<
&
N
%
S
N
S
f
$
=
S
=
Sq
N
<
S
“»
<
8
=<
=
S

e
%
QN

™

Cookbook

.

Carl Albing, JP Vossen &
Cameron Newham

O’REILLY"

9

Unix/Linux

O’REILLY"

bash Cookbook

“This is the book you need if you've ever wondered how to automate tasks that
seem to be taking too much of your time. The authors explore all of those dark
corners in bash and present many workable solutions to everyday problems.”

—Chet Ramey, bash maintainer

bash Cookbook unlocks the secrets of bash, the most widely used Unix shell. Inside, you'll find
complete working scripts that let you customize and harness the power of your operating system,
along with short cuts to help you work more quickly and efficiently. Whether you're an administrator,
a software developer, or an end user, mastering the shell is essential for anyone working with
Linux, Mac OS X, or any Unix system. This book demonstrates shell scripting the way Unix masters
practice the craft.

Packed with examples and advice for everyone from shell beginners to advanced developers, bash
Cookbook focuses strongly on practical remedies rather than theory. It offers many ways to
automate routine tasks, and it provides scripting solutions to scores of common problems related to
input/output, file manipulation, program execution, administrative tasks, and much more. Each
recipe includes one or more code examples and a discussion of why the solution works.

bash Cookbook helps you:
e Perform common tasks with solutions that address the repertoire of things you do every day

e Write scripts to convert between DOS and Unix formats, work with compressed files, edit files
automatically, work with dates and times, and more

e Apply many tools commonly used with shell programs, including grep, sed, awk, and sort
e Integrate recipes for interactive use, such as command history

e Create functions, use aliases, and perform other tasks that make your life easier

e Learn short cuts that allow you to work faster by typing less

e Write more secure shell scripts that avoid the most common security weaknesses

e Configure and customize bash to suit your individual needs and style

Chapter 19, on tips, traps, and common mistakes, comes complete with recipes for things that
frequently go wrong. bash Cookbook gives you everything you need to accomplish more, in less
time, with greater ease and consistency, so you can truly manage your systems—rather than have
your systems manage you.

oreilly.com

US $49.99 CAN $64.99
ISBN: 978-0-596-52678-8

54999
ALRPMD LT

780596"5267

bash Cookbook

Carl Albing, JP Vossen, and Cameron Newham

O’REILLY*

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

bash Cookbook
by Carl Albing, JP Vossen, and Cameron Newham

Copyright © 2007 O'Reilly Media, Inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Cover Designer: Karen Montgomery

Production Editor: Laurel R.T. Ruma Interior Designer: David Futato

Copyeditor: Derek Di Matteo lllustrator: Robert Romano and Jessamyn Read
May 2007: First Edition.

Revision History for the First Edition:
2007-05-11 First release
2013-11-15 Eighth release

See http://oreilly.com/catalog/errata.csp?isbn=9780596526788 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. bash Cookbook, the image of a wood turtle, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52678-8
[LSI]
1384529112

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9780596526788

o = 7 T«

1. Beginning bash

0

0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

2. Standard Output

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Table of Contents

Why bash?

The bash Shell

Decoding the Prompt

Showing Where You Are

Finding and Running Commands

Getting Information About Files

Showing All Hidden (dot) Files in the Current Directory
Using Shell Quoting

Using or Replacing Built-ins and External Commands
Determining If You Are Running Interactively

Setting bash As Your Default Shell

Getting bash for Linux

Getting bash for xBSD

Getting bash for Mac OS X

Getting bash for Unix

Getting bash for Windows

Getting bash Without Getting bash

Learning More About bash Documentation

Writing Output to the Terminal/Window

Writing Output but Preserving Spacing

Writing Output with More Formatting Control

Writing Output Without the Newline

Saving Output from a Command

Saving Output to Other Files

Saving Output from the Is Command

Sending Both Output and Error Messages to Different Files

29
30
31
32
33
34
35
36
38

2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
2.22

3. Standard Input

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4, Executing Commands

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5. Basic Scripting: Shell Variables

5.1
5.2
5.3
5.4
5.5

Sending Both Output and Error Messages to the Same File
Appending Rather Than Clobbering Output

Using Just the Beginning or End of a File

Skipping a Header in a File

Throwing Output Away

Saving or Grouping Output from Several Commands
Connecting Two Programs by Using Output As Input
Saving a Copy of Output Even While Using It As Input
Connecting Two Programs by Using Output As Arguments
Using Multiple Redirects on One Line

Saving Output When Redirect Doesn't Seem to Work
Swapping STDERR and STDOUT

Keeping Files Safe from Accidental Overwriting
Clobbering a File on Purpose

Getting Input from a File

Keeping Your Data with Your Script

Preventing Weird Behavior in a Here-Document
Indenting Here-Documents

Getting User Input

Getting Yes or No Input

Selecting from a List of Options

Prompting for a Password

Running Any Executable

Telling If a Command Succeeded or Not
Running Several Commands in Sequence
Running Several Commands All at Once
Deciding Whether a Command Succeeds

Using Fewer if Statements

Running Long Jobs Unattended

Displaying Error Messages When Failures Occur
Running Commands from a Variable

Running All Scripts in a Directory

Documenting Your Script

Embedding Documentation in Shell Scripts
Promoting Script Readability

Separating Variable Names from Surrounding Text
Exporting Variables

oo

ooo

ooooooooooooooooooooooooooooooooooooooo

38
40
40
41
42
42
44
45
47
48
49
51
52
54

57
57
58
59
61
62
63
65
67

69
69
71
73
74
75
76
77
79
80
81

83
85
86
88
89
90

iv | Table of Contents

5.6

5.7

5.8

5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6. Shell Logic and Arithmetic

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

7. Intermediate Shell Tools |

7.1
7.2
7.3
7.4
7.5
7.6

Seeing All Variable Values

Using Parameters in a Shell Script

Looping Over Arguments Passed to a Script
Handling Parameters with Blanks

Handling Lists of Parameters with Blanks
Counting Arguments

Consuming Arguments

Getting Default Values

Setting Default Values

Using null As a Valid Default Value

Using More Than Just a Constant String for Default
Giving an Error Message for Unset Parameters

Changing Pieces of a String
Using Array Variables

Doing Arithmetic in Your Shell Script
Branching on Conditions

Testing for File Characteristics
Testing for More Than One Thing
Testing for String Characteristics
Testing for Equal

Testing with Pattern Matches

Testing with Regular Expressions
Changing Behavior with Redirections
Looping for a While

Looping with a read

Looping with a Count

Looping with Floating-Point Values
Branching Many Ways

Parsing Command-Line Arguments
Creating Simple Menus

Changing the Prompt on Simple Menus
Creating a Simple RPN Calculator
Creating a Command-Line Calculator

Sifting Through Files for a String

Getting Just the Filename from a Search
Getting a Simple True/False from a Search
Searching for Text While Ignoring Case
Doing a Search in a Pipeline

Paring Down What the Search Finds

ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

92
93
94
95
97
99
101
102
103
104
105
106
107
109

................. m

111
114
117
119
121
122
124
125
128
128
131
133
134
135
137
140
141
142
145

................ 147

148
149
150
152
152
154

Table of Contents | v

7.7

7.8

7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

8. Intermediate Shell Tools Il

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

9. Finding Files: find, locate, slocate

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

10. Additional Features for Scripting

10.1

Searching with More Complex Patterns
Searching for an SSN

Grepping Compressed Files

Keeping Some Output, Discarding the Rest
Keeping Only a Portion of a Line of Output
Reversing the Words on Each Line

Summing a List of Numbers

Counting String Values

Showing Data As a Quick and Easy Histogram

Showing a Paragraph of Text After a Found Phrase

Sorting Your Output

Sorting Numbers

Sorting IP Addresses

Cutting Out Parts of Your Output

Removing Duplicate Lines

Compressing Files

Uncompressing Files

Checking a tar Archive for Unique Directories
Translating Characters

Converting Uppercase to Lowercase
Converting DOS Files to Linux Format
Removing Smart Quotes

Counting Lines, Words, or Characters in a File
Rewrapping Paragraphs

Doing More with less

Finding All Your MP3 Files

Handling Filenames Containing Odd Characters
Speeding Up Operations on Found Files
Finding Files Across Symbolic Links

Finding Files Irrespective of Case

Finding Files by Date

Finding Files by Type

Finding Files by Size

Finding Files by Content

Finding Existing Files and Content Fast
Finding a File Using a List of Possible Locations

"Daemon-izing" Your Script

ooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

155
156
157
158
159
160
161
162
164
165

167
167
168
169
172
173
174
176
177
178
179
180
181
182
183
184

187
187
189
190
191
191
192
193
194
195
196
197

201
201

vi | Table of Contents

10.2
10.3
10.4
10.5
10.6
10.7
10.8

11. Working with Dates and Times

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

12. End-User Tasks As Shell Scripts

12.1
12.2
12.3
12.4
12.5

13. Parsing and Similar Tasks

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16

Reusing Code with Includes and Sourcing
Using Configuration Files in a Script

Defining Functions

Using Functions: Parameters and Return Values
Trapping Interrupts

Redefining Commands with alias

Avoiding Aliases, Functions

Formatting Dates for Display

Supplying a Default Date

Automating Date Ranges

Converting Dates and Times to Epoch Seconds

Converting Epoch Seconds to Dates and Times

Getting Yesterday or Tomorrow with Perl

Figuring Out Date and Time Arithmetic

Handling Time Zones, Daylight Saving Time, and Leap Years
Using date and cron to Run a Script on the Nth Day

Starting Simple by Printing Dashes
Viewing Photos in an Album
Loading Your MP3 Player
Burning a CD

Comparing Two Documents

Parsing Arguments for Your Shell Script
Parsing Arguments with Your Own Error Messages
Parsing Some HTML

Parsing Output into an Array

Parsing Output with a Function Call
Parsing Text with a read Statement
Parsing with read into an Array

Getting Your Plurals Right

Taking It One Character at a Time
Cleaning Up an SVN Source Tree
Setting Up a Database with MySQL
Isolating Specific Fields in Data
Updating Specific Fields in Data Files
Trimming Whitespace

Compressing Whitespace

Processing Fixed-Length Records

ooooooooooooooooooooooooooooooooooooooo

oo

oo

202
204
205
207
209
213
214

217
218
219
220
223
224
225
226
228
229

231
231
233
238
243
245

249
249
252
254
256
257
258
259
260
261
262
263
264
267
268
272
274

Table of Contents | vii

13.17 Processing Files with No Line Breaks 276

13.18 Converting a Data File to CSV 277
13.19 Parsing a CSV Data File 278
14. Writing Secure Shell SCriptsoviiniiiiiiii ittt it iieeaenas 281
14.1 Avoiding Common Security Problems 282
14.2 Avoiding Interpreter Spoofing 284
14.3 Setting a Secure $PATH 284
14.4 Clearing All Aliases 286
14.5 Clearing the Command Hash 287
14.6 Preventing Core Dumps 288
14.7 Setting a Secure $IFS 288
14.8 Setting a Secure umask 289
14.9 Finding World-Writable Directories in Your $PATH 290
14.10 Adding the Current Directory to the $PATH 292
14.11 Using Secure Temporary Files 293
14.12 Validating Input 297
14.13 Setting Permissions 299
14.14 Leaking Passwords into the Process List 300
14.15 Writing setuid or setgid Scripts 301
14.16 Restricting Guest Users 303
14.17 Using chroot Jails 304
14.18 Running As a Non-root User 306
14.19 Using sudo More Securely 306
14.20 Using Passwords in Scripts 308
14.21 Using SSH Without a Password 309
14.22 Restricting SSH Commands 317
14.23 Disconnecting Inactive Sessions 319
15. Advanced Scriptingc.vviiniiiiiiiiii ittt 321
15.1 Finding bash Portably for #! 322
15.2 Setting a POSIX $PATH 323
15.3 Developing Portable Shell Scripts 325
15.4 Testing Scripts in VMware 327
15.5 Using for Loops Portably 328
15.6 Using echo Portably 330
15.7 Splitting Output Only When Necessary 332
15.8 Viewing Output in Hex 334
15.9 Using bash Net-Redirection 335
15.10 Finding My IP Address 336
15.11 Getting Input from Another Machine 341
15.12 Redirecting Output for the Life of a Script 343
15.13 Working Around "argument list too long" Errors 343

viii | Table of Contents

16.

17.

15.14
15.15
15.16

Configuring and Customizing bash

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
13
16.14
16.15
16.16
16.17
16.18
16.19
16.20

Housekeeping and Administrative Tasks

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14
17.15
17.16

Logging to syslog from Your Script
Sending Email from Your Script
Automating a Process Using Phases

bash Startup Options

Customizing Your Prompt

Change Your $PATH Permanently

Change Your $PATH Temporarily

Setting Your $CDPATH

Shortening or Changing Command Names

Adjusting Shell Behavior and Environment

Adjusting readline Behavior Using .inputrc

Keeping a Private Stash of Utilities by Adding ~/bin
Using Secondary Prompts: $PS2, $PS3, $PS4
Synchronizing Shell History Between Sessions

Setting Shell History Options

Creating a Better cd Command

Creating and Changing into a New Directory in One Step
Getting to the Bottom of Things

Adding New Features to bash Using Loadable Built-ins
Improving Programmable Completion

Using Initialization Files Correctly

Creating Self-Contained, Portable RC Files

Getting Started with a Custom Configuration

Renaming Many Files

Using GNU Texinfo and Info on Linux
Unzipping Many ZIP Files

Recovering Disconnected Sessions Using screen
Sharing a Single bash Session

Logging an Entire Session or Batch Job
Clearing the Screen When You Log Out
Capturing File Metadata for Recovery
Creating an Index of Many Files

Using diff and patch

Counting Differences in Files

Removing or Renaming Files Named with Special Characters

Prepending Data to a File

Editing a File in Place

Using sudo on a Group of Commands

Finding Lines in One File But Not in the Other

oooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

345
346
349

353
354
354
362
363
368
370
371
372
374
375
377
378
380
382
383
384
389
395
398
400

M
411
413
414
415
417
418
420
421
422
422
426
428
429
432
434
435

Table of Contents | ix

17.17
17.18
17.19
17.20
17.21
17.22
17.23
17.24

Keeping the Most Recent N Objects

Grepping ps Output Without Also Getting the grep Process Itself
Finding Out Whether a Process Is Running

Adding a Prefix or Suffix to Output

Numbering Lines

Writing Sequences

Emulating the DOS Pause Command

Commifying Numbers

18. Working Faster by TypingLesscvviiiiiiiiiiiiieinennennnnnnnnss

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Moving Quickly Among Arbitrary Directories
Repeating the Last Command

Running Almost the Same Command

Quick Substitution

Reusing Arguments

Finishing Names for You

Playing It Safe

19. Tips and Traps: Common Goofs for Novicesccoevveviinnennennnnn.

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15

Forgetting to Set Execute Permissions

Fixing "No such file or directory" Errors

Forgetting That the Current Directory Is Not in the $PATH
Naming Your Script Test

Expecting to Change Exported Variables

Forgetting Quotes Leads to "command not found" on Assignments
Forgetting That Pattern Matching Alphabetizes

Forgetting That Pipelines Make Subshells

Making Your Terminal Sane Again

Deleting Files Using an Empty Variable

Seeing Odd Behavior from printf

Testing bash Script Syntax

Debugging Scripts

Avoiding "command not found" When Using Functions
Confusing Shell Wildcards and Regular Expressions

A, ReferenCe Lists ..o vvvrrerie i ettt eneeeeneneeneneenenes

B. ExamplesIncludedwithbashccooiiiiiiiiiiiiiiiiiiiinn..,

(. Command-Line Processingcovveeniiiineniinineenenernennnnenns

D. ReVisSionCONtrolvvrevie i ittt ieieneeneenrennenneeneanees

438
441
442
443
445
447
449
449

453
453
455
456
457
458
459
460

463
463
464
465
467
467
469
470
471
474
475
475
477
478
480
480

X | Table of Contents

E. Building bash from Source Cereeeeaas Cereeeeaas Cereeeeaas ... 563

Index e e e e e e 571

Table of Contents | xi

Preface

Every modern operating system has at least one shell and some have many. Some shells
are command-line oriented, such as the shell discussed in this book. Others are graph-
ical, like Windows Explorer or the Macintosh Finder. Some users will interact with the
shell only long enough to launch their favorite application, and then never emerge from
that until they log off. But most users spend a significant amount of time using the shell.
The more you know about your shell, the faster and more productive you can be.

Whether you are a system administrator, a programmer, or an end user, there are cer-
tainly occasions where a simple (or perhaps not so simple) shell script can save you
time and effort, or facilitate consistency and repeatability for some important task. Even
using an alias to change or shorten the name of a command you use often can have a
significant effect. We'll cover this and much more.

As with any general programming language, there is more than one way to do a given
task. In some cases, there is only one best way, but in most cases there are at least two
or three equally effective and efficient ways to write a solution. Which way you choose
depends on your personal style, creativity, and familiarity with different commands
and techniques. This is as true for us as authors as it is for you as the reader. In most
cases we will choose a single method and implement it. In a few cases we may choose
a particular method and explain why we think it's the best. We may also occasionally
show more than one equivalent solution so you can choose the one that best fits your
needs and environment.

There is also sometimes a choice between a clever way to write some code, and a read-
able way. We will choose the readable way every time because experience has taught
us that no matter how transparent you think your clever code is now, six or eighteen
months and 10 projects from now, you will be scratching your head asking your-self
what you were thinking. Trust us, write clear code, and document it—you'll thank
yourself (and us) later.

Xiii

Who Should Read This Book

This book is for anyone who uses a Unix or Linux system, as well as system adminis-
trators who may use several systems on any given day. With it, you will be able to create
scripts that allow you to accomplish more, in less time, more easily, consistently, and
repeatably than ever before.

Anyone? Yes. New users will appreciate the sections on automating repetitive tasks,
making simple substitutions, and customizing their environment to be more friendly
and perhaps behave in more familiar ways. Power users and administrators will find
new and different solutions to common tasks and challenges. Advanced users will have
a collection of techniques they can use at a moment's notice to put out the latest fire,
without having to remember every little detail of syntax.

Ideal readers include:

¢ New Unix or Linux users who don't know much about the shell, but want to do
more than point and click

* Experienced Unix or Linux users and system administrators looking for quick an-
swers to shell scripting questions

* Programmers who work in a Unix or Linux (or even Windows) environment and
want to be more productive

* New Unix or Linux sysadmins, or those coming from a Windows environment
who need to come up to speed quickly

* Experienced Windows users and sysadmins who want a more powerful scripting
environment

This book will only briefly cover basic and intermediate shell scripting—see Learning
the bash Shell by Cameron Newham (O'Reilly) and Classic Shell Scripting by Nelson
H.F. Beebe and Arnold Robbins (O'Reilly) for more in-depth coverage. Instead, our
goal is to provide solutions to common problems, with a strong focus on the "how to"
rather than the theory. We hope this book will save you time when figuring out solu-
tions or trying to remember syntax. In fact, that's why we wrote this book. It's one we
wanted to read through to get ideas, then refer to practical working examples when
needed. That way we don't have to remember the subtle differences between the shell,
Perl, C, and so forth.

This book assumes you have access to a Unix or Linux system (or see Recipe 1.13 and
Recipe 15.4) and are familiar with logging in, typing basic commands, and using a text
editor. You do not have to be root to use the vast majority of the recipes, though there
are a few, particularly dealing with installing bash, where root access will be needed.

xiv | Preface

About This Book

This book covers bash, the GNU Bourne Again Shell, which is a member of the Bourne
family of shells that includes the original Bourne shell sh, the Korn shell ksh, and the
Public Domain Korn Shell pdksh. While these and other shells such as dash, and zsh
are not specifically covered, odds are that most of the scripts will work pretty well with
them.

You should be able to read this book cover to cover, and also just pick it up and read
anything that catches your eye. But perhaps most importantly, we hope that when you
have a question about how to do something or you need a hint, you will be able to
easily find the right answer—or something close enough—and save time and effort.

A great part of the Unix philosophy is to build simple tools that do one thing well, then
combine them as needed. This combination of tools is often accomplished via a shell
script because these commands, called pipelines, can be long or difficult to remember
and type. Where appropriate, we'll cover the use of many of these tools in the context
of the shell script as the glue that holds the pieces together to achieve the goal.

This book was written using OpenOffice.org Writer running on whatever Linux or
Windows machine happened to be handy, and kept in Subversion (see Appendix D).
The nature of the Open Document Format facilitated many critical aspects of writing
this book, including cross-references and extracting code (see Recipe 13.17).

GNU Software

bash, and many of the tools we discuss in this book, are part of the GNU Project (http:
www.gnu.org/). GNU (pronounced guh-noo, like canoe) is a recursive acronym for
"GNU's Not Unix" and the project dates back to 1984. Its goal is to develop a free (as
in freedom) Unix-like operating system.

Without getting into too much detail, what is commonly referred to as Linux is, in fact,
akernel with various supporting software as a core. The GNU tools are wrapped around
it and it has a vast array of other software possibly included, depending on your dis-
tribution. However, the Linux kernel itself is not GNU software.

The GNU project argues that Linux should in fact be called "GNU/Linux" and they
have a good point, so some distributions, notably Debian, do this. Therefore GNU's
goal has arguably been achieved, though the result is not exclusively GNU.

The GNU project has contributed a vast amount of superior software, notably including
bash, but there are GNU versions of practically every tool we discuss in this book. And
while the GNU tools are more rich in terms of features and (usually) friendliness, they
are also sometimes a little different. We discuss this in Recipe 15.3, though the com-
mercial Unix vendors in the 1980s and 1990s are also largely to blame for these differ-
ences.

Preface | xv

http://www.gnu.org/
http://www.gnu.org/

Enough (several books this size worth) has already been said about all of these aspects
of GNU, Unix, and Linux, but we felt that this brief note was appropriate. See http://
www.gnu.org for much more on the topic.

A Note About Code Examples

When we show an executable piece of shell scripting in this book, we typically show it
in an offset area like this:

$ 1s

a.out cong.txt def.conf file.txt more.txt zebra.list

$

The first character is often a dollar sign ($) to indicate that this command has been
typed at the bash shell prompt. (Remember that you can change the prompt, as in
Recipe 16.2, so your prompt may look very different.) The prompt is printed by the
shell; you type the remainder of the line. Similarly, the last line in such an example is
often a prompt (the $ again), to show that the command has ended execution and
control has returned to the shell.

The pound or hash sign (#) is a little trickier. In many Unix or Linux files, including
bash shell scripts, a leading # denotes a comment, and we have used it that way in
some out our code examples. But as the trailing symbol in a bash command prompt
(instead of $), # means you are logged in as root. We only have one example that is
running anything as root, so that shouldn't be confusing, but it's important to under-
stand.

When you see an example without the prompt string, we are showing the contents of
a shell script. For several large examples we will number the lines of the script, though
the numbers are not part of the script.

We may also occasionally show an example as a session log or a series of commands.
In some cases, we may cat one or more files so you can see the script and/or data files
we'll be using in the example or in the results of our operation.

$ cat data_file

static header line1

static header line2

1 foo

2 bar

3 baz

Many of the longer scripts and functions are available to download as well. See the end
of this Preface for details. We have chosen to use #!/usr/bin/env bash for these exam-
ples, where applicable, as that is more portable than the #!/bin/bash you will see on
Linux or a Mac. See Recipe 15.1 for more details.

Also, you may notice something like the following in some code examples:

cookbook filename: snippet name

xvi | Preface

http://www.gnu.org
http://www.gnu.org

That means that the code you are reading is available for download on our site (http:/
www.bashcookbook.com). The download (.tgz or .zip) is documented, but you'll find
the code in something like ./chXX/snippet_name, where chXX is the chapter and snip-
pet_name is the name of the file.

Useless Use of cat

Certain Unix users take a positively giddy delight in pointing out inefficiencies in other
people's code. Most of the time this is constructive criticism gently given and gratefully
received.

Probably the most common case is the so-called "useless use of cat award" bestowed
when someone does something like cat file | grep foo instead of simply grep foo
file. In this case, cat is unnecessary and incurs some system overhead since it runs in
a subshell. Another common case would be cat file | tr '[A-Z]' '[a-z]' instead of
tr '[A-Z]' '[a-z]' < file.Sometimes using cat can even cause your script to fail (see
Recipe 19.8).

But... (you knew that was coming, didn't you?) sometimes unnecessarily using cat ac-
tually does serve a purpose. It might be a placeholder to demonstrate the fragment of
a pipeline, with other commands later replacing it (perhaps even cat -n). Or it might
be that placing the file near the left side of the code draws the eye to it more clearly
than hiding it behind a < on the far right side of the page.

While we applaud efficiency and agree it is a goal to strive for, it isn't as critical as it
once was. We are not advocating carelessness and code-bloat, we're just saying that
processors aren't getting any slower any time soon. So if you like cat, use it.

A Note About Perl

We made a conscious decision to avoid using Perl in our solutions as much as possible,
though there are still a few cases where it makes sense. Perl is already covered elsewhere
in far greater depth and breadth than we could ever manage here. And Perl is generally
much larger, with significantly more overhead, than our solutions. There is also a fine
line between shell scripting and Perl scripting, and this is a book about shell scripting.

Shell scripting is basically glue for sticking Unix programs together, whereas Perl in-
corporates much of the functionality of the external Unix programs into the language
itself. This makes it more efficient and in some ways more portable, at the expense of
being different, and making it harder to efficiently run any external programs you still
need.

The choice of which tool to use often has more to do with familiarity than with any
other reason. The bottom line is always getting the work done; the choice of tools is
secondary. We'll show you many of ways to do things using bash and related tools.
When you need to get your work done, you get to choose what tools you use.

Preface | xvii

http://www.bashcookbook.com
http://www.bashcookbook.com

More Resources

* Perl Cookbook, Nathan Torkington and Tom Christiansen (O'Reilly)

* Programming Perl, Larry Wall et al. (O'Reilly)

* Perl Best Practices, Damian Conway (O'Reilly)

* Mastering Regular Expressions, Jeffrey E. F. Friedl (O'Reilly)

* Learning the bash Shell, Cameron Newham (O'Reilly)

* Classic Shell Scripting, Nelson H.F. Beebe and Arnold Robbins (O'Reilly)

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain Text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

W
\
- This icon signifies a tip, suggestion, or general note.
LA
[N
)

This icon indicates a warning or caution.

xviii | Preface

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "bash Cookbook by Carl Albing, JP Vossen,
and Cameron Newham. Copyright 2007 O'Reilly Media, Inc., 978-0-596-52678-8."

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
9780596526788.

You can find information about this book, code samples, errata, links, bash documen-
tation, and more at the authors' site, hitp://www.bashcookbook.com.

Please drop by for a visit to learn, contribute, or chat. The authors would love to hear
from you about what you like and don't like about the book, what bash wonders you
may have found, or lessons you have learned. To comment or ask technical questions
about this book, send email to bookquestions@oreilly.com.

For more information about our books, conferences, Resource Centers, and the O'Reil-
ly Network, see our web site at http://www.oreilly.com.

Preface | xix

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596526788
http://www.oreilly.com/catalog/9780596526788
http://www.bashcookbook.com
mailto:bookquestions@oreilly.com.
http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments

Thank you to the GNU Software Foundation and Brian Fox for writing bash. And thank
you to Chet Ramey, who has been maintaining and improving bash since around ver-
sion 1.14 in the early to mid-1990s. More thanks to Chet for answering our questions
and for reviewing a draft of this book.

Reviewers

Many thanks to our reviewers: Yves Eynard, Chet Ramey, William Shotts, Ryan Wal-
dron, and Michael Wang. They all provided valuable feedback, suggestions and in some
cases provided alternate solutions, pointed out issues we had overlooked, and in general
greatly improved the book. Any errors or omissions in this text are ours and not theirs.
An excellent example of their wisdom is the correct observation, "that sentence doesn't
know whether it's coming or going!"

0'Reilly
Thanks to the entire team at O'Reilly, including Mike Loukides, Derek Di Matteo, and
Laurel Ruma.

From the Authors

Carl

The writing of a book is never a solitary effort, though it has its moments. Thanks to
JP and Cameron for working on this project with me. Our complementary talents and
time schedules have made this a better book than it could have been alone. Thanks also
to JP for his great sysadmin efforts to provide us with some infrastructure. Thanks to
Mike for listening to my proposal for a bash cookbook and putting me in touch with
JP and Cameron who were doing the same, for pushing us along when we got stuck,
and reining us in when we went crazy. His steady guidance and technical input were
much appreciated. My wife and children have patiently sup-ported me through this
process, giving me encouragement, motivation, as well as time and space to work. I
thank them wholeheartedly.

xx | Preface

http://safari.oreilly.com

But deeper than the immediate task of this book was the background and preparation.
I'm greatly indebted to Dr. Ralph Bjork who made it possible for me to start working
with Unix, back before almost anyone had ever heard of it. His vision, fore-sight, and
guidance have paid dividends for me longer than I would ever have expected.

My work on this book is dedicated to my parents, Hank and Betty, who have given me
every good thing they had to offer—life itself, Christian faith, love, an excellent edu-
cation, a sense of belonging, and all those good and healthy things one hopes to pass
on to one's own children. I can never thank them enough.

JP

Thanks to Cameron for writing Learning the bash Shell, from which I learned a lot and
which was my primary reference until I started this project, and for contributing so
much useful material from it. Thanks to Carl for all his work, without whom this would
have taken four times as long and only been half as good. Thanks to Mike for getting
the ball rolling, then keeping it rolling, and for bringing Carl on board. And thanks to
both Carl and Mike for their patience with my life and time management issues.

This book is dedicated to Dad, who'd get a kick out of it. He always told me there are
only two decisions that matter: what you do and who you marry. I've managed to get
two for two, so I guess I'm doing pretty well. So this is also dedicated to Karen, for her
incredible support, patience, and understanding during this longer than expected pro-
cess and without whom even computers wouldn't be as fun. Finally, to Kate and Sam,
who contributed greatly to my aforementioned life management issues.

Cameron

I'd like to thank both JP and Carl for their splendid work, without which this book
probably wouldn't exist. I'd also like to thank JP for coming up with the idea of creating
a bash cookbook; I'm sure he was regretting it through all those long hours at the
keyboard, but with the tome complete in his hands I'm certain that he's glad he took
part. Lastly, I'd like to once again thank Adam.

Preface | xxi

CHAPTER 1
Beginning bash

What's a shell, and why should you care about it?

Any recent computer operating system (by recent, we mean since about 1970) has some
sort of user interface—some way of specifying commands for the operating system to
execute. But in lots of operating systems, that command interface was really built in
and there was only one way to talk to the computer. Furthermore, an operating system's
command interface would let you execute commands, but that was about all. After all,
what else was there to do?

The Unix operating system popularized the notion of separating the shell (the part of
the system that lets you type commands) from everything else: the input/output system,
the scheduler, memory management, and all of the other things the operating system
takes care of for you (and that most users don't want to care about). The shell was just
one more program; it was a program whose job was executing other programs on behalf
of users.

But that was the beginning of a revolution. The shell was just another program that ran
on Unix, if you didn't like the standard one, you could create your own. So by the end
of Unix's first decade, there were at least two competing shells: the Bourne Shell, sh
(which was a descendant of the original Thomson shell), plus the C Shell, csh. By the
end of Unix's second decade, there were a few more alternatives: the Korn shell,
(ksh), and the first versions of the bash shell (bash). By the end of Unix's third decade,
there were probably a dozen different shells.

You probably don't sit around saying "should I use csh or bash or ksh today?" You're
probably happy with the standard shell that came with your Linux (or BSD or Mac OS
X or Solaris or HP/UX) system. But disentangling the shell from the operating system
itself made it much easier for software developers (such as Brian Fox, the creator of
bash, and Chet Ramey, the current developer and maintainer of bash), to write better
shells—you could create a new shell without modifying the operating system itself. It
was much easier to get a new shell accepted, since you didn't have to talk some operating
vendor into building the shell into their system; all you had to do was package the shell
so that it could be installed just like any other program.

Still, that sounds like a lot of fuss for something that just takes commands and executes
them. And you would be right—a shell that just let you type commands wouldn't be very
interesting. However, two factors drove the evolution of the Unix shell: user conve-
nience and programming. And the result is a modern shell that does much more than
just accept commands.

Modern shells are very convenient. For example, they remember commands that you've
typed, and let you re-use those commands. Modern shells also let you edit those com-
mands, so they don't have to be the same each time. And modern shells let you define
your own command abbreviations, shortcuts, and other features. For an experienced
user, typing commands (e.g., with shorthand, shortcuts, command completion) is a lot
more efficient and effective than dragging things around in a fancy windowed interface.

But beyond simple convenience, shells are programmable. There are many sequences
of commands that you type again and again. Whenever you do anything a second time,
you should ask "Can't I write a program to do this for me?" You can. A shell is also a
programming language that's specially designed to work with your computer system's
commands. So, if you want to generate a thousand MP3 files from WAV files, you write
a shell program (or a shell script). If you want to compress all of your system's logfiles,
you can write a shell script to do it. Whenever you find yourself doing a task repeatedly,
you should try to automate it by writing a shell script. There are more powerful scripting
languages, like Perl, Python, and Ruby, but the Unix shell (whatever flavor of shell
you're using) is a great place to start. After all, you already know how to type commands;
why make things more complex?

