//===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides an interface for customizing the standard MachineScheduler // pass. Note that the entire pass may be replaced as follows: // // TargetMachine::createPassConfig(PassManagerBase &PM) { // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID); // ...} // // The MachineScheduler pass is only responsible for choosing the regions to be // scheduled. Targets can override the DAG builder and scheduler without // replacing the pass as follows: // // ScheduleDAGInstrs *PassConfig:: // createMachineScheduler(MachineSchedContext *C) { // return new CustomMachineScheduler(C); // } // // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list // scheduling while updating the instruction stream, register pressure, and live // intervals. Most targets don't need to override the DAG builder and list // scheduler, but subtargets that require custom scheduling heuristics may // plugin an alternate MachineSchedStrategy. The strategy is responsible for // selecting the highest priority node from the list: // // ScheduleDAGInstrs *PassConfig:: // createMachineScheduler(MachineSchedContext *C) { // return new ScheduleDAGMILive(C, CustomStrategy(C)); // } // // The DAG builder can also be customized in a sense by adding DAG mutations // that will run after DAG building and before list scheduling. DAG mutations // can adjust dependencies based on target-specific knowledge or add weak edges // to aid heuristics: // // ScheduleDAGInstrs *PassConfig:: // createMachineScheduler(MachineSchedContext *C) { // ScheduleDAGMI *DAG = createGenericSchedLive(C); // DAG->addMutation(new CustomDAGMutation(...)); // return DAG; // } // // A target that supports alternative schedulers can use the // MachineSchedRegistry to allow command line selection. This can be done by // implementing the following boilerplate: // // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) { // return new CustomMachineScheduler(C); // } // static MachineSchedRegistry // SchedCustomRegistry("custom", "Run my target's custom scheduler", // createCustomMachineSched); // // // Finally, subtargets that don't need to implement custom heuristics but would // like to configure the GenericScheduler's policy for a given scheduler region, // including scheduling direction and register pressure tracking policy, can do // this: // // void Subtarget:: // overrideSchedPolicy(MachineSchedPolicy &Policy, // unsigned NumRegionInstrs) const { // Policy. = true; // } // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H #define LLVM_CODEGEN_MACHINESCHEDULER_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachinePassRegistry.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/ScheduleDAGMutation.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include #include namespace llvm { extern cl::opt ForceTopDown; extern cl::opt ForceBottomUp; extern cl::opt VerifyScheduling; #ifndef NDEBUG extern cl::opt ViewMISchedDAGs; extern cl::opt PrintDAGs; #else extern const bool ViewMISchedDAGs; extern const bool PrintDAGs; #endif class AAResults; class LiveIntervals; class MachineDominatorTree; class MachineFunction; class MachineInstr; class MachineLoopInfo; class RegisterClassInfo; class SchedDFSResult; class ScheduleHazardRecognizer; class TargetInstrInfo; class TargetPassConfig; class TargetRegisterInfo; /// MachineSchedContext provides enough context from the MachineScheduler pass /// for the target to instantiate a scheduler. struct MachineSchedContext { MachineFunction *MF = nullptr; const MachineLoopInfo *MLI = nullptr; const MachineDominatorTree *MDT = nullptr; const TargetPassConfig *PassConfig = nullptr; AAResults *AA = nullptr; LiveIntervals *LIS = nullptr; RegisterClassInfo *RegClassInfo; MachineSchedContext(); MachineSchedContext &operator=(const MachineSchedContext &other) = delete; MachineSchedContext(const MachineSchedContext &other) = delete; virtual ~MachineSchedContext(); }; /// MachineSchedRegistry provides a selection of available machine instruction /// schedulers. class MachineSchedRegistry : public MachinePassRegistryNode< ScheduleDAGInstrs *(*)(MachineSchedContext *)> { public: using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *); // RegisterPassParser requires a (misnamed) FunctionPassCtor type. using FunctionPassCtor = ScheduleDAGCtor; static MachinePassRegistry Registry; MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C) : MachinePassRegistryNode(N, D, C) { Registry.Add(this); } ~MachineSchedRegistry() { Registry.Remove(this); } // Accessors. // MachineSchedRegistry *getNext() const { return (MachineSchedRegistry *)MachinePassRegistryNode::getNext(); } static MachineSchedRegistry *getList() { return (MachineSchedRegistry *)Registry.getList(); } static void setListener(MachinePassRegistryListener *L) { Registry.setListener(L); } }; class ScheduleDAGMI; /// Define a generic scheduling policy for targets that don't provide their own /// MachineSchedStrategy. This can be overriden for each scheduling region /// before building the