M_comp) - _M_x_beg; else __xm = std::upper_bound(_M_z_beg + _M_xs, _M_z_beg + _M_xe, *(_M_z_beg + __ym), _M_comp) - _M_z_beg; } else { __xm = _M_xs + __nx / 2; if (_y_orig) __ym = std::lower_bound(_M_x_beg + _M_ys, _M_x_beg + _M_ye, *(_M_x_beg + __xm), _M_comp) - _M_x_beg; else __ym = std::lower_bound(_M_z_beg + _M_ys, _M_z_beg + _M_ye, *(_M_z_beg + __xm), _M_comp) - _M_z_beg; } auto __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys)); __merge_func __right_func(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _Cleanup(), _M_leaf_merge, _M_nsort, _M_x_beg, _M_z_beg, _x_orig, _y_orig, _root); __right_func._split = true; auto __merge_task = __self->make_additional_child_of(__self->parent(), std::move(__right_func)); __self->spawn(__merge_task); __self->recycle_as_continuation(); _M_xe = __xm; _M_ye = __ym; _split = true; return __self; } }; template __task* __merge_func<_RandomAccessIterator1, _RandomAccessIterator2, __M_Compare, _Cleanup, _LeafMerge>:: operator()(__task* __self) { //a. split merge task into 2 of the same level; the special logic, //without processing(process_ranges) adjacent sub-ranges x and y if (_split) return merge_ranges(__self); //b. General merging of adjacent sub-ranges x and y (with optimization in case of {x} <= {y} ) //1. x and y are in the even buffer //2. x and y are in the odd buffer if (_x_orig == _y_orig) return process_ranges(__self); //3. x is in even buffer, y is in the odd buffer //4. x is in odd buffer, y is in the even buffer if (!parent_merge(__self)) { //root merge task if (_x_orig) move_x_range(); else move_y_range(); } else { const _SizeType __nx = (_M_xe - _M_xs); const _SizeType __ny = (_M_ye - _M_ys); _PSTL_ASSERT(__nx > 0); _PSTL_ASSERT(__nx > 0); if (__nx < __ny) move_x_range(); else move_y_range(); } return process_ranges(__self); } template class __stable_sort_func { public: typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; private: _RandomAccessIterator1 _M_xs, _M_xe, _M_x_beg; _RandomAccessIterator2 _M_zs, _M_z_beg; _Compare _M_comp; _LeafSort _M_leaf_sort; bool _M_root; _SizeType _M_nsort; //zero or number of elements to be sorted for partial_sort alforithm public: __stable_sort_func(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __zs, bool __root, _Compare __comp, _LeafSort __leaf_sort, _SizeType __nsort, _RandomAccessIterator1 __x_beg, _RandomAccessIterator2 __z_beg) : _M_xs(__xs), _M_xe(__xe), _M_x_beg(__x_beg), _M_zs(__zs), _M_z_beg(__z_beg), _M_comp(__comp), _M_leaf_sort(__leaf_sort), _M_root(__root), _M_nsort(__nsort) { } __task* operator()(__task* __self); }; #define _PSTL_STABLE_SORT_CUT_OFF 500 template __task* __stable_sort_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, _LeafSort>::operator()(__task* __self) { typedef __merge_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, __utils::__serial_destroy, __utils::__serial_move_merge> _MergeTaskType; const _SizeType __n = _M_xe - _M_xs; const _SizeType __nmerge = _M_nsort > 0 ? _M_nsort : __n; const _SizeType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF; if (__n <= __sort_cut_off) { _M_leaf_sort(_M_xs, _M_xe, _M_comp); _PSTL_ASSERT(!_M_root); return nullptr; } const _RandomAccessIterator1 __xm = _M_xs + __n / 2; const _RandomAccessIterator2 __zm = _M_zs + (__xm - _M_xs); const _RandomAccessIterator2 __ze = _M_zs + __n; _MergeTaskType __m(_MergeTaskType(_M_xs - _M_x_beg, __xm - _M_x_beg, __xm - _M_x_beg, _M_xe - _M_x_beg, _M_zs - _M_z_beg, _M_comp, __utils::__serial_destroy(), __utils::__serial_move_merge(__nmerge), _M_nsort, _M_x_beg, _M_z_beg, /*x_orig*/ true, /*y_orig*/ true, /*root*/ _M_root)); auto __parent = __self->make_continuation(std::move(__m)); __parent->set_ref_count(2); auto __right = __self->make_child_of( __parent, __stable_sort_func(__xm, _M_xe, __zm, false, _M_comp, _M_leaf_sort, _M_nsort, _M_x_beg, _M_z_beg)); __self->spawn(__right); __self->recycle_as_child_of(__parent); _M_root = false; _M_xe = __xm; return __self; } template