0 Why bash?

Why is this book about bash, and not some other shell? Because bash is everywhere. It
may not be the newest, and it's arguably not the fanciest or the most powerful (though
if not, it comes close), nor is it the only shell that's distributed as open source software,
but it is ubiquitous.

The reason has to do with history. The first shells were fairly good programing tools,
but not very convenient for users. The C shell added a lot of user conveniences (like
the ability to repeat a command you just typed), but as a programming language it was
quirky. The Korn shell, which came along next (in the early 80s), added a lot of user
conveniences, and improved the programming language, and looked like it was on the
path to widespread adoption. But ksh wasn't open source software at first; it was a
proprietary software product, and was therefore difficult to ship with a free operating
system like Linux. (The Korn shell's license was changed in 2000, and again in 2005.)

In the late 1980s, the Unix community decided standardization was a good thing, and
the POSIX working groups (organized by the IEEE) were formed. POSIX standardized
the Unix libraries and utilities, including the shell. The standard shell was primarily
based on the 1988 version of the Korn Shell, with some C shell features and a bit of

2 | Chapter1: Beginning bash

invention to fill in the gaps. bash was begun as part of the GNU project's effort to
produce a complete POSIX system, which naturally needed a POSIX shell.

bash provided the programming features that shell programmers needed, plus the con-
veniences that command-line users liked. It was originally conceived as an alternative
to the Korn shell, but as the free software movement became more important, and as
Linux became more popular, bash quickly overshadowed ksh.

As a result, bash is the default user shell on every Linux distribution we know about
(there are a few hundred Linux distros, so there are probably a few with some oddball
default shell), as well as Mac OS X. It's also available for just about every other Unix
operating system, including BSD Unix and Solaris. In the rare cases where bash doesn't
ship with the operating system, it's easy to install. It's even available for Windows (via
Cygwin). It's both a powerful programming language and a good user interface and
you won't find yourself sacrificing keyboard shortcuts to get elaborate programming
features.

You can't possibly go wrong by learning bash. The most common default shells are the
old Bourne shell and bash, which is mostly Bourne shell compatible. One of these shells
is certainly present on any modern, major Unix or Unix-like operating system. And as
noted, if bash isn't present you can always install it. But there are other shells. In the
spirit of free software, the authors and maintainers of all of these shells share ideas. If
you read the bash change logs, you'll see many places where a feature was introduced
or tweaked to match behavior on another shell. But most people won't care. They'll use
whatever is already there and be happy with it. So if you are interested, by all means
investigate other shells. There are many good alternatives and you may find one you
like better—though it probably won't be as ubiquitous as bash.

0 The bash Shell

bash is a shell: a command interpreter. The main purpose of bash (or of any shell) is to
allow you to interact with the computer's operating system so that you can accomplish
whatever you need to do. Usually that involves launching programs, so the shell takes
the commands you type, determines from that input what programs need to be run,
and launches them for you. You will also encounter tasks that involve a sequence of
actions to perform that are recurring, or very complicated, or both. Shell programming,
usually referred to as shell scripting, allows you to automate these tasks for ease of use,
reliability, and reproducibility.

In case you're new to bash, we'll start with some basics. If you've used Unix or Linux
at all, you probably aren't new to bash—but you may not have known you were using
it. bash is really just a language for executing commands—so the commands you've
been typing all along (e.g., s, cd, grep, cat) are, in a sense, bash commands. Some of
these commands are built into bash itself; others are separate programs. For now, it
doesn't make a difference which is which.

0 The bash Shell | 3

We'll end this chapter with a few recipes on getting bash. Most systems come with
bash pre-installed, but a few don't. Even if your system comes with bash, it's always a
good idea to know how to get and install it—new versions, with new features, are
released from time to time.

If you're already running bash, and are somewhat familiar with it, you may want to go
straight to Chapter 2. You are not likely to read this book in order, and if you dip into
the middle, you should find some recipes that demonstrate what bash is really capable
of. But first, the basics.

1.1 Decoding the Prompt

Problem

You'd like to know what all the punctuation on your screen means.

Solution

All command-line shells have some kind of prompt to alert you that the shell is ready
to accept your input. What the prompt looks like depends on many factors including
your operating system type and version, shell type and version, distribution, and how
someone else may have configured it. In the Bourne family of shells, a trailing $ in the
prompt generally means you are logged in as a regular user, while a trailing # means
you are root. The root account is the administrator of the system, equivalent to the
System account on Windows (which is even more powerful than the Administrator
account), or the Supervisor account on Netware. root is all-powerful and can do any-
thing on a typical Unix or Linux system.

Default prompts also often display the path to the directory that you are currently in;
however, they usually abbreviate it. So a ~ means you are in your home directory. Some
default prompts may also display your username and the name of the machine you are
logged into. If that seems silly now, it won't when you're logged into five machines at
once possibly under different usernames.

Here is a typical Linux prompt for a user named jp on a machine called adams, sitting
in the home directory. The trailing $ indicates this is a regular user, not root.

jp@adams:~$

Here's the prompt after changing to the /tmp directory. Notice how ~, which really
meant /home/jp, has changed to /tmp.

jp@adams: /tmp$

Discussion

The shell's prompt is the thing you will see most often when you work at the command
line, and there are many ways to customize it more to your liking. But for now, it's

4 | Chapter1: Beginning bash

enough to know how to interpret it. Of course, your default prompt may be different,
but you should be able to figure out enough to get by for now.

There are some Unix or Linux systems where the power of root may be shared, using
commands like su and sudo. Or root may not even be all-powerful, if the system is
running some kind of mandatory access control (MAC) system such as the NSA's SE-
Linux.

See Also

* Recipe 1.2

¢ Recipe 14.19
* Recipe 16.2
* Recipe 17.15

1.2 Showing Where You Are

Problem

You are not sure what directory you are in, and the default prompt is not helpful.

Solution

Use the pwd built-in command, or set a more useful prompt (as in Recipe 16.2). For
example:

bash-2.03$ pwd
/tmp

bash-2.03$ export PS1='[\u@\h \w]$ '
[jp@solaris8 /tmp]$

Discussion

pwd stands for print working directory and takes two options. -L displays your logical
path and is the default. -P displays your physical location, which may differ from your
logical path if you have followed a symbolic link.The ¢d command also provides the -
P and -L switches.

bash-2.03% pwd
/tmp/dir2

bash-2.03$% pwd -L
/tmp/dir2

bash-2.03$ pwd -P
/tmp/dir1

1.2 Showing Where YouAre | 5

See Also
* Recipe 16.2

1.3 Finding and Running Commands

Problem

You need to find and run a particular command under bash.

Solution

Try the type, which, apropos, locate, slocate, find, and Is commands.

Discussion

bash keeps a list of directories in which it should look for commands in an environment
variable called $PATH. The bash built-in type command searches your environment (in-
cluding aliases, keywords, functions, built-ins, and files in the $PATH) for executable
commands matching its arguments and displays the type and location of any matches.
It has several arguments, notably the -a flag, which causes it to print all matches instead
of stopping at the first one. The which command is similar but only searches your
$PATH (and csh aliases). It may vary from system to system (it's usually a csh shell script
on BSD, but a binary on Linux), and usually has a -a flag like type. Use these commands
when you know the name of a command and need to know exactly where it's located,
or to see if it's on this computer. For example:

$ type which
which is hashed (/usr/bin/which)

$ type 1ls
1s is aliased to “1s -F -h'

$ type -a 1s
1s is aliased to “1s -F -h'
1s is /bin/ls

$ which which
Jusr/bin/which

Almost all commands come with some form of help on how to use them. Usually there
is online documentation called manpages, where "man" is short for manual. These are
accessed using the man command, so man 1s will give you documentation about the
Is command. Many programs also have a built-in help facility, accessed by providing a
"help me" argument such as -h or --help. Some programs, especially on other operating
systems, will give you help if you don't give them arguments. Some Unix commands
will also do that, but a great many of them will not. This is due to the way that Unix
commands fit together into something called pipelines, which we'll cover later. But what

6 | Chapter1: Beginning bash

if you don't know or can't remember the name of the command you need? apropos
searches manpage names and descriptions for regular expressions supplied as argu-
ments. This is incredibly useful when you don't remember the name of the command
you need. This is the same as man -k.

$ apropos music
cms (4) - Creative Music System device driver

$ man -k music

cms (4) - Creative Music System device driver
locate and slocate consult database files about the system (usually compiled and up-
dated by a cron job) to find files or commands almost instantly. The location of the
actual database files, what is indexed therein, and how often it is checked, may vary
from system to system. Consult your system's manpages for details. slocate stores per-
mission information (in addition to filenames and paths) so that it will not list programs
to which the user does not have access. On most Linux systems, locate is a symbolic
link to slocate; other systems may have separate programs, or may not have slocate at all.

$ locate apropos

/usr/bin/apropos
/usr/share/man/de/man1/apropos.1.gz
/usr/share/man/es/man1/apropos.1.gz
/usr/share/man/it/man1/apropos.1.gz
/usr/share/man/ja/man1/apropos.1.gz
/usr/share/man/man1/apropos.1.gz

For details on the find command, see all of Chapter 9.

Last but not least, try using Is also. Remember if the command you wish to run is in
your current directory, you must prefix it with a ./ since the current working directory
is usually not in your $PATH for security reasons (see Recipe 14.3 and Recipe 14.10).

See Also
* help type

* man which

* man apropos
* man locate

* man slocate
* man find

* manls

* Chapter 9

* Recipe 4.1

¢ Recipe 14.10

1.3 Finding and Running Commands | 7

1.4 Getting Information About Files

Problem

You need more information about a file, such as whatitis, who ownsiit, if it's executable,
how many hard links it has, or when it was last accessed or changed.

Solution
Use the Is, stat, file, or find commands.
$ touch /tmp/sample_file

$ 1s /tmp/sample file
/tmp/sample file

$ 1s -1 /tmp/sample_file
-Tw-r--r-- 1 jp jp 0 Dec 18 15:03 /tmp/sample file

$ stat /tmp/sample file
File: "/tmp/sample file"

Size: 0 Blocks: 0 I0 Block: 4096 Regular File
Device: 303h/771d Inode: 2310201 Links: 1
Access: (0644/-tw-1--1--) Uid: (501/ jp) Gid: (501/ jp)

Access: Sun Dec 18 15:03:35 2005
Modify: Sun Dec 18 15:03:35 2005
Change: Sun Dec 18 15:03:42 2005

$ file /tmp/sample file
/tmp/sample_file: empty

$ file -b /tmp/sample_file
empty

$ echo '#!/bin/bash -' > /tmp/sample file

$ file /tmp/sample file
/tmp/sample file: Bourne-Again shell script text executable

$ file -b /tmp/sample file
Bourne-Again shell script text executable

For much more on the find command, see all of Chapter 9.

Discussion

The command 1s shows only filenames, while -1 provides more details about each file.
Is has many options; consult the manpage on your system for the ones it supports.
Useful options include:ls

-a
Do not hide files starting with . (dot)

8 | Chapter1: Beginning bash

-F
Show the type of file with one of these trailing type designators: /*@%=|
-l
Long listing
-L
Show information about the linked file, rather than the symbolic link itself
-Q

Quote names (GNU extension, not supported on all systems)

-7
Reverse sort order
-R
Recurse though subdirectories
-S
Sort by file size
-1

Short format but only one file per line

When using -F a slash (/) indicates a directory, an asterisk (*) means the file is exe-
cutable, an at sign (@) indicates a symbolic link, a percent sign (%) shows a whiteout,
an equal sign (=) is a socket, and a pipe or vertical bar () is a FIFO.

stat, file, and find all have many options that control the output format; see the man-
pages on your system for supported options. For example, these options produce out-
put that is similar to 1s -1:

$ 1s -1 /tmp/sample_file
-mw-r--r-- 1 jp jp 14 Dec 18 15:04 /tmp/sample_file

$ stat -c'%A %h %U %G %s %y %n' /tmp/sample file
-rw-r--r-- 1 jp jp 14 Sun Dec 18 15:04:12 2005 /tmp/sample_file

$ find /tmp/ -name sample file -printf '%m %n %u %g %t %p'

644 1 jp jp Sun Dec 18 15:04:12 2005 /tmp/sample file
Not all operating systems and versions have all of these tools. For example, Solaris does
not include stat by default.

It is also worth pointing out that directories are nothing more than files that the oper-
ating system knows to treat specially. So the commands above work just fine on direc-
tories, though sometimes you may need to modify a command to get the behavior you
expect. For example, using 1s -d to list information about the directory, rather than
just 1s (listing the contents of the directory).

See Also

e manls

1.4 Getting Information About Files | 9

* man stat
¢ man file

* man find
e Chapter 9

1.5 Showing All Hidden (dot) Files in the Current Directory

Problem

You want to see only hidden (dot) files in a directory to edit a file you forget the name
of or remove obsolete files. 1s -a shows all files, including normally hidden ones, but
that is often too noisy, and 1s -a.* doesn't do what you think it will.

Solution

Use 1s-d along with whatever other criteria you have.
ls -d .*
1s -d .b*
1s -d .[!.]*
Or construct your wildcard in such a way that . and .. don't match.

$ grep -1 'PATH' ~/.[!.]*
/home/jp/.bash_history
/home/jp/.bash_profile

Discussion

Due to the way the shell handles file wildcards, the sequence .* does not behave as you
might expect or desire. The way filename expansion or globbing works is that any string
containing the characters *, ?, or [is treated as a pattern, and replaced by an alphabet-
ically sorted list of file names matching the pattern. * matches any string, including the
null string, while ? matches any single character. Characters enclosed in [] specify a list
orrange of characters, any of which will match. There are also various extended pattern-
matching operators that we're not going to cover here (see "Pattern-Matching Charac-
ters" and "extglob Extended Pattern-Matching Operators" in Appendix A). So *.txt
means any file ending in .txt, while *txt means any file ending in txt (no dot). f?20 would
match foo or fao but not fooo. So you'd think that .* would match any file beginning
with a dot.

The problem is that .* is expanded to include . and .., which are then both displayed.
Instead of getting just the dot files in the current directory, you get those files, plus all
the files and directories in the current directory (.), all the files and directories in the
parent directory (..), and the names and contents of any subdirectories in the current
directory that start with a dot. This is very confusing, to say the least.

10 | Chapter1: Beginning bash

You can experiment with the same Is command with -d and without, then try echo.”.
The echo trick simply shows you what the shell expanded your .* to. Try echo.[!.]*also.

.[1.]* is a filename expansion pattern where [] denotes a list of characters to match, but
the leading ! negates the list. So we are looking for a dot, followed by any character that
is not a dot, followed by any number of any characters. You may also use ™ to negate
a character class, but ! is specified in the POSIX standard and thus is more portable.

11" will miss a file named ..foo. You could add something like .??* to
% match anything starting with a dot that is also at least three characters
long. But 1s -d .[!.]* .2?* will then display anything that matches both
patterns twice. Or you can use .??* alone, but that will miss files

like .a. Which you use depends on your needs and environment; there
is no good one-size-fits-all solution.

$ touch ..foo .a .normal_dot file normal file

$1s -a
. ..foo .a .normal_dot file normal file

$1s -d .22*%
..foo .normal_dot_file

$1s -d .[!.]*
.a .normal_dot_file

$1s -d .[!.]* .22% | sort -u
..foo

.a
.normal_dot_file

You can use echo * as an emergency substitute for Is if the Is command
is corrupt or not available for some reason. This works because * is ex-
panded by the shell to everything in the current directory, which results
in a list similar to what you'd get with 1s.

See Also

* manls

* http://www.gnu.org/software/coreutils/faq/#ls-_002da-_002a-does-not-list-dot
~files

e Section 2.11 in http://www.fags.org/faqs/unix-faq/faq/part2

* "Pattern Matching Characters" in Appendix A

* "extglob Extended Pattern-Matching Operators" in Appendix A

1.5 Showing All Hidden (dot) Files in the Current Directory | 11

http://www.gnu.org/software/coreutils/faq/#ls-_002da-_002a-does-not-list-dot-files
http://www.gnu.org/software/coreutils/faq/#ls-_002da-_002a-does-not-list-dot-files
http://www.faqs.org/faqs/unix-faq/faq/part2

1.6 Using Shell Quoting

Problem

You need a rule of thumb for using command-line quoting.

Solution

Enclose a string in single quotes unless it contains elements that you want the shell to
interpolate.

Discussion

Unquoted text and even text enclosed in double quotes is subject to shell expansion
and substitution. Consider:

$ echo A coffee is $5?!
A coffee is ?!

$ echo "A coffee is $5?1"
-bash: !": event not found

$ echo 'A coffee is $5?!"'
A coffee is $5?!

In the first example, $5 is treated as a variable to expand, but since it doesn't exist it is
set to null. In the second example, the same is true, but we never even get there be-
cause !" is treated as a history substitution, which fails in this case because it doesn't
match anything in the history. The third example works as expected.

To mix some shell expansions with some literal strings you may use the shell escape
character \ or change your quoting. The exclamation point is a special case because the
preceding backslash escape character is not removed. You can work around that by
using single quotes or a trailing space as shown here.

$ echo 'A coffee is $5 for' "$USER" '?!'
A coffee is $5 for jp ?!

$ echo "A coffee is \$5 for $USER?\!"
A coffee is $5 for jp?\!

$ echo "A coffee is \$5 for $USER?! "
A coffee is $5 for jp?!

Also, you can't embed a single quote inside single quotes, even if using a backslash,
since nothing (not even the backslash) is interpolated inside single quotes. But you can
work around that by using double quotes with escapes, or by escaping a single quote
outside of surrounding single quotes.

We'll get a continuation prompt since we now have unbalanced quotes

$ echo '$USER won't pay $5 for coffee.'
> ~C

12 | Chapter1: Beginning bash

WRONG
$ echo "$USER won't pay $5 for coffee."
jp won't pay for coffee.

Works
$ echo "$USER won't pay \$5 for coffee."
jp won't pay $5 for coffee.

Also works
$ echo 'I won'\''t pay $5 for coffee.'
I won't pay $5 for coffee.

See Also

* Chapter 5 for more about shell variable and the $VAR syntax

* Chapter 18 for more about ! and the history commands

1.7 Using or Replacing Built-ins and External Commands

Problem

You want to replace a built-in command with your own function or external command,
and you need to know exactly what your script is executing (e.g., /bin/echo or the built-
in echo). Or you've created a new command and it may be conflicting with an existing
external or built-in command.

Solution

Use the type and which commands to see if a given command exists and whether it is
built-in or external.

type cd
cd is a shell builtin

type awk
awk is /bin/awk

which cd
/usr/bin/which: no cd in (/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/
sbin:/usr/bin/X11:/usr/X11R6/bin:/root/bin)

which awk
/bin/awk

Discussion

A built-in command is just that; it is built into the shell itself, while an external com-
mand is an external file launched by the shell. The external file may be a binary, or it
may be a shell script itself, and its important to understand the difference for a couple

1.7 Using or Replacing Built-ins and External Commands | 13

of reasons. First, when you are using a given version of a particular shell, built-ins will
always be available but external programs may or may not be installed on a particular
system. Second, if you give one of your own programs the same name as a built-in, you
will be very confused about the results since the built-in will always take precedence
(see Recipe 19.4). It is possible to use the enable command to turn built-in commands
off and on, though we strongly recommend against doing so unless you are absolutely
sure you understand what you are doing. enable -a will list all built-ins and their en-
abled or disabled status.

One problem with built-in commands is that you generally can't use a -h or --help
option to get usage reminders, and if a manpage exists it's often just a pointer to the
large bash manpage. That's where the help command, which is itself a built-in, comes
in handy. help displays help about shell built-ins.
help help
help: help [-s] [pattern ...]
Display helpful information about builtin commands. If PATTERN is
specified, gives detailed help on all commands matching PATTERN,
otherwise a list of the builtins is printed. The -s option
restricts the output for each builtin command matching PATTERN to
a short usage synopsis.

When you need to redefine a built-in you use the builtin command to avoid loops. For
example:

cd () {
builtin cd "$@"
echo "$OLDPWD --> $PWD"

}

To force the use of an external command instead of any function or built-in that would
otherwise have precedence, use enable -n, which turns off shell built-ins, or com-
mand, which ignores shell functions. For example, to use the test found in $PATH instead
of the shell built-in version, type enable -n test and then run test. Or, use command
1s to use the native Is command rather than any Is function you may have created.

See Also

* man which

* help help

* help builtin

* help command

* help enable

* help type

* Recipe 19.4

* "Built-in Shell Variables" in Appendix A

14 | Chapter1: Beginning bash

1.8 Determining If You Are Running Interactively

Problem

You have some code you want to run only if you are (or are not) running interactively.

Solution

Use the following case statement:
#!/usr/bin/env bash
cookbook filename: interactive

case "$-" in
i) # Code for interactive shell here

Rl
*) # Code for non-interactive shell here
55
esac

Discussion

$- is a string listing of all the current shell option flags. It will contain 1 if the shell is
interactive.

You may also see code like the following (this will work, but the solution above is the
preferred method):

if ["$PS1"]; then

echo This shell is interactive
else

echo This shell is not interactive
fi

See Also

* help case
* help set

* Recipe 6.14, for more explanation of the case statement

1.9 Setting bash As Your Default Shell

Problem

You're using a BSD system, Solaris, or some other Unix variant for which bash isn't the
default shell. You're tired of starting bash explicitly all the time, and want to make
bash your default shell.

1.9 Setting bash As Your Default Shell | 15

Solution

First, make sure bash is installed. Try typing bash --version at a command line. If you
get a version, it's installed:
$ bash --version

GNU bash, version 3.00.16(1)-release (i386-pc-solaris2.10)
Copyright (C) 2004 Free Software Foundation, Inc.

If you don't see a version number, you may be missing a directory from your path. chsh
-1 or cat /etc/shells may give you a list of valid shells on some systems. Otherwise,
ask your system administrator where bash is, or if it can be installed.

chsh -1 provides a list of valid shells on Linux, but opens an editor and allows you to
change settings on BSD. -1 is not a valid option to chsh on Mac OS X, but just running
chshwill open an editor to allow you to change settings, and chpass -s shell will change
your shell.

If bash is installed, use the chsh -s command to change your default shell. For example,
chsh -s /bin/bash. If for any reason that fails try chsh, passwd -e, passwd -1
chpass,or usermod -s /usr/bin/bash. If you still can't change your shell ask your system
administrator, who may need to edit the /etc/passwd file. On most systems, /etc/
passwd will have lines of the form:

cam: pK1Z9BCIbzCrBNrkjRUUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
cc:kfDKDjfkeDIKIySFgIFWErrElpe/:502:100: Cheshire Cat:/home/cc:/bin/bash

As root, you can just edit the last field of the lines in the password file to the full path-
name of whatever shell you choose. If your system has a vipw command, you should
use it to ensure password file consistency.

Some systems will refuse to allow a login shell that is not listed in /etc/
: shells. If bash is not listed in that file, you will have to have your system

administrator add it.

Discussion

Some operating systems, notably the BSD Unixes, typically place bash in the /usr par-
tition. You may want to think twice about changing root's shell on such systems. If the
system runs into trouble while booting, and you have to work on it before /usr is
mounted, you've got a real problem: there isn't a shell for root to use. Therefore, it's
best to leave the default shell for root unchanged. However, there's no reason not to
make bash the default shell for regular user accounts. And it goes without saying that
it's bad practice to use the root account unless it's absolutely necessary. Use your regular
(user) account whenever possible. With commands like sudo, you should very rarely
need a root shell.

16 | Chapter1: Beginning bash

If all else fails, you can probably replace your existing login shell with bash using
exec, but this is not for the faint of heart. See "A7) How can I make bash my login shell?"
in the bash FAQ at fip://ftp.cwru.edu/pub/bash/FAQ.

See Also

* man chsh

* man passwd

* man chpass

* /etc/shells

* "A7) How can I make bash my login shell?" from ftp://ftp.cwru.edu/pub/bash/FAQ
* Recipe 14.19

¢ Recipe 14.13

1.10 Getting bash for Linux

Problem

You want to get bash for your Linux system, or you want to make sure you have the
latest version.

Solution

bash is included in virtually all modern Linux distributions. To make sure you have the
latest version available for your distribution, use the distribution's built-in packaging
tools. You must be root or have the root password to upgrade or install applications.

Some Linux distributions (notably Debian) include bash version 2.x as plain bash and
version 3.x as bash3, so you need to watch out for that. Table 1-1 lists the default
versions as of early 2007 (distributions update their repositories often, so versions might
have changed from this listing).

Table 1-1. Default Linux distributions

Distri- 2.xin base install 2.xin updates 3.xin base install 3.xin updates
bution

Debian 2.05a N/A N/A N/A

Woody

Debian 2.05b 3.1dfsg-8 (testing & un- 3.0-12(1)-release 3.00.16(1)-release
Sarge® stable)

Fedora bash-2.05b-31.i386.rpm bash-2.05b-34.i386.rpm N/A N/A

Core 1

Fedora bash-2.05b-38.i386.rpm N/A N/A N/A

Core2

1.10 Getting bash for Linux | 17

ftp://ftp.cwru.edu/pub/bash/FAQ
ftp://ftp.cwru.edu/pub/bash/FAQ

Distri-
bution

Fedora
Core3

Fedora
Core 4

Fedora
Core5

Fedora
Core 6

Knop-
pix3.9
&4.0.2

Man-
drake
92

Man-
drake
10.1¢

Man-
drake
10.2¢

Man-
driva
2006.0¢

Man-
driva
2007.0f

Open-
SUSE
10.0

Open-
SUSE
10.1

Open-
SUSE
10.2

SLED10
RG

RHEL
3.6,
Cent0S
3.6

2.xin base install

N/A

N/A

N/A

N/A

N/A

bash-2.05b-14mdk.i586.rpm

bash-2.05b-22mdk.i586.rpm

N/A

N/A

N/A

N/A

N/A

N/A

N/A

bash-2.05b.0(1)

2.xin updates

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

3.xin base install

bash-3.0-17.i386.rpm

bash-3.0-31.i386.rpm

bash-3.1-6.2.i386.rpm

bash-3.1-16.1.i386.rpm

3.0-15

N/A

N/A

bash-3.0-2mdk.i586.rpm

bash-3.0-6mdk.i586.rpm

bash-3.1-7mdv2007.0.i586.rpm

3.00.16(1)-release

3.1.16(1)-release

bash-3.1-55.i586.rpm

3.1.17(1)-release

N/A

3.xin updates

bash-3.0-18.i386.rpm

N/A

bash-3.1-9.fc5.1.i386.rpm

N/A

N/A

N/A

N/A

N/A

N/A

N/A

3.0.17(1)-release

N/A

N/A

N/A

N/A

18 | Chapter1: Beginning bash

Distri- 2.xin base install 2.xin updates 3.xin base install 3.xin updates
bution

RHEL N/A N/A 3.00.15(1)-release N/A
4.4,

(Cent0S

44

MEPIS N/A N/A 3.0-14 N/A
331

Ubuntu N/A N/A 3.0.16(1) N/A
5.109

Ubuntu N/A N/A 3.1.17(1)-release N/A
6.06"

Ubuntu N/A N/A 3.1.17(1)-release N/A
6.10'

2 Debian Sarge: see also bash-builtins, bash-doc, bash-minimal, bash-static, bash3-doc

b Mandrake 9.2: bash-completion-20030821-3mdk.noarch.rpm, bash-doc-2.05b-14mdk.i586.rpm, bash1-1.14.7-31mdk.i586.rpm

¢ Mandrake 10.1: see also bash-completion-20040711-1mdk.noarch.rpm, bash-doc-2.05b-22mdk.i586.rpm, bash1-1.14.7-31mdk.i586.rpm
d Mandrake 10.2: see also bash-completion-20050121-2mdk.noarch.rpm, bash-doc-3.0-2mdk.i586.rpm

& Mandriva 2006.0: see also bash-completion-20050721-1mdk.noarch.rpm, bash-doc-3.0-6mdk.i586.rpm

f Mandriva 2007.0: see also bash-completion-20060301-5mdv2007.0.noarch.rpm, bash-doc-3.1-7mdv2007.0.i586.rpm

9 Ubuntu: see also the bash-builtins, bash-doc, bash-static, and abs-guide packages

" Ubuntu: see also the bash-builtins, bash-doc, bash-static, and abs-guide packages

" Ubuntu6.10 symlinks dash to/bin/shinstead of bash as previous versions of Ubuntu and most other Linux distributions (https://wiki.ubuntu
.com/DashAsBinSh)

For Debian and Debian-derived systems such as Knoppix, Ubuntu, and MEPIS, make
sure your /etc/apt/sources.list file is pointing at an up-to-date Debian mirror; then use
the graphical Synaptic, kpackage, gnome-apt, or Add/Remove Programs tools, the ter-
minal-based aptitude tool, or from the command line:

apt-get update &8 apt-get install bash bash3 bash-builtins bash-doc bash3-doc
For Red Hat distributions, including Fedora Core (FC) and Red Hat Enterprise Linux
(RHEL), use the GUI Add/Remove Applications tool (if the GUI is missing from the

menus, at a command line for RHEL3 type redhat-config-packages & or for RHEL4
type system-config-packages &). For a command line only:

up2date install bash

For Fedora Core and CentOS, you may use the above RHEL directions or from the
command line:

yum update bash

For SUSE, use either the GUI or terminal version of YaST. You may also use the com-
mand-line RPM tool.

For Mandriva/Mandrake, use the GUI Rpmdrake tool or from the command line:

1.10 Getting bash for Linux | 19

https://wiki.ubuntu.com/DashAsBinSh
https://wiki.ubuntu.com/DashAsBinSh

urpmi bash

Discussion

It's impossible to cover every Linux distribution and difficult even to cover the major
ones, as they are all evolving rapidly. Fortunately, much of that evolution is in the area
of ease-of-use, so it should not be very difficult to figure out how to install software on
your distribution of choice.

When using Knoppix, Ubuntu, or other Live CDs, software updates and installations
will most likely fail due to the read-only media. Versions of such distributions that have
been installed to a hard disk should be updatable.

The apt-get update 83 apt-get install bash bash3 bash-builtins bash-doc bash3-
doc command above will generate errors on systems that do not provide a bash3 pack-
age. You may safely ignore such errors.

See Also

* http://wiki.linuxquestions.org/wiki/Installing_Software
* CentOS: http://www.centos.org/docs/3/rhel-sag-en-3/pt-pkg-management.html
* http://www.centos.org/docs/4/html/rhel-sag-en-4/pt-pkg-management.html

* Debian: http://www.debian.org/doc/, see the "APT HOWTO" and "dselect Docu-
mentation for Beginners"

* http://www.debianuniverse.com/readonline/chapter/06
* Fedora Core: http://fedora.redhat.com/docs/yum/

* Red Hat Enterprise Linux: https://www.redhat.com/docs/manuals/enterprise/RHEL
-3-Manual/sysadmin-guide/pt-pkg-management.html

o https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin
-guide/pt-pkg-management.html

* Mandriva: http://'www.mandriva.com/en/communitylusers/documentation

* http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/software-man
agement.html

* http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/ch19s05.html
* MEPIS (note about installing or removing applications): http://mepis.org/docs

* OpenSuSE: http://lwww.opensuse.org/Documentation

o http://lwww.opensuse.org/User_Documentation

* http://forge.novell.com/modules/xfmod/project/?yast

e Ubuntu: http://www.ubuntulinux.org/support/documentation/helpcenter_view

* Recipe 1.9

20 | Chapter1: Beginning bash

http://wiki.linuxquestions.org/wiki/Installing_Software
http://www.centos.org/docs/3/rhel-sag-en-3/pt-pkg-management.html
http://www.centos.org/docs/4/html/rhel-sag-en-4/pt-pkg-management.html
http://www.debian.org/doc/
http://www.debianuniverse.com/readonline/chapter/06
http://fedora.redhat.com/docs/yum/
https://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/sysadmin-guide/pt-pkg-management.html
https://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/sysadmin-guide/pt-pkg-management.html
https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/pt-pkg-management.html
https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/pt-pkg-management.html
http://www.mandriva.com/en/community/users/documentation
http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/software-management.html
http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/software-management.html
http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/ch19s05.html
http://mepis.org/docs
http://www.opensuse.org/Documentation
http://www.opensuse.org/User_Documentation
http://forge.novell.com/modules/xfmod/project/?yast
http://www.ubuntulinux.org/support/documentation/helpcenter_view

1.11 Getting bash for xBSD

Problem

You want to get bash for your FreeBSD, NetBSD, or OpenBSD system, or you want to
make sure you have the latest version.

Solution

To see if bash is installed, check the /etc/shells file. To install or update bash, use the
pkg_add command. If you are an experienced BSD user, you may prefer using the ports
collection, but we will not cover that here.