DAG. struct MachineSchedPolicy { // Allow the scheduler to disable register pressure tracking. bool ShouldTrackPressure = false; /// Track LaneMasks to allow reordering of independent subregister writes /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks() bool ShouldTrackLaneMasks = false; // Allow the scheduler to force top-down or bottom-up scheduling. If neither // is true, the scheduler runs in both directions and converges. bool OnlyTopDown = false; bool OnlyBottomUp = false; // Disable heuristic that tries to fetch nodes from long dependency chains // first. bool DisableLatencyHeuristic = false; // Compute DFSResult for use in scheduling heuristics. bool ComputeDFSResult = false; MachineSchedPolicy() = default; }; /// MachineSchedStrategy - Interface to the scheduling algorithm used by /// ScheduleDAGMI. /// /// Initialization sequence: /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots class MachineSchedStrategy { virtual void anchor(); public: virtual ~MachineSchedStrategy() = default; /// Optionally override the per-region scheduling policy. virtual void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) {} virtual void dumpPolicy() const {} /// Check if pressure tracking is needed before building the DAG and /// initializing this strategy. Called after initPolicy. virtual bool shouldTrackPressure() const { return true; } /// Returns true if lanemasks should be tracked. LaneMask tracking is /// necessary to reorder independent subregister defs for the same vreg. /// This has to be enabled in combination with shouldTrackPressure(). virtual bool shouldTrackLaneMasks() const { return false; } // If this method returns true, handling of the scheduling regions // themselves (in case of a scheduling boundary in MBB) will be done // beginning with the topmost region of MBB. virtual bool doMBBSchedRegionsTopDown() const { return false; } /// Initialize the strategy after building the DAG for a new region. virtual void initialize(ScheduleDAGMI *DAG) = 0; /// Tell the strategy that MBB is about to be processed. virtual void enterMBB(MachineBasicBlock *MBB) {}; /// Tell the strategy that current MBB is done. virtual void leaveMBB() {}; /// Notify this strategy that all roots have been released (including those /// that depend on EntrySU or ExitSU). virtual void registerRoots() {} /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to /// schedule the node at the top of the unscheduled region. Otherwise it will /// be scheduled at the bottom. virtual SUnit *pickNode(bool &IsTopNode) = 0; /// Scheduler callback to notify that a new subtree is scheduled. virtual void scheduleTree(unsigned SubtreeID) {} /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an /// instruction and updated scheduled/remaining flags in the DAG nodes. virtual void schedNode(SUnit *SU, bool IsTopNode) = 0; /// When all predecessor dependencies have been resolved, free this node for /// top-down scheduling. virtual void releaseTopNode(SUnit *SU) = 0; /// When all successor dependencies have been resolved, free this node for /// bottom-up scheduling. virtual void releaseBottomNode(SUnit *SU) = 0; }; /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply /// schedules machine instructions according to the given MachineSchedStrategy /// without much extra book-keeping. This is the common functionality between /// PreRA and PostRA MachineScheduler. class ScheduleDAGMI : public ScheduleDAGInstrs { protected: AAResults *AA; LiveIntervals *LIS; std::unique_ptr SchedImpl; /// Ordered list of DAG postprocessing steps. std::vector> Mutations; /// The top of the unscheduled zone. MachineBasicBlock::iterator CurrentTop; /// The bottom of the unscheduled zone. MachineBasicBlock::iterator CurrentBottom; /// Record the next node in a scheduled cluster. const SUnit *NextClusterPred = nullptr; const SUnit *NextClusterSucc = nullptr; #if LLVM_ENABLE_ABI_BREAKING_CHECKS /// The number of instructions scheduled so far. Used to cut off the /// scheduler at the point determined by misched-cutoff. unsigned NumInstrsScheduled = 0; #endif public: ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr S, bool RemoveKillFlags) : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA), LIS(C->LIS), SchedImpl(std::move(S)) {} // Provide a vtable anchor ~ScheduleDAGMI() override; /// If this method returns true, handling of the scheduling regions /// themselves (in case of a scheduling boundary in MBB) will be done /// beginning with the topmost region of MBB. bool doMBBSchedRegionsTopDown() const override { return SchedImpl->doMBBSchedRegionsTopDown(); } // Returns LiveIntervals instance for use in DAG mutators and such. LiveIntervals *getLIS() const { return LIS; } /// Return true if this DAG supports VReg liveness and RegPressure. virtual bool hasVRegLiveness() const { return false; } /// Add a postprocessing step to the DAG builder. /// Mutations are applied in the order that they are added after normal DAG /// building and before MachineSchedStrategy initialization. /// /// ScheduleDAGMI