//===- ASTVector.h - Vector that uses ASTContext for allocation ---*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides ASTVector, a vector ADT whose contents are // allocated using the allocator associated with an ASTContext.. // //===----------------------------------------------------------------------===// // FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h. // We can refactor this core logic into something common. #ifndef LLVM_CLANG_AST_ASTVECTOR_H #define LLVM_CLANG_AST_ASTVECTOR_H #include "clang/AST/ASTContextAllocate.h" #include "llvm/ADT/PointerIntPair.h" #include #include #include #include #include #include #include #include namespace clang { class ASTContext; template class ASTVector { private: T *Begin = nullptr; T *End = nullptr; llvm::PointerIntPair Capacity; void setEnd(T *P) { this->End = P; } protected: // Make a tag bit available to users of this class. // FIXME: This is a horrible hack. bool getTag() const { return Capacity.getInt(); } void setTag(bool B) { Capacity.setInt(B); } public: // Default ctor - Initialize to empty. ASTVector() : Capacity(nullptr, false) {} ASTVector(ASTVector &&O) : Begin(O.Begin), End(O.End), Capacity(O.Capacity) { O.Begin = O.End = nullptr; O.Capacity.setPointer(nullptr); O.Capacity.setInt(false); } ASTVector(const ASTContext &C, unsigned N) : Capacity(nullptr, false) { reserve(C, N); } ASTVector &operator=(ASTVector &&RHS) { ASTVector O(std::move(RHS)); using std::swap; swap(Begin, O.Begin); swap(End, O.End); swap(Capacity, O.Capacity); return *this; } ~ASTVector() { if (std::is_class::value) { // Destroy the constructed elements in the vector. destroy_range(Begin, End); } } using size_type = size_t; using difference_type = ptrdiff_t; using value_type = T; using iterator = T *; using const_iterator = const T *; using const_reverse_iterator = std::reverse_iterator; using reverse_iterator = std::reverse_iterator; using reference = T &; using const_reference = const T &; using pointer = T *; using const_pointer = const T *; // forward iterator creation methods. iterator begin() { return Begin; } const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } reference operator[](unsigned idx) { assert(Begin + idx < End); return Begin[idx]; } const_reference operator[](unsigned idx) const { assert(Begin + idx < End); return Begin[idx]; } reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } void pop_back() { --End; End->~T(); } T pop_back_val() { T Result = back(); pop_back(); return Result; } void clear() { if (std::is_class::value) { destroy_range(Begin, End); } End = Begin; } /// data - Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(Begin); } /// data - Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(Begin); } void push_back(const_reference Elt, const ASTContext &C) { if (End < this->capacity_ptr()) { Retry: new (End) T(Elt); ++End; return; } grow(C); goto Retry; } void reserve(const ASTContext &C, unsigned N) { if (unsigned(this->capacity_ptr()-Begin) < N) grow(C, N); } /// capacity - Return the total number of elements in the currently allocated /// buffer. size_t capacity() const { return this->capacity_ptr() - Begin; } /// append - Add the specified range to the end of the SmallVector. template void append(const ASTContext &C, in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); if (NumInputs == 0) return; // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(C, this->size()+NumInputs); // Copy the new elements over. // TODO: NEED To compile time dispatch on whether in_iter is a random access // iterator to use the fast uninitialized_copy. std::uninitialized_copy(in_start, in_end, this->end()); this->setEnd(this->end() + NumInputs); } /// append - Add the specified range to the end of the SmallVector. void append(const ASTContext &C, size_type NumInputs, const T &Elt) { // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(C, this->size()+NumInputs); // Copy the new elements over. std::uninitialized_fill_n(this->end(), NumInputs, Elt); this->setEnd(this->end() + NumInputs); } /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); } iterator insert(const ASTContext &C, iterator I, const T &Elt) { if (I == this->end()) { // Important special case for empty vector. push_back(Elt, C); return this->end()-1; } if (this->End < this->capacity_ptr()) { Retry: new (this->end()) T(this->back()); this->setEnd(this->end()+1); // Push everything else over. std::copy_backward(I, this->end()-1, this->end()); *I = Elt; return I; } size_t EltNo = I-this->begin(); this->grow(C); I = this->begin()+EltNo; goto Retry; } iterator insert(const ASTContext &C, iterator I, size_type NumToInsert, const T &Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(C, NumToInsert, Elt); return this->begin() + InsertElt; } // Ensure there is enough space. reserve(C, static_cast(this->size() + NumToInsert)); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(C, this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::fill_n(I, NumToInsert, Elt); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } template iterator insert(const ASTContext &C, iterator I, ItTy From, ItTy To) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(C, From, To); return this->begin() + InsertElt; } size_t NumToInsert = std::distance(From, To); // Ensure there is enough space. reserve(C, static_cast(this->size() + NumToInsert)); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(C, this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. for (; NumOverwritten > 0; --NumOverwritten) { *I = *From; ++I; ++From; } // Insert the non-overwritten middle part. this->uninitialized_copy(From, To, OldEnd); return I; } void resize(const ASTContext &C, unsigned N, const T &NV) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(C, N); construct_range(this->end(), this->begin()+N, NV); this->setEnd(this->begin()+N); } } private: /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(const ASTContext &C, size_type MinSize = 1); void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } protected: const_iterator capacity_ptr() const { return (iterator) Capacity.getPointer(); } iterator capacity_ptr() { return (iterator)Capacity.getPointer(); } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void ASTVector::grow(const ASTContext &C, size_t MinSize) { size_t CurCapacity = this->capacity(); size_t CurSize = size(); size_t NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; // Allocate the memory from the ASTContext. T *NewElts = new (C, alignof(T)) T[NewCapacity]; // Copy the elements over. if (Begin != End) { if (std::is_class::value) { std::uninitialized_copy(Begin, End, NewElts); // Destroy the original elements. destroy_range(Begin, End); } else { // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). memcpy(NewElts, Begin, CurSize * sizeof(T)); } } // ASTContext never frees any memory. Begin = NewElts; End = NewElts+CurSize; Capacity.setPointer(Begin+NewCapacity); } } // namespace clang #endif // LLVM_CLANG_AST_ASTVECTOR_H