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Abstract

This paper describes a novel interleaved, parallelizeable word-by-word
CRC computation algorithm which computes N -bit CRC (N ≤ 64) on
modern Intel and AMD processors in 1.2 CPU cycles per byte, improv-
ing state of the art over word-by-word 32-bit and 64-bit CRCs (2.1 CPU
cycles/byte) and classic byte-by-byte CRC computation (6-7 CPU cy-
cles/byte). It computes 128-bit CRC in 1.7 CPU cycles/byte.

CRC implementations are heavily optimized and hard to understand.
This paper describes CRC algorithms as they evolved over time, splitting
complex optimizations into a sequence of natural improvements.

This paper also presents a collection of CRC “tricks” that we found
handy on many occassions.
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1 Definition of CRC

Cyclic Redundancy Check (CRC) is a well-known technique that allows the
recipient of a message transmitted over a noisy channel to detect whether the
message has been corrupted.

A message M = m0 . . .mN−1 comprised of N = |M | bits (mk ∈ {0, 1}) may
be viewed either as a numeric value

M =

N−1∑
k=0

mk2N−1−k

or as a polynomial of a single variable of degree (N − 1)

M(x) =

N−1∑
k=0

mkx
N−1−k

where mk ∈ GF (2) = {0, 1} and all arithmetic operations on coefficients are
performed modulo 2. For example,

Addition: (x3 + x2 + x + 1) + (x2 + x + 1) = x3 + 2x2 + 2x + 2 = x3,

Subtraction: (x3 + x + 1)− (x2 + x) = x3 − x2 + 1 = x3 + x2 + 1,

Multiplication: (x + 1)(x + 1) = x2 + 2x + 1 = x2 + 1.

For a given polynomial P (x) of degree D = deg
(
P (x)

)
, CRCu

(
M(x), v(x)

)
is the reminder from division of

(
M(x) · xD

)
by P (x). In practice, a more
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complex formula is used:

CRCu

(
M(x), v(x)

)
=
((

v(x)− u(x)
)
· x|M | + M(x) · xD + u(x)

)
mod P (x),

(1)

where polynomial P (x) of degree D and polynomial u(x) of degree less than D
are fixed.

The use of the non-zero value of u(x) guarantees that the CRC of a sequence
of zeroes is different from zero. That allows detection of insertion of zeroes in
the beginning of a message and replacement of both content of the message and
its CRC value with zeroes. Typically,

u(x) =
D−1∑
k=0

xk. (2)

The use of auxilary parameter v(x) allows incremental CRC computation as
shown in section 3.1.

2 Related work

Cyclic Redundancy Checks (CRCs) were proposed by Peterson and Brown
[PB61] in 1961. An efficient table-driven software implementation which reads
and processes data byte by byte was described by Hill [Hil79] in 1979, Perez
[Per83] in 1983. The “classic” byte-by-byte CRC algorithm described in section
4.6 was published by Sarwate [Sar88] in 1988.

In 1993, Black [Bla93] published a method that reads data by words (de-
scribed in section 4.8); however, it still computes the CRC byte by byte in strong
sequential order.

In 2001, Braun and Waldvogel [BW01] briefly outlined a specialized vari-
ant of a CRC that could read input data by words and process them byte by
byte – but, thanks to the use of multiple tables, different bytes from the input
word could be processed in parallel. In 2002, Ji and Killian [JK02] provided de-
tailed description and analysis of a nearly identical scheme. Both solutions were
targeted for hardware implementation. In 2005, Kouvanis and Berry [KB05]
demonstrated clear performance benefits of this scheme even when it is im-
plemented in software. A generalized version of this approach is described in
section 4.9.

Surprisingly, until [GGO+10] we have not seen prior art describing or utiliz-
ing a method of computing a CRC by processing in parallel (in an interleaved
manner to utilize multiple ALUs) multiple input streams belonging to non-
overlapping sections of input data, desribed in section 4.10.

A novel method of CRC computation that processes in parallel multiple
words belonging to overlapping sections of input data is described in section
4.11. A special case restricted to the use of 64-bit tables, 64-bit reads, and 32
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or 64-bit generating polynomials was implemented by the authors in February-
March 2007 and was used by a couple of Microsoft products. In 2009, the
algorithm was generalized and these limitations were removed.

The fact that the CRC of a message followed by its CRC is a constant value
which does not depend on the message, described in section 3.5, is well known
and has been widely used in the telecommunication industry for long time.

A method of storing a carefully chosen sequence of bits after a message so
that the CRC of a message and the sequence of bits appended to the mes-
sage produces predefined result, described in 3.5, was implemented in 1990 by
Zemtsov [Zem90].

A method for recomputing a known CRC using a new initial CRC value,
described in section 3.2, and the method of computing a CRC of the concatena-
tion of messages having known CRC values without touching the actual data,
described in section 3.3, were implemented by one of the authors in 2005 but
were not published.

3 CRC tricks and tips

3.1 Incremental CRC computation

The use of an arbitrary initial CRC value v(x) allows computation of a CRC
incrementally. If a message M(x) = M1(x) · x|M2| + M2(x) is a concatenation
of messages M1 and M2, its CRC may be computed piece by piece because

CRCu

(
M(x), v(x)

)
= CRCu

(
M2(x),CRCu

(
M1(x), v(x)

))
. (3)

Indeed,

CRCu(M,v) =
(
(v − u)x|M | + MxD + u

)
mod P =

=
(
(v − u)x|M1|+|M2| + (M1x

|M2| + M2)xD + u
)

mod P =

=
((

(v − u)x|M1| + M1x
D
)
x|M2| + M2x

D + u
)

mod P =

=
(
CRCu(M1, v)x|M2| + M2x

D + u
)

mod P =

= CRCu

(
M2,CRCu(M1, v)

)
3.2 Changing initial CRC value

If CRCu

(
M(x), v(x)

)
for some initial value v(x) is known, it is possible to

compute CRCu

(
M(x), v′(x)

)
for different initial value v′(x) without touching

the value of M(x):

CRCu(M,v′) = CRCu(M, v) +
(

(v′ − v)x|M |
)

mod P. (4)
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Proof:

CRCu(M, v′) =
(
(v′ − u)x|M | + MxD + u

)
mod P =

=
((

(v′ − u) + (v − v)
)
x|M | + MxD + u

)
mod P =

=
((

(v − u) + (v′ − v)
)
x|M | + MxD + u

)
mod P =

=
((

(v − u)x|M | + MxD + u
)

+ (v′ − v)x|M |
)

mod P =

= CRCu(M,v) +
(

(v′ − v)x|M | mod P
)
.

3.3 Concatenation of CRCs

If a message M(x) = M1(x) · x|M2| + M2(x) is a concatenation of messages
M1 and M2, and CRCs of M1, M2 (computed with some initial values v1(x),
v2(x) respectively) are known, CRCu

(
M(x), v(x)

)
may be computed without

touching contents of the message M :

1. Using formula (4), the value of v′1 = CRCu(M1, v) may be computed from
the known CRCu(M1, v1) without touching the contents of M1.

