
WavPack 4 & 5 Binary File / Block Format

David Bryant
April 12, 2020

1.0 Introduction

A WavPack 4.0 or 5.0 file consists of a series of WavPack audio blocks. It may also contain tags and
other information, but these must be outside the blocks (either before, in-between, or after) and are
ignored for the purpose of unpacking audio data. The WavPack blocks are easy to identify by their
unique header data, and by looking in the header it is very easy to determine the total size of the block
(both in physical bytes and compressed samples) and the audio format stored. The first block
containing audio determines the format of the entire file. There are no specialized seek tables.

The blocks are completely independent in that they can be decoded to mono or stereo audio all by
themselves. The blocks may contain any number of samples (well, up to 131072), either stereo or
mono. Obviously, putting more samples in each block is more efficient because of reduced header
overhead, but they are reasonably efficient down to even a thousand samples. For version 5.0 the
default number of samples stored in a block has been reduced by half to improve seeking performance.
The max size is 1 MB for the whole block, but this is arbitrary (and blocks will generally be much
smaller). The blocks may be lossless or lossy. Currently the hybrid/lossy modes are basically CBR, but
the format can support quality-based VBR also.

For multichannel audio, the data is divided into some number of stereo and mono streams and
multiplexed into separate blocks which repeat in sequence. A flag in the header indicates whether the
block is the first or the last in the sequence (for simple mono or stereo files both of these would always
be set). The speaker assignments are in standard Microsoft order and the channel_mask is
transmitted in a separate piece of metadata. Channels that naturally belong together (i.e. left and right
pairs) are put into stereo blocks for more efficient encoding. So, for example, a standard 5.1 audio
stream would have a channel_mask of 0x3F and be organized into 4 blocks in sequence:

1. stereo block (front left + front right) (INITIAL_BLOCK)
2. mono block (front center)
3. mono block (low frequency effects)
4. stereo block (back left + back right) (FINAL_BLOCK)

Correction files (.wvc) have an identical structure to the main file (.wv) and there is a one-to-one
correspondence between main file blocks that contain audio and their correction file match (blocks that
do not contain audio do not exist in the correction file). The only difference in the headers of main
blocks and correction blocks is the size and the CRC value, although it is easy (if a little ugly) to tell
the blocks apart by looking at the metadata ids.

The format is designed with hardware decoding in mind, and so it is possible to decode regular stereo
(or mono) WavPack files without buffering an entire block, which allows the memory requirements to
be reduced to only a few kilobytes if desired. This is not true of multichannel files, and this also
restricts playback of high-resolution files to 24 bits of precision (although neither of these would be
associated with low-cost playback equipment).

2.0 Block Header

Here is the 32-byte little-endian header at the front of every WavPack block:

typedef struct {
 char ckID [4]; // "wvpk"
 uint32_t ckSize; // size of entire block (minus 8)
 uint16_t version; // 0x402 to 0x410 are valid for decode
 uchar block_index_u8; // upper 8 bits of 40-bit block_index
 uchar total_samples_u8; // upper 8 bits of 40-bit total_samples
 uint32_t total_samples; // lower 32 bits of total samples for
 // entire file, but this is only valid
 // if block_index == 0 and a value of -1
 // indicates an unknown length
 uint32_t block_index; // lower 32 bit index of the first sample
 // in the block relative to file start,
 // normally this is zero in first block
 uint32_t block_samples; // number of samples in this block, 0 =
 // non-audio block
 uint32_t flags; // various flags for id and decoding
 uint32_t crc; // crc for actual decoded data
} WavpackHeader;

Note that in this context the meaning of "samples" refers to a complete sample for all channels
(sometimes called a "frame"). Therefore, in a stereo or multichannel file the actual number of numeric
samples is this value multiplied by the number of channels. For version 5.0, this was extended from 32
bits to 40 bits with the upper 8 bits placed in previously unused bytes in the header. Note that the 40-bit
total_samples reserves values with the lower 32 bits all set to represent an unknown length, so
loading and storing this is a little tricky (see src/wavpack_local.h for macros to do this).