takes ownership of the Mutation object. void addMutation(std::unique_ptr Mutation) { if (Mutation) Mutations.push_back(std::move(Mutation)); } MachineBasicBlock::iterator top() const { return CurrentTop; } MachineBasicBlock::iterator bottom() const { return CurrentBottom; } /// Implement the ScheduleDAGInstrs interface for handling the next scheduling /// region. This covers all instructions in a block, while schedule() may only /// cover a subset. void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override; /// Implement ScheduleDAGInstrs interface for scheduling a sequence of /// reorderable instructions. void schedule() override; void startBlock(MachineBasicBlock *bb) override; void finishBlock() override; /// Change the position of an instruction within the basic block and update /// live ranges and region boundary iterators. void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); const SUnit *getNextClusterPred() const { return NextClusterPred; } const SUnit *getNextClusterSucc() const { return NextClusterSucc; } void viewGraph(const Twine &Name, const Twine &Title) override; void viewGraph() override; protected: // Top-Level entry points for the schedule() driver... /// Apply each ScheduleDAGMutation step in order. This allows different /// instances of ScheduleDAGMI to perform custom DAG postprocessing. void postProcessDAG(); /// Release ExitSU predecessors and setup scheduler queues. void initQueues(ArrayRef TopRoots, ArrayRef BotRoots); /// Update scheduler DAG and queues after scheduling an instruction. void updateQueues(SUnit *SU, bool IsTopNode); /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues. void placeDebugValues(); /// dump the scheduled Sequence. void dumpSchedule() const; /// Print execution trace of the schedule top-down or bottom-up. void dumpScheduleTraceTopDown() const; void dumpScheduleTraceBottomUp() const; // Lesser helpers... bool checkSchedLimit(); void findRootsAndBiasEdges(SmallVectorImpl &TopRoots, SmallVectorImpl &BotRoots); void releaseSucc(SUnit *SU, SDep *SuccEdge); void releaseSuccessors(SUnit *SU); void releasePred(SUnit *SU, SDep *PredEdge); void releasePredecessors(SUnit *SU); }; /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules /// machine instructions while updating LiveIntervals and tracking regpressure. class ScheduleDAGMILive : public ScheduleDAGMI { protected: RegisterClassInfo *RegClassInfo; /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees /// will be empty. SchedDFSResult *DFSResult = nullptr; BitVector ScheduledTrees; MachineBasicBlock::iterator LiveRegionEnd; /// Maps vregs to the SUnits of their uses in the current scheduling region. VReg2SUnitMultiMap VRegUses; // Map each SU to its summary of pressure changes. This array is updated for // liveness during bottom-up scheduling. Top-down scheduling may proceed but // has no affect on the pressure diffs. PressureDiffs SUPressureDiffs; /// Register pressure in this region computed by initRegPressure. bool ShouldTrackPressure = false; bool ShouldTrackLaneMasks = false; IntervalPressure RegPressure; RegPressureTracker RPTracker; /// List of pressure sets that exceed the target's pressure limit before /// scheduling, listed in increasing set ID order. Each pressure set is paired /// with its max pressure in the currently scheduled regions. std::vector RegionCriticalPSets; /// The top of the unscheduled zone. IntervalPressure TopPressure; RegPressureTracker TopRPTracker; /// The bottom of the unscheduled zone. IntervalPressure BotPressure; RegPressureTracker BotRPTracker; public: ScheduleDAGMILive(MachineSchedContext *C, std::unique_ptr S) : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false), RegClassInfo(C->RegClassInfo), RPTracker(RegPressure), TopRPTracker(TopPressure), BotRPTracker(BotPressure) {} ~ScheduleDAGMILive() override; /// Return true if this DAG supports VReg liveness and RegPressure. bool hasVRegLiveness() const override { return true; } /// Return true if register pressure tracking is enabled. bool isTrackingPressure() const { return ShouldTrackPressure; } /// Get current register pressure for the top scheduled instructions. const IntervalPressure &getTopPressure() const { return TopPressure; } const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; } /// Get current register pressure for the bottom scheduled instructions. const IntervalPressure &getBotPressure() const { return BotPressure; } const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; } /// Get register pressure for the entire scheduling region before scheduling. const IntervalPressure &getRegPressure() const { return RegPressure; } const std::vector &getRegionCriticalPSets() const { return RegionCriticalPSets; } PressureDiff &getPressureDiff(const SUnit *SU) { return SUPressureDiffs[SU->NodeNum]; } const PressureDiff &getPressureDiff(const SUnit *SU) const { return SUPressureDiffs[SU->NodeNum]; } /// Compute a DFSResult after DAG building is complete, and before any /// queue comparisons. void computeDFSResult(); /// Return a non-null