2. Then, v′2 = CRCu(M2, v
′
1) may be computed from known CRCu(M2, v2)

without touching the contents of M2.

According to (3), CRCu(M,v) = v′2.

3.4 In-place modification of CRC-ed message

Sometimes it is necessary to replace a part of message M(x) in-place and re-
compute CRC of modified message M(x) efficiently.

If a message M = ABC is a concatenation of messages A, B, and C, and
B′(x) is new message of the same length as B(x), CRCu(M ′) of message M ′ =
AB′C may be computed from known CRCu(M). Indeed,

M(x) = A(x) · x|B|+|C| + B(x) · x|C| + C(x),

M ′(x) = A(x) · x|B|+|C| + B′(x) · x|C| + C(x) =

= M(x) +
(
B′(x)−B(x)

)
· x|C|,

therefore

CRCu

(
M ′(x), v(x)

)
=

= CRCu

(
M(x) +

(
B′(x)−B(x)

)
· x|C|

)
=

=
((

v(x)− u(x)
)
x|M | + M(x)xD +

(
B′(x)−B(x)

)
x|C|+D + u(x)

)
mod P (x)

=
(

CRCu

(
M(x), v(x)

)
+
(
B′(x)−B(x)

)
x|C|+D

)
mod P (x) =

= CRCu

(
M(x), v(x)

)
+
((

B′(x)−B(x)
)
x|C|+D mod P (x)

)
.

5



It is easy to see that

CRCu

(
B′(x), v(x)

)
− CRCu

(
B(x), v(x)

)
=

=
(
B′(x)−B(x)

)
xD mod P (x),

so

CRCu

(
M ′(x), v(x)

)
= CRCu

(
M(x), v(x)

)
+ ∆

where

∆ =
(

CRCu

(
B′(x), v(x)

)
− CRCu

(
B(x), v(x)

))
x|C| mod P (x).

3.5 Storing CRC value after the message

Often Q(x) = CRCu

(
M(x), v(x)

)
is padded with zero bits until the nearest

byte or word boundary and is transmitted as a sequence of W bits (W ≥ D)
right after the message M(x). This way, the transmitted message T (x) is the
concatenation of M(x) and Q(x) followed by (W −D) zeroes, and is equal to

T (x) = M(x) · xW + Q(x) · xW−D.

According to (1), (3) and taking into account that Q(x) + Q(x) = 0 since
polynomial coefficient are from GF (2), CRCu

(
T (x), v(x)

)
is a constant value

which does not depend on the contents of the message and is equal to

CRCu

(
T (x), v(x)

)
=

= CRCu

(
Q(x) · xW−D, CRC

(
M(x), v(x)

))
=

= CRCu

(
Q(x) · xW−D, Q(x)

)
=

=
((

Q(x)− u(x)
)
· xW + Q(x) · xW−D · xD + u(x)

)
mod P (x) =

=
(
u(x)

(
1− xW

))
mod P (x).

A more generic solution is to store a W -bit long value after the message
such that the CRC of the transmitted message is equal to a predefined value
R(x) (typically R(x) = 0). The D-bit value followed by (W −D) zero bits that
should be stored after M(x) is

q̂
(
Q(x)

)
=
((

R(x)− u(x)
)
x−W −

(
Q(x)− u(x)

))
mod P (x)

where x−W is the multiplicative inverse of xW mod P (x) which exists if P (x)
is not divisble by x and may be found by the extended Euclidean algorithm
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[Has01]:

CRCu

(
q̂
(
Q(x)

)
xW−D, CRC

(
M(x), v(x)

))
=

= CRCu

(
q̂
(
Q(x)

)
xW−D, Q(x)

)
=

=
((

Q(x)− u(x)
)
· xW + q̂

(
Q(x)

)
· xW−D · xD + u(x)

)
mod P (x) =

= R(x).

4 Efficient software implementation

4.1 Mapping bitstreams to hardware registers

For little-endian machines (assumed from now on), the result of loading of a
D-bit word from memory into hardware register matches the expectations: the
0-th bit of the 0-th byte becomes the 0-th (least significant) bit of the word
corresponding to x(D−1).

For example, the 32-bit sequence of 4 bytes 0x01, 0x02, 0x03, 0x04 (0x04030201
when loaded into a 32-bit hardware register) corresponds to the polynomial(

x31 + x22 + x15 + x14 + x5
)
.

Addition and subtraction of polymonials with coefficients from GF (2) is the
bitwise XOR of their coefficients. Multiplication of a polynomial by x is achieved
by logical right shift of register contents by 1 bit. If a shift operation causes a
carryover, the resulting polynomial has degree D.

Polynomials of degree less than D whose coefficients are recorded using ex-
actly D bits irrespective of actual degree of the polynomial will be called D-
normalized.

Whenever possible – and unless mentioned explicitly – all polynomials will
be represented in D-normalized form.

Since the generating polynomial P (x) is of degree D and has (D + 1) co-
efficients, it does not fit into the D-bit register. However, its most significant
coefficient is guaranteed to be 1 and may be implied implicitly.

4.2 Multiplication of D-normalized polynomials

Multiplication of two D-normalized polynomials may be accomplished by tradi-
tional bit-by-bit, shift-and-add multiplication. This is adequate if performance
is not a concern. Sample code is given in listing 1.

4.3 Multiplication of unnormalized polynomial

During initialization of CRC tables it may be necessary to multiply d-normalized
polynomial v(x) of a degree d 6= D by a D-normalized polynomial. It may be
accomplished by representing the operand as a sum of weighted polynomials of
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1 // ”a” and ”b” occupy D l e a s t s i g n i f i c a n t b i t s .
2 Crc Mult ip ly (Crc a , Crc b) {
3 Crc product = 0 ;
4 Crc bPowX[D] ; // bPowX[ k ] = (b ∗ x∗∗k ) mod P
5 bPowX [ 0 ] = b ;
6 f o r ( i n t k = 0 ; k < D; ++k) {
7 // I f ”a” has non−zero c o e f f i c i e n t at x∗∗k ,
8 // add ( ( b ∗ x∗∗k ) mod P) to the r e s u l t .
9 i f ( ( ( a & (1 << (D−k ) ) != 0) product ˆ= bPowX[ k ] ;

10
11 // Compute bPowX[ k+1] = (b ∗∗ x∗∗( k+1) ) mod P.
12 i f (bPowX[ k ] & 1) {
13 // I f degree o f (bPowX[ k ] ∗ x ) i s D, then
14 // degree o f (bPowX[ k ] ∗ x − P) i s l e s s than D.
15 bPowX[ k+1] = (bPowX[ k ] >> 1) ˆ P;
16 } e l s e {
17 bPowX[ k+1] = bPowX[ k ] >> 1 ;
18 }
19 }
20 re turn product ;
21 }

Listing 1: Multiplication of normalized polynomials

degree of no more than (D− 1), then calling Multiply() function repeatedly as
shown in listing 2.