FreeBSD:
pkg_add -vr bash

For NetBSD, browse to Application Software for NetBSD at http://netbsd.org/Docu
mentation/software/ and locate the latest bash package for your version and architec-
ture, then use a command such as:

pkg_add -vu ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc-2005Q3/NetBSD-2.0/1386/
All/bash-3.0pl16nb3.tgz

For OpenBSD, you use the pkg_add -vr command. You may have to adjust the FTP
path for your version and architecture. Also, there may be a statically compiled version.
For example: ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1
-static.tgz.

pkg_add -vr ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1.tgz

Discussion

FreeBSD and OpenBSD place bash in /usr/local/bin/bash while NetBSD uses /usr/pkg/
bin/bash.

Interestingly, PC-BSD 1.2, a "rock-solid Unix operating system based on FreeBSD,"
comes with bash 3.1.17(0) in /usr/local/bin/bash, though the default shell is still csh.

See Also

* Recipe 1.9
* Recipe 15.4

1.12 Getting bash for Mac 0S X

Problem

You want to get bash for your Mac, or you want to make sure you have the latest version.

1.12 Getting bash for Mac0SX | 21

http://netbsd.org/Documentation/software/
http://netbsd.org/Documentation/software/
ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1-static.tgz
ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1-static.tgz

Solution

According to Chet Ramey's bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop
.html), Mac OS 10.2 (Jaguar) and newer ship with bash as /bin/sh. 10.4 (Tiger) has
version 2.05b.0(1)-release (powerpc-apple-darwin8.0). There are also precompiled OS
X packages of bash-2.05 available from many web sites. One such package isat HMUG.
Bash for Darwin (the base for Mac OS X) is available from Fink or DarwinPorts.

Discussion

It is also possible to build a more recent version of bash from source, but this is rec-
ommended only for experienced users.

See Also

o http:/ftiswww.tis.case.edu/~chet/bash/bashtop.html

o http://www.hmug.org/pub/MacOS_X/BSD/Applications/Shells/bash/
* http://fink.sourceforge.net/pdb/package.php/bash

* http://darwinports.opendarwin.org/ports.php’by=name&substr=bash

1.13 Getting bash for Unix

Problem

You want to get bash for your Unix system, or you want to make sure you have the
latest version.

Solution

Ifit's not already installed or in your operating system's program repository, check Chet
Ramey's bash page for binary downloads, or build it from source (see Appendix E).

Discussion

According to Chet Ramey's bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop
html):

Solaris 2.x, Solaris 7, and Solaris 8 users can get a precompiled version of bash-3.0 from
the Sunfreeware site. Sun ships bash-2.03 with Solaris 8 distributions, ships bash-2.05 as
asupported part of Solaris 9, and ships bash-3.0 as a supported part of Solaris 10 (directly
on the Solaris 10 CD).

AIX users can get precompiled versions of older releases of bash for various versions of
AIX from Groupe Bull, and sources and binaries of current releases for various AIX re-
leases from UCLA. IBM makes bash-3.0 available for AIX 5L as part of the AIX tool-box
for [GNU/]Linux applications. They use RPM format; you can get RPM for AIX from
there, too.

22 | Chapter1: Beginning bash

http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://www.hmug.org/pub/MacOS_X/BSD/Applications/Shells/bash/
http://fink.sourceforge.net/pdb/package.php/bash
http://darwinports.opendarwin.org/ports.php?by=name&substr=bash
http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://tiswww.tis.case.edu/~chet/bash/bashtop.html

SGI users can get an installable version of bash-2.05b from the SGI Freeware page.

HP-UX users can get bash-3.0 binaries and source code from the Software Porting and
Archive Center for HP-UX.

Tru64 Unix users can get sources and binaries for bash-2.05b from the HP/Compaq
Tru64 Unix Open Source Software Collection.

See Also
* http://tiswww.tis.case.edu/~chet/bash/bashtop.html

o http://www.sun.com/solaris/freeware.html

* http://aixpdslib.seas.ucla.edu/packages/bash.html

o http://'www.ibm.com/servers/aix/products/aixos/linux/index.html
* http://freeware.sgi.com/index-by-alpha.html

* http://hpux.cs.utah.edu/

* http://hpux.connect.org.uk/hppd/hpux/Shells/

* http://hpux.connect.org.uk/hppd/hpux/Shells/bash-3.00.16/

* http://h30097 . www3.hp.com/demos/ossc/html/bash.htm

* Recipe 1.9

* Appendix E

1.14 Getting bash for Windows

Problem

You want to get bash for your Windows system, or you want to make sure you have
the latest version.

Solution
Use Cygwin.

Download http://www.cygwin.com/setup.exe and run it. Follow the prompts and choose
the packages to install, including bash, which is located in the shells category and is
selected by default. As of early 2007, bash-3.1-6 and 3.2.9-11 are available.

Once Cygwin is installed, you will have to configure it. See the User Guide at http://
cygwin.com/cygwin-ug-net.
Discussion

From the Cygwin site:
What Is Cygwin

1.14 Getting bash for Windows | 23

http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://www.sun.com/solaris/freeware.html
http://aixpdslib.seas.ucla.edu/packages/bash.html
http://www.ibm.com/servers/aix/products/aixos/linux/index.html
http://freeware.sgi.com/index-by-alpha.html
http://hpux.cs.utah.edu/
http://hpux.connect.org.uk/hppd/hpux/Shells/
http://hpux.connect.org.uk/hppd/hpux/Shells/bash-3.00.16/
http://h30097.www3.hp.com/demos/ossc/html/bash.htm
http://www.cygwin.com/setup.exe
http://cygwin.com/cygwin-ug-net
http://cygwin.com/cygwin-ug-net

Cygwin is a Linux-like environment for Windows. It consists of two parts:
* ADLL (cygwinl.dll), which acts as a Linux API emulation layer providing substan-
tial Linux API functionality.
* A collection of tools, which provide Linux look and feel.

The Cygwin DLL works with all non-beta, non "release candidate," x86 32-bit ver-
sions of Windows since Windows 95, with the exception of Windows CE.

What Isn't Cygwin

* Cygwin is not a way to run native Linux apps on Windows. You have to rebuild
your application from source if you want to get it running on Windows.

* Cygwin is not a way to magically make native Windows apps aware of Unix func-
tionality (e.g., signals, ptys). Again, you need to build your apps from source if you
want to take advantage of Cygwin functionality.

Cygwin is a true Unix-like environment running on top of Windows. It is an excellent
tool, but sometimes it might be overkill. For Windows native binaries of the GNU Text
Utils (not including bash), see http://unxutils.sourceforge.net/.

Microsoft Services for Unix (http://www.microsoft.com/windowsserversystem/sfu/de
fault.mspx) may also be of interest, but note that it is not under active development
anymore, though it will be supported until at least 2011 (http://www.eweek.com/arti
cle2/0,1895,1855274,00.asp).

For powerful character-based and GUI command-line shells with a more consistent
interface, but a DOS/Windows flavor, see http://jpsoft.com/. None of the authors are
affiliated with this company, but one is a long-time satisfied user.

See Also

o http:/lwww.cygwin.com/

* http:/lunxutils.sourceforge.net/

o http://www.microsoft.com/windowsserversystem/sfu/default.mspx
* http://jpsoft.com/

o http://lwww.eweek.com/article2/0,1895,1855274,00.asp

1.15 Getting bash Without Getting bash

Problem

You want to try out a shell or a shell script on a system you don't have the time or the
resources to build or buy.

Or, you feel like reading a Zen-like recipe just about now.

24 | Chapter1: Beginning bash

http://unxutils.sourceforge.net/
http://www.microsoft.com/windowsserversystem/sfu/default.mspx
http://www.microsoft.com/windowsserversystem/sfu/default.mspx
http://www.eweek.com/article2/0,1895,1855274,00.asp
http://www.eweek.com/article2/0,1895,1855274,00.asp
http://jpsoft.com/
http://www.cygwin.com/
http://unxutils.sourceforge.net/
http://www.microsoft.com/windowsserversystem/sfu/default.mspx
http://jpsoft.com/
http://www.eweek.com/article2/0,1895,1855274,00.asp

Solution

Get a free or almost free shell account from HP, Polar Home, or another vendor.

Discussion

HP maintains a free "test drive" program that provides free shell accounts on many
operating systems on various HP hardware. See http://www.testdrive.hp.com/ for de-
tails.

Polar Home provides many free services and almost free shell accounts. According to
their web site:

polarhome.com is non commercial, educational effort for popularization of shell enabled
operating systems and Internet services, offering shell accounts, mail and other online
services on all available systems (currently on Linux, OpenVMS, Solaris, AIX, QNX,
IRIX, HP-UX, Tru64, FreeBSD, OpenBSD, NetBSD and OPENSTEP).

[...]

Note: this site is continuously under construction and running on slow lines and low
capacity servers that have been retired, therefore as a non commercial site user/visitor,
nobody should have too high expectations in any meaning of the word. Even if polar-
home.com does all to provide services on professional level, users should not expect more
than "AS-IS".

polarhome.com is a distributed site, but more than 90% of polarhome realm is located
in Stockholm, Sweden.

See Also

* List of free shell accounts: http://www.ductape.net/~mitja/freeunix.shtml
o http://lwww.testdrive.hp.com/os/
* http://lwww.testdrive.hp.com/faq/

* http://lwww.polarhome.com/

1.16 Learning More About bash Documentation

Problem

You'd like to read more about bash but don't know where to start.

Solution

Well you're reading this book, which is a great place to start! The other O'Reilly books
about bash and shell scripting are: Learning the bash Shell by Cameron Newham
(O'Reilly) and Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O'Reil-

ly).

1.16 Learning More About bash Documentation | 25

http://www.testdrive.hp.com/
http://www.ductape.net/~mitja/freeunix.shtml
http://www.testdrive.hp.com/os/
http://www.testdrive.hp.com/faq/
http://www.polarhome.com/

Unfortunately, the official bash documentation has not been easily accessible online—
until now! Previously, you had to download several different tarballs, locate all the files
that contain documentation, and then decipher the file names to find what you wanted.
Now, our companion web site (http://www.bashcookbook.com/) has done all this work
for you and provides the official bash reference documentation online so it's easy to
refer to. Check it out, and refer others to it as needed.

Official documentation

The official bash FAQ is at: ftp://ftp.cwru.edu/pub/bash/FAQ. See especially "H2) What
kind of bash documentation is there?" The official reference guide is also strongly rec-
ommended; see below for details.

Chet Ramey's (the current bash maintainer) bash page (called bashtop) contains a ton
of very useful information (http://tiswww.tis.case.edu/~chet/bash/bashtop.html). Chet
also maintains the following (listed in bashtop):

README
A file describing bash: http://tiswww.tis.case.edu/chet/bash/README
NEWS
A file tersely listing the notable changes between the current and previous versions:
http://tiswww.tis.case.edu/chet/bash/NEWS
CHANGES
A complete bash change history: http://tiswww.tis.case.edu/chet/bash/CHANGES
INSTALL
Installation instructions: http://tiswww.tis.case.edu/chet/bash/INSTALL
NOTES
Platform-specific configuration and operation notes: http://tiswww.tis.case.edu/
chet/bash/NOTES

COMPAT
Compatibility issues between bash3 and bash1: http://tiswww.tis.case.edu/~chet/
bash/COMPAT

The latest bash source code and documentation are always available at: http:/ftp.gnu
.org/gnu/bash/.

We highly recommend downloading both the source and the documentation even if
you are using prepackaged binaries. Here is a brief list of the documentation. See
Appendix B for an index of the included examples and source code. See the source
tarball's ./doc directory, for example: http://ftp.gnu.org/gnu/bash/bash-3.1.tar.gz/,
bash-3.1/doc:

FAQ
A set of frequently asked questions about bash with answers

26 | Chapter1: Beginning bash

http://www.bashcookbook.com/
ftp://ftp.cwru.edu/pub/bash/FAQ
http://tiswww.tis.case.edu/~chet/bash/bashtop.html
http://tiswww.tis.case.edu/chet/bash/README
http://tiswww.tis.case.edu/chet/bash/NEWS
http://tiswww.tis.case.edu/chet/bash/CHANGES
http://tiswww.tis.case.edu/chet/bash/INSTALL
http://tiswww.tis.case.edu/chet/bash/NOTES
http://tiswww.tis.case.edu/chet/bash/NOTES
http://tiswww.tis.case.edu/~chet/bash/COMPAT
http://tiswww.tis.case.edu/~chet/bash/COMPAT
http://ftp.gnu.org/gnu/bash/
http://ftp.gnu.org/gnu/bash/
http://ftp.gnu.org/gnu/bash/bash-3.1.tar.gz/

.INTRO

A short introduction to bash
article.ms

An article Chet wrote about bash for The Linux Journal
bash.1

The bash manpage
bashbug.1

The bashbug manpage
builtins. 1

A manpage that documents the built-ins extracted from bash.1
bashref.texi

The "bash reference manual"
bashref.info

The "bash reference manual" processed by "makeinfo"
rbash. 1

The restricted bash shell manpage

readline.3
The readline manpage

The .ps files are postscript versions of the above. The .html files are HTML versions of
the manpage and reference manual. The .0 files are formatted manual pages. The .txt
versions are ASCII—the output of groff -Tascii.

In the document tarball, for example: http://ftp.gnu.org/gnu/bash/bash-doc-3.1.tar.gz
,bash-doc-3.1:

.bash.0
The bash manpage (formatted) (also PDF, ps, HTML)

bashbug.0
The bashbug manpage (formatted)

bashref
The Bash Reference Guide (also PDF, ps, HTML, dvi)

builtins.0
The built-ins manpage (formatted)

.rbash.0
The restricted bash shell manpage (formatted)

Other documentation

* The Advanced Bash-Scripting Guide at http://www.tldp.org/LDP/abs/html/index
.html and http://www.tldp.org/LDP/abs/abs-guide.pdf

* Writing Shell Scripts at http://www.linuxcommand.org/writing_shell_scripts.php

1.16 Learning More About bash Documentation | 27

http://ftp.gnu.org/gnu/bash/bash-doc-3.1.tar.gz,bash-doc-3.1
http://ftp.gnu.org/gnu/bash/bash-doc-3.1.tar.gz,bash-doc-3.1
http://www.tldp.org/LDP/abs/html/index.html
http://www.tldp.org/LDP/abs/html/index.html
http://www.tldp.org/LDP/abs/abs-guide.pdf
http://www.linuxcommand.org/writing_shell_scripts.php

* BASH Programming — Introduction HOW-TO at http://www.tldp.org/HOWTO/
Bash-Prog-Intro-HOWTO. html

* Bash Guide for Beginners at http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
and http://'www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

* The Bash Prompt HOWTO at http://www.tldp.org/HOWTO/Bash-Prompt-HOW
TOlindex.html

* Very old, but still useful: UNIX shell differences and how to change your shell at
http://www.fags.org/faqs/unix-faq/shell/shell-differences/

* [Apple's] Shell Scripting Primer at hitp://developer.apple.com/documentation/Open
Source/Conceptual/ShellScripting/

See Also
* Appendix B

28 | Chapter1: Beginning bash

http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
http://www.faqs.org/faqs/unix-faq/shell/shell-differences/
http://developer.apple.com/documentation/OpenSource/Conceptual/ShellScripting/
http://developer.apple.com/documentation/OpenSource/Conceptual/ShellScripting/

CHAPTER 2
Standard Output

No software is worth anything if there is no output of some sort. But I/O (Input/ Out-
put) has long been one of the nastier areas of computing. If you're ancient, you re-
member the days most of the work involved in running a program was setting up the
program's input and output. Some of the problems have gone away; for example, you
no longer need to get operators to mount tapes on a tape drive (not on any laptop or
desktop system that I've seen). But many of the problems are still with us.

One problem is that there are many different types of output. Writing something on
the screen is different from writing something in a file—at least, it sure seems different.
Writing something in a file seems different from writing it on a tape, or in flash memory,
or on some other kind of device. And what if you want the output from one program
to go directly into another program? Should software developers be tasked with writing
code to handle all sorts of output devices, even ones that haven't been invented yet?
That's certainly inconvenient. Should users have to know how to connect the programs
they want to run to different kinds of devices? That's not a very good idea, either.

One of the most important ideas behind the Unix operating system was that everything
looked like a file (an ordered sequence of bytes). The operating system was responsible
for this magic. It didn't matter whether you were writing to a file on the disk, the
terminal, a tape drive, a memory stick, or something else; your program only needed
to know how to write to a file, and the operating system would take it from there. That
approach greatly simplified the problem. The next question was, simply, "which file?"
How does a program know whether to write to the file that represents a terminal win-
dow, a file on the disk, or some other kind of file? Simple: that's something that can be

left to the shell.

When you run a program, you still have to connect it to output files and input files
(which we'll see in the next chapter). That task doesn't go away. But the shell makes it
trivially easy. A command as simple as:

$ dosomething < inputfile > outputfile

29

reads its input from inputfile and sends its output to outputfile. If you omit > out
putfile, the output goes to your terminal window. If you omit <inputfile, the program
takes its input from the keyboard. The program literally doesn't know where its output
is going, or where its input is coming from. You can send the out-put anywhere you
want (including to another program) by using bash's redirection facilities.

But that's just the start. In this chapter, we'll look at ways to generate output, and the
shell's methods for sending that output to different places.

2.1 Writing Qutput to the Terminal/Window

Problem

You want some simple output from your shell commands.

Solution

Use the echo built-in command. All the parameters on the command line are printed
to the screen. For example:

echo Please wait.

produces

Please wait.

as we see in this simple session where we typed the command at the bash prompt
(the $ character):

$ echo Please wait.

Please wait.

$

Discussion

The echo command is one of the most simple of all bash commands. It prints the ar-
guments of the command line to the screen. But there are a few points to keep in mind.
First, the shell is parsing the arguments on the echo command line (like it does for every
other command line). This means that it does all its substitutions, wildcard matching,
and other things before handing the arguments off to the echo command. Second, since
they are parsed as arguments, the spacing between arguments is ignored. For example:

$ echo this was very widely spaced
this was very widely spaced
$

Normally the fact that the shell is very forgiving about white space between arguments
is a helpful feature. Here, with echo, it's a bit disconcerting.

30 | Chapter2: Standard Output

See Also

* help echo

* help printf

* Recipe 2.3

* Recipe 15.6

* Recipe 19.1

* "echo Options and Escape Sequences" in Appendix A
» "printf" in Appendix A

2.2 Writing Output but Preserving Spacing

Problem

You want the output to preserve your spacing.

Solution
Enclose the string in quotes. The previous example, but with quotes added, will pre-
serve our spacing.

$ echo "this was very widely spaced"”
this was very widely spaced

$
or:
$ echo 'this was very widely spaced'
this was very widely spaced
$
Discussion

Since the words are enclosed in quotes, they form a single argument to the echo com-
mand. That argument is a string and the shell doesn't need to interfere with the contents
of the string. In fact, by using the single quotes (") the shell is told explicitly not to
interfere with the string at all. If you use double quotes ("), some shell substitutions
will take place (variable and tilde expansions and command substitutions), but since
we have none in this example, the shell has nothing to change. When in doubrt, use the
single quotes.

See Also

* help echo
* help printf

* Chapter 5 for more information about substitution

2.2 Writing Output but Preserving Spacing | 31

* Recipe 2.3
* Recipe 15.6
¢ Recipe 19.11

* "echo Options and Escape Sequences" in Appendix A

2.3 Writing Output with More Formatting Control

Problem

You want more control over the formatting and placement of output.

Solution
Use the printf built-in command.

For example:

$ printf '%s = %d\n' Lines $LINES
Lines = 24

$

or:

$ printf '%-10.10s = %4.2f\n' 'GigaHerz' 1.92735
GigaHerz = 1.93
$

Discussion

The printf built-in command behaves like the C language library call, where the first
argument is the format control string and the successive arguments are formatted ac-
cording to the format specifications (%).

The numbers between the % and the format type (s or f in our example) provide ad-
ditional formatting details. For the floating-point type (f), the first number (4 in the
4.2 specifier) is the width of the entire field. The second number (2) is how many digits
should be printed to the right of the decimal point. Note that it rounds the answer.

For a string, the first digit is the maximum field width, and the second is the minimum
field width. The string will be truncated (if longer than max) or blank padded (if less
than min) as needed. When the max and min specifiers are the same, then the string is
guaranteed to be that length. The negative sign on the specifier means to left align the
string (within its field width). Without the minus sign, the string would right justify,
thus:

$ printf '%10.10s = %4.2f\n' 'GigaHerz' 1.92735

GigaHerz = 1.93
$

32 | Chapter2: Standard Output

The string argument can either be quoted or unquoted. Use quotes if you need to
preserve embedded spacing (there were no spaces needed in our one-word strings), or
if you need to escape the special meaning of any special characters in the string (again,
our example had none). It's a good idea to be in the habit of quoting any string that
you pass to printf, so that you don't forget the quotes when you need them.

See Also

* help printf
* http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

* Learning the bash Shell, Cameron Newham (O'Reilly), “See Also” on page 5, or
any C refer-ence on its printf function

* Recipe 15.6
¢ Recipe 19.11
» "printf" in Appendix A

2.4 Writing Output Without the Newline

Problem

You want to produce some output without the default newline that echo provides.

Solution

Using printf it's easy—just leave off the ending \n in your format string. With echo, use
the -n option.

$ printf "%s %s" next prompt
next prompt$

or:

$ echo -n prompt
prompt$

Discussion

Since there was no newline at the end of the printf format string (the first argument),
the prompt character ($) appears right where the printf left off. This feature is much
more useful in shell scripts where you may want to do partial output across several
statements before completing the line, or where you want to display a prompt to the
user before reading input.

With the echo command there are two ways to eliminate the newline. First, the -n option
suppresses the trailing newline. The echo command also has several escape sequences
with special meanings similar to those in C language strings (e.g., \n for newline). To

2.4 Writing Output Without the Newline | 33

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

use these escape sequences, you must invoke echo with the -e option. One of echo's
escape sequences is \c¢, which doesn't print a character, but rather inhibits printing the
ending newline. Thus, here's a third solution:

$ echo -e 'hi\c'

his
Because of the powerful and flexible formatting that printf provides, and because it is
a built-in with very little over head to invoke (unlike other shells or older versions of

bash, where printf was a standalone executable), we will use printf for many of our
examples throughout the book.

See Also

* help echo

* help printf

* http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
* See Chapter 3, particularly Recipe 3.5

¢ Recipe 2.3

* Recipe 15.6

¢ Recipe 19.11

* "echo Options and Escape Sequences" in Appendix A

* "printf" in Appendix A

2.5 Saving Output from a Command

Problem

You want to keep the output from a command by putting it in a file.

Solution

Use the > symbol to tell the shell to redirect the output into a file. For example:

$ echo fill it up

fill it up

$ echo fill it up > file.txt
$

Just to be sure, let's look at what is inside file.txt to see if it captured our output:

$ cat file.txt
fill it up
$

34 | Chapter2: Standard Output

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Discussion

The first line of the example shows an echo command with three arguments that are
printed out. The second line of code uses the > to capture that output into a file named
file.txt, which is why no output appears after that echo command.

The second part of the example uses the cat command to display the contents of the
file. We can see that the file contains what the echo command would have otherwise
sent as output.

The cat command gets its name from the longer word concatenation. The cat command
concatenates the output from the several files listed on its command line, as in: cat
file1 filetwo anotherfile morefiles—the contents of those files would be sent, one
after another, to the terminal window. If a large file had been split in half then it could
be glued back together (i.e., concatenated) by capturing the output into a third file:

$ cat first.half second.half > whole.file

So our simple command, cat file.txt, is really just the trivial case of concatenating
only one file, with the result sent to the screen. That is to say, while cat is capable of
more, its primary use is to dump the contents of a file to the screen.

See Also

* man cat
* Recipe 17.21

2.6 Saving Qutput to Other Files

Problem

You want to save the output with a redirect to elsewhere in the filesystem, not in the
current directory.

Solution

Use more of a pathname when you redirect the output.

$ echo some more data > /tmp/echo.out

or:

$ echo some more data > ../../over.here

Discussion

The filename that appears after the redirection character (the >) is actually a path-name.
If it begins with no other qualifiers, the file will be placed in the current directory.

2.6 Saving Output to Other Files | 35

If that filename begins with a slash (/) then this is an absolute pathname, and will be
placed where it specifies in the filesystem hierarchy (i.e., tree) beginning at the root
(provided all the intermediary directories exist and have permissions that allow you to
traverse them). We used /tmp since it is a well-known, universally available scratch
directory on virtually all Unix systems. The shell, in this example, will create the file
named echo.out in the /tmp directory.

Our second example, placing the output into ../../over.here, uses a relative path-name,
and the .. is the specially-named directory inside every directory that refers to the parent
directory. So each reference to .. moves up a level in the filesystem tree (toward the
root, not what we usually mean by up in a tree). The point here is that we can redirect
our output, if we want, into a file that is far away from where we are running the
command.

See Also

* Learning the bash Shell by Cameron Newham (O'Reilly), “See Also” on page 5,
“Problem” on page 4, “Discussion” on page 4, “See Also” on page 5 for an intro-
duction to files, directories, and the dot notation (i.e., . and ..)

2.7 Saving Output from the Is Command

Problem

You tried to save output from the Is command with a redirect, but when you look at
the resulting file, the format is not what you expected.

Solution
Use the -C option on Is when you redirect the output.

Here's the Is command showing the contents of a directory:

$ 1s
a.out cong.txt def.conf file.txt more.txt =zebra.list

$

But when we save the output with the > to redirect it to a file, and then show the file
contents, we get this:

$ 1s > /tmp/save.out
$ cat /tmp/save.out
a.out

cong.txt

def.conf

file.txt

more.txt.

zebra.list

$

36 | Chapter2: Standard Output

This time we'll use the -C option:

$ 1s -C > /tmp/save.out
$ cat /tmp/save.out
a.out cong.txt def.conf file.txt more.txt zebra.list

$

Alternatively, if we use the -1 option on Is when we don't redirect, then we get out-put
like this:

$1s -1
a.out
Cong.txt
def.conf.
file.txt
more.txt
save.out
zebra.list

$

Then the original attempt at redirection matches this output.

Discussion

Just when you thought that you understood redirection and you tried it on a simple
Is command, it didn't quite work right. What's going on here?

The shell's redirection is meant to be transparent to all programs, so programs don't
need special code to make their output redirect-able. The shell takes care of it when
you use the > to send the output elsewhere. But it turns out that code can be added to
a program to figure out when its output is being redirected. Then, the program can
behave differently in those two cases—and that's what Is is doing.

The authors of Is figured that if your output is going to the screen then you probably
want columnar output (-C option), as screen real estate is limited. But they assumed if
you're redirecting it to a file, then you'll want one file per line (the minus one -1 option)
since there are more interesting things you can do (i.e., other processing) that is easier
if each filename is on a line by itself.

See Also

e manls

* Recipe 2.6

2.7 Saving Output from the Is Command | 37

2.8 Sending Both Output and Error Messages to Different Files

Problem

You are expecting output from a program but you don't want it to get littered with error
messages. You'd like to save your error messages, but it's harder to find them mixed
among the expected output.

Solution

Redirect output and error messages to different files.

$ myprogram 1> messages.out 2> message.err

Or more commonly:

$ myprogram > messages.out 2> message.err

Discussion

This example shows two different output files that will be created by the shell. The
first, messages.out, will get all the output from the hypothetical myprogram redirected
into it. Any error messages from myprogram will be redirected into message.err.

In the constructs 1> and 2> the number is the file descriptor, so 1 is STDOUT and 2 is
STDERR. When no number is specified, STDOUT is assumed.
See Also

¢ Recipe 2.6
* Recipe 2.13

2.9 Sending Both Qutput and Error Messages to the Same File

Problem

Using redirection, you can redirect output or error messages to separate files, but how
do you capture all the output and error messages to a single file?

Solution

Use the shell syntax to redirect standard error messages to the same place as standard
output.

Preferred:
$ both >& outfile

or:

38 | Chapter2: Standard Output

$ both & outfile

or older and slightly more verbose:
$ both > outfile 2>&1

where both is just our (imaginary) program that is going to generate output to both
STDERR and STDOUT.

Discussion

&> or >& is a shortcut that simply sends both STDOUT and STDERR to the same
place—exactly what we want to do.

In the third example, the 1 appears to be used as the target of the redirection, but the
>& says to interpret the 1 as a file descriptor instead of a filename. In fact, the 2>8 are a
single entity, indicating that standard error (2) will be redirected (>) to a file descriptor
(8) that follows (1). The 2>& all have to appear together without spaces, otherwise the
2 would look just like another argument, and the & actually means something com-
pletely different when it appears by itself. (It has to do with running the command in
the background.)

It may help to think of all redirection operators as taking a leading number (e.g., 2>)
but that the default number for > is 1, the standard output file descriptor.

You could also do the redirection in the other order, though it is slightly less read-able,
and redirect standard output to the same place to which you have already redirected
standard error:

$ both 2> outfile 1>&2
The 1is used to indicate standard output and the 2 for standard error. By our reasoning
(above) we could have written just >&2 for that last redirection, since 1 is the default for

>, but we find it more readable to write the number explicitly when redirecting file
descriptors.

Note the order of the contents of the output file. Sometimes the error messages may
appear sooner in the file than they do on the screen. That has to do with the unbuffered
nature of standard error, and the effect becomes more pronounced when writing to a
file instead of the screen.

See Also

* Recipe 2.6
* Recipe 2.13

2.9 Sending Both Output and Error Messages to the Same File | 39

2.10 Appending Rather Than Clobbering Qutput

Problem

Each time you redirect your output, it creates that output file anew. What if you want
to redirect output a second (or third, or ...) time, and don't want to clobber the previous
output?

Solution

The double greater-than sign (>>) is a bash redirector that means append the output:

$ 1s > /tmp/ls.out
$ cd ../elsewhere
$ 1s >> /tmp/ls.out
$ cd ../anotherdir
$ 1s >> /tmp.ls.out
$

Discussion

The first line includes a redirect that removes the file if it exists and starts with a clean
(empty) file, filling it with the output from the Is command.

The second and third invocations of Is use the double greater than sign (>>) to indicate
appending to, rather than replacing, the output file.

See Also

* Recipe 2.6
* Recipe 2.13

2.11 Using Just the Beginning or End of a File

Problem

You need to display or use just the beginning or end of a file.

Solution

Use the head or tail commands. By default, head will output the first 10 lines and tail
will output the last 10 lines of the given file. If more than one file is given, the appropriate
lines from each of them are output. Use the -number switch (e.g., -5) to change the
number of lines. tail also has the -f and -F switches, which follow the end of the file as
it is written to. And it has an interesting + switch that we cover in Recipe 2.12.

40 | Chapter2: Standard Output

Discussion

head and tail, along with cat, grep, sort, cut, and uniq, are some of the most commonly
used Unix text processing tools out there. If you aren't already familiar with them, you'll
soon wonder how you ever got along without them.

See Also

* Recipe 2.12
* Recipe 7.1

* Recipe 8.1

* Recipe 8.4

* Recipe 8.5

* Recipe 17.21

2.12 Skipping a Header in a File

Problem

You have a file with one or more header lines and you need to process just the data,
and skip the header.

Solution
Use the tail command with a special argument. For example, to skip the first line of a
file:

$ tail -n +2 lines

Line 2

Line 4
Line 5

Discussion

An argument to tail, which is a number starting dash (-), will specify a line offset relative
to the end of the file. So tail -n 10 file shows the last 10 lines of file, which also happens
to be the default if you don't specify anything. But a number starting with a plus (+)
sign is an offset relative to the top of the file. Thus, tail+1 file gives you the entire file,
the same as cat. +2 skips the first line, and so on.

See Also

* man tail
* Recipe 13.11

2.12 Skipping a HeaderinaFile | 41

2.13 Throwing Output Away

Problem

Sometimes you don't want to save the output into a file; in fact, sometimes you don't
even want to see it at all.

Solution
Redirect the output to /dev/null as shown in these examples:
$ find / -name myfile -print 2> /dev/null

or:

$ noisy >/dev/null 2>&1

Discussion

We could redirect the unwanted output into a file, then remove the file when we're
done. But there is an easier way. Unix and Linux systems have a special device thatisn't
real hardware at all, just a bit bucket where we can dump unwanted data. It's called /
dev/null and is perfect for these situations. Any data written there is simply thrown
away, so it takes up no disk space. Redirection makes it easy.

In the first example, only the output going to standard error is thrown away. In the
second example, both standard output and standard error are discarded.

In rare cases, you may find yourself in a situation where /dev is on a read-only file system
(for example, certain information security appliances), in which case you are stuck with
the first suggestion of writing to a file and then removing it.

See Also
* Recipe 2.6

2.14 Saving or Grouping Output from Several Commands

Problem

You want to capture the output with a redirect, but you're typing several commands
on one line.
$ pwd; 1s; cd ../elsewhere; pwd; 1s > /tmp/all.out

The final redirect applies only to the last command, the last Is on that line. All the other
output appears on the screen (i.e., does not get redirected).

42 | Chapter2: Standard Output

Solution

Use braces { } to group these commands together, then redirection applies to the output
from all commands in the group. For example:

$ { pwd; 1s; cd ../elsewhere; pwd; 1s; } > /tmp/all.out

There are two very subtle catches here. The braces are actually reserved
A words, so they must be surrounded by whitespace. Also, the trailing

semicolon is required before the closing space.