void __parallel_stable_sort(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _RandomAccessIterator __xs, _RandomAccessIterator __xe, _Compare __comp, _LeafSort __leaf_sort, std::size_t __nsort = 0) { tbb::this_task_arena::isolate([=, &__nsort]() { //sorting based on task tree and parallel merge typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DifferenceType; const _DifferenceType __n = __xe - __xs; if (__nsort == __n) __nsort = 0; // 'partial_sort' becames 'sort' const _DifferenceType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF; if (__n > __sort_cut_off) { __buffer<_ValueType> __buf(__n); __root_task<__stable_sort_func<_RandomAccessIterator, _ValueType*, _Compare, _LeafSort>> __root{ __xs, __xe, __buf.get(), true, __comp, __leaf_sort, __nsort, __xs, __buf.get()}; __task::spawn_root_and_wait(__root); return; } //serial sort __leaf_sort(__xs, __xe, __comp); }); } //------------------------------------------------------------------------ // parallel_merge //------------------------------------------------------------------------ template class __merge_func_static { _RandomAccessIterator1 _M_xs, _M_xe; _RandomAccessIterator2 _M_ys, _M_ye; _RandomAccessIterator3 _M_zs; _Compare _M_comp; _LeafMerge _M_leaf_merge; public: __merge_func_static(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys, _RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, _LeafMerge __leaf_merge) : _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_comp(__comp), _M_leaf_merge(__leaf_merge) { } __task* operator()(__task* __self); }; //TODO: consider usage of parallel_for with a custom blocked_range template __task* __merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, __M_Compare, _LeafMerge>:: operator()(__task* __self) { typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys); const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; if (__n <= __merge_cut_off) { _M_leaf_merge(_M_xs, _M_xe, _M_ys, _M_ye, _M_zs, _M_comp); return nullptr; } _RandomAccessIterator1 __xm; _RandomAccessIterator2 __ym; if (_M_xe - _M_xs < _M_ye - _M_ys) { __ym = _M_ys + (_M_ye - _M_ys) / 2; __xm = std::upper_bound(_M_xs, _M_xe, *__ym, _M_comp); } else { __xm = _M_xs + (_M_xe - _M_xs) / 2; __ym = std::lower_bound(_M_ys, _M_ye, *__xm, _M_comp); } const _RandomAccessIterator3 __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys)); auto __right = __self->make_additional_child_of( __self->parent(), __merge_func_static(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_leaf_merge)); __self->spawn(__right); __self->recycle_as_continuation(); _M_xe = __xm; _M_ye = __ym; return __self; } template void __parallel_merge(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys, _RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, _LeafMerge __leaf_merge) { typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; const _SizeType __n = (__xe - __xs) + (__ye - __ys); const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; if (__n <= __merge_cut_off) { // Fall back on serial merge __leaf_merge(__xs, __xe, __ys, __ye, __zs, __comp); } else { tbb::this_task_arena::isolate([=]() { typedef __merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, _Compare, _LeafMerge> _TaskType; __root_task<_TaskType> __root{__xs, __xe, __ys, __ye, __zs, __comp, __leaf_merge}; __task::spawn_root_and_wait(__root); }); } } //------------------------------------------------------------------------ // parallel_invoke //------------------------------------------------------------------------ template void __parallel_invoke(__pstl::__internal::__tbb_backend_tag, _ExecutionPolicy&&, _F1&& __f1, _F2&& __f2) { //TODO: a version of tbb::this_task_arena::isolate with variadic arguments pack should be added in the future tbb::this_task_arena::isolate([&]() { tbb::parallel_invoke(std::forward<_F1>(__f1), std::forward<_F2>(__f2)); }); } } // namespace __tbb_backend } // namespace __pstl #endif /* _PSTL_PARALLEL_BACKEND_TBB_H */