4.4 Computing powers of x

Often (see sections 3.2, 3.3, 3.5) it is necessary to compute xN mod P (x) for
very large values of N . This may be accomplished in O

(
log(N)

)
time.

Consider the binary representation of N :

N =

K∑
k=0

nk2k

where nk ∈ {0, 1}. Then

xN = x
∑

nk2
k

=

K∏
k=0

xnk2
k

=
∏

nk!=0

x2k (5)

and may be computed using no more than (blog2(N)c+ 1) multiplications of
polynomials of degree less than D provided known values of

Pow2k(k) = x2k mod P (x). (6)

Values of Pow2k(k) may be computed iteratively using one multiplication
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1 // ”v” occup i e s ”d” l e a s t s i g n f i c a n t b i t s .
2 // ”m” occup i e s D l e a s t s i g n i f i c a n t b i t s .
3 Crc MultiplyUnnormalized (Crc v , i n t d , Crc m) {
4 Crc r e s u l t = 0 ;
5 whi l e (d > D) {
6 Crc temp = v & ((1 << D) − 1) ;
7 v >>= D;
8 d −= D;
9 // XpowN re tu rn s ( x∗∗N mod P(x ) ) .

10 r e s u l t ˆ= Mult ip ly ( temp , Mult ip ly (m, XpowN(d) ) ) ;
11 }
12 r e s u l t ˆ= Mult ip ly (v << (D − d) , m) ;
13 re turn r e s u l t ;
14 }

Listing 2: Multiplication of unnormalized polynomial

modP (x) per iteration:

Pow2k(0) = 0,

Pow2k(k + 1) = x2k+1

mod P (x) =

= x2·2k mod P (x) =

=
(
x2k
)2

mod P (x) =

=
(
Pow2k(k − 1)

)2
mod P (x).

4.5 Simplified CRC

It is sufficient to be able to compute

CRC0

(
M(x), v(x)

)
=
(
v(x) · x|M | + M(x) · xD

)
mod P (x), (7)

since

CRCu

(
M(x), v(x)

)
= CRC0

(
M(x), v(x)− u(x)

)
+ u(x),

CRCu

(
M(x), v(x)

)
of message M = M1 . . .MK may be computed incrementally

using CRC0 instead of CRCu:

v0(x) = v(x)− u(x),

vk(x) = CRC0

(
Mk(x), vk−1(x)

)
,

CRCu(M(x), v(x)) = vK + u(x).

4.6 Computing a CRC byte by byte

If M(x) is W -bit value (typically, W = 8) and deg
(
v(x)

)
< D, by definition (7)

CRC0

(
M(x), v(x)

)
=
(
v(x) · xW + M(x) · xD

)
mod P (x).
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When D ≤W ,

CRC0

(
M(x), v(x)

)
=
(
v(x) · xW + M(x) · xD

)
mod P (x) =

=
((

v(x) · xW−D + M(x)
)
· xD

)
mod P (x), (8)

which may be obtained via single lookup into precomputed table T of size 2W

such that T [i] =
(
i(x) · xD)

)
mod P (x) since deg

(
v(x) · xW−D + M(x)

)
< W .

D-normalized representation of v(x) occupies D least significant bits and is
equal to

(
v(x) · xW−D) when viewed as W -normalized representation which is

required to form W -bit index into a table of 2W entries. Therefore, explicit
multiplication of v(x) by xW−D in formula (8) is not required.

When D ≥W , v(x) may be represented as

v(x) = vL(x) + vH(x) · xD−W

where

vH(x) =

⌊
v(x)

xD−W

⌋
, deg

(
vH(x)

)
< W,

vL(x) = v(x) mod xD−W , deg
(
vL(x)

)
< D −W.

Since deg
(
vL(x)·xW

)
< D,

(
vL(x)·xW

)
mod P (x) = vL(x)·xW . Therefore,

CRC0

(
M(x), v(x)

)
=

=
(
v(x) · xW + M(x) · xD

)
mod P (x) =

=
((

vL(x) + vH(x) · xD−W ) · xW + M(x) · xD
)

mod P (x) =

=
(
vL(x) · xW +

(
vH(x) + M(x)

)
· xD

)
mod P (x) =

=
(
vL(x) · xW +

(
vH(x) + M(x)

)
· xD

)
mod P (x) =

=
(
vL(x) · xW

)
mod P (x) +

((
vH(x) + M(x)

)
· xD

)
mod P (x) =

=
(
vL(x) · xW

)
+ MulByXpowD

(
vH(x) + M(x)

)
, (9)

where

MulByXpowD
(
a(x)

)
=
(
a(x) · xD

)
mod P (x). (10)

The value of
(
vL(x) · xW

)
may be computed by shifting v(x) by W bits and

discarding W carry-over zero bits.
Since deg

(
vH(x) +M(x)

)
< W , the value of MulByXpowD

(
vH(x) +M(x)

)
may be obtained using precomputed table containing 2W entries.

The classic table-driven, byte-by-byte CRC computation [Per83, Sar88] im-
plementing formulas (1), (3), (8), (9), and (10) for W = 8 is given in listing
3.
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1 Crc CrcByte ( Byte value ) {
2 re turn MulByXpowD[ value ] ;
3 }
4 Crc CrcByteByByte ( Byte ∗data , i n t n , Crc v , Crc u) {
5 Crc c r c = v ˆ u ;
6 f o r ( i n t i = 0 ; i < n ; ++i ) {
7 Crc ByteCrc = CrcByte ( c r c ˆ data [ i ] ) ;
8 c r c >>= 8 ;
9 c rc ˆ= ByteCrc ;

10 }
11 re turn ( c r c ˆ u) ;
12 }
13 void In i tByteTable ( ) {
14 f o r ( i n t i = 0 ; i < 256 ; ++i ) {
15 MulByXPowD[ i ] = MultiplyUnnormalized ( i , 8 , XpowN(D) ) ;
16 }
17 }

Listing 3: Computing CRC byte by byte

Experience shows that computing CRC byte by byte is rather slow and,
depending on a compiler and input data size, takes 6 − 8 CPU cycles per byte
on modern 64-bit CPU for D <= 64. There are two reasons for it:

1. Reading data 8 bits at a time is not the most efficient data access method
on 64-bit CPU.

2. Modern CPUs have multiple ALUs and may execute 3-4 instructions
per CPU cycles provided the instructions handle independent data flows.
However, byte-by-byte CRC contains only one data flow. Futhermore,
most instructions use the result from the previous instruction, leading to
CPU stalls because of result propagation delays.