Alternately, you could use parentheses () to tell bash to run the commands in a subshell,
then redirect the output of the entire subshell's execution. For example:

$ (pwd; 1s; cd ../elsewhere; pwd; 1ls) > /tmp/all.out

Discussion

While these two solutions look very similar, there are two important differences. The
first difference is syntactic, the second is semantic. Syntactically, the braces need to
have white space around them and the last command inside the list must terminate
with a semicolon. That's not required when you use parentheses. The bigger difference,
though, is semantic—what these constructs mean. The braces are just a way to group
several commands together, more like a shorthand for our redirecting, so that we don't
have to redirect each command separately. Commands enclosed in parentheses, how-
ever, run in another instance of the shell, a child of the current shell called a subshell.

The subshell is almost identical to the current shell's environment, i.e., variables, in-
cluding $PATH, are all the same, but traps are handled differently (for more on traps, see
Recipe 10.6). Now here is the big difference in using the subshell approach: because a
subshell is used to execute the cd commands, when the subshell exits, your main shell
is back where it started, i.e., its current directory hasn't moved, and its variables haven't
changed.

With the braces used for grouping, you end up in the new directory (../elsewhere in our
example). Any other changes that you make (variable assignments, for example) will
be made to your current shell instance. While both approaches result in the same out-
put, they leave you in very different places.

One interesting thing you can do with braces is form more concise branching blocks
(Recipe 6.2). You can shorten this:

if [$result = 1]; then
echo "Result is 1; excellent."”
exit 0

else
echo "Uh-oh, ummm, RUN AWAY! "
exit 120

fi

2.14 Saving or Grouping Output from Several Commands | 43

into this:

[$result =1]\
&% { echo "Result is 1; excellent." ; exit 0; } \
|| { echo "Uh-oh, ummm, RUN AWAY! " ; exit 120; }

How you write it depends on your style and what you think is readable.

See Also

* Recipe 6.2

* Recipe 10.6

¢ Recipe 15.11

* Recipe 19.5

¢ Recipe 19.8

* "Built-in Shell Variables" in Appendix A to learn about BASH_SUBSHELL

2.15 Connecting Two Programs by Using Output As Input

Problem

You want to take the output from one program and use it as the input of another
program.

Solution

You could redirect the output from the first program into a temporary file, then use
that file as input to the second program. For example:

$ cat one.file another.file > /tmp/cat.out
$ sort < /tmp/cat.out

$ rm /tmp/cat.out

Oryou could do all of that in one step by sending the output directly to the next program
by using the pipe symbol | to connect them. For example:

$ cat one.file another.file | sort

You can also link a sequence of several commands together by using multiple pipes:

$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc

Discussion

By using the pipe symbol we don't have to invent a temporary filename, remember it,
and remember to delete it.

Programs like sort can take input from standard in (redirected via the < symbol) but
they can also take input as a filename—for example:

44 | Chapter2: Standard Output

$ sort /tmp/cat.out

rather than redirecting the input into sort:
$ sort < /tmp/cat.out

That behavior (of using a filename if supplied, and if not, of using standard input) is a
typical Unix/Linux characteristic, and a useful model to follow so that commands can
be connected one to another via the pipe mechanism. If you write your programs and
shell scripts that way, they will be more useful to you and to those with whom you
share your work.

Feel free to be amazed at the powerful simplicity of the pipe mechanism. You can even
think of the pipe as a rudimentary parallel processing mechanism. You have two com-
mands (programs) running in parallel, sharing data—the output of one as the input to
the next. They don't have to run sequentially (where the first runs to completion before
the second one starts)—the second one can get started as soon as data is available from
the first.

Be aware, however, that commands run this way (i.e., connected by pipes), are run in
separate subshells. While such a subtlety can often be ignored, there are a few times
when the implications of this are important. We'll discuss that in Recipe 19.8.

Also consider a command such as svn -v log | less. If less exits before Subversion
has finished sending data, you'll get an error like "svn: Write error: Broken pipe".
While it isn't pretty, it also isn't harmful. It happens all the time when you pipe some
a voluminous amount of data into a program like less—you often want to quit once
you've found what you're looking for, even if there is more data coming down the pipe.

See Also

* Recipe 3.1
¢ Recipe 19.8

2.16 Saving a Copy of Output Even While Using It As Input

Problem

You want to debug a long sequence of piped 1/O, such as:

$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc

How can you see what is happening between uniq and awk without disrupting the pipe?

Solution

The solution to these problems is to use what plumbers call a T-joint in the pipes. For
bash, that means using the tee command to split the output into two identical streams,

2.16 Saving a Copy of Output Even While Using It As Input | 45

one that is written to a file and the other that is written to standard out, so as to continue
the sending of data along the pipes.

For this example where we'd like to debug a long string of pipes, we insert the tee
command between uniq and awk:

$... uniq | tee /tmp/x.x | awk -f transform.awk ...

Discussion

The tee command writes the output to the filename specified as its parameter and also
write that same output to standard out. In our example, that sends a copy to /tmp/
x.x and also sends the same data to awk, the command to which the output of tee is
connected via the | pipe symbol.

Don't worry about what each different piece of the command line is doing in these
examples; we just want to illustrate how tee can be used in any sequence of commands.

Let's back up just a bit and start with a simpler command line. Suppose you'd just like
to save the output from a long-running command for later reference, while at the same
time seeing it on the screen. After all, a command like:

find / -name '*.c' -print | less

could find a lot of C source files, so it will likely scroll off the window. Using more or
less will let you look at the output in manageable pieces, but once completed they don't
let you go back and look at that output without re-running the command. Sure, you
could run the command and save it to a file:

find / -name '*.c' -print > /tmp/all.my.sources

but then you have to wait for it to complete before you can see the contents of the file.
(OK, we know about tail -f but that's just getting off topic here.) The tee command
can be used instead of the simple redirection of standard output:

find / -name '*.c' -print | tee /tmp/all.my.sources
In this example, since the output of tee isn't redirected anywhere, it will print to the

screen. But the copy that is diverted into a file will be there for later use (e.g., cat /
tmp/all.my.sources).

Notice, too, that in these examples we did not redirect standard error at all. This means
that any errors, like you might expect from find, will be printed to the screen but won't
show up in the tee file. We could have added a 2>81to the find command:

find / -name '*.c' -print 2>&1 | tee /tmp/all.my.sources

to include the error output in the tee file. It won't be neatly separated, but it will be
captured.

See Also

¢ man tee

46 | Chapter2: Standard Output

* Recipe 18.5
* Recipe 19.13

2.17 Connecting Two Programs by Using Qutput As Arguments

Problem

What if one of the programs to which you would like to connect with a pipe doesn't
work that way? For example, you can remove files with the rm command, specifing the
files to be removed as parameters to the command:

$ rm my.java your.c their.*

but rm doesn't read from standard input, so you can't do something like:

find . -name '*.c' | rm

Since rm only takes its filenames as arguments or parameters on the command line,
how can we get the output of a previously-run command (e.g., echo or Is) onto the
command line?

Solution

Use the command substitution feature of bash:

$ rm $(find . -name '*.class')

$

Discussion

The $0 encloses a command that is run in a subshell. The output from that command
is substituted in place of the $() phrase. Newlines in the output are replaced with a
space character (actually it uses the first character of $IFS, which is a space by default,
during word splitting), so several lines of output become several parameters on the
command line.

The earlier shell syntax was to use back-quotes instead of $()for enclosing the sub-
command. The $() syntax is preferred over the older backward quotes ** syntax because
it easier to nest and arguably easier to read. However, you will probably see ** more
often than $() especially in older scripts or from those who grew up with the original
Bourne or C shells.

In our example, the output from find, typically a list of names, will become the argu-
ments to the rm command.

Warning: be very careful when doing something like this because rm is very unforgiving.
If your find command finds more than you expect, rm will remove it with no recourse.
This is not Windows; you cannot recover deleted files from the trashcan. You can

2.17 Connecting Two Programs by Using Output As Arguments | 47

mitigate the danger with rm-i, which will prompt you to verify each delete. That's OK
on a small number of files, but interminable on a large set.

One way to use such a mechanism in bash with greater safety is to run that inner com-
mand first by itself. When you can see that you are getting the results that you want,
only then do you use it in the command with back-quotes.

For example:

$ find . -name '*.class’
First.class

Other.class

$ rm $(find . -name '*.class')

$

We'll see in an upcoming recipe how this can be made even more foolproof by using !!
instead of retyping the find command (see Recipe 18.2).

See Also
* Recipe 18.2

* Recipe 15.13argument list too long" Errors"

2.18 Using Multiple Redirects on One Line

Problem

You want to redirect output to several different places.

Solution

Use redirection with file numbers to open all the files that you want to use. For example:

$ divert 3> file.three 4> file.four 5> file.five 6> else.where

$

where divert might be a shell script with various commands whose output you want
to send to different places. For example, you might write divert to contain lines like
this: echo option $OPTSTR >&5. That is, our divert shell script could direct its output to
various different descriptors which the invoking program can send to different desti-
nations.

Similarly, if divert was a C program executable, you could actually write to descriptors
3,4, 5, and 6 without any need for open() calls.

Discussion

In an earlier recipe we explained that each file descriptor is indicated by a number,
starting at 0 (zero). So standard input is 0, out is 1, and error is 2. That means that you
could redirect standard output with the slightly more verbose 1> (rather than a simple

48 | Chapter2: Standard Output

>) followed by a filename, but there's no need. The shorthand> is fine. It also means
that you can have the shell open up any number of arbitrary file descriptors and have
them set to write various files so that the program that the shell then invokes from the
command line can use these opened file descriptors without further ado.

While we don't recommend this technique, it is intriguing.

See Also

* Recipe 2.6
* Recipe 2.8
* Recipe 2.13

2.19 Saving Qutput When Redirect Doesn't Seem to Work

Problem
You tried using > but some (or all) of the output still appears on the screen.

For example, the compiler is producing some error messages.

$ gcc bad.c
bad.c: In function “main':

bad.c:3: error: “bad' undeclared (first use in this function)
bad.c:3: error: (Each undeclared identifier is reported only once
bad.c:3: error: for each function it appears in.)

bad.c:3: error: parse error before "c"

$

You wanted to capture those messages, so you tried redirecting the output:

$ gcc bad.c > save.it
bad.c: In function “main':

bad.c:3: error: “bad' undeclared (first use in this function)
bad.c:3: error: (Each undeclared identifier is reported only once
bad.c:3: error: for each function it appears in.)

bad.c:3: error: parse error before "c"

$

However, it doesn't seem to have redirected anything. In fact, when you examine the
file into which you were directing the output, that file is empty (zero bytes long):

$ 1s -1 save.it
-rw-r--r-- 1 albing users 0 2005-11-13 15:30 save.it
$ cat save.it

$

Solution

Redirect the error output, as follows:

2.19 Saving Output When Redirect Doesn't Seem to Work | 49

$ gcc bad.c 2> save.it

$

The contents of save.it are now the error messages that we had seen before.

Discussion

So what's going on here? Every process in Unix and Linux typically starts out with three
open file descriptors: one for input called standard input (STDIN), one for out-put
called standard output (STDOUT), and one for error messages called standard error
(STDERR). It is really up to the programmer, who writes any particular program, to
stick to these conventions and write error messages to standard error and to write the
normally expected output to standard out, so there is no guarantee that every error
message that you ever get will go to standard error. But most of the long-established
utilities are well behaved this way. That is why these compiler messages are not being
diverted with a simple > redirect; it only redirects standard output, not standard error.

Each file descriptoris indicated by a number, starting at 0. So standard input is 0, output
is 1, and error is 2. That means that you could redirect standard output with the slightly
more verbose: 1> (rather than a simple >) followed by a filename, but there's no need.
The shorthand > is fine.

One other difference between standard output and standard error: standard output is
buffered but standard error is unbuffered, that is every character is written individually,
not collected together and written as a bunch. This means that you see the error mes-
sages rightaway and that there is less chance of them being dropped when a fault occurs,
but the cost is one of efficiency. It's not that standard output is unreliable, but in error
situations (e.g., a program dies unexpectedly), the buffered output may not have made
it to the screen before the program stops executing. That's why standard error is un-
buffered: to be sure the message gets written. By contrast, standard out is buffered.
Only when the buffer is full (or when the file is closed) does the out-put actually get
written. It's more efficient for the more frequently used output. Efficiency isn't as im-
portant when an error is being reported.

What if you want to see the output as you are saving it? The tee command we discussed
in Recipe 2.16 seems just the thing:

$ gcc bad.c 2581 | tee save.it
This will take standard error and redirect it to standard out, piping them both into

tee. The tee command will write its input to both the file (save.it) and tee's standard
out, which will go to your screen since it isn't otherwise redirected.

This is a special case of redirecting because normally the order of the redirections is
important. Compare these two commands:

$ somecmd >my.file 2>8&1
$ somecmd 2>&1 >my.file

50 | Chapter2: Standard Output

In the first case, standard out is redirected to a file (my.file), and then standard error
is redirected to the same place as standard out. All output will appear in my.file.

But that is not the case with the second command. In the second command, standard
error is redirected to standard out (which at that point is connected to the screen), after
which standard out is redirected to my.file. Thus only standard out messages will be
put in the file and errors will still show on the screen.

However, this ordering had to be subverted for pipes, since you couldn't put the second
redirect after the pipe symbol, because after the pipe comes the next command. So
bash makes an exception when you write:

$ somecmd 2>&1 | othercmd

and recognizes that standard out is being piped. It therefore assumes that you want to
include standard error in the piping when you write 2>81 even though its normal or-
dering wouldn't work that way.

The other result of this, and of pipe syntax in general, is that it gives us no way to pipe
just standard error and not standard out into another command—unless we first swap
the file descriptors (see the next recipe).

See Also
* Recipe2.17swapping_stderr_and_stdout" />, "Swapping STDERR and STDOUT"

2.20 Swapping STDERR and STDOUT

Problem

You need to swap STDERR and STDOUT so you can send STDOUT to a logfile, but
then send STDERR to the screen and to a file using the tee command. But pipes only
work with STDOUT.

Solution

Swap STDERR and STDOUT before the pipe redirection using a third file descriptor:
$./myscript 3>&1 1>stdout.logfile 2>83- | tee -a stderr.logfile

Discussion

Whenever you redirect file descriptors, you are duplicating the open descriptor to an-
other descriptor. This gives you a way to swap descriptors, much like how any program
swaps two values—by means of a third, temporary holder. It looks like: copy A into C,
copy B into A, copy C into B and then you have swapped the values of A and B. For
file descriptors, it looks like this:

$./myscript 3>81 1>82 2583

2.20 Swapping STDERR and STDOUT | 51

Read the syntax 3>81 as "give file descriptor 3 the same value as output file descriptor
1." What happens here is that it duplicates file descriptor 1 (i.e., STDOUT) into file
descriptor 3, our temporary holding place. Then it duplicates file descriptor 2 (i.e.,
STDERR) into STDOUT, and finally duplicates file descriptor 3 into STDERR. The net effect
is that STDERR and STDOUT file descriptors have swapped places.

So far so good. Now we just change this slightly. Once we've made the copy of
STDOUT (into file descriptor 3), we are free to redirect STDOUT into the logfile we want to
have capture the output of our script or other program. Then we can copy the file
descriptor from its temporary holding place (fd 3) into STDERR. Adding the pipe will
now work because the pipe connects to the (original) STDOUT. That gets us to the solution
we wrote above:

$./myscript 3>&1 1>stdout.logfile 2>83- | tee -a stderr.logfile

Note the trailing -on the 2>83- term. We do that so that we close file descriptor 3 when
we are done with it. That way our program doesn't have an extra open file descriptor.
We are tidying up after ourselves.

See Also

* Linux Server Hacks, First Edition, hack #5 "n>&m: Swap STDOUT and
STDERR," by Rob Flickenger (O'Reilly)

* Recipe 2.19
* Recipe 10.1

2.21 Keeping Files Safe from Accidental Overwriting

Problem

You don't want to delete the contents of a file by mistake. It can be too easy to mistype
a filename and find that you've redirected output into a file that you meant to save.

Solution

Tell the shell to be more careful, as follows:

$ set -0 noclobber

$

If you decide you don't want to be so careful after all, then turn the option off:

$ set +o0 noclobber

$

52 | Chapter2: Standard Output

Discussion

The noclobber option tells bash not to overwrite any existing files when you redirect
output. If the file to which you redirect output doesn't (yet) exist, everything works as
normal, with bash creating the file as it opens it for output. If the file already exists,
however, you will get an error message.

Here it is in action. We begin by turning the option off, just so that your shell is in a
known state, regardless of how your particular system may be configured.

$ set +o noclobber

$ echo something > my.file

$ echo some more > my.file

$ set -0 noclobber

$ echo something > my.file

bash: my.file: cannot overwrite existing file

$ echo some more >> my.file

$

The first time we redirect output to my.file the shell will create it for us. The second
time we redirect, bash overwrites the file (it truncates the file to 0 bytes and starts writing
from there). Then we set the noclobber option and we get an error message when we
try to write to that file. As we show in the last part of this example, we can append to
the file (using >>) just fine.

Beware! The noclobber option only refers to the shell's clobbering of a
A file when redirecting output. It will not stop other file manipulating ac-

tions of other programs from clobbering files (see Recipe 14.13).

$ echo useless data > some.file

$ echo important data > other.file
$ set -o noclobber

$ cp some.file other.file

$

Notice that no error occurs; the file is copied over the top of an existing
file. That copy is done via the ¢p command. The shell doesn't get in-
volved.

If you're a good and careful typist this may not seem like an important option, but we
will look at other recipes where filenames are generated with regular expressions or
passed as variables. Those filenames could be used as the filename for output redirec-
tion. In such cases, having noclobber set may be an important safety feature for pre-
venting unwanted side effects (whether goofs or malicious actions).

See Also

* A good Linux reference on the chmod command and file permissions, such as:
—http:/fwww.linuxforums.org/security/file_permissions.html

—http://'www.comptechdoc.org/os/linux/usersguide/linux_ugfilesp.html

2.21 Keeping Files Safe from Accidental Overwriting | 53

http://www.linuxforums.org/security/file_permissions.html
http://www.comptechdoc.org/os/linux/usersguide/linux_ugfilesp.html

—http://'www.faqgs.org/docs/linux_intro/sect_03_04.html
—http://www.perlfect.com/articles/chmod.shtml
¢ Recipe 14.13

2.22 (lobbering a File on Purpose

Problem

You like to have noclobber set, but every once in a while you do want to clobber a file
when you redirect output. Can you override bash's good intentions, just once?

Solution

Use >| to redirect your output. Even if noclobber is set, bash ignores its setting and
overwrites the file.

Consider this example:

$ echo something > my.file

$ set -o noclobber

$ echo some more >| my.file

$ cat my.file

some more

$ echo once again > my.file

bash: my.file: cannot overwrite existing file

$

Notice that no error message occurs on the second echo, but on the third echo, when
we are no longer using the vertical bar but just the plain > character by itself, the shell
warns us and does not clobber the existing file.

Discussion

Using noclobber does not take the place of file permissions. If you don't have write
permission in the directory, you won't be able to create the file, whether or not you use
the >[construct. Similarly, you must have write permission on the file itself to overwrite
that existing file, whether or not you use the >|.

So why the vertical bar? Perhaps because the exclamation point was already used by
bash for other things, and the vertical bar is close, visually, to the exclamation point.
But why would ! be the appropriate symbol? Well, for emphasis of course. Its use in
English (with the imperative mood) fits that sense of "do it anyway!" when telling
bash to overwrite the file if need be. Secondly, the vi (and ex) editors use the ! in that
same meaning in their write (:w! filename) command. Without a !, the editor will
complain if you try to overwrite an existing file. With it, you are telling the editor to
"do it!"

54 | Chapter2: Standard Output

http://www.faqs.org/docs/linux_intro/sect_03_04.html
http://www.perlfect.com/articles/chmod.shtml

See Also
¢ Recipe 14.13

2.22 Clobbering a File on Purpose | 55

CHAPTER 3
Standard Input

Whether it is data for a program to crunch, or simple commands to direct the behavior
of a script, input is as fundamental as output. The first part of any program is the
beginning of the "input/output" yin and yang of computing.

3.1 Getting Input from a File

Problem

You want your shell commands to read data from a file.

Solution

Use input redirection, indicated by the < character, to read data from a file

$ we < my.file

Discussion

Just as the > sends output to a file, so < takes input from a file. The choice and shape
of the characters was meant to give a visual clue as to what was going on with redirec-
tion. Can you see it? (Think "arrowhead.")

Many shell commands will take one or more filenames as arguments, but when no
filename is given, will read from standard input. Those commands can then be invoked
as either: command filename or as command < filename with the same result. That's the
case here with wc, but also with cat and others.

It may look like a simple feature, and be familiar if you've used the DOS command line
before, but it is a significant feature to shell scripting (which the DOS command line
borrowed) and was radical in both its power and simplicity when first introduced.

See Also
* Recipe 2.6

57

3.2 Keeping Your Data with Your Script

Problem

You need input to your script, but don't want a separate file.

Solution

Use a here-document, with the << characters, redirecting the text from the command
line rather than from a file. When put into a shell script, the script file then contains
the data along with the script.

Here's an example of a shell script in a file we call ext:

$ cat ext

#

#

here is a "here" document
grep $1 <<EOF

mike x.123
joe x.234
sue X.555
pete x.818
sara Xx.822
bill x.919
EOF
$

It can be used as a shell script for simple phone number lookups:
$ ext bill
bill x.919
$

or:
$ ext 555
sue X.555
$

Discussion

The grep command looks for occurrences of the first argument in the files that are
named, or if no files are named it looks to standard input.

A typical use of grep is something like this:
$ grep somestring file.txt

or:
$ grep myvar *.c

In our ext script we've parameterized the grep by making the string that we're searching
for be the parameter of our shell script ($1). Whereas we often think of grep as searching

58 | Chapter3: Standard Input

for a fixed string through various different files, here we are going to vary what we
search for, but search through the same data every time.

We could have put our phone numbers in a file, say phonenumbers.txt, and then used
that filename on the line that invokes the grep command:

grep $1 phonenumbers.txt

However, that requires two separate files (our script and our datafile) and raises the
question of where to put them and how to keep them together.

So rather than supplying one or more filenames (to search through), we set up a here-
document and tell the shell to redirect standard input to come from that (temporary)
document.

The << syntax says that we want to create such a temporary input source, and the
EOFis just an arbitrary string (you can choose what you like) to act as the terminator of
the temporary input. It is not part of the input, but acts as the marker to show where
it ends. The regular shell script (if any) resumes after the marker.

We also might add -i to the grep command to make our search is case-insensitive.
Thus, using grep -i $1 << EOF would allow us to search for "Bill" as well as "bill."

See Also
* man grep
* Recipe 3.3
* Recipe 3.4

3.3 Preventing Weird Behavior in a Here-Document

Problem

Your here-document is behaving weirdly. You tried to maintain a simple list of donors
using the method described previously for phone numbers. So you created a file called
donors that looked like this:

$ cat donors
#

simple lookup of our generous donors
#

grep $1 <<EOF
name amt
pete $100

joe $200

sam $ 25
bill $ 9

EOF

$

3.3 Preventing Weird Behavior in a Here-Document | 59

But when you tried running it you got weird output:

$./donors bill
pete billoo
bill $ 9

$./donors pete
pete pete00

$

Solution

Turn off the shell scripting features inside the here-document by escaping any or all of
the characters in the ending marker:

solution

grep $1 <<EOF

pete $100

joe $200

sam $ 25

bill $ 9

EOF

Discussion

It's a very subtle difference, but the <<EOF is replaced with <<\EOF, or <<'EOF"' or even
<<E\OF—they all work. It's not the most elegant syntax, but it's enough to tell bash that
you want to treat the "here" data differently.

Normally (i.e., unless we use this escaping syntax), says the bash man page, "...all lines
of the here-document are subjected to parameter expansion, command substitution,
and arithmetic expansion."

So what's happening in our original donor script is that the amounts are being inter-
preted as shell variables. For example, $100 is being seen as the shell variable $1 followed
by two zeros. That's what gives us pete00 when we search for "pete" and bill00 when
we search for "bill."

When we escape some or all of the characters of the EOF, bash knows not to do the
expansions, and the behavior is the expected behavior:
$./donors pete

pete $100
$

Of course you may want the shell expansion on your data—it can be useful in the correct
circumstances, but isn't what we want here. We've found it to be a useful practice to
always escape the marker as in <<'EOF"' or <<\EOF to avoid unexpected results, unless
you know that you really want the expansion to be done on your data.

60 | Chapter3: Standard Input

Trailing whitespace (e.g., even just a single blank space) on your closing
EOF marker will cause it not to be recognized as the closing marker.
bash will swallow up the rest of your script, treating it as input too, and

looking for that EOF. Be sure there are no extra characters (especially
blanks or tabs) after the EOF.

See Also

* Recipe 3.2
* Recipe 3.4

3.4 Indenting Here-Documents

Problem

The here-document is great, but it's messing up your shell script's formatting. You want
to be able to indent for readability.

Solution

Use <<- and then you can use tab characters (only!) at the beginning of lines to indent
this portion of your shell script.

$ cat myscript.sh

grep $1 <<-'EOF'
lots of data
can go here
it's indented with tabs
to match the script's indenting
but the leading tabs are
discarded when read
EOF
1s

Discussion

The hyphen just after the << is enough to tell bash to ignore the leading tab characters.
This is for tab characters only and not arbitrary white space. This is especially important
with the EOF or any other marker designation. If you have spaces there, it will not
recognize the EOF as your ending marker, and the "here" data will continue through to
the end of the file (swallowing the rest of your script). Therefore, you may want to
always left-justify the EOF (or other marker) just to be safe, and let the formatting go on
this one line.

3.4 Indenting Here-Documents | 61

Just as trailing whitespace of any kind on your closing EOF delimiter
% prevents it from being recognized as the closing delimiter (see the warn-

ing in Recipe 3.3), so too will using a leading character other than just
the tab character. If your script indents with spaces or a combination of
spaces and tabs, don't use that technique on here-documents. Either use

just tabs, or keep it all flush left. Also, watch out for text editors that
automatically replace tabs with spaces.

See Also

* Recipe 3.2
¢ Recipe 3.3

3.5 Getting User Input

Problem

You need to get input from the user.

Solution

Use the read statement:

read

or:

read -p "answer me this " ANSWER

or:
read PRE MID POST

Discussion

In its simplest form, a read statement with no arguments will read user input and place
it into the shell variable REPLY.

If you want bash8 to print a prompt string before reading the input, use the -p option.
The next word following the -p will be the prompt, but quoting allows you to supply
multiple words for a prompt. Remember to end the prompt with punctuation and/or
a blank, as the cursor will wait for input right at the end of the prompt string.

If you supply multiple variable names on the read statement, then the read will parse
the input into words, assigning them in order. If the user enters fewer words, the extra
variables will be set blank. If the user enters more words than there are variables on the
read statement, then all of the extra words will be part of the last variable in the list.

62 | Chapter3: Standard Input

See Also

* help read

* building robust code
* Recipe 3.8

* Recipe 6.11

* Recipe 13.6

* Recipe 14.12

3.6 Getting Yes or No Input

Problem

You need to get a simple yes or no input from the user, and you want to be as user-
friendly as possible. In particular, you do not want to be case sensitive, and you want
to provide a useful default if the user presses the Enter key.

Solution

If the actions to take are simple, use this self-contained function:

cookbook filename: func_choose

Let the user make a choice about something and execute code based on

the answer

Called like: choose <default (y or n)> <prompt> <yes action> <no action>
e.g. choose "y" \

"Do you want to play a game?" \

/usr/games/GlobalThermonuculariar \

"printf "%b" "See you later Professor Falkin.\n"' >&2

Returns: nothing

function choose {

local default="$1"
local prompt="$2"
local choice yes="$3"
local choice no="$4"
local answer

read -p "$prompt" answer
[-z "$answer"] && answer="¢default"

case "$answer" in
[yY1]) eval "$choice yes"
error check

)
) eval "$choice no"

)
[nNo]
error check

)

3.6 Getting Yesor No Input | 63

*) printf "%b" "Unexpected answer '$answer'!" >&2 ;;
esac
} # end of function choose

If the actions are complicated, use this function and handle the results in your main
code.

cookbook filename: func_choice.1

Let the user make a choice about something and return a standardized
answer. How the default is handled and what happens next is up to

the if/then after the choice in main

Called like: choice <promtp>

e.g. choice "Do you want to play a game?"

Returns: global variable CHOICE

function choice {

CHOICE=""
local prompt="¢$*"
local answer

read -p "$prompt" answer
case "$answer” in
[yY1]) CHOICE='y';;
[nNO]) CHOICE='n';;
*) CHOICE="$answer";;
esac
} # end of function choice

The following code calls the choice function to prompt for and verify a package date.
Assuming $THISPACKAGE is set, the function displays the date and asks for verification.
If the user types y, Y, or Enter, then that date is accepted. If the user enters a new date,
the function loops and verifies it (for a different treatment of this problem, see
Recipe 11.7):

cookbook filename: func_choice.2
CHOICE=""'
until ["$CHOICE" = "y"]; do
printf "%b" "This package's date is $THISPACKAGE\n" >&2
choice "Is that correct? [Y/,<New date>]: "
if [-z "$CHOICE"]; then
CHOTCE="y"
elif ["$CHOICE" != "y"]; then
printf "%b" "Overriding $THISPACKAGE with ${CHOICE}\n"
THISPACKAGE=$CHOICE
fi
done

Build the package here

Next we'll show different ways to handle some "yes or no" questions. Carefully read
the prompts and look at the defaults. In both cases the user can simply hit the Enter
key, and the script will then take the default the programmer intended.

64 | Chapter3: Standard Input

If the user types anything except a case insensitive 'n', they will
see the error log
choice "Do you want to look at the error log file? [Y/n]: "
if ["$choice" != "n"]; then
less error.log
fi

If the user types anything except a case insensitive 'y', they will
not see the message log
choice "Do you want to look at the message log file? [y/N]: "
if ["$choice" = "y"]; then
less message.log
fi

Finally, this function asks for input that might not exist:

cookbook filename: func_choice.3

choice "Enter your favorite color, if you have one:
if [-n "$CHOICE"]; then

printf "%b" "You chose: $CHOICE\n"
else

printf "%b" "You do not have a favorite color.\n"
fi

Discussion

Asking the user to make a decision is often necessary in scripting. For getting arbitrary
input, see Recipe 3.5. For choosing an option from a list, see Recipe 3.7.

If the possible choices and the code to handle them are fairly straightforward, the first
self-contained function is easier to use, but it's not always flexible enough. The second
function is flexible at the expense of having to do more in the main code.

Note that we've sent the user prompts to STDERR so that the main script output on
STDOUT may be redirected without the prompts cluttering it up.
See Also

* Recipe 3.5
* Recipe 3.7
* Recipe 11.7

3.7 Selecting from a List of Options

Problem

You need to provide the user with a list of options to choose from and you don't want
to make them type any more than necessary.

3.7 Selecting from a List of Options | 65

Solution

Use bash's built-in select construct to generate a menu, then have the user choose by
typing the number of the selection:

cookbook filename: select_dir
directorylist="Finished $(for i in /*;do [-d "$i"] 8&& echo $i; done)"

PS3='Directory to process? ' # Set a useful select prompt
until ["$directory" == "Finished"]; do

printf "%b" "\a\n\nSelect a directory to process:\n" >82
select directory in $directorylist; do

User types a number which is stored in $REPLY, but select
returns the value of the entry

if ["$directory" == "Finished"]; then
echo "Finished processing directories.”
break

elif [-n "$directory"]; then
echo "You chose number $REPLY, processing $directory...”
Do something here
break
else
echo "Invalid selection!"
fi # end of handle user's selection

done # end of select a directory
done # end of until dir == finished

Discussion

The select function makes it trivial to present a numbered list to the user on STDERR,
from which they may make a choice. Don't forget to provide an "exit" or "finished"
choice.

The number the user typed is returned in $REPLY, and the value of that entry is returned
in the variable you specified in the select construct.

See Also

* help select
* help read
* Recipe 3.6

66 | Chapter3: Standard Input

3.8 Prompting for a Password

Problem

You need to prompt the user for a password, but you don't want it echoed on the screen.

Solution

read -s -p "password: " PASSWD
printf "%b" "\n"

Discussion

The -s option tells the read command not to echo the characters typed (s is for silent)
and the -p option says that the next argument is the prompt to be displayed prior to
reading input.

The line of input that is read from the user is put into the environment variable named
$PASSWD.