Normally, the first block of a WavPack file that contains audio data (blocks may contain only metadata,
especially at the beginning and end of a file) would have block_index == 0 and total_samples
would be equal to the total number of samples in the file. However, there are exceptions to this rule.
For example, a file may be created such that its total length is unknown (i.e. with pipes) and in this case
the lower 32 bits of total_samples are 1. For these files, the WavPack decoder will attempt to seek
to the end of the file to determine the actual length, and if this fails then the length is simply unknown.

Another case is where a WavPack file is created by cutting a portion out of a longer WavPack file (or
from a WavPack stream). Since this file would start with a block that didn't have block_index == 0,
the length would be unknown until a seek to end was performed.

It is also possible to have streamed WavPack data. In this case both the block_index and
total_samples fields are ignored for every block and the decoder simply decodes every block
encountered indefinitely.

Note that the first block that contains audio samples in a WavPack file determines the format of the
entire file (i.e., the format may not change arbitrarily). This refers to sample bit depth and format (i.e.,
integer/float), sample rate, and channel count and layout. However, other characteristics that are
transparent to the library client may change (e.g., lossless vs hybrid, hybrid bitrate, and speed modes).

The flags field contains information for decoding the block along with some general information
including sample size and format, hybrid/lossless, mono/stereo and sampling rate (if one of 15 standard
rates). Here are the (little-endian) bit assignments:

 bits 1,0: // 00 = 1 byte / sample (1-8 bits / sample)
 // 01 = 2 bytes / sample (9-16 bits / sample)
 // 10 = 3 bytes / sample (15-24 bits / sample)
 // 11 = 4 bytes / sample (25-32 bits / sample)
 bit 2: // 0 = stereo output; 1 = mono output
 bit 3: // 0 = lossless mode; 1 = hybrid mode
 bit 4: // 0 = true stereo; 1 = joint stereo (mid/side)
 bit 5: // 0 = independent channels; 1 = cross-channel decorrelation
 bit 6: // 0 = flat noise spectrum in hybrid; 1 = hybrid noise shaping
 bit 7: // 0 = integer data; 1 = floating point data
 bit 8: // 1 = extended size integers (> 24-bit) or shifted integers
 bit 9: // 0 = hybrid mode parameters control noise level (not used yet)
 // 1 = hybrid mode parameters control bitrate
 bit 10: // 1 = hybrid noise balanced between channels
 bit 11: // 1 = initial block in sequence (for multichannel)
 bit 12: // 1 = final block in sequence (for multichannel)
 bits 17-13: // amount of data left-shift after decode (0-31 places)
 bits 22-18: // maximum magnitude of decoded data
 // (number of bits integers require minus 1)
 bits 26-23: // sampling rate (1111 = unknown/custom)
 bit 27: // reserved (but decoders should ignore if set)
 bit 28: // block contains checksum in last 2 or 4 bytes (ver 5.0+)
 bit 29: // 1 = use IIR for negative hybrid noise shaping
 bit 30: // 1 = false stereo (data is mono but output is stereo)
 bit 31: // 0 = PCM audio; 1 = DSD audio (ver 5.0+)

3.0 Metadata Sub-Blocks

Following the 32-byte header to the end of the block are a series of "metadata" sub-blocks. These may
be from 2 bytes long to the size of the entire block and are extremely easy to parse (even without
knowing what they mean). These mostly contain extra information needed to decode the audio, but
may also contain user information that is not required for decoding and that could be used in the future
without breaking existing decoders. The final sub-block is usually the compressed audio bitstream
itself, although this is not a strict rule. For version 5.0 a checksum block of 4 or 6 bytes (total) was
added beyond that, although again this would be ignored by previous decoders.

The format of the metadata is:

 uchar id; // mask meaning
 // ---- -------
 // 0x3f unique metadata function id
 // 0x20 decoder needn't understand metadata
 // 0x40 actual data byte length is 1 less
 // 0x80 large block (> 255 words)

 uchar ws; // if small block: data size in words
 ...or...
 uchar ws [3]; // if large block: data size in words (le)

 uint16_t data [ws]; // data, padded to an even number of bytes

The data portions are either “small” (<= 510 bytes) or “large” (can be very large). It is also possible to
have no data at all in the sub-block (small, ws = 0), in which case the sub-block would occupy only 2
bytes but could still signal something by its presence. Because of the design of the sub-block, its total
length will always be even and will always be aligned on an even address (even though its actual data
length will be odd if the 0x40 mask is set in the id). The currently assigned metadata ids are:

 ID_DUMMY 0x0 // could be used to pad WavPack blocks
 ID_DECORR_TERMS 0x2 // decorrelation terms & deltas (fixed)
 ID_DECORR_WEIGHTS 0x3 // initial decorrelation weights
 ID_DECORR_SAMPLES 0x4 // decorrelation sample history
 ID_ENTROPY_VARS 0x5 // initial entropy variables
 ID_HYBRID_PROFILE 0x6 // entropy variables specific to hybrid mode
 ID_SHAPING_WEIGHTS 0x7 // info needed for hybrid lossless (wvc) mode
 ID_FLOAT_INFO 0x8 // specific info for floating point decode
 ID_INT32_INFO 0x9 // specific info for decoding integers > 24
 // bits, or data requiring shift after decode
 ID_WV_BITSTREAM 0xa // normal compressed audio bitstream (wv file)
 ID_WVC_BITSTREAM 0xb // correction file bitstream (wvc file)
 ID_WVX_BITSTREAM 0xc // special extended bitstream for floating
 // point data or integers > 24 bit (can be
 // in either wv or wvc file, depending...)
 ID_CHANNEL_INFO 0xd // contains channel count and channel_mask
 ID_DSD_BLOCK 0xe // contains compressed DSD audio (ver 5.0+)

 // ids from here are “optional” so decoders should skip them if they don't understand them

 ID_RIFF_HEADER 0x21 // RIFF header for .wav files (before audio)
 ID_RIFF_TRAILER 0x22 // RIFF trailer for .wav files (after audio)
 ID_CONFIG_BLOCK 0x25 // some encoding details for info purposes
 ID_MD5_CHECKSUM 0x26 // 16-byte MD5 sum of raw audio data
 ID_SAMPLE_RATE 0x27 // non-standard sampling rate info

 // added with version 5.0 to handle non-wav files and block checksums:

 ID_ALT_HEADER 0x23 // header for non-wav files (ver 5.0+)
 ID_ALT_TRAILER 0x24 // trailer for non-wav files (ver 5.0+)
 ID_ALT_EXTENSION 0x28 // target filename extension
 ID_ALT_MD5_CHECKSUM 0x29 // 16-byte MD5 sum of raw audio data with non-
 // wav standard (e.g., big-endian)
 ID_NEW_CONFIG_BLOCK 0x2a // new file configuration stuff including file
 // type, non-wav formats (e.g., big endian),
 // and CAF channel layouts and reordering
 ID_CHANNEL_IDENTITIES 0x2b // identities of non-MS channels
 ID_BLOCK_CHECKSUM 0x2f // 2- or 4-byte checksum of entire block

Note: unlisted ids are reserved.

The RIFF header and trailer are optional for most playback purposes, however older decoders (< 4.40)
will not decode to .wav files unless at least the ID_RIFF_HEADER is present.

4.0 METADATA TAGS

These tags are not to be confused with the metadata sub-blocks described above but are specialized tags
for storing user data on many formats of audio files. The tags recommended for use with WavPack files
(and the ones that the WavPack supplied plugins and programs will work with) are ID3v1 and APEv2.
The ID3v1 tags are somewhat primitive and limited, but are supported for legacy purposes. The more
recommended tagging format is APEv2 because of its rich functionality and broad software support (it
is also used on Monkey's Audio and Musepack files). Both the APEv2 tags and/or ID3v1 tags must
come at the end of the WavPack file, with the ID3v1 coming last if both are present.

For the APEv2 tags, the following field names are officially supported and recommended by WavPack
(although there are no restrictions on what field names may be used):

 Artist
 Title
 Album
 Track
 Year
 Genre
 Comment
 Cuesheet (note: may include replay gain info as remarks)
 Encoder (note: can be automatically generated in ver 5.0+)
 Settings (note: can be automatically generated in ver 5.0+)
 Replaygain_Track_Gain
 Replaygain_Track_Peak
 Replaygain_Album_Gain
 Replaygain_Album_Peak
 Cover Art (Front)
 Cover Art (Back)
 Log