4.7 Rolling CRC

Given a set of messages Mk = mk . . .mk+N−1 where mk are W -bit symbols
and N is fixed (i.e. each next message is obtained by removing first symbol
and appending new one), Ck+1 = CRCu(Mk+1, v) may be obtained from known
Ck = CRCu(Mk, v) and symbols mk and mk+N only, without the need to com-
pute CRC of entire message Mk+1. This property may be utilized to efficiently
compute a set of rolling Rabin fingerpints.

Since Mk+1(x) = Mk(x)xW −mk(x)xNW + mk+N (x),

Ck+1(x) = CRCu

(
Mk+1(x), v(x)

)
=

=

((
v(x)− u(x)

)
xNW + u(x) +

N−1∑
n=0

mk+1+n(x)xD+W (N−1−n)

)
mod P (x) =

= F
(
Ck(x),mk+N (x)

)
+ G

(
mk(x)

)
,
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where

F
(
Ck(x),mk+N (x)

)
=
(
Ck(x)xW + mk+N (x)xD

)
mod P,

G
(
mk(x)

)
=
(((

v(x)− u(x)
)
xNW + u

)
(1− xW )−mk(x)xD+NW

)
mod P

are polynomials of degree less than D.
G
(
mk−1(x)

)
may be computed easily via a single lookup in a table of 2W

entries indexed by mk.
Computation of F

(
Ck(x),mk+N (x)

)
may be implemented as described in

section 4.6 and requires one bitwise shift, one bitwise XOR, and one lookup into
a precomputed table containing 2W entries.

4.8 Reading multiple bytes at a time

One straightforward way to speed up byte-by-byte CRC computation is to read
W > 8 bits at once. Unfortunately, this is the path of very rapidly diminish-
ing return as the size of the MulByPowD table increases with W exponentially.
From practical perspective, it is extremely desirable to ensure that the Mul-
ByPowD table fits into the L1 cache (32-64KB), otherwise table entry access
latency sharply increases from 3-4 CPU cycles (L1 cache) to 15-20 CPU (L2
cache).

The value of MulByXpowD
(
v(x)

)
may be computed iteratively using a

smaller table because

MulByXpowD
(
v(x)

)
= v(x) · xD mod P (x) = CRC0

(
v(x), 0

)
(11)

and therefore may be computed using formulas (3) and (9) for smaller values of
W ′.

[Bla93] provided the implementation for W = 32 and W ′ = 8. Our more
general implementation was faster than byte-by-byte CRC but not substentially:
the improvement was in 20-25% range. However, the result is still important –
it demonstrates that reading input data per se is not a bottleneck.

4.9 Computing a CRC word by word

The value of MulByXpowD
(
v(x)

)
may be computed using multiple smaller ta-

bles instead of one table. Given that deg
(
v(x)

)
< W , v(x) may be represented

as a weighted sum of polynomials vk(x) such that deg
(
vk(x)

)
< B:

v(x) =

K−1∑
k=0

vk(x) · x(K−1−k)B ,

where K = dW/Be and

vk(x) =

⌊
v(x)

x(K−1−k)B

⌋
mod xB .
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Consequently,

MulByXpowD
(
v(x)

)
= v(x) · xD mod P (x) =

=

(
K−1∑
k=0

vk(x) · x(K−1−k)B

)
· xD mod P (x) =

=

K−1∑
k=0

(
vk(x) · x(K−1−k)B+D mod P (x)

)
=

=

K−1∑
k=0

MulWordByXpowD
(
k, vk(x)

)
, (12)

where the values of

MulWordByXpowD
(
k, vk(x))

)
= vk(x) · x(K−1−k)B+D mod P (x) (13)

may be obtained using K precomputed tables. Given that deg
(
vk(x)

)
< B,

each table should contain 2B entries.
A sample implementation of formulas (1), (3), (12), and (13) is given in

listing 4 using B = 8 and assuming that W is a multiple of 8.
CrcWordByWord1 with W = 64 uses only 2.1-2.2 CPU cycles/byte on mod-

ern 64-bit CPUs (our implementation is somewhat faster than the one described
in [KB05]). It solves the problem with data access and, to lesser degree, allows
instruction level parallelism: in the middle of the unrolled main loop of CrcOf-
Word function the CPU may process multiple bytes in parallel.

However, this solution is still imperfect – the beginning of computation con-
tends for a single source of data (variable value), and the end of computation
contends for a single destination (variable result). Further improvement re-
quires processing of multiple independent data streams in interleaved manner
so that when computation of one data flow path is stalled the CPU may proceed
with another one.

4.10 Processing non-overlapping blocks in parallel

Straighforward pipepiling may be achieved by spliting the input message M(x) =
M0(x) . . .MN−1(x) into N blocks Mk(x) of approximately the same size and
computing CRC of each block in an interleaved manner, concatenating CRCs
of individual blocks in the end. A sample implementation is given in listing 5.

A tuned implementation of CrcWordByWordBlocks is capable of process-
ing data at 1.3-1.4 CPU cycles/byte on sufficiently large (64KB and more)
inputs, which is noticeably better that 2.1-2.2 CPU cycles/byte delivered by
word by word CRC computation. It is a good sign that it is a move in right
direction.

1The variant presented in this paper is more general than “slicing” described in [KB05].
Sample implementation given in listing 4 does not include one subtle optimization imple-
mented in [KB05] as it was found to be counter-productive.
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1 Crc CrcWord(Word value ) {
2 Crc r e s u l t = 0 ;
3 // Unro l l t h i s loop or l e t compi le r do i t .
4 f o r ( i n t byte = 0 ; byte < s i z e o f (Word) / 8 ; ++byte ) {
5 r e s u l t ˆ= MulWordByXpowD[ byte ] [ ( Byte ) va lue ] ;
6 va lue >>= 8 ;
7 }
8 re turn r e s u l t ;
9 }

10 Crc CrcWordByWord(Word ∗data , i n t n , Crc v , Crc u)
11 Crc c r c = v ˆ u ;
12 f o r ( i n t i = 0 ; i < n ; ++i ) {
13 Crc WordCrc = CrcWord( c r c ˆ data [ i ] ) ;
14 i f ( s i z e o f ( Crc ) <= s i z e o f (Word) ) {
15 c rc = WordCrc ;
16 } e l s e {
17 c rc >>= 8 ;
18 c rc ˆ= WordCrc ;
19 }
20 }
21 re turn ( c r c ˆ u) ;
22 }
23 void InitWordTables ( ) {
24 f o r ( i n t byte = 0 ; byte < s i z e o f (Word) / 8 ; ++byte ) {
25 // (K−1−k ) ∗B + D = (W/8−1−byte ) ∗8 + D = D − 8 + W − 8∗byte .
26 Crc m = XpowN(D − 8 + s i z e o f (Word) ∗8 − 8∗byte ) ;
27 f o r ( i n t i = 0 ; i < 256 ; ++i ) {
28 MulWordByXpowD[ byte ] [ i ] =MultiplyUnnormalized ( i , 8 , m) ;
29 }
30 }
31 }