DFS result if the scheduling strategy initialized it. const SchedDFSResult *getDFSResult() const { return DFSResult; } BitVector &getScheduledTrees() { return ScheduledTrees; } /// Implement the ScheduleDAGInstrs interface for handling the next scheduling /// region. This covers all instructions in a block, while schedule() may only /// cover a subset. void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override; /// Implement ScheduleDAGInstrs interface for scheduling a sequence of /// reorderable instructions. void schedule() override; /// Compute the cyclic critical path through the DAG. unsigned computeCyclicCriticalPath(); void dump() const override; protected: // Top-Level entry points for the schedule() driver... /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking /// enabled. This sets up three trackers. RPTracker will cover the entire DAG /// region, TopTracker and BottomTracker will be initialized to the top and /// bottom of the DAG region without covereing any unscheduled instruction. void buildDAGWithRegPressure(); /// Release ExitSU predecessors and setup scheduler queues. Re-position /// the Top RP tracker in case the region beginning has changed. void initQueues(ArrayRef TopRoots, ArrayRef BotRoots); /// Move an instruction and update register pressure. void scheduleMI(SUnit *SU, bool IsTopNode); // Lesser helpers... void initRegPressure(); void updatePressureDiffs(ArrayRef LiveUses); void updateScheduledPressure(const SUnit *SU, const std::vector &NewMaxPressure); void collectVRegUses(SUnit &SU); }; //===----------------------------------------------------------------------===// /// /// Helpers for implementing custom MachineSchedStrategy classes. These take /// care of the book-keeping associated with list scheduling heuristics. /// //===----------------------------------------------------------------------===// /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in. /// /// This is a convenience class that may be used by implementations of /// MachineSchedStrategy. class ReadyQueue { unsigned ID; std::string Name; std::vector Queue; public: ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {} unsigned getID() const { return ID; } StringRef getName() const { return Name; } // SU is in this queue if it's NodeQueueID is a superset of this ID. bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); } bool empty() const { return Queue.empty(); } void clear() { Queue.clear(); } unsigned size() const { return Queue.size(); } using iterator = std::vector::iterator; iterator begin() { return Queue.begin(); } iterator end() { return Queue.end(); } ArrayRef elements() { return Queue; } iterator find(SUnit *SU) { return llvm::find(Queue, SU); } void push(SUnit *SU) { Queue.push_back(SU); SU->NodeQueueId |= ID; } iterator remove(iterator I) { (*I)->NodeQueueId &= ~ID; *I = Queue.back(); unsigned idx = I - Queue.begin(); Queue.pop_back(); return Queue.begin() + idx; } void dump() const; }; /// Summarize the unscheduled region. struct SchedRemainder { // Critical path through the DAG in expected latency. unsigned CriticalPath; unsigned CyclicCritPath; // Scaled count of micro-ops left to schedule. unsigned RemIssueCount; bool IsAcyclicLatencyLimited; // Unscheduled resources SmallVector RemainingCounts; SchedRemainder() { reset(); } void reset() { CriticalPath = 0; CyclicCritPath = 0; RemIssueCount = 0; IsAcyclicLatencyLimited = false; RemainingCounts.clear(); } void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; /// ResourceSegments are a collection of intervals closed on the /// left and opened on the right: /// /// list{ [a1, b1), [a2, b2), ..., [a_N, b_N) } /// /// The collection has the following properties: /// /// 1. The list is ordered: a_i < b_i and b_i < a_(i+1) /// /// 2. The intervals in the collection do not intersect each other. /// /// A \ref ResourceSegments instance represents the cycle /// reservation history of the instance of and individual resource. class ResourceSegments { public: /// Represents an interval of discrete integer values closed on /// the left and open on the right: [a, b). typedef std::pair IntervalTy; /// Adds an interval [a, b) to the collection of the instance. /// /// When adding [a, b[ to the collection, the operation merges the /// adjacent intervals. For example /// /// 0 1 2 3 4 5 6 7 8 9 10 /// [-----) [--) [--) /// + [--) /// = [-----------) [--) /// /// To be able to debug duplicate resource usage, the function has /// assertion that checks that no interval should be added if it /// overlaps any of the intervals in the collection. We can /// require this because by definition a \ref ResourceSegments is /// attached only to an individual resource instance. void add(IntervalTy A, const unsigned CutOff = 10); public: /// Checks whether intervals intersect. static bool intersects(IntervalTy A, IntervalTy B); /// These function return the interval used by a resource in bottom and top /// scheduling. /// /// Consider an instruction that uses resources X0, X1 and X2 as follows: /// /// X0 X1 X1 X2 +--------+------------+------+ /// |Resource|StartAtCycle|Cycles| /// +--------+------------+------+ /// | X0 | 0 | 1 | /// +--------+------------+------+ /// | X1 | 1 | 3 | /// +--------+------------+------+ /// | X2 | 3 | 4 | /// +--------+------------+------+ /// /// If we can schedule the instruction at cycle C, we need to /// compute the interval of the resource as follows: /// /// # TOP DOWN SCHEDULING /// /// Cycles scheduling flows to the _right_, in the same direction /// of time. /// /// C 1 2 3 4 5 ... /// ------|------|------|------|------|------|-----> /// X0 X1 X1 X2 ---> direction of time /// X0 [C, C+1) /// X1 [C+1, C+3) /// X2 [C+3, C+4) /// /// Therefore, the formula to compute the interval for a resource /// of an instruction that can be scheduled at cycle C in top-down /// scheduling is: /// /// [C+StartAtCycle, C+Cycles) /// /// /// # BOTTOM UP SCHEDULING /// /// Cycles scheduling flows to the _left_, in opposite direction /// of time. /// /// In bottom up scheduling, the scheduling happens in opposite /// direction to the execution of the cycles of the /// instruction. When the instruction is scheduled at cycle `C`, /// the resources are allocated in the past relative to `C`: /// /// 2 1 C -1 -2 -3 -4 -5 ... /// <-----|------|------|------|------|------|------|------|--- /// X0 X1 X1 X2 ---> direction of time /// X0 (C+1, C] /// X1 (C, C-2] /// X2 (C-2, C-3] /// /// Therefore, the formula to compute the interval for a resource /// of an instruction that can be scheduled at cycle C in bottom-up /// scheduling is: /// /// [C-Cycle+1, C-StartAtCycle+1) /// /// /// NOTE: In both cases, the number of cycles booked by a /// resources is the value (Cycle - StartAtCycles). static IntervalTy getResourceIntervalBottom(unsigned C, unsigned StartAtCycle, unsigned Cycle) { return std::make_pair((long)C - (long)Cycle + 1L, (long)C - (long)StartAtCycle + 1L); } static IntervalTy getResourceIntervalTop(unsigned C, unsigned StartAtCycle, unsigned Cycle) { return std::make_pair((long)C + (long)StartAtCycle, (long)C + (long)Cycle); } private: /// Finds the first cycle in which a resource can be allocated. /// /// The function uses the \param IntervalBuider [*] to build a /// resource interval [a, b[ out of the input parameters \param /// CurrCycle, \param StartAtCycle and \param Cycle. /// /// The function then loops through the intervals in the ResourceSegments /// and shifts the interval [a, b[ and the ReturnCycle to the /// right until there is no intersection between the intervals of /// the \ref ResourceSegments instance and the new shifted [a, b[. When /// this condition is met, the ReturnCycle (which /// correspond to the cycle in which the resource can be /// allocated) is returned. /// /// c = CurrCycle in input /// c 1 2 3 4 5 6 7 8 9 10 ... ---> (time /// flow) /// ResourceSegments... [---) [-------) [-----------) /// c [1 3[ -> StartAtCycle=1, Cycles=3 /// ++c [1 3) /// ++c [1 3) /// ++c [1 3) /// ++c [1 3) /// ++c [1 3) ---> returns c /// incremented by 5 (c+5) /// /// /// Notice that for bottom-up scheduling the diagram is slightly /// different because the current cycle c is always on the right /// of the interval [a, b) (see \ref /// `getResourceIntervalBottom`). This is because the cycle /// increments for bottom-up scheduling moved in the direction /// opposite to the direction of time: /// /// --------> direction of time. /// XXYZZZ (resource usage) /// --------> direction of top-down execution cycles. /// <-------- direction of bottom-up execution cycles. /// /// Even though bottom-up scheduling moves against the flow of /// time, the algorithm used to find the first free slot in between /// intervals is the same as for top-down scheduling. /// /// [*] See \ref `getResourceIntervalTop` and /// \ref `getResourceIntervalBottom` to see how such resource intervals /// are built. unsigned getFirstAvailableAt(unsigned CurrCycle, unsigned StartAtCycle, unsigned Cycle, std::function IntervalBuilder) const; public: /// getFirstAvailableAtFromBottom and getFirstAvailableAtFromTop /// should be merged in a single function in which a function that /// creates the `NewInterval` is passed as a parameter. unsigned getFirstAvailableAtFromBottom(unsigned CurrCycle, unsigned StartAtCycle, unsigned Cycle) const { return getFirstAvailableAt(CurrCycle, StartAtCycle, Cycle, getResourceIntervalBottom); } unsigned getFirstAvailableAtFromTop(unsigned CurrCycle, unsigned StartAtCycle, unsigned Cycle) const { return getFirstAvailableAt(CurrCycle, StartAtCycle, Cycle, getResourceIntervalTop); } private: std::list _Intervals; /// Merge all adjacent intervals in the collection. For all pairs /// of adjacient intervals, it performs [a, b) + [b, c) -> [a, c). /// /// Before performing the merge operation, the intervals are /// sorted with \ref sort_predicate. void sortAndMerge(); public: // constructor for empty set explicit ResourceSegments(){}; bool empty() const { return _Intervals.empty(); } explicit ResourceSegments(std::list