#include "opencv2/video/tracking.hpp" #include "opencv2/highgui.hpp" #include "opencv2/core/cvdef.h" #include using namespace cv; static inline Point calcPoint(Point2f center, double R, double angle) { return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R; } static void help() { printf( "\nExample of c calls to OpenCV's Kalman filter.\n" " Tracking of rotating point.\n" " Point moves in a circle and is characterized by a 1D state.\n" " state_k+1 = state_k + speed + process_noise N(0, 1e-5)\n" " The speed is constant.\n" " Both state and measurements vectors are 1D (a point angle),\n" " Measurement is the real state + gaussian noise N(0, 1e-1).\n" " The real and the measured points are connected with red line segment,\n" " the real and the estimated points are connected with yellow line segment,\n" " the real and the corrected estimated points are connected with green line segment.\n" " (if Kalman filter works correctly,\n" " the yellow segment should be shorter than the red one and\n" " the green segment should be shorter than the yellow one)." "\n" " Pressing any key (except ESC) will reset the tracking.\n" " Pressing ESC will stop the program.\n" ); } int main(int, char**) { help(); Mat img(500, 500, CV_8UC3); KalmanFilter KF(2, 1, 0); Mat state(2, 1, CV_32F); /* (phi, delta_phi) */ Mat processNoise(2, 1, CV_32F); Mat measurement = Mat::zeros(1, 1, CV_32F); char code = (char)-1; for(;;) { img = Scalar::all(0); state.at(0) = 0.0f; state.at(1) = 2.f * (float)CV_PI / 6; KF.transitionMatrix = (Mat_(2, 2) << 1, 1, 0, 1); setIdentity(KF.measurementMatrix); setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); setIdentity(KF.errorCovPost, Scalar::all(1)); randn(KF.statePost, Scalar::all(0), Scalar::all(0.1)); for(;;) { Point2f center(img.cols*0.5f, img.rows*0.5f); float R = img.cols/3.f; double stateAngle = state.at(0); Point statePt = calcPoint(center, R, stateAngle); Mat prediction = KF.predict(); double predictAngle = prediction.at(0); Point predictPt = calcPoint(center, R, predictAngle); // generate measurement randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at(0))); measurement += KF.measurementMatrix*state; double measAngle = measurement.at(0); Point measPt = calcPoint(center, R, measAngle); // correct the state estimates based on measurements // updates statePost & errorCovPost KF.correct(measurement); double improvedAngle = KF.statePost.at(0); Point improvedPt = calcPoint(center, R, improvedAngle); // plot points img = img * 0.2; drawMarker(img, measPt, Scalar(0, 0, 255), cv::MARKER_SQUARE, 5, 2); drawMarker(img, predictPt, Scalar(0, 255, 255), cv::MARKER_SQUARE, 5, 2); drawMarker(img, improvedPt, Scalar(0, 255, 0), cv::MARKER_SQUARE, 5, 2); drawMarker(img, statePt, Scalar(255, 255, 255), cv::MARKER_STAR, 10, 1); // forecast one step Mat test = Mat(KF.transitionMatrix*KF.statePost); drawMarker(img, calcPoint(center, R, Mat(KF.transitionMatrix*KF.statePost).at(0)), Scalar(255, 255, 0), cv::MARKER_SQUARE, 12, 1); line( img, statePt, measPt, Scalar(0,0,255), 1, LINE_AA, 0 ); line( img, statePt, predictPt, Scalar(0,255,255), 1, LINE_AA, 0 ); line( img, statePt, improvedPt, Scalar(0,255,0), 1, LINE_AA, 0 ); randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at(0, 0)))); state = KF.transitionMatrix*state + processNoise; imshow( "Kalman", img ); code = (char)waitKey(1000); if( code > 0 ) break; } if( code == 27 || code == 'q' || code == 'Q' ) break; } return 0; }