Listing 4: Computing CRC word by word
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1 // Proce s s e s N s t r i p e s o f StripeWidth words each
2 // word by word , in an i n t e r l e a v ed manner .
3 Crc CrcWordByWordBlocks (Word ∗data , Crc v , Crc u) {
4 a s s e r t (n % (N ∗ StripeWidth ) == 0) ;
5 // Use N l o c a l v a r i a b l e s i n s t ead o f the array .
6 Crc c r c [N ] ;
7 // I n i t i a l i z e the CRC value f o r each s t r i p e .
8 c r c [ 0 ] = v ˆ u ;
9 f o r ( i n t s t r i p e = 1 ; s t r i p e < N; ++s t r i p e )

10 c r c [ i ] = 0 ˆ u ;
11 // Compute each s t r i p e ’ s CRC.
12 f o r ( i n t i = 0 ; i < StripeWidth ; ++i ) {
13 // Compute mul t ip l e CRCs in i n t e r l e a v ed manner .
14 Word buf [N ] ;
15 f o r ( i n t s t r i p e = 0 ; s t r i p e < N; ++s t r i p e ) {
16 buf [ i ] =
17 crc [ s t r i p e ] ˆ data [ i + s t r i p e ∗ StripeWidth ] ;
18 i f (D > s i z e o f (Word) ∗ 8) {
19 c rc [ s t r i p e ] >>= D − s i z e o f (Word) ∗ 8 ;
20 } e l s e {
21 c rc [ s t r i p e ] = 0 ;
22 }
23 }
24 f o r ( i n t byte = 0 ; byte < s i z e o f (Word) / 8 ; ++byte ) {
25 f o r ( i n t s t r i p e = 0 ; s t r i p e < N; ++s t r i p e ) {
26 c rc [ s t r i p e ] ˆ=
27 MulWordByXpowD[ byte ] [ ( Byte ) buf [ s t r i p e ] ] ;
28 buf [ s t r i p e ] >>= 8 ;
29 }
30 }
31 }
32 // Combine s t r i p e CRCs .
33 f o r ( i n t s t r i p e = 1 ; s t r i p e < N; ++s t r i p e ) {
34 c rc [ 0 ] = ChangeStartingValue (
35 c r c [ s t r i p e ] , StripeWidth , 0 , c r c [ 0 ] ) ;
36 }
37 re turn ( c r c [ 0 ] ˆ u) ;
38 }

Listing 5: Processing non-overlapping blocks in parallel
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The drawbacks of this approach are obvious: it does not work well with
small inputs – the cost of CRC concatentation becomes a bottleneck, – and it
may be susceptible to false cache collisions caused by cache line aliasing.

If the cost of CRC concatenation was not a problem, cache pressure could be
mitigated with the use of very narrow stripes. The code in question, lines 33-37
of listing 5 which combine CRCs of individual stripes, iteratively computes

crc0(x) = crck(x) +
(

crc0 · x8S mod P (x)
)

for k = 1, . . . , N−1 where N and S are the number and the width of the stripes
respectively. It may be rearranged as

crc0(x) =

N−1∑
k=0

(
crcK−1−k · x8kS mod P (x)

)
.

Explicit multiplication by x8kS may be avoided by moving it into preset
tables

MulWordByXPowDk(n) = MulWordByXPowD(n) · xkS mod P (x).

that are used to compute crc′k(x) = crck(x) · x8kS , so that

crc0(x) =

N−1∑
k=0

crc′k.

Unfortunately, this approach alone does not help because

1. It increases the memory footprint of MulWordByXPowD by factor of N .
Once the cumulative size of MulWordByXPowDk tables exceeds the size
of L1 cache (32-64KB), the cost of memory access to multiplication table
data increases from 3-4 CPU cycles to 15-20, eliminating all performance
gains achieved by reducing the number of table operations.

2. It is still necessary to combine all N values of crck into crc0 at the end of
the CRC computation.

4.11 Interleaved word-by-word CRC

4.11.1 Parallelizing CRC computation

Assume that input message M is the concatenation of K groups gk, and each
group gk is concatenation of N W -bit long words:

M(x) =

K−1∑
k=0

gk(x) · x(K−1−k)NW ,

gk(x) =

N−1∑
n=0

mk,n · x(N−1−n)W .
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Input message M(x) may be represented as

M(x) =

K−1∑
k=0

gk(x) · x(K−1−k)NW =

=

K−1∑
k=0

(
N−1∑
n=0

mk,n · x(N−1−n)W

)
· x(K−1−k)NW =

=

N−1∑
n=0

(
K−1∑
k=0

mk,n · x(K−1−k)NW

)
· x(N−1−n)W =

=

N−1∑
n=0

Mn(x) · x(N−1−n)W (14)

where

Mn(x) =

K−1∑
k=0

mk,n · x(K−1−k)NW .

In other words, Mn is concatenation of n-th W -bit word from g0 followed
by (N − 1)W zero bits, then n-th word from g1 followed by (N − 1)W zero bits,
etc., ending up with n-th word from last group gK−1.

Appending (N − 1)W zero bits to Mn yields M ′n(x) = Mn(x) · x(N−1)W

which may be viewed as the concatenation of K NW -bit groups fk:

M ′n(x) = Mn(x) · x(N−1)W =

K−1∑
k=0

fk,n · x(K−1−k)NW ,

fk,n(x) = mk,n(x) · x(N−1)W ,

so

M(x) =

N−1∑
n=0

Mn(x) · x(N−1−n)W

=

N−1∑
n=0

M ′n(x) · x−(N−1)W · x(N−1−n)W

=

N−1∑
n=0

M ′n(x) · x−nW . (15)

According to (3), vK,n(x) = CRC0

(
M ′n(x), v0,n(x)

)
may be computed incre-

17



mentally:

vk+1,n(x) = CRC0

(
fk,n(x), vk,n(x)

)
=

= CRC0

(
mk,n(x) · x(N−1)W , vk,n(x)

)
=

=
(
vk,n(x) · xNW + mk,n(x) · x(N−1)W · xD

)
mod P (x) =

=
(
vk,n(x) · xW + mk,n(x) · xD

)
· x(N−1)W mod P (x) = (16)

= CrcWordN
(
mk,n(x), vk,n(x)

)
. (17)

This approach:

1. Creates N independent data flows: computation of vk,0, . . . , vk,N−1 may
be performed truly in parallel. There are no contentions on a single data
source or destination like those the word-by-word CRC computation de-
scribed in section 4.9 suffered from.

2. Input data is accessed sequentially. Therefore, the load on cache sub-
system and false cache collisions are minimal. Thus, the performance
bottlenecks of approach described in 4.10 are eliminated.