Intervals) : _Intervals(Intervals) { sortAndMerge(); } friend bool operator==(const ResourceSegments &c1, const ResourceSegments &c2) { return c1._Intervals == c2._Intervals; } friend llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const ResourceSegments &Segments) { os << "{ "; for (auto p : Segments._Intervals) os << "[" << p.first << ", " << p.second << "), "; os << "}\n"; return os; } }; /// Each Scheduling boundary is associated with ready queues. It tracks the /// current cycle in the direction of movement, and maintains the state /// of "hazards" and other interlocks at the current cycle. class SchedBoundary { public: /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) enum { TopQID = 1, BotQID = 2, LogMaxQID = 2 }; ScheduleDAGMI *DAG = nullptr; const TargetSchedModel *SchedModel = nullptr; SchedRemainder *Rem = nullptr; ReadyQueue Available; ReadyQueue Pending; ScheduleHazardRecognizer *HazardRec = nullptr; private: /// True if the pending Q should be checked/updated before scheduling another /// instruction. bool CheckPending; /// Number of cycles it takes to issue the instructions scheduled in this /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. /// See getStalls(). unsigned CurrCycle; /// Micro-ops issued in the current cycle unsigned CurrMOps; /// MinReadyCycle - Cycle of the soonest available instruction. unsigned MinReadyCycle; // The expected latency of the critical path in this scheduled zone. unsigned ExpectedLatency; // The latency of dependence chains leading into this zone. // For each node scheduled bottom-up: DLat = max DLat, N.Depth. // For each cycle scheduled: DLat -= 1. unsigned DependentLatency; /// Count the scheduled (issued) micro-ops that can be retired by /// time=CurrCycle assuming the first scheduled instr is retired at time=0. unsigned RetiredMOps; // Count scheduled resources that have been executed. Resources are // considered executed if they become ready in the time that it takes to // saturate any resource including the one in question. Counts are scaled // for direct comparison with other resources. Counts can be compared with // MOps * getMicroOpFactor and Latency * getLatencyFactor. SmallVector ExecutedResCounts; /// Cache the max count for a single resource. unsigned MaxExecutedResCount; // Cache the critical resources ID in this scheduled zone. unsigned ZoneCritResIdx; // Is the scheduled region resource limited vs. latency limited. bool IsResourceLimited; public: private: /// Record how resources have been allocated across the cycles of /// the execution. std::map ReservedResourceSegments; std::vector ReservedCycles; /// For each PIdx, stores first index into ReservedResourceSegments that /// corresponds to it. /// /// For example, consider the following 3 resources (ResourceCount = /// 3): /// /// +------------+--------+ /// |ResourceName|NumUnits| /// +------------+--------+ /// | X | 2 | /// +------------+--------+ /// | Y | 3 | /// +------------+--------+ /// | Z | 1 | /// +------------+--------+ /// /// In this case, the total number of resource instances is 6. The /// vector \ref ReservedResourceSegments will have a slot for each instance. /// The vector \ref ReservedCyclesIndex will track at what index the first /// instance of the resource is found in the vector of \ref /// ReservedResourceSegments: /// /// Indexes of instances in /// ReservedResourceSegments /// /// 0 1 2 3 4 5 /// ReservedCyclesIndex[0] = 0; [X0, X1, /// ReservedCyclesIndex[1] = 2; Y0, Y1, Y2 /// ReservedCyclesIndex[2] = 5; Z SmallVector ReservedCyclesIndex; // For each PIdx, stores the resource group IDs of its subunits SmallVector ResourceGroupSubUnitMasks; #if LLVM_ENABLE_ABI_BREAKING_CHECKS // Remember the greatest possible stall as an upper bound on the number of // times we should retry the pending queue because of a hazard. unsigned MaxObservedStall; #endif public: /// Pending queues extend the ready queues with the same ID and the /// PendingFlag set. SchedBoundary(unsigned ID, const Twine &Name): Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") { reset(); } SchedBoundary &operator=(const SchedBoundary &other) = delete; SchedBoundary(const SchedBoundary &other) = delete; ~SchedBoundary(); void reset(); void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem); bool isTop() const { return Available.getID() == TopQID; } /// Number of cycles to issue the instructions scheduled in this zone. unsigned getCurrCycle() const { return CurrCycle; } /// Micro-ops issued in the current cycle unsigned getCurrMOps() const { return CurrMOps; } // The latency of dependence chains leading into this zone. unsigned getDependentLatency() const { return DependentLatency; } /// Get the number of latency cycles "covered" by the scheduled /// instructions. This is the larger of the critical path within the zone /// and the number of cycles required to issue the instructions. unsigned getScheduledLatency() const { return std::max(ExpectedLatency, CurrCycle); } unsigned getUnscheduledLatency(SUnit *SU) const { return