We follow read with a printf to print out a newline. The printf is necessary because
read -s turns off the echoing of characters. With echoing disabled, when the user
presses the Enter key, no newline is echoed and any subsequent output would appear
on the same line as the prompt. Printing the newline gets us to the next line, as you
would expect. It may even be handy for you to write the code all on one line to avoid
intervening logic; putting it on one line also prevents mistakes should you cut and paste
this line elsewhere:

read -s -p "password: " PASSWD ; printf "%b" "\n"

Be aware that if you read a password into an environment variable it is in memory in
plain text, and thus may be accessed via a core dump or /proc/core. It is also in the
process environment, which may be accessible by other processes. You may be better
off using certificates with SSH, if possible. In any case, it is wise to assume that root
and possibly other users on the machine may gain access to the password, so you should
handle the situation accordingly.

Some older scripts may use stty -echo to disable the screen echo while
”’% a password is being entered. The problem with that is this if the user
breaks the script, echo will still be off. Experienced users will know to
type stty sane to fix it, but it's very confusing. If you still need to use

this method, set a trap to turn echo back on when the script terminates.
See Recipe 10.6.

See Also

* help read
* Recipe 10.6

3.8 Prompting for a Password | 67

¢ Recipe 14.14
¢ Recipe 14.20
¢ Recipe 14.21
* Recipe 19.9

68 | Chapter3: Standard Input

CHAPTER 4
Executing Commands

The main purpose of bash (or of any shell) is to allow you to interact with the computer's
operating system so that you can accomplish whatever you need to do. Usually that
involves launching programs, so the shell takes the commands you type, determines
from that input what programs need to be run, and launches them for you.

Let's take a look at the basic mechanism for launching jobs and explore some of the
features bash offers for launching programs in the foreground or the background, se-
quentially or in parallel, indicating whether programs succeeded and more.

4.1 Running Any Executable

Problem

You need to run a command on a Linux or Unix system.

Solution

Use bash and type the name of the command at the prompt.

$someprog

Discussion

This seems rather simple, and in a way it is, but a lot goes on behind the scenes that
you never see. What's important to understand about bash is that its basic operation is
to load and execute programs. All the rest is just window dressing to get ready to run
programs. Sure there are shell variables and control statements for looping and if/
then/else branching, and there are ways to control input and output, but they are all
icing on the cake of program execution.

So where does it get the program to run?

bash will use a shell variable called $PATH to locate your executable. The $PATH variable
is a list of directories. The directories are separated by colons (:). bash will search in

69

each of those directories for a file with the name that you specified. The order of the
directories is important—bash looks at the order in which the directories are listed in
the variable, and takes the first executable found.

$ echo $PATH

/bin:/usr/bin:/usr/local/bin:.
$

In the $PATH variable shown above, four directories are included. The last directory in
that list is just a single dot (called the dot directory, or just dot), which represents the
current directory. The dot is the name of the directory found within every directory on
a Linux or Unix file system—wherever you are, that's the directory to which dot refers.
For example, when you copy a file from someplace to dot (i.e., cp /other/place/
file.), you are copying the file into the current directory. By having the dot directory
listed in our path, bash will look for commands not just in those other directories, but
also in the current directory (.).

Many people feel that putting dot on your $PATH is too great a security risk—some-one
could trick you and get you to run their own (malicious) version of a command in place
of one that you were expecting. Now if dot were listed first, then someone else's version
of Is would supersede the normal Is command and you might unwittingly run that
command. Don't believe us? Try this:

$ bash

$ cd

$ touch 1s

$ chmod 755 1s

$ PATH=".:$PATH"

$ 1s

$

Suddenly, the Is appears not to work in your home directory. You get no output. When
you cd to some other location (e.g., cd /tmp), then Is will work, but not in your home
directory. Why? Because in that directory there is an empty file called Is that is run (and
does nothing—it's empty) instead of the normal Is command located at /bin/ls. Since
we started this example by running a new copy of bash , you can exit from this mess
by exiting this subshell; but you might want to remove the bogus Is command first:

$cd

$ rm 1s

$ exit

$

Can you see the mischief potential of wandering into a strange directory with your path
set to search the dot directory before anywhere else?

If you put dot as the last directory in your $PATH variable, at least you won't be tricked
that easily. Of course, if you leave it off altogether it is arguably even safer and you can
still run commands in your local directory by typing a leading dot and slash character,
as in:

$./myscript

70 | Chapter4: Executing Commands

The choice is yours.
Never allow a dot or writable directories in root's $PATH. For more, see
Recipe 14.9 and Recipe 14.10.

Don't forget to set the file's permissions to execute permission before you invoke your
script:

$ chmod a+x ./myscript
$./myscript

You only need to set the permissions once. Thereafter you can invoke the script as a
command.

A common practice among some bash experts is to create a personal bin directory,
analogous to the system directories /bin and /usr/bin where executables are kept. In
your personal bin you can put copies of your favorite shell scripts and other customized
or private commands. Then add your home directory to your $PATH, even to the front
(PATH=~/bin:$PATH). That way, you can still have your own customized favorites
without the security risk of running commands from strangers.

See Also

* Chapter 16 for more on customizing your environment
¢ Recipe 1.3

* Recipe 14.9

¢ Recipe 14.10

* Recipe 16.9

¢ Recipe 19.1

4.2 Telling If a Command Succeeded or Not

Problem

You need to know whether the command you ran succeeded.

Solution

The shell variable $? will be set with a non-zero value if the command fails—provided
that the programmer who wrote that command or shell script followed the established
convention:

$ somecommand

it works...
$ echo $?

4.2 Telling If a Command Succeeded or Not | 71

0

$ badcommand
it fails...
$ echo $?

1

$

Discussion

The exit status of a command is kept in the shell variable referenced with $?. Its value
can range from 0 to 255. When you write a shell script, it's a good idea to have your
script exit with a non-zero value if you encounter an error condition. (Just keep it below
255, or the numbers will wrap around.) You return an exit status with the exit state-
ment (e.g., exit 1 or exit 0). But be aware that you only get one shot at reading the
exit status:

$ badcommand

it fails...

$ echo $?

1

$ echo $?

0

$

Why does the second time give us 0 as a result? Because the second time is reporting
on the status of the immediately preceding echo command. The first time we typed
echo $? it returned a 1, which was the return value of bad command. But the echo
command itself succeeds, therefore the new, most-recent status is success (i.e., a 0
value). So you only get one chance to check it. Therefore, many shell scripts will im-
mediately assign the status to another shell variable, as in:

$ badcommand

it fails...

$ STAT=$?

$ echo $STAT

1

$ echo $STAT

1

$

We can keep the value around in the variable $STAT and check its value later on.

Although we're showing this in command-line examples, the real use of variables like
$? comes in writing scripts. You can usually see if a command worked or not if you are
watching it run on your screen. But in a script, the commands may be running unat-

tended.

One of the great features of bash is that the scripting language is identical to commands
as you type them at a prompt in a terminal window. This makes it much easier to check
out syntax and logic as you write your scripts.

72 | Chapter4: Executing Commands

The exit status is more often used in scripts, and often in if statements, to take different
actions depending on the success or failure of a command. Here's a simple example for
now, but we will revisit this topic in future recipes:

$ somecommand

$ if (($?)) ; then echo failed ; else echo OK; fi

See Also

¢ Recipe 4.5
* Recipe 4.8
* Recipe 6.2

4.3 Running Several Commands in Sequence

Problem

You need to run several commands, but some take a while and you don't want to wait
for the last one to finish before issuing the next command.

Solution

There are three solutions to this problem, although the first is rather trivial: just keep
typing. A Linux or Unix system is advanced enough to be able to let you type while it
works on your previous commands, so you can simply keep typing one command after
another.

Another rather simple solution is to type those commands into a file and then tell
bash to execute the commands in the file—i.e., a simple shell script.

Assume that we want to run three commands: long, medium, and short, each of whose
execution time is reflected in its name. We need to run them in that order, but don't
want to wait around for long to finish before starting the other commands. We could
use a shell script (aka batch file). Here's a primitive way to do that:

$ cat > simple.script

long

medium

short

"D # Ctrl-D, not visible
$ bash ./simple.script

The third, and arguably best, solution is to run each command in sequence. If you want
to run each program, regardless if the preceding ones fail, separate them with semico-
lons:

$ long ; medium ; short

4.3 Running Several Commands in Sequence | 73

If you only want to run the next program if the preceding program worked, and all the
programs correctly set exit codes, separate them with double-ampersands:

$ long &3 medium && short

Discussion

The cat example was just a very primitive way to enter text into a file. We redirect the
output from the command into the file named simple.script (for more on redirecting
output, see Chapter 3). Better you should use a real editor, but such things are harder
to show in examples like this. From now on, when we want to show a script, we'll just
either show the text as disembodied text not on a command line, or we will start the
example with a command like cat filename to dump the contents of the file to the
screen (rather than redirecting output from our typing into the file), and thus display
it in the example.

The main point of this simple solution is to demonstrate that more than one command
can be put on the bash command line. In the first case the second command isn't run
until the first command exits, and the third doesn't execute until the second exits and
so on, for as many commands as you have on the line. In the second case the second
command isn't run unless the first command succeeds, and the third doesn't execute
until the second succeeds and so on, for as many commands as you have on the line.

4.4 Running Several Commands All at Once

Problem

You need to run three commands, but they are independent of each other, and don't
need to wait for each other to complete.

Solution

You can run a command in the background by putting an ampersand (&) at the end
of the command line. Thus, you could fire off all three jobs in rapid succession as
follows:

$ long &
[1] 4592

$ medium &
[2] 4593

$ short

$

Or better yet, you can do it all on one command line:

$ long & medium & short
[1] 4592

2] 4593

$

74 | Chapter4: Executing Commands

Discussion

When we run a command in the background (there really is no such place in Linux),
all that really means is that we disconnect keyboard input from the command and the
shell doesn't wait for the command to complete before it gives another prompt and
accepts more command input. Output from the job (unless we take explicit action to
do otherwise) will still come to the screen, so all three jobs will be interspersing output
to the screen.

The odd bits of numerical output are the job number in square brackets, followed by
the process ID of the command that we just started in the background. In our example,
job 1 (process 4592) is the long command, and job 2 (process 4593) is medium.

We didn't put short into the background since we didn't put an ampersand at the end
of the line, so bash will wait for it to complete before giving us the shell prompt (the $).

The job number or process ID can be used to provide limited control over the job. You
can kill the long job with kill %1 (since its job number was 1). Or you could specify
the process number (e.g., kill 4592) with the same deadly results.

You can also use the job number to reconnect to a background job. Connect it back to
the foreground with fg %1. But if you only had one job running in the background, you
wouldn't even need the job number, just fg by itself.

If you start a job and then realize it will take longer to complete than you thought, you
can pause it using Ctrl-Z, which will return you to a prompt. You can then type bg to
un-pause the job so it will continue running in the background. This is basically adding
a trailing & after the fact.

See Also

* Chapter 2 on redirecting output

4.5 Deciding Whether a Command Succeeds

Problem

You need to run some commands, but you only want to run certain commands if certain
other ones succeed. For example, you'd like to change directories (using the ¢d com-
mand) into a temporary directory and remove all the files. However, you don't want to
remove any files if the cd fails (e.g., if permissions don't allow you into the directory,
or if you spell the directory name wrong).

Solution

We can use the exit status ($?) of the cd command in combination with an if statement
to do the rm only if the cd was successful.

4.5 Deciding Whether a Command Succeeds | 75

cd mytmp
if (($? == 0)); then rm * ; fi

Discussion

Obviously, you wouldn't need to do this if you were typing the commands by hand.
You would see any error messages from the c¢d command, and thus you wouldn't type
the rm command. But scripting is another matter, and this test is very well worth doing
to make sure that you don't accidentally erase all the files in the directory where you
are running.

Let's say you ran that script from the wrong directory, one that didn't have a subdir-
ectory named mytmp. When it runs, the cd would fail, so the current directory remains
unchanged. Without the if check (the cd having failed) the script would just continue
on to the next statement. Running the rm * would remove all the files in your current
directory. Ouch. The if is worth it.

So how does $? get its value? It is the exit code of the command. For C Language
programmers, you'll recognize this as the value of the argument supplied to the
exit() function; e.g., exit(4); would return a 4. For the shell, zero is considered
success and a non-zero value means failure.

If you're writing bash scripts, you'll want to be sure that your bash scripts explicitly set
return values, so that $? is set properly from your script. If you don't, the value set will
be the value of the last command run, which you may not want as your result.

See Also

* Recipe 4.2
* Recipe 4.6

4.6 Using Fewer if Statements

Problem

As a conscientious programmer, you took to heart what we described in the previous
recipe, Recipe 4.5. You applied the concept to your latest shell script, and now you find
that the shell script is unreadable, if with all those if statements checking the return
code of every command. Isn't there an alternative?

Solution

Use the double-ampersand operator in bash to provide conditional execution:

$ cd mytmp && rm *

76 | Chapter4: Executing Commands

Discussion

Two commands separated by the double ampersands tells bash to run the first com-
mand and then to run the second command only if the first command succeeds (i.e.,
its exit status is 0). This is very much like using an if statement to check the exit status
of the first command in order to protect the running of the second command:

cd mytmp

if (($?2 == 0)); then rm * ; fi
The double ampersand syntax is meant to be reminiscent of the logical and operator
in C Language. If you know your logic (and your C) then you'll recall that if you are
evaluating the logical expression A AND B, then the entire expression can only be true
if both (sub)expression A and (sub)expression B evaluate to true. If either one is false,
the whole expression is false. C Language makes use of this fact, and when you code
an expression like if (A && B) { ... }, it will evaluate expression A first. If it is false, it
won't even bother to evaluate B since the overall outcome (false) has already been de-
termined (by A being false).

So what does this have to do with bash? Well, if the exit status of the first command
(the one to the left of the &&) is non-zero (i.e., failed) then it won't bother to evaluate
the second expression—i.e., it won't run the other command at all.

If you want to be thorough about your error checking, but don't want if statements all
over the place, you can have bash exit any time it encounters a failure (i.e., a non-zero
exit status) from every command in your script (except inwhileloops and if statements
where it is already capturing and using the exit status) by setting the -e flag.

set -e

cd mytmp
m *

Setting the -e flag will cause the shell to exit when a command fails. If the cd fails, the
script will exit and never even try to execute the rm* command. We don't recommend
doing this on an interactive shell, because when the shell exits it will make your shell
window go away.

See Also

* Recipe 4.8 for an explanation of the || syntax, which is similar in some ways, but
also quite different from the && construct

4.7 Running Long Jobs Unattended

Problem

You ran a job in the background, then exited the shell and went for coffee. When you
came back to check, the job was no longer running and it hadn't completed. In fact,

4.7 Running Long Jobs Unattended | 77

your job hadn't progressed very far at all. It seems to have quit as soon as you exited

the shell.

Solution

If you want to run a job in the background and expect to exit the shell before the job
completes, then you need tonohup the job:

$ nohup long &
nohup: appending output to “nohup.out’
$

Discussion

When you put the job in the background (via the &), it is still a child process of the
bash shell. When you exit an instance of the shell, bash sends a hangup (hup) signal to
all of its child processes. That's why your job didn't run for very long. As soon as you
exited bash, it killed your background job. (Hey, you were leaving; how was it supposed
to know?)

The nohup command simply sets up the child process to ignore hang-up signals. You
can still kill a job with the kill command, because kill sends a SIGTERM signal not a
SIGHUP signal. But with nohup, bash won't inadvertently kill your job when you exit.

The message that nohup gives about appending your output is just nohup trying to be
helpful. Since you are likely to exit the shell after issuing a nohup command, your output
destination will likely go away—i.e., the bash session in your terminal window would
no longer be active. So, where would the job be able to write? More importantly, writing
to a non-existent destination would cause a failure. So nohup redirects the output for
you, appending it (not overwriting, but adding at the end) to a file named nohup.out in
the current directory. You can explicitly redirect the out-put elsewhere on the command
line and nohup is smart enough to detect that this has happened and doesn't use noh-
up.out for your output.

See Also
* Chapter 2 for various recipes on redirecting output, since you probably want to do
that for a background job
* Recipe 10.1
* Recipe 17.4

78 | Chapter4: Executing Commands

4.8 Displaying Error Messages When Failures Occur

Problem

You need your shell script to be verbose about failures. You want to see error messages
when commands don't work, but if statements tend to distract from the visual flow of
statements.

Solution

A common idiom among some shell programmers is to use the || with commands to
spit out debug or error messages. Here's an example:

cmd || printf "%b" "cmd failed. You're on your own\n"

Discussion

Similar to how the && didn't bother to evaluate the second expression if the first was
false, the || tells the shell not to bother to evaluate the second expression if the first
one is true (i.e., succeeds). As with &3, the | | syntax harkens back to logic and C Lan-
guage where the outcome is determined (as true) if the first expression in A OR B eval-
uates to true—so there's no need to evaluate the second expression. In bash, if the first
expression returns 0 (i.e., succeeds) then it just continues on. Only if the first expression
(i.e., exit value of the command) returns a non-zero value must it evaluate the second
part, and thus run the other command.

Warning—don't be fooled by this:
cmd || printf "%b" "FAILED.\n" ; exit 1

The exit will be executed in either case! The OR is only between those two commands.
If we want to have the exit happen only on error, we need to group it with the printf so
that both are considered as a unit. The desired syntax would be:

cmd || { printf "%b" "FAILED.\n" ; exit 1 ; }

Due to an oddity of bash syntax, the semicolon after the last command and just before
the } is required, and that closing brace must be separated by whitespace from the
surrounding text.

See Also

¢ Recipe 2.14
* Recipe 4.6 for an explanation of && syntax

4.8 Displaying Error Messages When Failures Occur | 79

4.9 Running Commands from a Variable

Problem

You want to run different commands in your script depending on circumstances. How
can you vary which commands run?

Solution

There are many solutions to this problem—it's what scripting is all about. In coming
chapters we'll discuss various programming logic that can be used to solve this problem,
such as if/then/else, case statements, and more. But here's a slightly different ap-
proach that reveals something about bash. We can use the contents of a variable (more
on those in Chapter 5) not just for parameters, but also for the command itself.

FN=/tmp/x.x

PROG=echo

$PROG $FN

PROG=cat
$PROG $FN

Discussion

We can assign the program name to a variable (here we use $PROG), and then when we
refer to that variable in the place where a command name would be expected, it uses
the value of that variable ($PROG) as the command to run. The bash shell parses the
command line, substitutes the values of its variables and takes the result of all the
substitutions and then treats that as the command line, as if it had been typed that way
verbatim.

Be careful about the variable names you use. Some programs such as
"*3% InfoZip use environment variables such as $ZIP and $UNZIP to pass set-
tings to the program itself. So if you do something like ZIP='/usr/bin/
zip', you can spend days pulling your hair out wondering why it works

fine from the command line, but not in your script. Trust us. We learned
this one the hard way. Also, RTFM.

See Also

e Chapter 11
* Recipe 14.3
* Recipe 16.19
¢ Recipe 16.20

* Appendix C for a descripton of all the various substitutions that are preformed on
a command line; you'll want to read a few more chapters before tackling that sub-
ject

80 | Chapter4: Executing Commands

4.10 Running All Scripts in a Directory

Problem

You want to run a series of scripts, but the list keeps changing; you're always adding
new scripts, but you don't want to continuously modify a master list.

Solution

Put the scripts you want to run in a directory, and let bash run everything that it finds.
Instead of keeping a master list, simply look at the contents of that directory. Here's a
script that will run everything it finds in a directory:

for SCRIPT in /path/to/scripts/dir/*

do

if [-f $SCRIPT -a -x $SCRIPT]

then

$SCRIPT

fi

done

Discussion

We will discuss the for loop and the if statement in greater detail in Chapter 6, but
this gives you a taste. The variable $SCRIPT will take on successive values for each file
that matches the wildcard pattern *, which matches everything in the current directory
(except invisible dot files, which begin with a period). If it is a file (the -f test) and has
execute permissions set (the -x test), the shell will then try to run that script.

In this simple example, we have provided no way to specify any arguments to the scripts
as they are executed. This simple script may work well for your personal needs, but
wouldn't be considered robust; some might consider it downright dangerous. But we
hope it gives you an idea of what lies ahead: some programming-language-style script-
ing capabilities.

See Also

* Chapter 6 for more about for loops and if statements

4.10 Running All Scripts in a Directory | 81

CHAPTER 5
Basic Scripting: Shell Variables

bash shell programming is a lot like any kind of programming, and that includes having
variables—containers that hold strings and numbers, which can be changed, com-
pared, and passed around. bash variables have some very special operators that can be
used when you refer to the variable. bash also has some important built-in variables,
ones that provide important information about the other variables in your script. This
chapter takes a look at bash variables and some special mechanisms for referencing
variables, and shows how they can be put to use in your scripts.

Variables in a bash script are often written as all-uppercase names, though that is not
required—just a common practice. You don't need to declare them; just use them where
you want them. They are basically all of type string, though some bash operations can
treat their contents as a number. They look like this in use:

trivial script using shell variables

(but at least it is commented!)

MYVAR="something"

echo $MYVAR

similar but with no quotes

MY_2ND=anotherone

echo $MY_2ND

quotes are needed here:

MYOTHER="more stuff to echo"

echo $MYOTHER

There are two significant aspects of bash variable syntax that may not be intuitively
obvious regarding shell variables. First, on the assignment, the name=value syntax is
straightforward enough, but there cannot be any spaces around the equal sign.

Let's consider for a moment why this is the case. Remember that the basic semantics
of the shell is to launch programs—you name the program on the command line and
that is the program that gets launched. Any words of text that follow after it on the
command line are passed along as arguments to the program. For example when you
type:

$ 1s filename

83

the word 1s is the name of the command and filename is the first and only argument
in this example.

Why is that relevant? Well, consider what a variable assignment in bash would look
like if you allowed spaces around the equal sign, like this:

MYVAR = something

Can you see that the shell would have a hard time distinguishing between the name of
a command to invoke (like the [s example) and the assignment of a variable? This would
be especially true for commands that can use = symbols as one or more of their argu-
ments (e.g., test). So to keep it simple, the shell doesn't allow spaces around the equal
sign in an assignment. Otherwise it would see them just as separate words. The flip
side of this is also worth noting—don't use an equal sign in a filename, especially not
one for a shell script (it is possible, just not recommended).

The second aspect of shell variable syntax worth noting is the use of the dollar sign
when referring to the variable. You don't use the dollar sign on the variable name to
assign it a value, but you do use the dollar sign to get the value of the variable. (The
exception to this is using variables inside a $((...)) expression.) In compiler jargon, this
difference in syntax for assigning and retrieving the value is the difference between the
L-value and the R-value of the variable (for Left and Right side of an assignment oper-
ator).

Once again, the reason for this is for simple disambiguation. Consider the following:

MYVAR=something
echo MYVAR is now MYVAR

As this example tries to point out, how would one distinguish between the literal string
MYVAR and the value of the $MYVAR variable? Use quotes, you say? If you were to require
quoting around literal strings then everything would get a lot messier— you would
have to quote every non-variable name, which includes commands! Who wants to type:

$ "1s" "-1" "/usr/bin/xmms"

(Yes, for those of you who thought about trying it, it does work.) So rather than have
to put quotes around everything, the onus is put on the variable reference by using the
R-value syntax. Put a dollar sign on a variable name when you want to get at the value
associated with that variable name.

MYVAR=something
echo MYVAR is now $MYVAR

Just remember that since everything in bash is strings, we need the dollar sign to show
a variable reference.

84 | Chapter5: BasicScripting: Shell Variables

5.1 Documenting Your Script

Problem

Before we say one more word about shell scripts or variables, we have to say something
about documenting your scripts. After all, you need to be able to understand your script
even when several months have passed since you wrote it.

Solution

Document your script with comments. The # character denotes the beginning of a
comment. All the characters after it on that line are ignored by the shell.

#

This is a comment.

#

Use comments frequently.
Comments are your friends.

Discussion

Some people have described shell syntax, regular expressions, and other parts of shell
scripting as write only syntax, implying that it is nearly impossible to understand the
intricacies of many shell scripts.

One of your best defenses against letting your shell scripts fall into this trap is the liberal
use of comments (another is the use of meaningful variable names). It helps to put a
comment before strange syntax or terse expressions.

replace the semi with a blank

NEWPATH=${PATH/;/ }

#

switch the text on either side of a semi

sed -e 's/"\(.*\);\(.*\)$/\2;\1/" < $FILE

Comments can even be typed in at the command prompt with an interactive shell. This
can be turned off, but it is on by default. There may be a few occasions when it is useful
to make interactive comments.

See Also
* "shopt Options" in Appendix A gives the option for turning interactive comments
on or off

5.1 Documenting Your Script | 85

5.2 Embedding Documentation in Shell Scripts

Problem

You want a simple way to provide formatted end-user documentation (e.g., man or
html pages) for your script. You want to keep both code and documentation markup
in the same file to simplify updates, distribution, and revision control.

Solution

Embed documentation in the script using the "do nothing" built-in (a colon) and a here-
document:

#!/usr/bin/env bash
cookbook filename: embedded_documentation

echo 'Shell script code goes here'

Use a : NOOP and here document to embed documentation,
: <<'END_OF_DOCS'

Embedded documentation such as Perl's Plain 0ld Documentation (POD),
or even plain text here.

Any accurate documentation is better than none at all.

Sample documentation in Perl's Plain 0ld Documentation (POD) format adapted from
CODE/ch07/Ch07.001_Best_Ex7.1 and 7.2 in the Perl Best Practices example tarball
"PBP_code.tar.gz".

=head1 NAME

MY~PROGRAM--One line description here

=head1 SYNOPSIS

MY~PROGRAM [OPTIONS] <file>

=head1 OPTIONS

-h = This usage.
-v = Be verbose.
-V = Show version, copyright and license information.

=head1 DESCRIPTION

A full description of the application and its features.
May include numerous subsections (i.e. =head2, =head3, etc.)

86 | Chapter5: BasicScripting: Shell Variables

=head1l LICENSE AND COPYRIGHT
=cut
END_OF_DOCS

Then to extract and use that POD documentation, try these commands.

To read on-screen, automatically paginated
$ perldoc myscript

Just the "usage" sections
$ pod2usage myscript

Create an HTML version
$ pod2html myscript > myscript.html

Create a man page
$ pod2man myscript > myscript.1

Discussion

Any plain text documentation or mark-up can be used this way, either interspersed
throughout the code or better yet collected at the end of the script. Since computer
systems that have bash will probably also have Perl, its Plain Old Documentation (POD)
may be a good choice. Perl usually comes with pod2* programs to convert POD to
HTML, LaTeX, man, text, and usage files.

Damian Conway's Perl Best Practices (O'Reilly) has some excellent library module and
application documentation templates that could be easily translated into any docu-
mentation format including plain text. In that book, see CODE/ch07/
Ch07.001_Best_Ex7.1 and 7.2 in the examples tarball (http://examples.oreilly.com/
perlbp/PBP_code.tar.gz).

If you keep all of your embedded documentation at the very bottom of the script, you
could also add an exit o right before the documentation begins. That will simply exit
the script rather than force the shell to parse each line looking for the end of the here-
document, so it will be a little faster. You need to be careful not override a previous
exit code from a command that failed, so consider using set -e. And do not use this trick
if you intersperse code and embedded documentation in the body of the script.

See Also

* set -e in Recipe 4.6

5.2 Embedding Documentation in Shell Scripts | 87

http://examples.oreilly.com/perlbp/PBP_code.tar.gz
http://examples.oreilly.com/perlbp/PBP_code.tar.gz

* http:/fexamples.oreilly.com/perlbp/PBP_code.tar.gz

* "Embedding manpages in Shell Scripts with kshdoc" at http://'www.unixlabplus
.com/unix-prog/kshdoc/kshdoc.html

5.3 Promoting Script Readability

Problem

You'd like to make your script as readable as possible for ease of understanding and
future maintenance.

Solution

* Document your script as noted in Recipe 5.1 and Recipe 5.2

* Indent and use vertical whitespace wisely

* Use meaningful variable names

* Use functions, and give them meaningful names

* Break lines at meaningful places at less than 76 characters or so

* Put the most meaningful bits to the left

Discussion

Document your intent, not the trivial details of the code. If you follow the rest of the
points, the code should be pretty clear. Write reminders, provide sample data layouts
or headers, and make a note of all the details that are in your head now, as you write
the code. But document the code itself too if it is subtle or obscure.

We recommend indenting using four spaces per level, with no tabs and especially no
mixed tabs. There are many reasons for this, though it often is a matter of personal
preference or company standards. After all, four spaces is always four spaces, no matter
how your editor (excepting proportional fonts) or printer is set. Four spaces is big
enough to be easily visible as you glance across the script but small enough that you
can have several levels of indenting without running the lines off the right side of your
screen or printed page. We also suggest indenting continued lines with two additional
spaces, or as needed, to make the code the most clear.

Use vertical white space, with separators if you like them, to create blocks of similar
code. Of course you'll do that with functions as well.

Use meaningful names for variables and functions, and spell them out. The only time
$1i or $x is ever acceptable is in a for loop. You may think that short, cryptic names are
saving you time and typing now, but we guarantee that you will lose that time 10- or
100-fold somewhere down the line when you have to fix or modify that script.

88 | Chapter5: BasicScripting: Shell Variables

http://examples.oreilly.com/perlbp/PBP_code.tar.gz
http://www.unixlabplus.com/unix-prog/kshdoc/kshdoc.html
http://www.unixlabplus.com/unix-prog/kshdoc/kshdoc.html

Break long lines at around 76 characters. Yes, we know that most of the screens (or
rather terminal programs) can do a lot more than that. But 80 character paper and
screens are still the default, and it never hurts to have some white space to the right of
the code. Constantly having to scroll to the right or having lines wrap on the screen or
printout is annoying and distracting. Don't cause it.

Unfortunately, there are sometimes exceptions to the long line rule. When creating
lines to pass elsewhere, perhaps via Secure Shell (SSH), and in certain other cases,
breaking up the line can cause many more code headaches than it solves. But in most
cases, it makes sense.

Try to put the most meaningful bits to the left when you break a line because we read
shell code left-to-right, so the unusual fact of a continued line will stand out more. It's
also easier to scan down the left edge of the code for continued lines, should you need
to find them. Which is more clear?

Good
[$results]\
83 echo "Got a good result in $results" \
|| echo 'Got an empty result, something is wrong'

Also good
[$results] &3 echo "Got a good result in $results” \
|| echo 'Got an empty result, something is wrong'

0K, but not ideal
[$results] &3 echo "Got a good result in $results” \
|| echo 'Got an empty result, something is wrong'

Bad
[$results] & echo "Got a good result in $results" || echo 'Got an empty result,
something is wrong'

Bad
[$results] && \
echo "Got a good result in $results” || \

echo 'Got an empty result, something is wrong'

See Also

* Recipe 5.1
* Recipe 5.2

5.4 Separating Variable Names from Surrounding Text

Problem

You need to print a variable along with other text. You are using the dollar sign in
referring to the variable. But how do you distinguish the end of the variable name from

5.4 Separating Variable Names from Surrounding Text | 89

other text that follows? For example, say you wanted to use a shell variable as part of
a filename, as in:

for FNin123 45
do

somescript /tmp/rep$FNport.txt
done

How will the shell read that? It will think that the variable name starts with the $ and
ends with the punctuation. In other words, it will think that $FNport is the variable
name, not the intended $FN.

Solution

Use the full syntax for a variable reference, which includes not just the dollar sign, but
also braces around the variable name:

somescript /tmp/rep${SUM}bay.txt

Discussion

Because shell variables are only alphanumeric characters, there are many instances
where you won't need to use the braces. Any whitespace or punctuation (except un-
derscore) provides enough of a clue to where the variable name ends. But when in
doubt, use the braces.

See Also
* Recipe 1.6

5.5 Exporting Variables

Problem

You defined a variable in one script, but when you called another script it didn't know
about the variable.

Solution

Export variables that you want to pass on to other scripts:

export MYVAR
export NAME=value

Discussion

Sometimes it's a good thing that one script doesn't know about the other script's vari-
ables. If you called a shell script from within a for loop in the first script, you wouldn't
want the second script messing up the iterations of your for loop.

90 | Chapter5: BasicScripting: Shell Variables

But sometimes you do want the information passed along. In those cases, you can
export the variable so that its value is passed along to any other program that it invokes.

If you want to see a list of all the exported variables, just type the built-in command
env (or export -p) for a list of each variable and its value. All of these are available for
your script when it runs. Many have already been set up by the bash startup scripts (see
Chapter 16 for more on configuring and customizing bash).

You can have the export statement just name the variable that will be exported. Though
the export statement can be put anywhere prior to where you need the value to be
exported, script writers often group these export statements together like variable dec-
larations at the front of a script. You can also make the export part of any variable
assignment, though that won't work in old versions of the shell.

Once exported, you can assign repeatedly to the variable without exporting it each
time. So, sometimes you'll see statements like:
export FNAME

export SIZE
export MAX

MAX=2048
SIZE=64
FNAME=/tmp/scratch

and at other times you'll see:

export FNAME=/tmp/scratch
export SIZE=64
export MAX=2048

FNAME=/tmp/scratch2
FNAME=/tmp/stillexported

One word of caution: the exported variables are, in effect, call by value. Changing the
value of the exported value in the called script does not change that variable's value
back in the calling script.

This begs the question: "How would you pass back a changed value from the called
script?" Answer: you can't.