4.11.2 Combining individual CRCs

Once vK,n(x) = CRC0

(
M ′n(x), v0,n(x)

)
are computed starting with

v0,0 = v(x),

v0,n = 0, n ≥ 1,

by definition (7) of CRC0 and relationship (15),

CRC0

(
M(x), v(x)

)
= CRC0

(
N−1∑
n=0

M ′n(x) · x−nW , v(x)

)
=

=

N−1∑
n=0

CRC0

(
M ′n(x) · x−nW , v0,n(x)

)
=

=

N−1∑
n=0

CRC0

(
M ′n(x), v0,n(x)

)
· x−nW =

=

N−1∑
n=0

vK,n(x) · x−nW . (18)

Even though this step is performed only once per input message, it still
requires (N − 1) non-trivial multiplications modulo P (x) negatively affecting
the performance on small input messages. Also, (18) uses the multiplicative
inverse of xnW modulo P (x) which does not exists when P (x) mod x = 0.
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There is more efficient and elegant solution. Assume that M(x) is followed
by one more group gK(x). Then

CRC0

(
M(x) · xNW + gK(x), v(x)

)
=

= CRC0

(
gK(x),CRC0

(
M(x), v(x)

))
=

=
(

CRC0

(
M(x), v(x)

)
· xNW + gK(x) · xD

)
mod P (x) =

=

(
xNW

N−1∑
n=0

vK,n(x) · x−nW + xD
N−1∑
n=0

mK,n(x) · x(N−1−n)W

)
mod P (x) =

=

(
xW

N−1∑
n=0

vK,n(x) · x(N−1−n)W + xD
N−1∑
n=0

mK,n(x) · x(N−1−n)W

)
mod P (x)

=

N−1∑
n=0

(
vK,n(x) · xW + mK,n(x) · xD

)
· x(N−1−n)W mod P (x) = (19)

=

N−1∑
n=0

CRC0

(
mK,n(x), vK,n(x)

)
· x(N−1−n)W mod P (x). (20)

(20) may be implemented using formula (13) by setting v′0 = 0, and then for
n = 0, . . . , N − 1 computing

v′n+1(x) =
((

v′n(x) + vK,n

)
· xW + mK,n · xD

)
mod P (x)

= CRC0

(
mK,n, v

′
n(x) + vK,n

)
.

Alternatively, this step may be performed using the less efficient technique
described in section 4.8.

4.11.3 Efficient computation of individual CRCs

Given v(x), deg
(
v(x)

)
< D and m(x), deg

(
m(x)

)
< W ,

CrcWordN
(
m(x), v(x)

)
=
(
v(x) · xW + m(x) · xD

)
· x(N−1)W mod P (x)

may be implemented efficiently utilizing the techniques described in sections
4.6, 4.8, and 4.9. When D ≤W ,

CrcWordN
(
m(x), v(x)

)
=
(
v(x) · xW + m(x) · xD

)
· x(N−1)W mod P (x) =

=
(
v(x) · xW−D + m(x)

)
· x(N−1)W+D mod P (x),

and may be implemented using the table-driven multiplication as described in
(13) except that the operand is multiplied by x(N−1)W+D instead of xD. Like in
(8), explicit multiplication of v(x) by xW−D is not required since D-normalized
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representation of v(x), viewed as a W -normalized representation, is equal to(
v(x) · xW−D).

Using the same technique as in formula (9), for D ≥W let

vH(x) =

⌊
v(x)

xD−W

⌋
, deg

(
vH(x)

)
< W,

vL(x) = v(x) mod xD−W , deg
(
vL(x)

)
< D −W,

so that v(x) = vL(x) + vH(x) · xD−W . Then,

CrcWordN
(
m(x), v(x)

)
=

=
(
v(x) · xW + m(x) · xD

)
· x(N−1)W mod P (x) =

=
((

vL(x) + vH(x) · xD−W ) · xW + m(x) · xD
)
· x(N−1)W mod P (x) =

=
(
vL(x) · xW +

(
vH(x) + m(x)

)
· xD

)
· x(N−1)W mod P (x) =

=
((

vH(x) + m(x)
)
· x(N−1)W+D mod P (x)

)
+

+
((

vL(x) · xW
)
· x(N−1)W mod P (x)

)
. (21)

Since deg
(
vH(x)+m(x)

)
< W , the first summand of CrcWordN

(
m(x), v(x)

)
,((

vH(x) + m(x)
)
· x(N−1)W+D mod P (x)

)
,

may be computed using the table-driven multiplication technique described in
(13) except that the operand is multiplied by xD+(N−1)W instead of xD.

Computation of the second summand of CrcWordN
(
m(x), v(x)

)
,((

vL(x) · xW
)
· x(N−1)W mod P (x)

)
,

is somewhat less intuitive. Since deg
(
vL(x)

)
< D −W ,(

vL(x) · xW
)

mod P (x) =
(
vL(x) · xW

)
,

and may be computed by shifting vL(x) by W bits. Additional multiplication
by x(N−1)W is accomplished by adding

(
vL(x)·xW

)
, produced at step n < N−1

of the algorithm described by formula (17), to the value of vk,n+1(x) which will
be additionally multiplied by x(N−1)W as shown in formula (16).

For n = N − 1, the value of
(
vL(x) · xW

)
should be added to the value of

vk+1,n′(x) where n′ = 0. For k < K, it will be multiplied by x(N−1)W during
next round of parallel computation as shown in (16). For k = K, vk+1,n′(x)
will be multiplied by x(N−1)W during CRC concatenation as shown in (19) since
n′ = 0.
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1 Crc CrcInterleavedWordByWord (
2 Word ∗data , i n t blocks , Crc v , Crc u) {
3 Crc c r c [N+1] = {0} ;
4 c r c [ 0 ] = v ˆ u ;
5 f o r ( i n t i = 0 ; i < N∗( b locks − 1) ; i += N) {
6 Word bu f f e r [N ] ;
7 // Load next N words and move over f l ow
8 // b i t s i n to ”next ” word .
9 f o r ( i n t n = 0 ; n < N; ++n) {

10 bu f f e r [N] = crc [ n ] ˆ data [ i + n ] ;
11 i f (D > s i z e o f (Word) ∗ 8)
12 c r c [ n+1] ˆ= crc [ n ] >> ( s i z e o f (Word) ∗ 8) ;
13 c r c [ n ] = 0 ;
14 }
15 // Compute i n t e r l e a v ed word−by−word CRC.
16 f o r ( i n t byte = 0 ; byte < s i z e o f (Word) ; ++byte ) {
17 f o r ( i n t n = 0 ; n < N; ++n) {
18 c rc [ n ] ˆ=
19 MulInterleavedWordByXpowD [ byte ] [ ( Byte ) bu f f e r [ n ] ] ;
20 bu f f e r [ n ] >>= 8 ;
21 }
22 }
23 // Combine c r c [ 0 ] with delayed over f l ow b i t s .
24 c r c [ 0 ] ˆ= crc [N ] ;
25 c r c [N] = 0 ;
26 }
27 // Process the l a s t N bytes and combine CRCs .
28 f o r ( i n t n = 0 ; n < N; ++n) {
29 i f (n != 0) c rc [ 0 ] ˆ= crc [ n ] ;
30 Crc WordCrc = CrcOfWord( c r c [ 0 ] ˆ data [ i + n ] ) ;
31 i f (D > s i z e o f (Word) ∗ 8) {
32 c rc [ 0 ] >>= D − s i z e o f (Word) ∗ 8 ;
33 c r c [ 0 ] ˆ= WordCrc ;
34 } e l s e {
35 c rc [ 0 ] = WordCrc ;
36 }
37 }
38 re turn ( c r c [ 0 ] ˆ u) ;
39 }
40 void In i t Inter l eavedWordTables ( void ) {
41 f o r ( i n t byte = 0 ; byte < s i z e o f (Word) ; ++byte ) {
42 Crc m = XpowN(D − 8 + N∗ s i z e o f (Word) ∗8 − 8∗byte ) ;
43 f o r ( i n t i = 0 ; i < 256 ; ++i ) {
44 MulInterleavedWordByXpowD [ byte ] [ i ] =
45 MultiplyUnnormalized ( i , 8 , m) ;
46 }
47 }
48 }