isTop() ? SU->getHeight() : SU->getDepth(); } unsigned getResourceCount(unsigned ResIdx) const { return ExecutedResCounts[ResIdx]; } /// Get the scaled count of scheduled micro-ops and resources, including /// executed resources. unsigned getCriticalCount() const { if (!ZoneCritResIdx) return RetiredMOps * SchedModel->getMicroOpFactor(); return getResourceCount(ZoneCritResIdx); } /// Get a scaled count for the minimum execution time of the scheduled /// micro-ops that are ready to execute by getExecutedCount. Notice the /// feedback loop. unsigned getExecutedCount() const { return std::max(CurrCycle * SchedModel->getLatencyFactor(), MaxExecutedResCount); } unsigned getZoneCritResIdx() const { return ZoneCritResIdx; } // Is the scheduled region resource limited vs. latency limited. bool isResourceLimited() const { return IsResourceLimited; } /// Get the difference between the given SUnit's ready time and the current /// cycle. unsigned getLatencyStallCycles(SUnit *SU); unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, unsigned Cycles, unsigned StartAtCycle); std::pair getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, unsigned Cycles, unsigned StartAtCycle); bool isUnbufferedGroup(unsigned PIdx) const { return SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin && !SchedModel->getProcResource(PIdx)->BufferSize; } bool checkHazard(SUnit *SU); unsigned findMaxLatency(ArrayRef ReadySUs); unsigned getOtherResourceCount(unsigned &OtherCritIdx); /// Release SU to make it ready. If it's not in hazard, remove it from /// pending queue (if already in) and push into available queue. /// Otherwise, push the SU into pending queue. /// /// @param SU The unit to be released. /// @param ReadyCycle Until which cycle the unit is ready. /// @param InPQueue Whether SU is already in pending queue. /// @param Idx Position offset in pending queue (if in it). void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, unsigned Idx = 0); void bumpCycle(unsigned NextCycle); void incExecutedResources(unsigned PIdx, unsigned Count); unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, unsigned Cycles, unsigned ReadyCycle, unsigned StartAtCycle); void bumpNode(SUnit *SU); void releasePending(); void removeReady(SUnit *SU); /// Call this before applying any other heuristics to the Available queue. /// Updates the Available/Pending Q's if necessary and returns the single /// available instruction, or NULL if there are multiple candidates. SUnit *pickOnlyChoice(); /// Dump the state of the information that tracks resource usage. void dumpReservedCycles() const; void dumpScheduledState() const; }; /// Base class for GenericScheduler. This class maintains information about /// scheduling candidates based on TargetSchedModel making it easy to implement /// heuristics for either preRA or postRA scheduling. class GenericSchedulerBase : public MachineSchedStrategy { public: /// Represent the type of SchedCandidate found within a single queue. /// pickNodeBidirectional depends on these listed by decreasing priority. enum CandReason : uint8_t { NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; #ifndef NDEBUG static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); #endif /// Policy for scheduling the next instruction in the candidate's zone. struct CandPolicy { bool ReduceLatency = false; unsigned ReduceResIdx = 0; unsigned DemandResIdx = 0; CandPolicy() = default; bool operator==(const CandPolicy &RHS) const { return ReduceLatency == RHS.ReduceLatency && ReduceResIdx == RHS.ReduceResIdx && DemandResIdx == RHS.DemandResIdx; } bool operator!=(const CandPolicy &RHS) const { return !(*this == RHS); } }; /// Status of an instruction's critical resource consumption. struct SchedResourceDelta { // Count critical resources in the scheduled region required by SU. unsigned CritResources = 0; // Count critical resources from another region consumed by SU. unsigned DemandedResources = 0; SchedResourceDelta() = default; bool operator==(const SchedResourceDelta &RHS) const { return CritResources == RHS.CritResources && DemandedResources == RHS.DemandedResources; } bool operator!=(const SchedResourceDelta &RHS) const { return !operator==(RHS); } }; /// Store the state used by GenericScheduler heuristics, required for the /// lifetime of one invocation of pickNode(). struct SchedCandidate { CandPolicy Policy; // The best SUnit candidate. SUnit *SU; // The reason for this candidate. CandReason Reason; // Whether this candidate should be scheduled at top/bottom. bool AtTop; // Register pressure values for the best candidate. RegPressureDelta RPDelta; // Critical resource consumption of the best candidate. SchedResourceDelta ResDelta; SchedCandidate() { reset(CandPolicy()); } SchedCandidate(const CandPolicy &Policy) { reset(Policy); } void reset(const CandPolicy &NewPolicy) { Policy = NewPolicy; SU = nullptr; Reason = NoCand; AtTop = false; RPDelta = RegPressureDelta(); ResDelta = SchedResourceDelta(); } bool isValid() const { return SU; } // Copy the status of another candidate without changing