Is there a better answer? Unfortunately, there isn't. You can only design your scripts so
that they don't need to do this. What mechanisms have people used to cope with this
limitation?

One approach might be to have the called script echo its changed value as output from
the script, letting you read the output with the resulting changed value. For example,
suppose one script exports a variable $VAL and then calls another script that modifies
$VAL. To get the new value returned, you have to write the new value to standard out
and capture that value and assign it to $VALj, as in:

VAL=$(anotherscript)

5.5 Exporting Variables | 91

in order to change the value of $VAL (see Recipe 10.5). You could even change multiple
values and echo them each in turn to standard out. The calling program could then use
a shell read to capture each line of output one at a time into the appropriate variables.
This requires that the called script produce no other output to standard out (at least
not before or among the variables), and sets up a very strong interdependency between
the scripts (not good from a maintenance standpoint).

See Also
* help export

* Chapter 16 for more information on configuring and customizing bash
* Recipe 5.6

* Recipe 10.5

* Recipe 19.5

5.6 Seeing All Variable Values

Problem

How can I see which variables have been exported and what values they have? Do 1
have to echo each one by hand? How would I tell if they are exported?

Solution

Use the set command to see the value of all variables and function definitions in the
current shell.

Use the env (orexport -p) command to see only those variables that have been exported
and would be available to a subshell.

Discussion

The set command, with no other arguments, produces (on standard out) a list of all the
shell variables currently defined along with their values, in a name=value format. The
env command is similiar. If you run either, you will find a rather long list of variables,
many of which you might not recognize. Those variables have been created for you, as
part of the shell's startup process.

The list produced by env is a subset of the list produced by set, since not all variables
are exported.

If there are particular variables or values that are of interest, and you don't want the
entire list, just pipe it into a grep command. For example:

$ set | grep MY

92 | Chapter5: BasicScripting: Shell Variables

will show only those variables whose name or value has the two-character sequence
MY somewhere in it.

See Also

* help set

* help export

* man env

* Chapter 16 for more on configuring and customizing bash

* Appendix A for reference lists for all of the built-in shell variables

5.7 Using Parameters in a Shell Script

Problem

You also want users to be able to invoke your script with a parameter. You could require
that users set a shell variable, but that seems clunky. You also need to pass data to
another script. You could agree on environment variables, but that ties the two scripts
together too closely.

Solution

Use command-line parameters. Any words put on the command line of a shell script
are available to the script as numbered variables:

simple shell script
echo $1

The script will echo the first parameter supplied on the command line when it is in-
voked. Here it is in action:

$ cat simplest.sh

simple shell script

echo ${1}

$./simplest.sh you see what I mean

you

$./simplest.sh one more time

one

$

Discussion

The other parameters are available as ${2}, ${3}, ${4}, ${5}, and so on. You don't
need the braces for the single-digit numbers, except to separate the variable name from
the surrounding text. Typical scripts have only a handful of parameters, but when you
get to ${10} you better use the braces or else the shell will interpret that as ${1} followed
immediately by the literal string 0 as we see here:

5.7 Using Parameters in a Shell Script | 93

$ cat tricky.sh

echo $1 $10 ${10}

$./tricky.sh I II IIT IV V VI VII VIII IX X XI
IIoX

$

The tenth argument has the value X but if you write $10 in your script, then the shell
will give you $1, the first parameter, followed immediately by a zero, the literal character
that you put next to the $1 in your echo statement.

See Also
* Recipe 5.4

5.8 Looping Over Arguments Passed to a Script

Problem

You want to take some set of actions for a given list of arguments. You could write your
shell script to do that for one argument and use $1 to reference the parameter. But what
if you'd like to do this for a whole bunch of files? You would like to be able to invoke
your script like this:

actall *.txt

knowing that the shell will pattern match and build a list of filenames that match the
*.txt pattern (any filename ending with .txt).

Solution

Use the shell special variable $* to refer to all of your arguments, and use that in a for
loop like this:

#!/usr/bin/env bash
cookbook filename: chmod all.1
#
change permissions on a bunch of files
#
for FN in $*
do
echo changing $FN
chmod 0750 $FN
done

Discussion

The variable $FN is our choice; we could have used any shell variable name we wanted
there. The $* refers to all the arguments supplied on the command line. For example,
if the user types:

$./actall abc.txt another.txt allmynotes.txt

94 | Chapter5: BasicScripting: Shell Variables

the script will be invoked with $1 equal to abc.txt and $2 equal to another.txt and $3
equal to allmynotes.txt, but $* will be equal to the entire list. In other words, after the
shell has substituted the list for $* in the for statement, it will be as if the script had read:
for FN in abc.txt another.txt allmynotes.txt
do
echo changing $FN

chmod 0750 $FN
done

The for loop will take one value at a time from the list, assign it to the variable $FN and
proceed through the list of statements between the do and the done. It will then repeat
that loop for each of the other values.

But you're not finished yet! This script works fine when filenames have no spaces in
them, but sometimes you encounter filenames with spaces. Read the next two recipes
to see how this script can be improved.

See Also

* help for
* Recipe 6.12

5.9 Handling Parameters with Blanks

Problem

You wrote a script that took a filename as a parameter and it seemed to work, but then
one time your script failed. The filename, it turns out, had an embedded blank.

Solution

You'll need to be careful to quote any shell parameters that might contain filenames.
When referring to a variable, put the variable reference inside double quotes.

Discussion

Thanks a lot, Apple! Trying to be user friendly, they popularized the concept of space
characters as valid characters in filenames, so users could name their files with names
like My Report and Our Dept Data instead of the ugly and unreadable MyReport and
Our_Dept_Data. (How could anyone possibly understand what those old-fashioned
names meant?) Well, that makes life tough for the shell, because the space is the fun-
damental separator between words, and so filenames were always kept to a single word.
Not so anymore.

So how do we handle this?

5.9 Handling Parameters with Blanks | 95

Where a shell script once had simply 1s -1 $1, it is better to write 1s -1 "$1" with
quotes around the parameter. Otherwise, if the parameter has an embedded blank, it
will be parsed into separate words, and only part of the name will be in $1. Let's show
you how this doesn't work:

$ cat simpls.sh

simple shell script

1s -1 ${1}

$

$./simple.sh Oh the Waste

1s: Oh: No such file or directory

$

When we don't put any quotes around the filename as we invoke the script, then
bash sees three arguments and substitutes the first argument (Oh) for $1. The Is com-
mand runs with Oh as its only argument and can't find that file.

So now let's put quotes around the filename when we invoke the script:

$./simpls.sh "Oh the Waste"

1s: Oh: No such file or directory
1s: the: No such file or directory
1s: Waste: No such file or directory

$

Still not good. bash has taken the three-word filename and substituted it for $1 on the
Is command line in our script. So far so good. Since we don't have quotes around the
variable reference in our script, however, Is sees each word as a separate argument, i.e.,
as separate filenames. It can't find any of them.

Let's try a script that quotes the variable reference:

$ cat quoted.sh

note the quotes

1s -1 "${1}"

$

$./quoted.sh "Oh the Waste"

-YW-r--r-- 1 smith users 28470 2007-01-11 19:22 Oh the Waste
$

When we quoted the reference "${1}" it was treated as a single word (a single file-name),

and the Is then had only one argument—the filename—and it could complete its task.

See Also

* Chapter 19 for common goofs
* Recipe 1.6

* Appendix C for more information on command-line processing

96 | Chapter5: BasicScripting: Shell Variables

5.10 Handling Lists of Parameters with Blanks

Problem

OK, you have quotes around your variable as the previous recipe recommended. But
you're still getting errors. It's just like the script from the Recipe 5.8, but it fails when
a file has a blank in its name:

#

for FN in $*

do

chmod 0750 "$FN"
done

Solution

It has to do with the $* in the script, used in the for loop. For this case we need to use
adifferent but related shell variable, $@. When itis quoted, the resulting list has quotes
around each argument separately. The shell script should be written as follows:

#!/usr/bin/env bash

cookbook filename: chmod_all.2

#

change permissions on a bunch of files

with better quoting in case of filenames with blanks

#

for FN in "$@"

do

chmod 0750 "$FN"
done

Discussion
The parameter $* expands to the list of arguments supplied to the shell script. If you
invoke your script like this:

$ myscript these are args
then $* refers to the three arguments these are args. And when used in a for loop,
such as:

for FN in $*

then the first time through the loop, $FNis assigned the first word (these) and the second
time, the second word (are), etc.

If the arguments are filenames and they are put on the command line by pattern match-
ing, as when you invoke the script this way:

$ myscript *.mp3

5.10 Handling Lists of Parameters with Blanks | 97

then the shell will match all the files in the current directory whose names end with the
four characters .mp3, and they will be passed to the script. So consider an example where
there are three MP3 files whose names are:

vocals.mp3
cool music.mp3
tophit.mp3

The second song title has a blank in the filename between cool and music. When you
invoke the script with:

$ myscript *.mp3
you'll get, in effect:

$ myscript vocals.mp3 cool music.mp3 tophit.mp3

If your script contains the line:
for FN in $*

that will expand to:

for FN in vocals.mp3 cool music.mp3 tophit.mp3

which has four words in its list, not three. The second song title has a blank as the fifth
character (cool music.mp3), and the blank causes the shell to see that as two separate
words (cool and music.mp3), so $FN will be cool on the second iteration through the
for loop. On the third iteration, $FN will have the value music.mp3 but that, too, is not
the name of your file. You'll get file-not-found error messages.

It might seem logical to try quoting the $* but
for FN in "g*"

will expand to:

for FN in "vocals.mp3 cool music.mp3 tophit.mp3"

and you will end up with a single value for $FN equal to the entire list. You'll get an error
message like this:

chmod: cannot access 'vocals.mp3 cool music.mp3 tophit.mp3': No such file or
directory

Instead you need to use the shell variable $@ and quote it. Unquoted, $* and $@ give
you the same thing. But when quoted, bash treats them differently. A reference to $*
inside of quotes gives the entire list inside one set of quotes, as we just saw. But a
reference to $@ inside of quotes returns not one string but a list of quoted strings, one
for each argument.

In our example using the MP3 filenames:
for FN in "$@"

will expand to:

for FN in "vocals.mp3" "cool music.mp3" "tophit.mp3"

98 | Chapter5: BasicScripting: Shell Variables

and you can see that the second filename is now quoted so that its blank will be kept
as part of its name and not considered a separator between two words.

The second time through this loop, $FN will be assigned the value cool music.mp3, which
has an embedded blank. So be careful how you refer to $FN—you'll probably want to
put it in quotes too, so that the space in the filename is kept as part of that string and
not used as a separator. That is, you'll want to use "$FN" as in:

$ chmod 0750 "$FN"

Shouldn't you always use "$@" in your for loop? Well, it's a lot harder to type, so for
quick-and-dirty scripts, when you know your filenames don't have blanks, it's probably
OK to keep using the old-fashioned $* syntax. For more robust scripting though, we
recommend "$@" as the safer way to go. We'll probably use them interchangeably
throughout this book, because even though we know better, old habits die hard—and
some of us never use blanks in our filenames! (Famous last words.)

See Also

¢ Recipe 5.8
* Recipe 5.9
¢ Recipe 5.12
* Recipe 6.12

5.11 Counting Arguments

Problem

You need to know with how many parameters the script was invoked.

Solution

Use the shell built-in variable ${#}. Here's some scripting to enforce an exact count of
three arguments:

#!/usr/bin/env bash

cookbook filename: check arg count

#

Check for the correct # of arguments:

Use this syntax or use: if [$# -1t 3]

if (($#<3))

then
printf "%b" "Error. Not enough arguments.\n" >&2
printf "%b" "usage: myscript file1l op file2\n" >&2
exit 1

elif (($# > 3))

then
printf "%b" "Error. Too many arguments.\n" >&2
printf "%b" "usage: myscript file1l op file2\n" >&2

5.11 Counting Arguments | 99

exit 2
else
printf "%b" "Argument count correct. Proceeding...\n"
fi
And here is what it looks like when we run it, once with too many arguments and once
with the correct number of arguments:
$./myscript myfile is copied into yourfile
Error. Too many arguments.
usage: myscript file1l op file2

$./myscript myfile copy yourfile
Argument count correct. Proceeding...

Discussion

After the opening comments (always a helpful thing to have in a script), we have the
if test to see whether the number of arguments supplied (found in $#) is greater than
three. If so, we print an error message, remind the user of the correct usage, and exit.

The output from the error messages are redirected to standard error. This is in keeping
with the intent of standard error as the channel for all error messages.

The script also has a different return value depending on the error that was detected.
While not that significant here, it is useful for any script that might be invoked by other
scripts, so that there is a programmatic way not only to detect failure (non-zero exit
value), but to distinguish between error types.

One word of caution: don't confuse ${#} with ${#VAR} or even ${VAR#alt} just because
they all use the # inside of braces. The first gives the number of arguments the second
gives the length of the value in the variable VAR, and the third does a certain kind of
substitution.

See Also

* Recipe 4.2
¢ Recipe 5.1
* Recipe 5.12
¢ Recipe 5.18
* Recipe 6.12

100 | Chapter5: BasicScripting: Shell Variables

5.12 Consuming Arguments

Problem

For any serious shell script, you are likely to have two kinds of arguments—options
that modify the behavior of the script and the real arguments with which you want to
work. You need a way to get rid of the option argument(s) after you've processed them.

Remember this script:

for FN in "$@"
do
echo changing $FN
chmod 0750 "$FN"
done

It's simple enough—it echoes the filename that it is working on, then it changes that
file's permissions. What if you want it to work quietly sometimes, not echoing the
filename? How would we add an option to turn off this verbose behavior while pre-
serving the for loop?

Solution

#!/usr/bin/env bash
cookbook filename: use_up_option

#
use and consume an option
#
parse the optional argument
VERBOSE=0;
if [[$1 = -v]]
then
VERBOSE=1;
shift;
fi
#
the real work is here
#
for FN in "$@"
do
if ((VERBOSE == 1))
then
echo changing $FN
fi
chmod 0750 "$FN"
done
Discussion

We add a flag variable, $VERBOSE, to tell us whether or not to echo the filename as we
work. But once the shell script has seen the -v and set the flag, we don't want the -v in
the argument list any more. The shift statement tells bash to shift its arguments down

5.12 Consuming Arguments | 101

one position, getting rid of the first argument ($1) as $2 becomes $1, and $3 becomes
$2, and so on.

That way, when the for loop runs, the list of parameters (in $@) no longer contains
the -v but starts with the next parameter.

This approach of parsing arguments is alright for handling a single option. But if you
want more than one option, you need a bit more logic. By convention, options to a
shell script (usually) are not dependent on position; e.g., myscript -a -p should be the
same as myscript -p -a. Moreover, a robust script should be able to handle repeated
options and either ignore them or report an error. For more robust parsing, see the
recipe on bash's getopts built-in (Recipe 13.1).

See Also

* help shift

* Recipe 5.8
¢ Recipe 5.11
* Recipe 5.12
¢ Recipe 6.15
¢ Recipe 13.1
¢ Recipe 13.2

5.13 Getting Default Values

Problem

You have a shell script that takes arguments supplied on the command line. You'd like
to provide default values so that the most common value(s) can be used without needing
to type them every time.

Solution

Use the ${:-} syntax when referring to the parameter, and use it to supply a default
value:

FILEDIR=${1:-/tmp}

Discussion

There are a series of special operators available when referencing a shell variable. This
one, the : -operator, says that if $1 is not set or is null then it will use what follows, /
tmp in our example, as the value. Otherwise it will use the value that is already set in
$1. It can be used on any shell variable, not just the positional parameters (1, 2, 3, etc.),
but they are probably the most common use.

102 | Chapter5: BasicScripting: Shell Variables

Of course you could do this the long way by constructing an if statement and checking
to see if the variable is null or unset (we leave that as an exercise to the reader), but this
sort of thing is so common in shell scripts that this syntax has been welcomed as a
convenient shorthand.

See Also

* bash manpage on parameter substitution

* Learning the bash Shell by Cameron Newham (O'Reilly), “See Also” on page 5-
“Discussion” on page 4

* Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O'Reilly), pages
113-114

¢ Recipe 5.14

5.14 Setting Default Values

Problem

Your script may rely on certain environment variables, either widely used ones (e.g.,
$USER) or ones specific to your own business. If you want to build a robust shell script,
you should make sure that these variables do have a reasonable value. You want to
guarantee a reasonable default value. How?

Solution

Use the assignment operator in the shell variable reference the first time you refer to it
to assign a value to the variable if it doesn't already have one, as in:

cd ${HOME:=/tmp}

Discussion

The reference to $HOME in the example above will return the current value of $HOME unless
it is empty or not set at all. In those cases (empty or not set), it will return the value /
tmp, which will also be assigned to $HOME so that further references to $HOME will have
this new value.

We can see this in action here:

$ echo ${HOME:=/tmp}

/home/uid002

$ unset HOME # generally not wise to do
$ echo ${HOME:=/tmp}

/tmp

$ echo $HOME

/tmp

$ cd ; pwd

5.14 Setting Default Values | 103

/tmp

$
Once we unset the variable it no longer had any value. When we then used the :=
operator as part of our reference to it, the new value (/tmp) was substituted. The sub-
sequent references to $HOME returned its new value.

One important exception to keep in mind about the assignment operator: this mech-
anism will not work with positional parameter arguments (e.g., $1 or $*). For those
cases, use :- in expressions like ${1:-default}, which will return the value without
trying to do the assignment.

As an aside, it might help you to remember some of these crazy symbols if you think
of the visual difference between ${VAR:=value} and ${VAR:-value}. The := will do an
assignment as well as return the value on the right of the operator. The :- will do half
of that—it just returns the value but doesn't do the assignment—so its symbol is only
half of an equal sign (i.e., one horizontal bar, not two). If this doesn't help, forget that
we mentioned it.

See Also
* Recipe 5.13

5.15 Using null As a Valid Default Value

Problem

You need to set a default value, but you want to allow an empty string as a valid value.
You only want to substitute the default in the case where the value is unset.

The ${:=} operator has two cases where the new value will be used: first, when the
value of the shell variable has previously not been set (or has been explicitly unset); and
second, where the value has been set but is empty, as in HOME="" or HOME=$0THER (where
$OTHER had no value).

Solution

The shell can distinguish between these two cases, and omitting the colon (:) indicates
that you want to make the substitution only if the value is unset. If you write only $
{HOME=/tmp} without the colon, the assignment will take place only in the case where
the variable is not set (never set or explicitly unset).

Discussion

Let's play with the $HOME variable again, but this time without the colon in the operator:

$ echo ${HOME=/tmp} # no substitution needed
/home/uid002

104 | Chapter5: BasicScripting: Shell Variables

$ HOME="" # generally not wise
$ echo ${HOME=/tmp} # will NOT substitute

$ unset HOME # generally not wise

$ echo ${HOME=/tmp} # will substitute

/tmp

$ echo $HOME

/tmp

$
In the case where we simply made the $HOME variable an empty string, the = operator
didn't do the substitution since $HOME did have a value, albeit null. But when we unset
the variable, the substitution occurs. If you want to allow for empty strings, use just
the = with no colon. Most times, though, the := is used because you can do little with
an empty value, deliberate or not.

See Also

¢ Recipe 5.13
* Recipe 5.14

5.16 Using More Than Just a Constant String for Default

Problem

You need something more than just a constant string as the default value for the vari-
able.

Solution

You can use quite a bit more on the righthand side of these shell variable references.
For example:

cd ${BASE:="$(pwd)"}

Discussion

As the example shows, the value that will be substituted doesn't have to be just a string
constant. Rather it can be the result of a more complex shell expression, including
running commands in a subshell (as in the example). In our example, if $BASE is not
set, the shell will run the pwd built-in command (to get the current directory) and use
the string that it returns as the value.

So what can you do on the righthand side of this (and the other similar) operators? The
bash manpage says that what we put to the right of the operator "is subject to tilde
expansion, parameter expansion, command substitution, and arithmetic expansion."

Here is what that means:

5.16 Using More Than Just a Constant String for Default | 105

* Parameter expansion means that we could use other shell variables in this expres-
sion, as in: ${BASE:=${HOME}}.

* Tilde expansion means that we can use expressions like ~bob and it will expand
that to refer to the home directory of the username bob. Use ${BASE:=~uid17} to set
the default value to the home directory for user uid17, but don't put quotes around
this string, as that will defeat the tilde expansion.

* Command substitution is what we used in the example; it will run the commands
and take their output as the value for the variable. Commands are enclosed in the
single parentheses syntax, $(cmds).

* Arithmetic expansion means that we can do integer arithmetic, using the $((..))
syntax in this expression. Here's an example:

echo ${BASE:=/home/uid$((ID+1))}

See Also
* Recipe 5.13

5.17 Giving an Error Message for Unset Parameters

Problem

Those shorthands for giving a default value are cool, but maybe you need to force the
users to give you a value, otherwise you don't want to proceed. Perhaps if they left off
a parameter, they don't really understand how to invoke your script. You want to leave
nothing to guesswork. Is there anything shorter than lots of if statements to check each
of your several parameters?

Solution

Use the ${:?} syntax when referring to the parameter. bash will print an error message
and then exit if the parameter is unset or null.

#!/usr/bin/env bash

cookbook filename: check unset_parms

#

USAGE="usage: myscript scratchdir sourcefile conversion"
FILEDIR=${1:?"Error. You must supply a scratch directory."}
FILESRC=${2:?"Error. You must supply a source file."}
CVTTYPE=${3:?"Exrror. ${USAGE}"}

Here's what happens when we run that script with insufficient arguments:

$./myscript /tmp /dev/null
./myscript: line 5: 3: Error. usage: myscript scracthdir sourcefile conversion

106 | Chapter5: BasicScripting: Shell Variables

Discussion

The check is made to see if the first parameter is set (or null) and if not, it will print an
error message and exit.

The third variable uses another shell variable in its message. You can even run another
command inside it:

CVTTYPE=${3:?"Error. $USAGE. $(rm $SCRATCHFILE)"}
If parameter three is not set, then the error message will contain the phrase "Error.",
along with the value of the variable named $USAGE and then any output from the com-
mand which removes the filename named by the variable $SCRATCHFILE. OK, so we're
getting carried away. You can make your shell script awfully compact, and we do mean

awfully. Tt is better to waste some whitespace and a few bytes to make the logic ever so
much more readable, as in:
if [_Z ll$3ll]
then
echo "Error. $USAGE"

rm $SCRATCHFILE
fi

One other consideration: the error message produced by the ${:?} feature comes out
with the shell script filename and line number. For example:

./myscript: line 5: 3: Error. usage: myscript scracthdir sourcefile conversion

Because you have no control over this part of the message, and since it looks like an
error in the shell script itself, combined with the issue of readability, this technique is
not so popular in commercial-grade shell scripts. (It is handy for debugging, though.)

See Also

¢ Recipe 5.13
* Recipe 5.14
¢ Recipe 5.16

5.18 Changing Pieces of a String

Problem

You want to rename a number of files. The filenames are almost right, but they have
the wrong suffix.

Solution

Use a bash parameter expansion feature that will remove text that matches a pattern.

5.18 Changing Pieces of a String | 107

#!/usr/bin/env bash

cookbook filename: suffixer

#

rename files that end in .bad to be .bash

for FN in *.bad
do

mv "${FN}" "${FN%bad}bash"
done

Discussion

The for loop will iterate over a list of filenames in the current directory that all end
in .bad. The variable $FN will take the value of each name one at a time. Inside the
loop, the mv command will rename the file (move it from the old name to the new name).
We need to put quotes around each filename in case the filename contains embedded
spaces.

The crux of this operation is the reference to $FN that includes an automatic deletion
of the trailing bad characters. The ${ } delimit the reference so that the bash adjacent
to it is just appended right on the end of the string.

Here it is broken down into a few more steps:

NOBAD="${FN%bad}"
NEWNAME="${NOBAD}bash"
mv "${FN}" "${NEWNAME}"

This way you can see the individual steps of stripping off the unwanted suffix, creating
the new name, and then renaming the files. Putting it all on one line isn't so bad though,
once you get used to the special operators.

Since we are not just removing a substring from the variable but are replacing the bad
with bash, we could have used the substitution operator for variable references, the
slash (/). Similar to editor commands (e.g., those found in vi and sed) that use the slash
to delimit substitutions, we could have written:

Not anchored, don't do this
mv "${FN}" "${FN/bad/bash}"

(Unlike the editor commands, you don't use a final slash—the right-brace serves that
function.)

However, one reason that we didn't do it this way is because the substitution isn't
anchored, and will make the substitution anywhere in the variable. If, for example, we
had a file named subaddon.bad then the substitution would leave us with subash-
don.bad, which is not what we want. If we used a double slash for the first slash, it
would substitute every occurrence within the variable. That would result in subash-
don.bash, which isn't what we want either.

Anchored, so this is better, but TEST first
mv "${FN}" "${FN/.bad/.bash}"

108 | Chapter5: BasicScripting: Shell Variables

There are several operators that do various sorts of manipulation on the string values
of variables when referenced. Table 5-1 summarizes them.

Table 5-1. String-manipulation operators

inside ${...} Action taken

name : number : numbexr Substring starting character, length
#name Return the length of the string
name#pattern Remove (shortest) front-anchored pattern
name##pattern Remove (longest) front-anchored pattern
nameXpattern Remove (shortest) rear-anchored pattern
name%%pattern Remove (longest) rear-anchored pattern

name/pattern/string Replace first occurrence

name//pattern/string Replaceall occurrences

Try them all. They are very handy.

See Also

* man rename
* Recipe 12.5

5.19 Using Array Variables

Problem

There have been plenty of scripts so far with variables, but can bash deal with an array
of variables?

Solution

Yes. bash now has an array syntax for single-dimension arrays.

Description

Arrays are easy to initialize if you know the values as you write the script. The format
is simple:

MYRA=(first second third home)
Each element of the array is a separate word in the list enclosed in parentheses. Then
you can refer to each this way:

echo runners on ${MYRA[0]} and ${MYRA[2]}

This output is the result:

5.19 Using Array Variables | 109

runners on first and third
If you write only $MYRA, you will get only the first element, just as if you had written $
{MYRA[0O]}.
See Also

* Learning the bash Shell by Cameron Newham (O'Reilly), pages 157-161 for more
information about arrays

110 | Chapter5: BasicScripting: Shell Variables

CHAPTER 6
Shell Logic and Arithmetic

One of the big improvements that modern versions of bash have when compared with
the original Bourne shell is in the area of arithmetic. Early versions of the shell had no
built-in arithmetic; it had to be done by invoking a separate executable, even just to
add 1 to a variable. In a way it's a tribute to how useful and powerful the shell was and
is—that it can be used for so many tasks despite that awful mechanism for arithmetic.
Maybe no one expected the shell to be so useful and so well used but, after a while, the
simple counting useful for automating repetitive tasks needed simple, straightforward
syntax. The lack of such capability in the original Bourne shell contributed to the suc-
cess of the C shell (csh) when it introduced C Language-like syntax for shell program-
ming, including numeric variables. Well, that was then and this is now. If you haven't
looked at shell arithmetic in bash for a while, you're in for a big surprise.

Beyond arithmetic, there are the control structures familiar to any programmer. There
is an if/then/else construct for decision making. There are while loops and for loops,
but you will see some bash peculiarities to all of these. There is a case statement made
quite powerful by its string pattern matching, and an odd construct called select. After
discussing these features we will end the chapter by using them to build two simple
command-line calculators.

6.1 Doing Arithmeticin Your Shell Script

Problem

You need to do some simple arithmetic in your shell script.

Solution

Use $(()) or let for integer arithmetic expressions.

COUNT=$((COUNT + 5 + MAX * 2))
let COUNT+=5+MAX*2

m

Discussion

As long as you keep to integer arithmetic, you can use all the standard (i.e., C-like)
operators inside of $(()) for arithmetic. There is one additional operator—you can use
** for raising to a power, as in MAX=$((2**8)), which yields 256.

Spaces are not needed nor are they prohibited around operators and arguments (though
** must be together) within a $(()) expression. But you must not have spaces around
the equals sign, as with any bash variable assignment. If you wrote:

COUNT = $((COUNT + 5)) # not what you think!
then bash will try to run a program named COUNT and its first argument would be an

equal sign, and its second argument would be the number you get adding 5 to the value
of $COUNT. Remember not to put spaces around the equal sign.

Another oddity to these expressions is that the $ that we normally put in front of a shell
variable to say we want its value (as in $COUNT or $MAX) is not needed inside the double
parentheses. For example, $((COUNT +5 MAX * 2)) needs no dollar sign on the shell
variables—in effect, the outer $ applies to the entire expression.

We do need the dollar sign, though, if we are using a positional parameter (e.g.,$2) to
distinguish it from a numeric constant (e.g., "2"). Here's an example:

COUNT=$((COUNT + $2 + OFFSET))

There is a similar mechanism for integer arithmetic with shell variables using the
bash built-in let statement. It uses the same arithmetic operators as the $(()) construct:

let COUNT=COUNT+5

When using let, there are some fancy assignment operators we can use such as this
(which will accomplish the same thing as the previous line):

let COUNT+=5
(This should look familiar to programmers of C/C++ and Java.)

Table 6-1 shows a list of those special assignment operators.

Table 6-1. Explanation of assignment operators in bash

Operator Operation with assignment Use Meaning
= Simple assignment a=b a=b

= Multiplication a=b a=(a*b)
/= Division a/=b a=(a/b)
%= Remainder a%=b a=(a%b)
+= Addition a+=b a=(a+b)
-= Subtraction a-=b a=(a-b)
<<= Bit-shift left a<k=b a=(a<<b)

112 | Chapter6: Shell Logicand Arithmetic

Operator Operation with assignment ~ Use Meaning

>>= Bit-shift right a>>=b a=(a>>b)
&= Bitwise "and" ad=b a=(adb)
A= Bitwise "exclusive or" a’=b a=(a"b)
|= Bitwise "or" al=b a=(a|b)

These assignment operators are also available with $(()) provided they occur inside the
double parentheses. The outermost assignment is still just plain old shell variable as-
signment.

The assignments can also be cascaded, through the use of the comma operator:
echo $((X+=5 , Y*=3))

which will do both assignments and then echo the result of the second expression (since
the comma operator returns the value of its second expression). If you don't want to
echo the result, the more common usage would be with the let statement:

let X+=5 Y*=3

The comma operator is not needed here, as each word of a let statement is its own
arithmetic expression.

Unlike many other places in bash scripts where certain characters have special meanings
(like the asterisk for wildcard patterns or parentheses for subshell execution), in these
expressions we don't need to use quotes or backslashes to escape them since they don't
have their special meaning in let statements or inside of the $(()) construct:

let Y=(X+2)*10
Y=$(((X+2) *10))

One other important difference between the let statement and the $(()) syntax deals
with the rather minor issue of the whitespace (i.e., the space character). The let state-
ment requires that there be no spaces around not only the assignment operator (the
equal sign), but around any of the other operators as well; it must all be packed together
into a single word.

The $(()) syntax, however, Can be much more generous, allowing all sorts of white-
space within the parentheses. For that reason, it is both less prone to errors and makes
the code much more readable and is, therefore, our preferred way of doing bash integer
arithmetic. However, an exception can be made for the occasional += assignment or +
+ operator, or when we get nostalgic for the early days of BASIC programming (which
had a LET statement).

Remember; this is integer arithmetic, not floating point. Don't expect
“i% much out of an expression like 2/3, which in integer arithmetic evaluates

to 0 (zero). The division is integer division, which will truncate any
fractional result.

6.1 Doing Arithmeticin Your Shell Script | 113

See Also
* help let

* bash manpage

6.2 Branching on Conditions

Problem

You want to check if you have the right number of arguments and take actions accord-
ingly. You need a branching construct.

Solution

The if statement in bash is similar in appearance to that in other programming lan-
guages:

if [$# -1t 3]

then
printf "%b" "Error. Not enough arguments.\n"
printf "%b" "usage: myscript file1l op file2\n"
exit 1

fi

or alternatively:

if (($#<3))

then
printf "%b" "Error. Not enough arguments.\n"
printf "%b" "usage: myscript file1 op file2\n"
exit 1

fi

Here's a full-blown if with an elif (bash-talk for else-if) and an else clause:

if (($#<3))

then
printf "%b" "Error. Not enough arguments.\n"
printf "%b" "usage: myscript file1 op file2\n"
exit 1

elif (($# > 3))

then
printf "%b" "Error. Too many arguments.\n"
printf "%b" "usage: myscript file1l op file2\n"
exit 2

else
printf "%b" "Argument count correct. Proceeding...\n

n

fi

You can even do things like this:

114 | Chapter6: Shell Logicand Arithmetic

[$result =1]\
&% { echo "Result is 1; excellent." ; exit 0; } \
|| { echo "Uh-oh, ummm, RUN AWAY! " ; exit 120; }

(For a discussion of this last example, see Recipe 2.14.)

