/** * @file introduction_to_pca.cpp * @brief This program demonstrates how to use OpenCV PCA to extract the orientation of an object * @author OpenCV team */ #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include using namespace std; using namespace cv; // Function declarations void drawAxis(Mat&, Point, Point, Scalar, const float); double getOrientation(const vector &, Mat&); /** * @function drawAxis */ void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2) { //! [visualization1] double angle = atan2( (double) p.y - q.y, (double) p.x - q.x ); // angle in radians double hypotenuse = sqrt( (double) (p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x)); // Here we lengthen the arrow by a factor of scale q.x = (int) (p.x - scale * hypotenuse * cos(angle)); q.y = (int) (p.y - scale * hypotenuse * sin(angle)); line(img, p, q, colour, 1, LINE_AA); // create the arrow hooks p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); line(img, p, q, colour, 1, LINE_AA); p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); line(img, p, q, colour, 1, LINE_AA); //! [visualization1] } /** * @function getOrientation */ double getOrientation(const vector &pts, Mat &img) { //! [pca] //Construct a buffer used by the pca analysis int sz = static_cast(pts.size()); Mat data_pts = Mat(sz, 2, CV_64F); for (int i = 0; i < data_pts.rows; i++) { data_pts.at(i, 0) = pts[i].x; data_pts.at(i, 1) = pts[i].y; } //Perform PCA analysis PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW); //Store the center of the object Point cntr = Point(static_cast(pca_analysis.mean.at(0, 0)), static_cast(pca_analysis.mean.at(0, 1))); //Store the eigenvalues and eigenvectors vector eigen_vecs(2); vector eigen_val(2); for (int i = 0; i < 2; i++) { eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at(i, 0), pca_analysis.eigenvectors.at(i, 1)); eigen_val[i] = pca_analysis.eigenvalues.at(i); } //! [pca] //! [visualization] // Draw the principal components circle(img, cntr, 3, Scalar(255, 0, 255), 2); Point p1 = cntr + 0.02 * Point(static_cast(eigen_vecs[0].x * eigen_val[0]), static_cast(eigen_vecs[0].y * eigen_val[0])); Point p2 = cntr - 0.02 * Point(static_cast(eigen_vecs[1].x * eigen_val[1]), static_cast(eigen_vecs[1].y * eigen_val[1])); drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1); drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5); double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians //! [visualization] return angle; } /** * @function main */ int main(int argc, char** argv) { //! [pre-process] // Load image CommandLineParser parser(argc, argv, "{@input | pca_test1.jpg | input image}"); parser.about( "This program demonstrates how to use OpenCV PCA to extract the orientation of an object.\n" ); parser.printMessage(); Mat src = imread( samples::findFile( parser.get("@input") ) ); // Check if image is loaded successfully if(src.empty()) { cout << "Problem loading image!!!" << endl; return EXIT_FAILURE; } imshow("src", src); // Convert image to grayscale Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); // Convert image to binary Mat bw; threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU); //! [pre-process] //! [contours] // Find all the contours in the thresholded image vector > contours; findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE); for (size_t i = 0; i < contours.size(); i++) { // Calculate the area of each contour double area = contourArea(contours[i]); // Ignore contours that are too small or too large if (area < 1e2 || 1e5 < area) continue; // Draw each contour only for visualisation purposes drawContours(src, contours, static_cast(i), Scalar(0, 0, 255), 2); // Find the orientation of each shape getOrientation(contours[i], src); } //! [contours] imshow("output", src); waitKey(); return EXIT_SUCCESS; }