policy. void setBest(SchedCandidate &Best) { assert(Best.Reason != NoCand && "uninitialized Sched candidate"); SU = Best.SU; Reason = Best.Reason; AtTop = Best.AtTop; RPDelta = Best.RPDelta; ResDelta = Best.ResDelta; } void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; protected: const MachineSchedContext *Context; const TargetSchedModel *SchedModel = nullptr; const TargetRegisterInfo *TRI = nullptr; SchedRemainder Rem; GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {} void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, SchedBoundary *OtherZone); #ifndef NDEBUG void traceCandidate(const SchedCandidate &Cand); #endif private: bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone, bool ComputeRemLatency, unsigned &RemLatency) const; }; // Utility functions used by heuristics in tryCandidate(). bool tryLess(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason); bool tryGreater(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason); bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, SchedBoundary &Zone); bool tryPressure(const PressureChange &TryP, const PressureChange &CandP, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason, const TargetRegisterInfo *TRI, const MachineFunction &MF); unsigned getWeakLeft(const SUnit *SU, bool isTop); int biasPhysReg(const SUnit *SU, bool isTop); /// GenericScheduler shrinks the unscheduled zone using heuristics to balance /// the schedule. class GenericScheduler : public GenericSchedulerBase { public: GenericScheduler(const MachineSchedContext *C): GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"), Bot(SchedBoundary::BotQID, "BotQ") {} void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override; void dumpPolicy() const override; bool shouldTrackPressure() const override { return RegionPolicy.ShouldTrackPressure; } bool shouldTrackLaneMasks() const override { return RegionPolicy.ShouldTrackLaneMasks; } void initialize(ScheduleDAGMI *dag) override; SUnit *pickNode(bool &IsTopNode) override; void schedNode(SUnit *SU, bool IsTopNode) override; void releaseTopNode(SUnit *SU) override { if (SU->isScheduled) return; Top.releaseNode(SU, SU->TopReadyCycle, false); TopCand.SU = nullptr; } void releaseBottomNode(SUnit *SU) override { if (SU->isScheduled) return; Bot.releaseNode(SU, SU->BotReadyCycle, false); BotCand.SU = nullptr; } void registerRoots() override; protected: ScheduleDAGMILive *DAG = nullptr; MachineSchedPolicy RegionPolicy; // State of the top and bottom scheduled instruction boundaries. SchedBoundary Top; SchedBoundary Bot; /// Candidate last picked from Top boundary. SchedCandidate TopCand; /// Candidate last picked from Bot boundary. SchedCandidate BotCand; void checkAcyclicLatency(); void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker); virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary *Zone) const; SUnit *pickNodeBidirectional(bool &IsTopNode); void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Candidate); void reschedulePhysReg(SUnit *SU, bool isTop); }; /// PostGenericScheduler - Interface to the scheduling algorithm used by /// ScheduleDAGMI. /// /// Callbacks from ScheduleDAGMI: /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... class PostGenericScheduler : public GenericSchedulerBase { protected: ScheduleDAGMI *DAG = nullptr; SchedBoundary Top; SmallVector BotRoots; public: PostGenericScheduler(const MachineSchedContext *C): GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} ~PostGenericScheduler() override = default; void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override { /* no configurable policy */ } /// PostRA scheduling does not track pressure. bool shouldTrackPressure() const override { return false; } void initialize(ScheduleDAGMI *Dag) override; void registerRoots() override; SUnit *pickNode(bool &IsTopNode) override; void scheduleTree(unsigned SubtreeID) override { llvm_unreachable("PostRA scheduler does not support subtree analysis."); } void schedNode(SUnit *SU, bool IsTopNode) override; void releaseTopNode(SUnit *SU) override { if (SU->isScheduled) return; Top.releaseNode(SU, SU->TopReadyCycle, false); } // Only called for roots. void releaseBottomNode(SUnit *SU) override { BotRoots.push_back(SU); } protected: virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); void pickNodeFromQueue(SchedCandidate &Cand); }; /// Create the standard converging machine scheduler. This will be used as the /// default scheduler if the target does not set a default. /// Adds default DAG mutations. ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C); /// Create a generic scheduler with no vreg liveness or DAG mutation passes. ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C); std::unique_ptr createLoadClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI); std::unique_ptr createStoreClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI); std::unique_ptr createCopyConstrainDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI); } // end namespace llvm #endif // LLVM_CODEGEN_MACHINESCHEDULER_H