Discussion

We have two things we need to discuss: the basic structure of the if statement and how
it is that we have different syntax (parentheses or brackets, operators or options) for
the if expression. The first may help explain the second. The general form for an if
statement, from the manpage for bash, is:

if list; then list; [elif list; then list;] ... [else list;] fi
The [and] in our description here are used to delineate optional parts of the statement
(e.g., some if statements have no else clause). So let's look for a moment at the if
without any optional elements.
The simplest form for an if statement would be:

if list; then list; fi

In bash, the semicolon serves the same purpose as a newline—it ends a
statement. So in the first examples of the Solution section we could have
%s" crammed the example onto fewer lines by using the semicolons, but it
" is more readable to use newlines.

The then list seems to make sense—it's the statement or statements that will be exe-
cuted provided that the if condition is true—or so we would surmise from other pro-
gramming languages. But what's with the if 1ist? Wouldn't you expect it to be if
expression?

You might, except that this is a shell—a command processor. Its primary operation is
to execute commands. So the list after the if is a place where you can put a list of
commands. What, you ask, will be used to determine the branching—the alternate
paths of the then or the else? It will be determined by the return value of the last
command in the list. (The return value, you might remember, is also available as the
value of the variable $?.)

Let's take a somewhat strange example to make this point:

$ cat trythis.sh
if 1s; pwd; cd $1;
then

echo success;
else
echo failed;
fi
pwd

6.2 Branching on Conditions | 115

$ bash ./trythis.sh /tmp
$ bash ./trythis.sh /nonexistant

In this strange script, the shell will execute three commands (an Is, a pwd, and a cd)
before doing any branching. The argument to the cd is the first argument supplied on
the shell script invocation. If there is no argument supplied, it will just execute cd, which
returns you to your home directory.

So what happens? Try it yourself and find out. The result showing "success" or "failed"
will depend on whether or not the cd command succeeds. In our example, the cd is the
last command in the if list of commands. If the cd fails, the else clause is taken, but if
it succeeds, the then clause is taken.

Properly written commands and built-ins will return a value of 0 (zero) when they
encounter no errors in their execution. If they detect a problem (e.g., bad parameters,
I/O errors, file not found), they will return some non-zero value (often a different value
for each different kind of error they detect).

This is why it is important for both shell script writers and C (and other language)
programmers to be sure to return sensible values upon exiting from their scripts and
programs. Someone's if statement may be depending on it!

OK, so how do we get from this strange if construct to something that looks like a real
if statement—the kind that you are used to seeing in programs? What's going on with
the examples that began this recipe? After all, they don't look like lists of statements.

Let's try this on for size:

if test $# -1t 3
then
echo try again.

fi
Do you see something that looks like, if not an entire list, then at least like a single shell
command—the built-in command test, which will take its arguments and compares
their values? The test command will return a 0 if true or a 1 otherwise. To see this
yourself, try the test command on a line by itself, and then echo $? to see its return value.

The first example we gave that began if [$# -1t 3]looks alot like the test statement
—Dbecause the [is actually the test command—with just a different name for the same
command. (When invoked with the name [it also requires a trailing | as the last pa-
rameter, for readability and aesthetic reasons.) So that explains the first syntax—the
expression on the if statement is actually a list of only one command, a test command.

B
)

In the early days of Unix, test was its own separate executable and [was
just a link to the same executable. They still exist as executables used
tls" by other shells, but bash implements them as a built-in command.

116 | Chapter6: Shell Logic and Arithmetic

Now what about the if(($# < 3)) expression in our list of examples in the Solution
section? The double parentheses are one of several types of compound commands. This
kind is useful for if statements because it performs an arithmetic evaluation of the
expression between the double parentheses. This is a more recent bash improvement,
added for just such an occasion as its use in if statements.

The important distinctions to make with the two kinds of syntax that can be used with
the if statement are the ways to express the tests, and the kinds of things for which
they test. The double parentheses are strictly arithmetic expressions. The square brack-
ets can also test for file characteristics, but its syntax is much less streamlined for arith-
metic expressions. This is particularly true if you need to group larger expressions with
parentheses (which need to be quoted or escaped).

See Also
* helpif
* help test
* man test
* Recipe 2.14
* Recipe 4.2
* Recipe 6.3
* Recipe 6.5
* Recipe 15.11

6.3 Testing for File Characteristics

Problem

You want to make your script robust by checking to see if your input file is there before
reading from it; you would like to see if your output file has write permissions before
writing to it; you would like to see if there is a directory there before you attempt to
cd into it. How do you do all that in bash scripts?

Solution

Use the various file characteristic tests in the test command as part of your if statements.
Your specific problems might be solved with scripting that looks something like this:

#!/usr/bin/env bash

cookbook filename: checkfile
#

DIRPLACE=/tmp
INFILE=/home/yucca/amazing.data
OUTFILE=/home/yucca/more.results

6.3 Testing for File Characteristics | 117

if [-d "$DIRPLACE"]
then
cd $DIRPLACE
if [-e "$INFILE"]
then
if [-w "$OUTFILE"]
then
doscience < "$INFILE" >> "$OUTFILE"
else
echo "can not write to $OUTFILE"
fi
else
echo "can not read from $INFILE"
fi
else
echo "can not cd into $DIRPLACE"
fi

Discussion

We put all the references to the various filenames in quotes in case they have any em-
bedded spaces in the pathnames. There are none in this example, but if you change the
script you might use other pathnames.

We tested and executed the cd before we tested the other two conditions. In this ex-
ample it wouldn't matter, but if INFILE or OUTFILE were relative pathnames (not be-
ginning from the root of the file system, i.e., with a leading "/"), then the test might
evaluate true before the cd and not after, or vice versa. This way, we test right before
we use the files.

We use the double-greater-than operator >> to concatenate output onto our results file,
rather than wiping it out. You wouldn't really care if the file had write permissions if
you were going to obliterate it. (Then you would only need write permission on its
containing directory.)

The several tests could be combined into one large if statement using the -a (read
"and") operator, but then if the test failed you couldn't give a very helpful error message
since you wouldn't know which test it didn't pass.

There are several other characteristics for which you can test. Three of them are tested
using binary operators, each taking two filenames:

FILE1 -nt FILE2

Is newer than (it checks the modification date)
FILE1 -ot FILE2

Is older than
FILE1 -ef FILE2

Have the same device and inode numbers (identical file, even if pointed to by dif-
ferent links)

118 | Chapter6: Shell Logicand Arithmetic

Table 6-2 shows the other tests related to files (see "Test Operators" in Appendix A for
a more complete list). They all are unary operators, taking the form option filename
asinif [-e myfile].

Table 6-2. Unary operators that check file characteristics

Option Description
-b File is block special device (for files like /dev/hda7)

-c File is character special (for files like /dev/tty)
-d File is a directory
-e File exists
-f File is a regular file
-g File has its set-group-ID bit set
-h File is a symbolic link (same as -L)
-G File is owned by the effective group ID
-k File has its sticky bit set
-L File is a symbolic link (same as -h)
-0 File is owned by the effective user ID
-p File is a named pipe
-r File is readable
-s File has a size greater than zero
-S File is a socket
-u File has its set-user-ID bit set
-W File is writable
-X File is executable
See Also
* Recipe 2.10
* Recipe 4.6

* "Test Operators" in Appendix A

6.4 Testing for More Than One Thing

Problem

What if you want to test for more than one characteristic? Do you have to nest your
if statements?

6.4 Testing for More Than One Thing | 119

Solution

Use the operators for logical AND (-a) and OR (-0) to combine more than one test in
an expression. For example:

if [-1 $FILE -a -w $FILE]

will test to see that the file is both readable and writable.

Discussion

All the file test conditions include an implicit test for existence, so you don't need to
test if a file exists and is readable. It won't be readable if it doesn't exist.

These conjunctions (-a for AND and -o for OR) can be used for all the various test
conditions. They aren't limited to just the file conditions.

You can make several and/or conjunctions on one statement. You might need to use
parentheses to get the proper precedence, asina and (b or c), but if you use paren-
theses, be sure to escape their special meaning from the shell by putting a backslash
before each or by quoting each parenthesis. Don't try to quote the entire expression in
one set of quotes, however, as that will make your entire expression a single term that
will be treated as a test for an empty string (see Recipe 6.5).

Here's an example of a more complex test with the parentheses properly escaped:
if [-1 "$FN" -a \(-f "$FN" -0 -p "$FN" \)]

Don't make the assumption that these expressions are evaluated in quite the same order
as in Java or C language. In C and Java, if the first part of the AND expression is false
(or the first part true in an OR expression), the second part of the expression won't be
evaluated (we say the expression short-circuited). However, because the shell makes
multiple passes over the statement while preparing it for evaluation (e.g., doing pa-
rameter substitution, etc.), both parts of the joined condition may have been partially
evaluated. While it doesn't matter in this simple example, in more complicated situa-
tions it might. For example:
if [-z "$V1" -0 -z "${V2:=YIKES}"]

Even if $V1 is empty, satisfying enough of the if statement that the second part of the
condition (checking if $V2 is empty) need not occur, the value of $V2 may have already
been modified (as a side-effect of the parameter substitution for $v2). The parameter
substitution step occurs before the -z tests are made. Confused? Don't be...just don't
count on short circuits in your conditionals. If you need that kind of behavior, just
break the if statement into two nested if statements.

See Also
* Recipe 6.5

* Appendix C for more on command-line processing

120 | Chapter6: Shell Logicand Arithmetic

6.5 Testing for String Characteristics

Problem

You want your script to check the value of some strings before using them. The strings
could be user input, read from a file, or environment variables passed to your script.
How do you do that with bash scripts?

Solution

There are some simple tests that you can do with the built-in test command, using the
single bracket if statements. You can check to see whether a variable has any text, and
you can check to see whether two variables are equal as strings.

Discussion

For example:

#!/usr/bin/env bash

cookbook filename: checkstr

#

if statement

test a string to see if it has any length

#
use the command line argument
VAR="$1"
#
if ["$VAR"]
then

echo has text
else

echo zero length
fi
#
if [-z "$VAR"]
then

echo zero length
else

echo has text
fi

We use the phrase "has any length" deliberately. There are two types of variables that
will have no length—those that have been set to an empty string and those that have
not been set at all. This test does not distinguish between those two cases. All it asks
is whether there are some characters in the variable.

[t is important to put quotes around the "$VAR" expression because without them your
syntax could be disturbed by odd user input. If the value of $VAR were x -a 7 -1t 5and
if there were no quotes around the $VAR, then the expression:

if [-z $VAR]

6.5 Testing for String Characteristics | 121

would become (after variable substitution):
if [-zx-a7-1ts5]

which is legitimate syntax for a more elaborate test, but one that will yield a result that
is not what you wanted (i.e., one not based on whether the string has characters).

See Also

* Recipe 6.7

* Recipe 6.8

¢ Recipe 14.2

e "Test Operators" in Appendix A

6.6 Testing for Equal

Problem

You want to check to see if two shell variables are equal, but there are two different test
operators: -eq and = (or ==). So which one should you use?

Solution

The type of comparison you need determines which operator you should use. Use the -
eq operator for numeric comparisons and the equality primary = (or ==) for string
comparisons.

Discussion

Here's a simple script to illustrate the situation:

#!/usr/bin/env bash

cookbook filename: strvsnum

#

the old string vs. numeric comparison dilemma
#

VAR1=" 05 "

VAR2="5"

printf "%s" "do they -eq as equal? "
if ["$VAR1L" -eq "$VAR2"]
then
echo YES
else
echo NO
fi

printf "%s" "do they = as equal? "
if ["$VARL" = "$VAR2"]
then

122 | Chapter6: Shell Logicand Arithmetic

echo YES
else

echo NO
fi

When we run the script, here is what we get:

$ bash strvsnum

do they -eq as equal? YES
do they = as equal? NO

$

While the numeric value is the same (5) for both variables, Characters such as leading
zeros and whitespace can mean that the strings are not equal as strings.

Both = and == are accepted, but the single equal sign follows the POSIX standard and
is more portable.

It may help you to remember which comparison to use if you can recognize that the -
eq operator is similar to the FORTRAN .egq. operator. (FORTRAN is a very numbers-
oriented language, used for scientific computation.) In fact, there are several numerical
comparison operators, each similar to an old FORTRAN operator. The abbreviations,
all listed in Table 6-3, are rather mnemonic-like and easy to figure out.

Table 6-3. bash's comparison operators

Numeric ~ String Meaning

-1t < Less than

-le <= Less than or equal to
-gt > Greater than

-ge >= Greater than or equal to
-eq === [qualto

-ne = Not equal to

On the other hand, these are the opposite of Perl, in which eq, ne, etc. are the string
operators, while ==, !=, etc. are numeric.

See Also

* Recipe 6.7

* Recipe 6.8

* Recipe 14.12

e "Test Operators" in Appendix A

6.6 Testing for Equal | 123

6.7 Testing with Pattern Matches

Problem

You want to test a string not for a literal match, but to see if it fits a pattern. For example,
you want to know if a file is named like a JPEG file might be named.

Solution

Use the double-bracket compound statement in an if statement to enable shell-style
pattern matches on the righthand side of the equals operator:

if [["${MYFILENAME}" == *.jpg 1]

Discussion

The double-brackets is a newer syntax (bash version 2.01 or so). It is not the old-fash-
ioned [of the test command, but a newer bash mechanism. It uses the same operators
that work with the single bracket form, but in the double-bracket syntax the equal sign
is a more powerful string comparator. The equal sign operator can be a single equal
sign or a double equals as we have used here. They are the same semantically. We prefer
to use the double equals (especially when using the pattern matching) to emphasize
the difference, but it is not the reason that we get pattern matching—that comes from
the double-bracket compound statement.

The standard pattern matching includes the * to match any number of characters, the
question mark (?) to match a single character, and brackets for including a list of pos-
sible characters. Note that these resemble shell file wildcards, and are not regular ex-
pressions.

Don't put quotes around the pattern if you want it to behave as a pattern. If our string
had been quoted, it would have only matched strings with a literal asterisk as the first
character.

There are more powerful pattern matching capabilities available by turning on some
additional options in bash. Let's expand our example to look for filenames that end in
either .jpg or .jpeg. We could do that with this bit of code:

shopt -s extglob

if [["$FN" == *.@(jpg|jpeg) 1]
then
and so on

The shopt -s command is the way to turn on shell options. The extglob is the option
dealing with extended pattern matching (or globbing). With this extended pattern
matching we can have several patterns, separated by the | character and grouped by
parentheses. The first character preceding the parentheses says whether the list should
match just one occurrence of a pattern in the list (using a leading @) or some other

124 | Chapter6: Shell Logic and Arithmetic

criteria. Table 6-4 lists the possibilities (see also "extglob Extended Pattern-Matching
Operators" in Appendix A).

Table 6-4. Grouping symbols for extended pattern-matching
Grouping Meaning
@...) Only one occurrence
*(...) Zero or more occurrences
+(...) One or more occurrences
(...) Zero or one occurrences

I(...) Not these occurrences, but anything else

Matches are case sensitive, but you may use shopt -s nocasematch (in bash versions
3.1+) to change that. This option affects case and [[commands.

See Also

¢ Recipe 14.2

* Recipe 16.7

* "Pattern-Matching Characters" in Appendix A

» "extglob Extended Pattern-Matching Operators" in Appendix A
* "shopt Options" in Appendix A

6.8 Testing with Reqular Expressions

Problem

Sometimes even the extended pattern matching of the extglob option isn't enough.
What you really need are regular expressions. Let's say that you rip a CD of classical
music into a directory, Is that directory, and see these names:

$ 1s

Ludwig Van Beethoven - 01
Ludwig Van Beethoven - 02
Ludwig Van Beethoven - 03 - Rondo - Allegro.ogg

Ludwig Van Beethoven - 04 - "Coriolan" Overture, Op. 62.0gg
Ludwig Van Beethoven - 05 - "Leonore" Overture, No. 2 Op. 72.0gg
$

Allegro.ogg
Adagio un poco mosso.ogg

You'd like to write a script to rename these files to something simple, such as just the
track number. How can you do that?

6.8 Testing with Regular Expressions | 125

Solution

Use the regular expression matching of the =~ operator. Once it has matched the string,
the various parts of the pattern are available in the shell variable $BASH REMATCH. Here
is the part of the script that deals with the pattern match:

#!/usr/bin/env bash
cookbook filename: trackmatch

#
for CDTRACK in *
do
if [["$CDTRACK" =~ "([[:alpha:][:blank:]]1*)- ([[:digit:]]*) - (.*)$" 1]
then
echo Track ${BASH REMATCH[2]} is ${BASH REMATCH[3]}
mv "$CDTRACK" "Track${BASH REMATCH[2]}"
fi
done

Caution: this requires bash version 3.0 or newer because older versions
1&% don't have the =~ operator. In addition, bash version 3.2 unified the

handling of the pattern in the == and =~ conditional command oper-
ators butintroduced a subtle quoting bug that was corrected in 3.2 patch
#3.1f the solution above fails, you may be using bash version 3.2 without
that patch. You might want to upgrade to a newer version. You might
also avoid the bug with a less readable version of the regular expression
by removing the quotes around the regex and escaping each parenthesis
and space character individually, which gets ugly quickly:

if [["$CDTRACK" =~ \([[:alpha:][:blank:]]*¥\)-\ \([[:digit:
IO\ -V AGHOAS 1]

Discussion

If you are familiar with regular expressions from sed, awk, and older shells, you may
notice a few slight differences with this newer form. Most noticeable are the character
classes such as [:alpha:] and that the grouping parentheses don't need to be escaped
—we don't write \(here as we would in sed. Here \(would mean a literal parenthesis.

The subexpressions, each enclosed in parentheses, are used to populate the bash built-
in array variable $BASH REMATCH. The zeroth element ($BASH REMATCH[O0]) is the entire
string matched by the regular expression. Any subexpressions are available as
$BASH_REMATCH[1], $BASH REMATCH[2], and so on. Any time a regular expression is used
this way, it will populate the variable $BASH_REMATCH. Since other bash functions may
want to use regular expression matching, you may want to assign this variable to one
of your own naming as soon as possible, so as to preserve the values for your later use.
In our example we use the values right away, inside our if/then clause, so we don't
bother to save them for use elsewhere.

126 | Chapter6: Shell Logicand Arithmetic

Regular expressions have often been described as write-only expressions because they
can be very difficult to decipher. We'll build this one up in several steps to show how
we arrived at the final expression. The general layout of the filenames given to our
datafiles, as in this example, seems to be like this:

Ludwig Van Beethoven - 04 - "Coriolan" Overture, Op. 62.0gg

i.e., a composer's name, a track number, and then the title of the piece, ending
in .ogg (these were saved in Ogg Vorbis format, for smaller space and higher fidelity).

Beginning at the left-hand side of the expression is an opening (or left) parenthesis.
That begins our first subexpression. Inside it, we will write an expression to match the
first part of the filename, the composer's name—marked in bold here:

([[:alpha:][:blank:]]*)- ([[:digit:]]*) - (.*)$

The composer's name consists of any number of alphabetic characters and blanks. We
use the square brackets to group the set of characters that will make up the name. Rather
than write [A-Za-z0-9], we use the character class names [:alpha:] and [:blank:] and
put them inside the square brackets. This is followed by an asterisk to indicate "0 or
more" repetitions. The right parenthesis closes off the first sub-expression, followed by
a literal hyphen and a blank.

The second subexpression (marked in bold here) will attempt to match the track num-

ber:
([[:alpha:][:blank:]1]1*)-([[:digit:]1]*) - (.*)$

The second subexpression begins with another left parenthesis. The track numbers are
integers, Composed of digits (the character class [:digit:]), which we write inside an-
other pair of brackets followed by an asterisk as [[:digit:]]* to indicate "0 or more" of

what is in the brackets (i.e., digits). Then our pattern has the literals blank, hyphen,
and blank.

The final subexpression will catch everything else, including the track name and the
file extension.

([[:alpha:][:blank:]]1*)- ([[:digit:]]*) -(.*)$

The third and final subexpression is the common and familiar .* regular expression,
which means any number (*) of any character (.). We end the expression with a dollar
sign, which matches the end of the string. Matches are case-sensitive, but you may use
shopt -s nocasematch (available in bash versions 3.1+) to change that. This option
affects case and [[commands.

See Also

* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)

6.8 Testing with Regular Expressions | 127

* Recipe 7.7
* Recipe 7.8
¢ Recipe 19.15

6.9 Changing Behavior with Redirections

Problem

Normally you want a script to behave the same regardless of whether input comes from
a keyboard or a file, or whether output is going to the screen or a file. Occasionally,
though, you want to make that distinction. How do you do that in a script?

Solution

Use the test -t option in an if statement to branch between the two desired behaviors.

Discussion

Think long and hard before you do this. So much of the power and flexibility of bash
scripting comes from the fact that scripts can be pipelined together. Be sure you have
a really good reason to make your script behave oddly when input or output is redi-
rected.

See Also

* Recipe 2.18

* Recipe 2.19

* Recipe 2.20

* Recipe 10.1

* Recipe 15.9

* Recipe 15.12

* "I/O Redirection" in Appendix A

6.10 Looping for a While

Problem

You want your shell script to perform some actions repeatedly as long as some condition
is met.

Solution

Use the while looping construct for arithmetic conditions:

128 | Chapter6: Shell Logicand Arithmetic

while ((COUNT < MAX))
do

some stuff

let COUNT++
done

for filesystem-related conditions:

while [-z "$LOCKFILE"]
do

some things
done

or for reading input:

while read lineoftext
do

process $lineoftext
done

Discussion

The double parentheses in our first while statement are just arithmetic expressions,
very much like the $(()) expression for shell variable assignment. They bound an arith-
metic expression and assume that variable names mentioned inside the parentheses are
meant to be dereferenced. That is, you don't write $VAR, and instead use VAR inside the
parentheses.

The use of the square brackets in while[-z"$LOCKFILE" | is the same as with the if
statement—the single square bracket is the same as using the test statement.

The last example, while read lineoftext, doesn't have any parentheses, brackets, or
braces. The syntax of the while statement in bash is defined such that the condition of
the while statement is a list of statements to be executed (just like the if statement),
and the exit status of the last one determines whether the condition is true or false. An
exit status of zero, and the condition is considered true, otherwise false.

A read statement returns a 0 on a successful read and a -1 on end-of-file, which means
that the while will find it true for any successful read, but when the end of file is reached
(and -1 returned) the while condition will be false and the looping will end. At that
point, the next statement to be executed will be the statement after the done statement.

This logic of "keep looping while the statement returns zero" might seem a bit flipped
—most C-like languages use the opposite, namely, "loop while nonzero." But in the
shell, a zero return value means everything went well; non-zero return values indicate
an error exit.

This explains what happens with the (()) construct, too. Any expression inside the
parentheses is evaluated, and if the result is nonzero, then the result of the (() is to
return a zero; similarly, a zero result returns a one. This means we can write expressions
like Java or C programmers would, but the while statement still works as always in
bash, expecting a zero result to be true.

6.10 Looping fora While | 129

In practical terms, it means we can write an infinite loop like this:
while ((1))
{

which "feels right" to a C programmer. But remember that the while statement is look-
ing for a zero return—which it gets because (()) returns O for a true (i.e.,non-zero) result.

Before we leave the while loop, let's take one more look at that while read example,
which is reading from standard input (i.e., the keyboard), and see how it might get
modified in order to read input from a file instead of the keyboard.

This is typically done in one of three ways. The first requires no real modifications to
the statements at all. Rather, when the script is invoked, standard input is redirected
from a file like this:

$ myscript <file.name

But suppose you don't want to leave it up to the caller. If you know what file you want
to process, or if it was supplied as a command-line argument to your script, then you
can use this same while loop as is, but redirect the input from the file as follows:

while read lineoftext
do

process that line
done < file.input

As a third way you might do this, you could begin by cat-ing the file to dump it to
standard output, and then connect the standard output of that program to the standard
input for the while statement:

cat file.input | \
while read lineoftext
doprocess that line
done

Because of the pipe, both the cat command and the while loop (includ-
‘»«% ing the process that line part), are each executing in their own separate

subshells. This means that if you use this method, the script commands
inside the while loop cannot affect the other parts of the script outside
the loop. For example, any variables that you set within the while loop
will no longer have those values after the loop ends. Such is not the case
however if you use while read .. done < file.input, because that isn't
a pipeline.

In the last example, the trailing backslash has no characters after it, just a newline.
Therefore it escapes the newline, telling the shell to continue onto the next line without
terminating the line. This is a more readable way to highlight the two different actions
—the cat command and the while statement.

130 | Chapter6: Shell Logicand Arithmetic

See Also

* Recipe 6.2
* Recipe 6.3
* Recipe 6.4
* Recipe 6.5
* Recipe 6.6
* Recipe 6.7
* Recipe 6.8
* Recipe 6.11
* Recipe 19.8

6.11 Looping with a read

Problem

What can you do with a while loop? One common technique is to read the output of
previous commands. Let's say you're using the Subversion revision control system,
which is executable as svn. (This example is very similar to what you would do for cvs
as well.) When you check the status of a directory subtree to see what files have been
changed, you might see something like this:

$ svn status bcb

M bcb/amin.c
bcb/dmin.c
bcb/mdiv. tmp
bcb/optrn.c
bcb/optson.c
bcb/prtbout. 4161
bcb/rideaslist.odt
bcb/x.maxc

oV Y = DV

$

The lines that begin with question marks are files about which Subversion has not been
told; in this case they're scratch files and temporary copies of files. The lines that begin
with an A are newly added files, and those that begin with M have been modified since
the last changes were committed.

To clean up this directory it would be nice to get rid of all the scratch files, which are
those files named in lines that begin with a question mark.

Solution
Try:

svn status mysrc | grep '~?' | cut -c8- | \
while read FN; do echo "$FN"; rm -rf "$FN"; done

6.11 Loopingwitharead | 131

or:

svn status mysrc | \
while read TAG FN

do
if [[$TAG == \?]]
then
echo $FN
m -rf "$FN"
fi
done
Discussion

Both scripts will do the same thing—remove files that svn reports with a question mark.

The first approach uses several subprograms to do its work (not a big deal in these days
of gigahertz processors), and would fit on a single line in a typical terminal window. It
uses grep to select only the lines that begin (signified by the ™) with a question mark.
The expression '*?' is put in single quotes to avoid any special meanings that those
characters have for bash. It then uses cut to take only the characters beginning in column
eight (through the end of the line). That leaves just the filenames for the while loop to
read.

The read will return a nonzero value when there is no more input, so at that point the
loop will end. Until then, the read will assign the line of text that it reads each time into
the variable "$FN", and that is the filename that we remove. We use the -rf options in
case the unknown file is actually a directory of files, and to remove even read-only files.
If you don't want/need to be so drastic in what you remove, leave those options off.

The second script can be described as more shell-like, since it doesn't need grep to do
its searching (it uses the if statement) and it doesn't need cut to do its parsing (it uses
the read statement). We've also formatted it more like you would format a script in a
file. If you were typing this at a command prompt, you could collapse the indentation,
but for our use here the readability is much more important than saving a few key-
strokes.

The read in this second script is reading into two variables, not just one. That is how
we get bash to parse the line into two pieces—the leading character and the file-name.
The read statement parses its input into words, like words on a shell command line.
The first word on the input line is assigned to the first word in the list of variables on
the read statement, the second word to the second variable, and so on. The last variable
in the list gets the entire remainder of the line, even if it's more than a single word. In
our example, $TAG gets the first word, which is the character (an M, A, or ?) that the
whitespace defines the end of that word and the beginning of the next. The variable
$FN gets the remainder of the line as the filename, which is significant here in case the
filenames have embedded spaces. (We wouldn't want just the first word of the file-
name.) The script removes the filename and the loop continues.

132 | Chapter6: Shell Logicand Arithmetic

See Also
* Appendix D

6.12 Looping with a Count

Problem

You need to loop a fixed number of times. You could use a while loop and do the
counting and testing, but programming languages have for loops for such a common
idiom. How does one do this in bash ?

Solution

Use a special case of the for syntax, one that looks a lot like C Language, but with
double parentheses:

$ for ((i=0 ; i < 10 ; i++)) ; do echo $i ; done

Discussion

In early versions of the shell, the original syntax for the for loop only included iterating
over a fixed list of items. It was a neat innovation for such a word-oriented language as
shell scripts, dealing with filenames and such. But when users needed to count, they
sometimes found themselves writing:

foriin123456780910

do

echo $i
done

Now that's not too bad, especially for small loops, but let's face it—that's not going to
work for 500 iterations. (Yes, you could nest loops 5 x 10, but come on!) What you
really need is a for loop that can count.

The special case of the for loop with C-like syntax is a relatively recent addition to
bash (appearing in version 2.04). Its more general form can be described as:

for ((exprl ; expr2 ; expr3)) ; do list ; done

The use of double parentheses is meant to indicate that these are arithmetic expressions.
You don't need to use the $ construct (as in $i, except for arguments like $1) when
referring to variables inside the double parentheses (just like the other places where
double parentheses are used in bash). The expressions are integer arithmetic expres-
sions and offer a rich variety of operators, including the use of the comma to put mul-
tiple operations within one expression:

for ((i=0, j=0 ; i+j < 10 ; i++, j++))

do

6.12 Looping witha Count | 133

echo $((i*j))
done

That for loop initializes two variables (i and j), then has a more complex second ex-
pression adding the two together before doing the less-than comparison. The comma
operator is used again in the third expression to increment both variables.

See Also

* Recipe 6.13
* Recipe 17.22

6.13 Looping with Floating-Point Values

Problem

The for loop with arithmetic expressions only does integer arithmetic. What do I do
for floating-point values?

Solution

Use the seq command to generate your floating-point values, if your system provides it:
for fp in $(seq 1.0 .01 1.1)

do
echo $fp; other stuff too
done
or:
seq 1.0 .01 1.1 | \
while read fp
do
echo $fp; other stuff too
done
Discussion

The seq command will generate a sequence of floating-point numbers, one per line.
The arguments to seq are the starting value, the increment, and the ending value. This
is not the intuitive order if you are used to the C language for loop, or if you learned
your looping from BASIC (e.g., FOR I=4 TO 10 STEP 2). With seq the increment is the
middle argument.

In the first example, the $() runs the command in a subshell and returns the result with
the newlines replaced by just whitespace, so each value is a string value for the for loop.

In the second example, seq is run as a command with its output piped into awhile loop
that reads each line and does something with it. This would be the preferred approach
for a really long sequence, as it can run the seq command in parallel with the while.

134 | Chapter6: Shell Logicand Arithmetic

The for loop version has to run seq to completion and put all of its output on the
command line for the for statement. For very large sequences, this could be time- and
memory-consuming.

See Also

* Recipe 6.12
* Recipe 17.22

6.14 Branching Many Ways

Problem

You have a series of comparisons to make, and the if/then/else is getting pretty long
and repetitive. Isn't there an easier way?

Solution

Use the case statement for a multiway branch:

case $FN in
*.gif) gif2png $FN

)
*.png) pngOK $FN
35
*.jpg) jpg2gif $FN
35
*.tif | *.TIFF) tif2jpg $FN

55
*) printf "File not supported: %s" $FN

bR}
esac

The equivalent to this using if/then/else statements is:

if [[$FN == *.gif]]
then
gifapng $FN
elif [[$FN == *.png]]
then
pngOK $FN
elif [[$FN == *.jpg 1]
then
jpg2gif $FN
elif [[$FN == *.tif || $FN == *.TIFF]]
then
tif2jpg $FN
else
printf "File not supported: %s" $FN
fi

6.14 Branching Many Ways | 135

Discussion

The case statement will expand the word (including parameter substitution) between
the case and the in keywords. It will then try to match the word with the patterns listed
in order. This is a very powerful feature of the shell. It is not just doing simple value
comparisons, but string pattern matches. We have simple patterns in our example:
*.gif matches any character sequence (signified by the *) that ends with the literal char-
acters .gif.

Use |, a vertical bar meaning logical OR, to separate different patterns for which you
want to take the same action. In the example above, if $FN ends either with .tif
or .TIFF then the pattern will match and the (fictional) tif2jpg command will be exe-
cuted.

Use the double semicolon to end the set of statements or else bash will continue exe-
cuting into the next set of statements.

There is no else or default keyword to indicate the statements to execute if no pattern
matches. Instead, use * as the last pattern—since that pattern will match anything.
Placing it last makes it act as the default and match anything that hasn't already been
matched.

An aside to C/C++ and Java programmers: the bash case is similar to the switch state-
ment, and each pattern corresponds to a case. Notice though, the variable on which
you can switch/case is a shell variable (typically a string value) and the cases are patterns
(not just constant values). The patterns end with a right parenthesis (not a colon). The
equivalent to the break in C/C++ and Java switch statements is, in bash, a double
semicolon. The equivalent to their default keyword is, in bash, the * pattern.

Matches are case-sensitive, but you may use shopt -s nocasematch (available in bash
versions 3.14) to change that. This option affects case and [[commands.

We end the case statement with an esac (that's "c-a-s-¢" spelled backwards; "end-case"
was too long, we suppose, just like using elif instead of "elseif" to be shorter).

See Also
* help case
* help shopt
* Recipe 6.2

136 | Chapter6: Shell Logicand Arithmetic

6.15 Parsing Command-Line Arguments

Problem

You want to write a simple shell script to print a line of dashes, but you want to pa-
rameterize it so that you can specify different line lengths and specify a character to use
other than just a dash. The syntax would look like this:

dashes # would print out 72 dashes

dashes 50 # would print out 50 dashes
dashes -c = 50 # would print out 50 equal signs
dashes -c x # would print out 72 x characters

What's an easy way to parse those simple arguments?