Listing 6: Interleaved, word by word CRC computation
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5 Experimental results

The tests were performed using Intel Q9650 3.0GHz CPU, DDR2-800 memory
with 4-4-4-12 timing, and a motherboard with an Intel P45 chipset.

5.1 Testing methology

All tests were performed using random input data over various block sizes. The
code for all evaluated algorithms was heavily optimized. Tests were performed
on both aligned and non-aligned input data to ensure that misaligned inputs do
not carry performance penalty. CRC tables were aligned on 256-byte boundary.

Tests were performed with warm data and warm CRC tables: as shown in
[KB05], the footprint of CRC tables – as long as they fit into L1 cache – is not
a major contributor to the performance.

Performance was measured in number of CPU cycles per byte of input data:
apparently, performance of CRC computation is bounded by performance of
CPU and its L1 cache latency. Spot testing of few other Intel and AMD CPU
models showed little variation in performance measured in CPU cycles per byte
despite substential differences in CPU clock frequencies.

To minimize performance variations caused by interference with OS and
other applications (context switches, CPU migrations, CPU cache flushes, mem-
ory bus interference from other processes, etc.), the test applications were run
at high priority, each test was executed multiple times, and the minimum time
was measured. That allowed the tests to achieve repeatability within ±1%.

5.2 Compiler comparison

Despite CRC code being rather straightforward, there were surprises (see tables
5 and 4).

On 64-bit AMD64 platform, Microsoft CL compiler (version 15.00.30729)
consistently and noticeably generated the fastest code that used general-purpose
integer arithmetics. For instance, CRC-64 and CRC-32 code generated by CL
was 1.24 times faster than the code generated by Intel’s ICL 11.10.051, and
1.74 times faster than the code generated by GCC 4.5.0. A tuned, hand-written
inline assembler code for CRC-32 and CRC-64 for GCC was as fast as the code
generated by CL.

When it comes to arithmetics with the use of SSE2 intrinsic functions on
64-bit AMD64 platform, the code generated by GCC 4.5.0 consistenly outper-
formed the code generated by Microsoft and Intel compilers – by factor of 1.15
and 1.30 respectively. However, earlier versions of GCC did not produce efficient
SSE2 code either. For that reason, pre-4.5.0 versions of GCC use hand-written
inline assember code which was as fast as the code generated by GCC 4.5.0.

On 32-bit bit X86 platform, neither compiler was able to generate efficient
code (most likely because because the compilers could not overcome scarsity of
general-purpose registers). Performance of the code that used MMX intrinsic
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functions was better but still not as good as hand-written assember versions,
which were provided for all compilers.

The fastest code for 128-bit CRC on X86 platform was generated by GCC
4.5.0.

5.3 Choice of interleave level

Number of data streams processed by interleaved, word-by-word CRC computa-
tion described in section 4.11 should matter. Too few means underutilization of
available ALUs. Too many will increase the length of the main loop and stress
instruction decoders, and may cause splilling of registers containing hot data
(interleaved processing of N words of data uses at least (2N + 2) registers).

As table 3 shows, the optimal number of interleaved data streams on modern
Intel and AMD CPUs for integer arithmetics is either 3 or 4 (likely because they
all have exactly 3 ALUs). However, for SSE2 arithmetics on AMD64 platform
the optimal number of streams is 6 (3 on X86), which is quite counter-intuitive
result as it does not correlate with the number of available ALUs. Good old
performance mantra ”you need to measure” still applies.

5.4 Performance of CRC algorithms

Average performance of best variants of CRC algorithms for 64-bit AMD64 and
32-bit X86 platforms processing 1KB, 2KB, . . . , 1MB inputs is given in tables
1 and 1 respectively. Proposed interleaved multiword CRC algorithm is 1.7-2.0
times faster that current state of the art “slicing”.

As demonstrated in tables 7 and 6, interleaved word-by-word CRC described
in section 4.11, running at 1.2 CPU cycles/byte, is 1.8 times faster than 2.1 CPU
cycles/byte achieved by current state of the art word-by-word CRC algorithm
(“slicing”) described in [KB05].

On 64-bit AMD64 platform, the best performance was achieved using 64-bit
reads and 64-bit tables for all variants of N -bit CRC for N ≤ 64. In particular,
tables 7 and 6 clearly show that performance of 32-bit and 64-bit CRCs is nearly
identical. Consequently, there is no reason to favor CRC-32 over CRC-64 for
performance reasons.

The use of MMX on the 32-bit X86 platform allowed to utilize 64-bit tables
and 64-bit reads achieving 1.3 CPU cyles/byte. Neither compiler generated
efficient code using MMX intrinsic functions, so inline assembler was used.

With the use of SSE2 intrinsics on AMD64 architecture, 128-bit CRC may
be computed takes at 1.7 CPU cycles/byte using the new algorithm (see table
9), compared with 2.9 CPU cycles/byte achieved by word-by-word CRC compu-
tation (see table 8). On the 32-bit X86 architecture, the use of SSE2 intrinsics
and GCC 4.5.0 allowed the computation of 128-bit CRC at 2.1 CPU cycles/byte,
compared with 4.2 CPU cycles/byte delivered by word-by-word algorithm.

