#include #include #include #include using namespace std; using namespace cv; namespace { enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID }; void calcChessboardCorners(Size boardSize, float squareSize, vector& corners, Pattern patternType = CHESSBOARD) { corners.resize(0); switch (patternType) { case CHESSBOARD: case CIRCLES_GRID: for( int i = 0; i < boardSize.height; i++ ) for( int j = 0; j < boardSize.width; j++ ) corners.push_back(Point3f(float(j*squareSize), float(i*squareSize), 0)); break; case ASYMMETRIC_CIRCLES_GRID: for( int i = 0; i < boardSize.height; i++ ) for( int j = 0; j < boardSize.width; j++ ) corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0)); break; default: CV_Error(Error::StsBadArg, "Unknown pattern type\n"); } } Mat computeHomography(const Mat &R_1to2, const Mat &tvec_1to2, const double d_inv, const Mat &normal) { Mat homography = R_1to2 + d_inv * tvec_1to2*normal.t(); return homography; } void computeC2MC1(const Mat &R1, const Mat &tvec1, const Mat &R2, const Mat &tvec2, Mat &R_1to2, Mat &tvec_1to2) { //c2Mc1 = c2Mo * oMc1 = c2Mo * c1Mo.inv() R_1to2 = R2 * R1.t(); tvec_1to2 = R2 * (-R1.t()*tvec1) + tvec2; } void decomposeHomography(const string &img1Path, const string &img2Path, const Size &patternSize, const float squareSize, const string &intrinsicsPath) { Mat img1 = imread( samples::findFile( img1Path) ); Mat img2 = imread( samples::findFile( img2Path) ); vector corners1, corners2; bool found1 = findChessboardCorners(img1, patternSize, corners1); bool found2 = findChessboardCorners(img2, patternSize, corners2); if (!found1 || !found2) { cout << "Error, cannot find the chessboard corners in both images." << endl; return; } //! [compute-poses] vector objectPoints; calcChessboardCorners(patternSize, squareSize, objectPoints); FileStorage fs( samples::findFile( intrinsicsPath ), FileStorage::READ); Mat cameraMatrix, distCoeffs; fs["camera_matrix"] >> cameraMatrix; fs["distortion_coefficients"] >> distCoeffs; Mat rvec1, tvec1; solvePnP(objectPoints, corners1, cameraMatrix, distCoeffs, rvec1, tvec1); Mat rvec2, tvec2; solvePnP(objectPoints, corners2, cameraMatrix, distCoeffs, rvec2, tvec2); //! [compute-poses] //! [compute-camera-displacement] Mat R1, R2; Rodrigues(rvec1, R1); Rodrigues(rvec2, R2); Mat R_1to2, t_1to2; computeC2MC1(R1, tvec1, R2, tvec2, R_1to2, t_1to2); Mat rvec_1to2; Rodrigues(R_1to2, rvec_1to2); //! [compute-camera-displacement] //! [compute-plane-normal-at-camera-pose-1] Mat normal = (Mat_(3,1) << 0, 0, 1); Mat normal1 = R1*normal; //! [compute-plane-normal-at-camera-pose-1] //! [compute-plane-distance-to-the-camera-frame-1] Mat origin(3, 1, CV_64F, Scalar(0)); Mat origin1 = R1*origin + tvec1; double d_inv1 = 1.0 / normal1.dot(origin1); //! [compute-plane-distance-to-the-camera-frame-1] //! [compute-homography-from-camera-displacement] Mat homography_euclidean = computeHomography(R_1to2, t_1to2, d_inv1, normal1); Mat homography = cameraMatrix * homography_euclidean * cameraMatrix.inv(); homography /= homography.at(2,2); homography_euclidean /= homography_euclidean.at(2,2); //! [compute-homography-from-camera-displacement] //! [decompose-homography-from-camera-displacement] vector Rs_decomp, ts_decomp, normals_decomp; int solutions = decomposeHomographyMat(homography, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp); cout << "Decompose homography matrix computed from the camera displacement:" << endl << endl; for (int i = 0; i < solutions; i++) { double factor_d1 = 1.0 / d_inv1; Mat rvec_decomp; Rodrigues(Rs_decomp[i], rvec_decomp); cout << "Solution " << i << ":" << endl; cout << "rvec from homography decomposition: " << rvec_decomp.t() << endl; cout << "rvec from camera displacement: " << rvec_1to2.t() << endl; cout << "tvec from homography decomposition: " << ts_decomp[i].t() << " and scaled by d: " << factor_d1 * ts_decomp[i].t() << endl; cout << "tvec from camera displacement: " << t_1to2.t() << endl; cout << "plane normal from homography decomposition: " << normals_decomp[i].t() << endl; cout << "plane normal at camera 1 pose: " << normal1.t() << endl << endl; } //! [decompose-homography-from-camera-displacement] //! [estimate homography] Mat H = findHomography(corners1, corners2); //! [estimate homography] //! [decompose-homography-estimated-by-findHomography] solutions = decomposeHomographyMat(H, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp); cout << "Decompose homography matrix estimated by findHomography():" << endl << endl; for (int i = 0; i < solutions; i++) { double factor_d1 = 1.0 / d_inv1; Mat rvec_decomp; Rodrigues(Rs_decomp[i], rvec_decomp); cout << "Solution " << i << ":" << endl; cout << "rvec from homography decomposition: " << rvec_decomp.t() << endl; cout << "rvec from camera displacement: " << rvec_1to2.t() << endl; cout << "tvec from homography decomposition: " << ts_decomp[i].t() << " and scaled by d: " << factor_d1 * ts_decomp[i].t() << endl; cout << "tvec from camera displacement: " << t_1to2.t() << endl; cout << "plane normal from homography decomposition: " << normals_decomp[i].t() << endl; cout << "plane normal at camera 1 pose: " << normal1.t() << endl << endl; } //! [decompose-homography-estimated-by-findHomography] } const char* params = "{ help h | | print usage }" "{ image1 | left02.jpg | path to the source chessboard image }" "{ image2 | left01.jpg | path to the desired chessboard image }" "{ intrinsics | left_intrinsics.yml | path to camera intrinsics }" "{ width bw | 9 | chessboard width }" "{ height bh | 6 | chessboard height }" "{ square_size | 0.025 | chessboard square size }"; } int main(int argc, char *argv[]) { CommandLineParser parser(argc, argv, params); if ( parser.has("help") ) { parser.about( "Code for homography tutorial.\n" "Example 4: decompose the homography matrix.\n" ); parser.printMessage(); return 0; } Size patternSize(parser.get("width"), parser.get("height")); float squareSize = (float) parser.get("square_size"); decomposeHomography(parser.get("image1"), parser.get("image2"), patternSize, squareSize, parser.get("intrinsics")); return 0; }