Given that MD5 computation takes 6.8-7.1 CPU cycles/byte and SHA-1
takes 7.6-7.9 CPU cycles per byte, CRCs are still the algorithm of choice for
data corruption detection.
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Table 1: CRC performance, AMD64 platform

Method Slicing1 Multiword2 Improvement

CRC-32 2.083 1.164,5 1.79

CRC-64 2.093 1.164,5 1.79

CRC-128 2.914 1.684,6 1.73

Table 2: CRC performance, X86 platform

Method Slicing1 Multiword2 Improvement

CRC-32 2.523 1.293,7 1.96

CRC-64 3.283 1.293,7 2.55

CRC-128 4.174 2.104,8 1.98

Average number of CPU cycles per byte processing 1KB, 2KB, . . . , 1MB inputs.
Warm data, warm tables.
1 “Slicing” implements the algorithm described in section 4.9.
2 “Multiword/N” implements algorithm described in section 4.11 processing N
data streams in parallel in interleaved manner.
3 Microsoft CL 15.00.30729 compiler, “-O2” flag.
4 GCC 4.5.0 compiler, “-O3” flag.
5 Multiword/N = 4, hand-written inline assembler.
6 Multiword/N = 6, C++.
7 Multiword/N = 4, hand-written MMX inline assember.
8 Multiword/N = 3, C++.

Table 3: Interleaved multiword CRC: choosing the number of stripes N

CRC Platform N=2 N=3 N=4 N=5 N=6 N=7 N=8

CRC-649 AMD64 1.42 1.23 1.17 1.46 2.08 2.59 2.73

CRC-12810 AMD64 2.07 1.84 1.76 1.70 1.68 1.75 1.79

CRC-12810 X86 2.56 2.10 2.46 2.61 2.52 2.62 2.57

Average number of CPU cycles per byte processing 1KB, 2KB, . . . , 1MB inputs.
Interleaved word-by-word CRC computation as described in section 4.11. Warm
data, warm tables.
9 Microsoft CL 15.00.30729 compiler, AMD64 platform, C++ code.
10 GCC 4.5.0 compiler, AMD64 platform, C++ code.
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Table 4: Compiler comparison: Multiword/4 64-bit CRC

Input size 64 256 1K 4K 16K 64K 256K 1M

GCC/C++ 2.30 2.10 2.04 2.03 2.03 2.05 2.05 2.07

ICL 2.19 1.62 1.49 1.46 1.45 1.45 1.46 1.46

CL 1.75 1.29 1.18 1.15 1.17 1.18 1.18 1.18

GCC/ASM 1.65 1.26 1.17 1.15 1.16 1.17 1.17 1.17

Table 5: Compiler comparison: Multiword/6 128-bit CRC

Input size 64 256 1K 4K 16K 64K 256K 1M

CL 4.08 2.94 2.64 2.62 2.59 2.59 2.59 2.62

ICL 3.48 2.50 2.25 2.08 2.02 2.00 2.00 2.02

GCC 2.90 1.93 1.85 1.72 1.65 1.63 1.63 1.63

Number of CPU cycles per byte. 128-bit CRC (CRC-128/IEEE polynomial) and
64-bit CRC (CRC-64-ECMA-182 polynomial) respectively. 64-bit platform, 64-
bit reads. Warm data, warm tables.
Microsoft CL 15.00.30729 compiler was used with “-O2” flag. Intel ICL
11.10.051 and GCC 4.5.0 were used with “-O3” flag.
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“Multiword/N” implements algorithm described in section 4.11 processing N
data streams in parallel in interleaved manner.
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Table 6: CRC-32 performance

Input size 64 256 1K 4K 16K 64K 256K 1M

Sarwate 6.61 6.62 6.70 6.68 6.67 6.66 6.67 6.75

Black 5.44 5.46 5.47 5.48 5.47 5.46 5.47 5.53

Slicing 2.15 2.10 2.09 2.09 2.08 2.08 2.08 2.10

Blockword/3 2.27 2.14 2.15 2.13 2.13 1.55 1.39 1.31

Multiword/4 1.75 1.29 1.18 1.16 1.17 1.18 1.18 1.18

Number of CPU cycles per byte. 32-bit CRC (CRC-32C polynomial), 64-bit
platform, 64-bit tables, 64-bit reads (except Sarwate). Microsoft CL 15.00.30729
compiler. Warm data, warm tables.
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“Sarwate” implements the algorithm described in section 4.6.
“Black” implements the algorithm described in section 4.8.
“Slicing” implements the algorithm described in section 4.9.
“Blockword/3” implements the algorithm described in section 4.10 with 3 stripes
of 15,376 bytes each.
“Multiword/4” implements the algorithm described in section 4.11 processing 4
data streams in parallel in interleaved manner.
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Table 7: CRC-64 performance

Input size 64 256 1K 4K 16K 64K 256K 1M

Sarwate 6.61 6.62 6.70 6.68 6.67 6.65 6.66 6.75

Black 5.44 5.46 5.47 5.47 5.47 5.47 5.47 5.53

Slicing 2.16 2.08 2.09 2.10 2.08 2.08 2.08 2.09

Blockword/3 2.27 2.14 2.15 2.13 2.13 1.59 1.41 1.33

Multiword/4 1.75 1.29 1.18 1.15 1.17 1.18 1.18 1.18

Number of CPU cycles per byte. 64-bit CRC (CRC-64-ECMA-182 polynomial),
64-bit platform, 64-bit tables, 64-bit reads (except Sarwate). Microsoft CL
15.00.30729 compiler. Warm data, warm tables.
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“Sarwate” implements the algorithm described in section 4.6.
“Black” implements the algorithm described in section 4.8.
“Slicing” implements the algorithm described in section 4.9.
“Blockword/3” implements the algorithm described in section 4.10 with 3 stripes
of 15,376 bytes each.
“Multiword/4” implements the algorithm described in section 4.11 processing 4
data streams in parallel in interleaved manner.
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Table 8: CRC-128 performance: Slicing CRC

Input size 64 256 1K 4K 16K 64K 256K 1M

CL/SSE2 4.02 3.81 4.01 4.05 4.13 4.18 4.20 4.24

ICL/SSE2 3.40 3.24 3.57 3.59 3.68 3.72 3.75 3.81

GCC/UINT 3.45 3.24 3.36 3.48 3.61 3.64 3.67 3.72

GCC/SSE2 2.67 2.48 2.63 2.79 2.97 2.99 2.99 3.03

Table 9: CRC-128 performance: Multiword CRC

Input size 64 256 1K 4K 16K 64K 256K 1M

GCC/UINT/3 3.83 3.02 3.04 3.01 3.00 2.98 2.98 3.00

CL/SSE2/5 4.08 2.56 2.43 2.25 2.20 2.19 2.18 2.20

ICL/SSE2/5 3.52 2.33 2.23 2.05 2.00 1.99 1.99 2.01

GCC/SSE2/6 2.90 1.93 1.85 1.72 1.65 1.63 1.63 1.63

Number of CPU cycles per byte. 128-bit CRC (CRC-128/IEEE polynomial),
64-bit platform, 128-bit tables, 64-bit reads. Warm data, warm tables.
All compilers were tested using SSE2 intrinsics (/SSE2 variants). GCC was also
tested using 128-bit integers provided by the compiler (GCC/UINT).
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“Slicing” implements algorithm described in section 4.9.
“Multiword/N” implements algorithm described in section 4.11 processing N
data streams in parallel in interleaved manner. The optimal (for given compiler)
value of N was used.
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