Solution

For serious scripting, you should use the getopts built-in. But we would like to show
you the case statement in action, so for this simple situation we'll use case for argument
parsing.

Here's the beginning of the script (see Recipe 12.1 for a complete remove):

#!/usr/bin/env bash
cookbook filename: dashes

#
dashes - print a line of dashes
#
options: # how many (default 72)
-c X use char X instead of dashes
#
LEN=72
CHAR="-"'
while (($# > 0))
do
case $1 in
[0-9]*) LEN=$1
35
-c) shift;
CHAR=${1:--}
)
*) printf 'usage: %s [-c X] [#]\n' $(basename $0) >&2
exit 2
35
esac
shift
done
#
more...

6.15 Parsing Command-Line Arguments | 137

Discussion

The default length (72) and the default character (-) are set at the beginning of the script
(after some useful comments). The while loop allows us to parse more than one pa-
rameter. It will keep looping while the number of arguments ($#) is above zero.

The case statement matches three different patterns. First, the [0-9]* will match any
digit followed by any other characters. We could have used a more elaborate expression
to allow only pure numbers, but we'll assume that any argument that begins with a
digit is a number. If that isn't true (e.g., the user types 1T4), then the script will error
when it tries to use $LEN. We can live with that for now.

The second pattern is a literal -c. There is no pattern to this, just an exact match. In
that case, we use the shift built-in command to throw away that argument (now that
we know what it is) and we take the next argument (which has now become the first
argument, so it is referenced as $1) and save that as the new character choice. We use :-
when referencing $1 (as in ${1:-x}) to specify a default value if the parameter isn't set.
That way, if the user types -c but fails to specify an argument, it will use the default,
specified as the character immediately following the :-. In the expression ${1:-x} it
would be x. For our script, we wrote ${1: --} (note the two minus signs), so the character
taken as default is the (second) minus sign.

The third pattern is the wildcard pattern (*), which matches everything, so that any
argument unmatched by the previous patterns will be matched here. By placing it last
in the case statement, it is the catch-all that notifies the user of an error (since it wasn't
one of the prescribed parameters) and it issues an error message.

That printf error message probably needs explaining if you're new to bash. There are
four sections of that statement to look at. The first is simply the command name,
printf. The second is the format string that printf will use (see Recipe 2.3 and "printf"
in Appendix A). We use single quotes around the string so that the shell doesn't try to
interpret any of the string. The last part of the line (>82) tells the shell to redirect that
output to standard error. Since this is an error message, that seems appropriate. Many
script writers are casual about this and often neglect this redirection on error messages.
We think it is a good habit to always redirect error messages to standard error.

The third part of the line invokes a subshell to run the basename command on $0, and
then returns the output of the command as text on the command line. This is a common
idiom used to strip off any leading path part of how the command was invoked. For
example, Consider what would happen if we used only $0. Here are two different but
erroneous invocations of the same script. Notice the error messages:

$ dashes -g
usage: dashes [-c X] [#]

$ /usr/local/bin/dashes -g
usage: /usr/local/bin/dashes [-c X] [#]

138 | Chapter6: Shell Logicand Arithmetic

In the second invocation, we used the full pathname. The error message then also
contained the full pathname. Some people find this annoying. So we strip $0 down to
just the script's base name (using the basename command). Then the error messages
look the same regardless of how the script is invoked:

$ dashes -g

usage: dashes [-c X] [#]

$ /usr/local/bin/dashes -g
usage: dashes [-c X] [#]

While this certainly takes a bit more time than just hardcoding the script name or using
$0 without trimming it, the extra time isn't that vital since this is an error message and
the script is about to exit anyway.

We end the case statement with an esac and then do a shift so as to consume the
argument that we just matched in our case statement. If we didn't do that, we'd be
stuck in the while loop, parsing the same argument over and over. The shift will cause
the second argument ($2) to become the first ($1) and the third to become the second,
and so on, but also $# to be one smaller. On some iteration of the loop $# finally
reaches zero (when there are no more arguments) and the loop terminates.

The actual printing of the dashes (or other character) is not shown here, as we wanted
to focus on the case statement and related actions. You can see the complete script,
with a function for the usage message, in its entirety, in Recipe 12.1.

See Also

* help case

* help getopts
* Recipe 2.3

* Recipe 5.8

* Recipe 5.11
* Recipe 5.12
* Recipe 6.15
* Recipe 12.1
* Recipe 13.1
* Recipe 13.2
e "printf" in Appendix A

6.15 Parsing Command-Line Arguments | 139

6.16 Creating Simple Menus

Problem

You have a simple SQL script that you would like to run against different databases to
reset them for tests that you want to run. You could supply the name of the database
on the command line, but you want something more interactive. How can you write a
shell script to choose from a list of names?

Solution

Use the select statement to create Simple character-based screen menus. Here's a Simple
example:
#!/usr/bin/env bash
cookbook filename: dbinit.1
#
DBLIST=$(sh ./listdb | tail -n +2)
select DB in $DBLIST
do
echo Initializing database: $DB
mysql -u user -p $DB <myinit.sql
done

Ignore for a moment how $DBLIST gets its values; just know that it is a list of words (like
the output from Is would give). The select statement will display those words, each
preceded by a number, and the user will be prompted for input. The user makes a choice
by typing the number and the corresponding word is assigned to the variable specified
after the keyword select (in this case DB).

Here's what the running of this script might look like:

$./dbinit

1) testDB

2) simpleInventory

3) masterInventory

4) otherDB

#? 2

Initializing database: simpleInventory
#?

$

Discussion

When the user types "2" the variable DB is assigned the word simpleInventory. If you
really want to get at the user's literal choice, the variable $REPLY will hold it, in this case
it would be "2".

The select statement is really a loop. When you have entered a choice it will execute
the body of the loop (between the do and the done) and then re-prompt you for the next
value.

140 | Chapter6: Shell Logicand Arithmetic

It doesn't redisplay the list every time, only if you make no choice and just press the
Enter key. So whenever you want to see the list again, just press Enter.

It does not re-evaluate the code after the in, that is, you can't alter the list once you've
begun. If you modified $DBLIST inside the loop, it wouldn't change your list of choices.

The looping will stop when it reaches the end of the file, which for interactive use means
when you type Ctrl-D. (If you piped a series of choices into a select loop, it would end
when the input ends.)

There isn't any formatting control over the list. If you're going to use select, you have
to be satisfied with the way it displays your choices. You can, however, alter the prompt
on the select.

See Also

* Recipe 3.7
* Recipe 16.2
* Recipe 16.10

6.17 Changing the Prompt on Simple Menus

Problem

You just don't like that prompt in the select menus. How can it be changed?

Solution

The bash environment variable $PS3 is the prompt used by select. Set it to a new value
and you'll get a new prompt.

Discussion

This is the third of the bash prompts. The first (§PS1) is the prompt you get before most
commands. (We've used $ in our examples, but it can be much more elaborate than
that, including user ID or directory names.) If a line of command input needs to be
continued, the second prompt is used ($PS2).

For select loops, the third prompt,$PS3, is used. Set it before the select statement to
make the prompt be whatever you want. You can even modify it within the loop to
have it change as the loop progresses.

Here's a script similar to the previous recipe, but one that counts how many times it
has handled a valid input:
#!/usr/bin/env bash

cookbook filename: dbinit.2
#

6.17 Changing the Prompt on Simple Menus | 141

DBLIST=$(sh ./listdb | tail -n +2)
PS3="0 inits >"

select DB in $DBLIST

do
if [$DB]
then
echo Initializing database: $DB
PS3="¢((++i)) inits> "
mysql -u user -p $DB <myinit.sql
fi
done

We've added some extra whitespace to make the setting of $PS3 stand out more. The
if statement assures us that we're only counting the times when the user entered a valid
choice. Such a check would be useful in the previous version, but we were keeping it
simple.

See Also

¢ Recipe 3.7

* Recipe 6.17
¢ Recipe 16.2
¢ Recipe 16.10

6.18 Creating a Simple RPN Calculator

Problem

You may be able to convert binary to decimal, octal, or hex in your head but it seems
that you can't do simple arithmetic anymore and you can never find a calculator when
you need one. What to do?

Solution

Create a calculator using shell arithmetic and RPN notation:

#!/usr/bin/env bash
cookbook filename: rpncalc

#

simple RPN command line (integer) calculator
#

takes the arguments and computes with them

of the form a b op
#
#
#

allow the use of x instead of *

error check our argument counts:

142 | Chapter6: Shell Logicand Arithmetic

if [NC$# -1t 3 \) -0 \($(($# % 2)) -eq 0 \)]

then
echo "usage: calc number number op [number op] ...
echo "use x or '*' for multiplication"
exit 1

fi

ANS=$(($1 ${3//x/*} $2))

shift 3

while [$# -gt 0]

do
ANS=$((ANS ${2//x/*} $1))
shift 2

done

echo $ANS

Discussion

Any arithmetic done within $(()) is integer arithmetic only.

The idea of RPN (or postfix) style of notation puts the operands (the numbers) first,
followed by the operator. If we are using RPN, we don't write 5 + 4 but rather 5 4 +
as our expression. If you want to multiply the result by 2, then you just put 2* on the
end, so the whole expression would be 5 4 + 2*, which is great for computers to parse
because you can go left to right and never need parentheses. The result of any operation
becomes the first operand for the next expression.

In our simple bash calculator we will allow the use of lowercase x as a substitute for the
multiplication symbol since * has special meaning to the shell. But if you escape that
special meaning by writing "' or * we want that to work, too.

How do we error check the arguments? We will consider it an error if there are less
than three arguments (we need two operands and one operator, e.g., 6 3/). There can
be more than three arguments, but in that case there will always be an odd number
(since we start with three and add two more, a second operand and the next operator,
and so on, always adding two more; the valid number of arguments would be 3 or 5 or
7 or 9 or...). We check that with the expression:

$(($# % 2)) -eq 0
to see if the result is zero. The $(()) says we're doing some shell arithmetic inside. We

are using the % operator (called the remainder operator) to see if $# (which is the
number of arguments) is divisible by 2 with no remainder (i.e., -eq 0).

Now that we know there are the right number of arguments, we can use them to com-
pute the result. We write:

ANS=$(($1 ${3//x/*} $2))

6.18 Creating a Simple RPN Calculator | 143

which will compute the result and substitute the asterisk for the letter x at the same
time. When you invoke the script you give it an RPN expression on the command line,
but the shell syntax for arithmetic is our normal (infix) notation. So we can evaluate
the expression inside of $(()) but we have to switch the arguments around. Ignoring
the x-to-* substitution for the moment, you can see it is just:

ANS=$(($1 $3 $2))

which just moves the operator between the two operands. bash will substitute the pa-
rameters before doing the arithmetic evaluation, so if $1 is 5 and $2 is 4 and $3 is a +
then after parameter substitution bash will have:

ANS=$((5 + 4))

and it will evaluate that and assign the result, 9 , to ANS. Done with those three argu-
ments, we shift 3 to toss them and get the new arguments into play. Since we've already
checked that there are an odd number of arguments, if we have any more arguments
to process, we will have at least two more (only 1 more and it would be an even number,
since 3+1=4).

From that point on we loop, taking two arguments at a time. The previous answer is
the first operand, the next argument (now $1 as a result of the shift) is our second
operand, and we put the operator inside $2 in between and evaluate it all much like
before. Once we are out of arguments, the answer is what we have in ANS.

One last word, about the substitution. ${2} would be how we refer to the second ar-
gument. Though we often don't bother with the {} and just write $2, we need them
here for the additional operations we will ask bash to perform on the argument. We
write ${2//x/*} to say that we want to replace or substitute (//) an x with (indicated
by the next /)an * before returning the value of $2. We could have written this in two
steps by creating an extra variable:

0P=${2//x/*}

ANS=$((ANS OP $1))
That extra variable can be helpful as you first begin to use these features of bash, but
once you are familiar with these common expressions, you'll find yourself putting them
all together on one line (even though it'll be harder to read).

Are you wondering why we didn't write $ANS and $OP in the expression that does the
evaluation? We don't have to use the $ on variable names inside of $(()) expressions,
except for the positional parameters (e.g.,$1, $2). The positional parameters need it to
distinguish them from regular numbers (e.g., 1, 2).

See Also

* Chapter 5
* Recipe 6.19

144 | Chapter6: Shell Logicand Arithmetic

6.19 Creating a Command-Line Calculator

Problem

You need more than just integer arithmetic, and you've never been very fond of RPN
notation. How about a different approach to a command-line calculator?

Solution

Create a trivial command-line calculator using awk's built-in floating-point arithmetic
expressions:

cookbook filename: func_calc

Trivial command line calculator
function calc

{
awk "BEGIN {print \"The answer is: \" $* }";
}
Discussion

You may be tempted to try echo The answer is: $(($*)), which will work fine for
integers, but will truncate the results of floating-point operations.

We use a function because aliases do not allow the use of arguments.

You will probably want to add this function to your global /etc/bashrc or local
~/.bashrc.
The operators are what you'd expect and are the same as in C:

$calc2+3+4

The answer is: 9

$ calc 2 + 3 + 4.5
The answer is: 9.5

Watch out for shell meta characters. For example:

$ calc (2+2-3)*a
-bash: syntax error near unexpected token "2+2-3'

You need to escape the special meaning of the parentheses. You can put the expression
inside single quotes, or just use the backslash in front of any special (to the shell) char-
acter to escape its meaning. For example:

$ calc '(2+2-3)*a'
The answer is: 4

$ calc \(2+2-3\)*a
The answer is: 4

6.19 Creating a Command-Line Calculator | 145

$ calc '(2+2-3)*4.5'
The answer is: 4.5

We need to escape the multiplication symbol too, since that has special meaning to
bash as the wildcard for filenames. This is especially true if you like to put whitespace
around your operators, as in 17 + 3 * 21, because then * will match all the files in the
current directory, putting their names on the command line in place of the asterisk—
definitely not what you want.

See Also

* man awk

e "ARITHMETIC EVALUATION" in the bash(1) manpage
* Recipe 6.18

* Recipe 16.6

146 | Chapter6: Shell Logicand Arithmetic

CHAPTER 7
Intermediate Shell Tools |

[t is time to expand our repertoire. This chapter's recipes use some utilities that are not
part of the shell, but which are so useful that it is hard to imagine using the shell without
them.

One of the over-arching philosophies of Unix (and thus Linux) is that of small (i.e.,
limited in scope) program pieces that can be fit together to provide powerful results.
Rather than have one program do everything, we have many different programs that
each do one thing well.

That is true of bash as well. While bash is getting big and feature-rich, it still doesn't
try to do everything, and there are times when it is easier to use other commands to
accomplish a task even if bash can be stretched to do it.

A simple example of this is the Is command. You needn't use Is to see the contents of
your current directory. You could just type echo*to have filenames displayed. Or you
could even get fancier, using the bash printf command and some formatting, etc. But
that's not really the purpose of the shell, and someone has already provided a listing
program (Is) to deal with all sorts of variations on filesystem information.

Perhaps more importantly, by not expecting bash to provide more filesystem listing
features, we avoid additional feature creep pressures on bash and instead give it some
measure of independence; Is can be released with new features without requiring that
we all upgrade our bash versions.

But enough philosophy—back to the practical.
What we have here are three of the most useful text-related utilities: grep, sed, and awk.

The grep program searches for strings, the sed program provides a way to edit text as
it passes through a pipeline, and awk, well, awk is its own interesting beast, a precursor
to perl and a bit of a chameleon—it can look quite different depending on how it is used.

These utilities, and a few more that we will discuss in an upcoming chapter, become
very much a part of most shell scripts and most sessions spent typing commands to
bash. It your shell script requires a list of files on which to operate, it is likely that either

147

find or grep will be used to supply that list of files, and that sed and/or awk will be used
to parse the input or format the output at some stage of the shell script.

To say it another way, if our scripting examples are going to tackle real-world problems,
they need to use the wider range of tools that are actually used by real-world bash users
and programmers.

7.1 Sifting Through Files for a String

Problem

You need to find all occurrences of a string in one or more files.

Solution

The grep command searches through files looking for the expression you supply:

$ grep printf *.c

both.c: printf("Std Out message.\n", argv[0], argc-1);

both.c: fprintf(stderr, "Std Error message.\n", argv[0], argc-1);
good.c: printf("%s: %d args.\n", argv[0], argc-1);

somio.c: // we'll use printf to tell us what we
somio.c: printf("open: fd=%d\n", iod[i]);
$

The files we searched through in this example were all in the current directory. We just
used the simple shell pattern *.c to match all the files ending in .c with no preceding
pathname.

Not all the files through which you want to search may be that conveniently located.
Of course, the shell doesn't care how much pathname you type, so we could have done
something like this:

$ grep printf ../1ib/*.c ../server/*.c ../cmd/*.c */*.c

Discussion

When more than one file is searched, grep begins its output with the filename, followed
by a colon. The text after the colon is what actually appears in the files that grep
searched.

The search matches any occurrence of the characters, so a line that contained the string
"fprintf" was returned, since "printf" is contained within "fprintf".

The first (non-option) argument to grep can be just a simple string, as in this example,
or it can be a more complex regular expression (RE). These REs are not the same as the
shell's pattern matching, though they can look similar at times. Pattern matching is so
powerful that you may find yourself relying on it to the point where you'll start using
"grep" as a verb, and wishing you could make use of it everywhere, as in "I wish I could
grep my desk for that paper you wanted."

148 | Chapter7: Intermediate Shell Tools |

You can vary the output from grep using options on the command line. If you don't
want to see the specific filenames, you may turn this off using the -h switch to grep:
$ grep -h printf *.c
printf("Std Out message.\n", argv[0], argc-1);
fprintf(stderr, "Std Error message.\n", argv[0], argc-1);
printf("%s: %d args.\n", argv[0], argc-1);
// we'll use printf to tell us what we
printf("open: fd=%d\n", iod[i]);

If you don't want to see the actual lines from the file, but only a count of the number
of times the expression is found, then use the -c option:

$ grep -c printf *.c

both.c:2

good.c:1

somio.c:2

$

,—_ A common mistake is to forget to provide grep with a source of input.

"‘5"@ For example grep myvar. In this case grep assumes you will provide input

from STDIN, but you think it will get it from a file. So it just sits there

forever, seemingly doing nothing. (In fact, it is waiting for input from

your keyboard.) This is particularly hard to catch when you are grepping
a large amount of data and expect it to take a while.

See Also
* man grep
* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library
* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)

* Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O'Reilly), Sec-
tions 3.1 and 3.2

* Chapter 9 and the find utility, for more far-reaching searches
* Recipe 19.5

7.2 Getting Just the Filename from a Search

Problem

You need to find the files in which a certain string appears. You don't want to see the
line of text that was found, just the filenames.

7.2 Getting Just the Filename from a Search | 149

Solution

Use the -1 option of grep to get just the filenames:

$ grep -1 printf *.c
both.c
good.c
somio.c

Discussion

If grep finds more than one match per file, it still only prints the name once. If grep finds
no matches, it gives no output.

This option is handy if you want to build a list of files to be operated on, based on the
fact that they contain the string that you're looking for. Put the grep command inside
$() and those filenames can be used on the command line.

For example, to remove the files that contain the phrase "This file is obsolete," you
could use this shell command combination:

$ rm -1 $(grep -1 'This file is obsolete' *)
We've added the -i option to rm so that it will ask you before it removes each file.

That's obviously a safer way to operate, given the power of this combination of com-
mands.

bash expands the * to match every file in the current directory (but does not descend
into sub-directories) and passes them as the arguments to grep. Then grep produces a
list of filenames that contain the given string. This list then is handed to the rm com-
mand to remove each file.

See Also
* man grep
® manrm

* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
¢ Recipe 2.15
* Recipe 19.5

7.3 Getting a Simple True/False from a Search

Problem

You need to know whether a certain string is in a particular file. However, you don't
want any output, just a yes or no sort of answer.

150 | Chapter7: Intermediate Shell Tools |

Solution

Use -q, the "quiet" option for grep. Or, for maximum portability, just throw the output
away by redirecting it into /dev/null. Either way, your answer is in the bash return status
variable $? so you can use it in an if-test like this:

$ grep -q findme bigdata.file

$ if [$? -eq 0] ; then echo yes ; else echo nope ; fi

nope

$

Discussion

In a shell script, you often don't want the results of the search displayed in the out-put;
you just want to know whether there is a match so that your script can branch accord-
ingly.

As with most Unix/Linux commands, a return value of 0 indicates successful comple-
tion. In this case, success is defined as having found the string in at least one of the
given files (in this example, we searched in only one file). The return value is stored in
the shell variable $?, which we can then use in an if statement.

If we list multiple filenames after grep -q, then grep stops searching after the very first
occurrence of the search string being found. It doesn't search all the files, as you really
just want to know whether it found any occurrence of the string. If you really need to
read through all the files (why?), then rather than use -q you can do this:

$ grep findme bigdata.file > /dev/null

$ if [$? -eq 0] ; then echo yes ; else echo nope ; fi

nope

$
The redirecting to /dev/null sends the output to a special kind of device, a bit bucket,
that just throws everything you give it away.

The /dev/null technique is also useful if you want to write shell scripts that are portable
across the various flavors of grep that are available on Unix and Linux systems, should
you find one that doesn't support the -q option.

See Also
* man grep
* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library
* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Recipe 19.5

7.3 Getting a Simple True/False from a Search | 151

7.4 Searching for Text While Ignoring Case

Problem

You need to search for a string (e.g., "error") in a log file, and you want to do it casein-
sensitively to catch all occurrences.

Solution

Use the -i option on grep to ignore case:

$ grep -i error logfile.msgs

Discussion

A case-isensitive search finds messages written "ERROR", "error", "Error," as well as
ones like "ErrOR" and "eRrOr." This option is particularly useful for finding words
anywhere that you might have mixed-case text, including words that might be capi-
talized at the beginning of a sentence or email addresses.

See Also

* man grep
* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Chapter 9's discussion of the find command and its -iname option
¢ Recipe 19.5

7.5 Doing a Search in a Pipeline

Problem

You need to search for some text, but the text you're searching for isn't in a file; instead,
it's in the output of a command or perhaps even the output of a pipeline of commands.

Solution

Just pipe your results into grep:

$some pipeline | of commands | grep

152 | Chapter7: Intermediate Shell Tools |

Discussion

When no filename is supplied to grep, it reads from standard input. Most well-designed
utilities meant for shell scripting will do this. It is one of the things that makes them so
useful as building blocks for shell scripts.

If you also want to have grep search error messages that come from the previous com-
mand, be sure to redirect its error output into standard output before the pipe:

$ gcc bigbadcode.c 2>81 | grep -i error

This command attempts to compile some hypothetical, hairy piece of code. We redirect
standard error into standard output (2>&1) before we proceed to pipe (|) the output
into grep, where it will search case-insensitively (-1) looking for the string error.

Don't overlook the possibility of grepping the output of grep. Why would you want to
do that? To further narrow down the results of a search. Let's say you wanted to find
out Bob Johnson's email address:

$ grep -i johnson mail/*

... too much output to think about; there are lots of Johnsons in the world ...

$! | grep -i robert

grep -i johnson mail/* | grep -i robert

. more manageable output ...

$! | grep -i "the bluesman"

grep -i johnson mail/* | grep -i robert | grep -i "the bluesman"

Robert M. Johnson, The Bluesman <rmj@noplace.org>

You could have re-typed the first grep, but this example also shows the power of the !!
history operator. The !! let's you repeat the previous command without retyping it. You
can then continue adding to the command line after the !! as we show here. The shell
will display the command that it runs, so that you can see what you got as a result of
the !! substitution (see Recipe 18.2).

You can build up a long grep pipeline very quickly and simply this way, seeing the
results of the intermediate steps as you go, and deciding how to refine your search with
additional grep expressions. You could also accomplish the same task with a single
grep and a clever regular expression, but we find that building up a pipeline incremen-
tally is easier.

See Also
* man grep
* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library
* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Recipe 2.15
* Recipe 18.2
* Recipe 19.5

7.5 Doing a Search in a Pipeline | 153

7.6 Paring Down What the Search Finds

Problem

Your search is returning way more than you expected, including many results you don't
want.

Solution

Pipe the results into grep -vwith an expression that describes what you don't want to
see.

Let's say you were searching for messages in a log file, and you wanted all the messages
from the month of December. You know that your logfile uses the 3-letter abbreviation
for December as Dec, but you're not sure if it's always written as Dec,so to be sure to
catch them all you type:

error on Jan 01: not a decimal number

error on Feb 13: base converted to Decimal
warning on Mar 22: using only decimal numbers
error on Dec 16 : the actual message you wanted
error on Jan 01: not a decimal number

A quick and dirty solution in this case is to pipe the first result into a second grep and
tell the second grep to ignore any instances of "decimal":

$ grep -i dec logfile | grep -vi decimal

It's not uncommon to string a few of these together (as new, unexpected matches are
also discovered) to filter down the search results to what you're really looking for:

$ grep -i dec logfile | grep -vi decimal | grep -vi decimate

Discussion

The "dirty" part of this "quick and dirty" solution is that the solution here might also
get rid of some of the December log messages, ones that you wanted to keep—if they
have the word "decimal” in them, they'll be filtered out by the grep-v.

The -v option can be handy if used carefully; you just have to keep in mind what it
might exclude.

For this particular example, a better solution would be to use a more powerful regular
expression to match the December date, one that looked for "Dec" followed by a space
and two digits:

$ grep 'Dec [0-9][0-9]"' logfile

But that often won't work either because syslog uses a space to pad single digit dates,
so we add a space in the first list [0-9]:

154 | Chapter7: Intermediate Shell Tools |

$ grep 'Dec [0-9][0-9]' logfile

We used single quotes around the expression because of the embedded spaces, and to
avoid any possible shell interpretation of the bracket characters (not that there would
be, but just as a matter of habit). It's good to get into the habit of using single quotes
around anything that might possibly be confusing to the shell. We could have written:

$ grep Dec\ [0-9\][0-9] logfile

escaping the space with a backslash, but in that form it's harder to see where the search
string ends and the filename begins.

See Also
* man grep

* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Recipe 19.5

7.7 Searching with More Complex Patterns

The regular expression mechanism of grep provides for some very powerful patterns
that can fit most of your needs.

A regular expression describes patterns for matching against strings. Any alphabetic
character just matches that character in the string. "A" matches "A", "B" matches "B";
no surprise there. But regular expressions define other special characters that can be
used by themselves or in combination with other characters to make more complex
patterns.

We already said that any character without some special meaning simply matches itself
—"A" to "A" and so on. The next important rule is to combine letters just by position,
so "AB" matches "A" followed by "B". This, too, seems obvious.

The first special character is (.). A period (.) matches any single character. Therefore

. matches any four characters; A. matches an "A" followed by any character;
and .A. matches any character, then an "A", then any character (not necessarily the
same character as the first).

An asterisk (*) means to repeat zero or more occurrences of the previous character. So
A* means zero or more "A" characters, and .* means zero or more characters of any sort

nan

(such as "abcdefg", "aaaabc", "sdfgf ;lkjhj", or even an empty line).

So what does ..* mean? Any single character followed by zero or more of any character
(i.e., one or more characters) but not an empty line.

7.7 Searching with More Complex Patterns | 155

Speaking of lines, the caret ™ matches the beginning of a line of text and the dollar sign
$ matches the end of a line; hence ™ $ matches an empty line (the beginning followed
by the end, with nothing in between).

What if you want to match an actual period, caret, dollar sign, or any other special
character? Precede it by a backslash (\). So ion. matches the letters "ion" followed by
any other letter, but ion\. matches "ion" bounded by a period (e.g., at the end of a
sentence or wherever else it appears with a trailing dot).

A set of characters enclosed in square brackets (e.g., [abc]) matches any one of those
characters (e.g., "a" or "b" or "c"). If the first character inside the square brackets is a
caret, then it matches any character that is not in that set.

For example, [AaEeIiOoUu] matches any of the vowels, and [*AaEeIiOoUu] matches any
character that is not a vowel. This last case is not the same as saying that it matches
consonants because [*AaEeIiOoUu] also matches punctuation and other special charac-
ters that are neither vowels nor consonants.

Another mechanism we want to introduce is a repetition mechanism written as \{n,m
\} where n is the minimum number of repetitions and m is the maximum. If it is written
as\{n\} it means "exactly n times," and when written as "\{n,\}" then "at least n times."

For example, the regular expression A\{5\} means five capital A letters in a row, whereas
A\{5,\} means five or more capital A letters.

7.8 Searching for an SSN

Problem

You need a regular expression to match a Social Security number. These numbers are
nine digits long, typically grouped as three digits, then two digits, then a final four digits
(e.g., 123-45-6789). Sometimes they are written without hyphens, so you need to make
hyphens optional in the regular expression.

Solution
$ grep '[0-91\{3\}-\{0,1\}[0-9]\{2\}-\{0,1\}[0-9]\{4\}' datafile

Discussion

These kinds of regular expressions are often jokingly referred to as write only expres-
sions, meaning that they can be difficult or impossible to read. We'll take this one apart
to help you understand it. In general, though, in any bash script that you write using
regular expressions, be sure to put comments nearby explaining what you intended the
regular expression to match.

If we added some spaces to the regular expression we would improve its readability,
making visual comprehension easier, but it would change the meaning—it would say

156 | Chapter7: Intermediate Shell Tools |

that we'd need to match space characters at those points in the expression. Ignoring
that for the moment, let's insert some spaces into the previous regular expression so
that we can read it more easily:

[0-91\M3\} -\{0,1\} [0-9]\{2\} -\{0,1\} [0-9]\{4\}
The first grouping says "any digit" then "exactly 3 times." The next grouping says "a
dash" then "0 or 1 time." The third grouping says "any digit" then "exactly 2 times."
The next grouping says "a dash" then "0 or 1 time." The last grouping says "any digit"
then "exactly 4 times."

See Also
* man regex (Linux, Solaris, HP-UX) or man re_format (BSD, Mac) for the details
of your regular expression library

* (lassic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O'Reilly) Section
3.2, for more about regular expressions and the tools that use them

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Recipe 19.5

1.9 Grepping Compressed Files

Problem

You need to grep some compressed files. Do you have to uncompress them first?

Solution
Not if you have zgrep, zcat, or gzcat on your system.

zgrep is simply a grep that understands various compressed and uncompressed files
(which types are understood varies from system to system). You will commonly run
into this when searching syslog messages on Linux, since the log rotation facilities leave
the current log file uncompressed (so it can be in use), but gzip archival logs:

$ zgrep 'search term' /var/log/messages*

zcatis simply a cat that understands various compressed and uncompressed files (which
types are understood varies from system to system). It might understand more formats
than zgrep, and it might be installed on more systems by default. It is also used in
recovering damaged compressed files, since it will simply output everything it possibly
can, instead of erroring out as gunzip or other tools might.

gzcat is similar to zcat, the differences having to do with commercial versus free Unix
variants, and backward compatibility:

$ zcat /var/log/messages.l1.gz

7.9 Grepping Compressed Files | 157

Discussion

The less utility may also be configured to transparently display various compressed
files, which is very handy. See Recipe 8.15.

See Also

* Recipe 8.6
* Recipe 8.7
* Recipe 8.15

7.10 Keeping Some Output, Discarding the Rest

Problem

You need a way to keep some of your output and discard the rest.

Solution
The following code prints the first word of every line of input:
$ awk '{print $1}' myinput.file

Words are delineated by whitespace. The awk utility reads data from the filename
supplied on the command line, or from standard input if no filename is given. There-
fore, you can redirect the input from a file, like this:

$ awk '{print $1}' < myinput.file
or even from a pipe, like this:

$ cat myinput.file | awk '{print $1}'

Discussion

The awk program can be used in several different ways. Its easiest, simplest use is just
to print one or more selected fields from its input.

Fields are delineated by whitespace (or specified with the -F option) and are numbered
starting at 1. The field $0 represents the entire line of input.

awk is a complete programming language; awk scripts can become extremely complex.
This is only the beginning.
See Also

* Recipe 8.4
¢ Recipe 13.12

* man awk

158 | Chapter7: Intermediate Shell Tools |

* http://www.fags.org/fags/computer-lang/awk/faq/
* Effective awk Programming by Arnold Robbins (O'Reilly)
* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

7.11 Keeping Only a Portion of a Line of Output

Problem

You want to keep only a portion of a line of output, such as just the first and last words.
For example, you would like Is to list just filenames and permissions, without all of the
other information provided by 1s -1. However, you can't find any options to Is that
would limit the output in that way.

Solution

Pipe Is into awk, and just pull out the fields that you need:

$ 1s -1 | awk '{print $1, $NF}'
total 151130

-YW-r--r-- add.1

drwxr-xr-x art

drwxr-xr-x bin

-rw-r--r-- BuddyIcon.png
drwxr-xr-x CDs

drwxr-xr-x downloads
drwxr-sr-x eclipse

Discussion

Consider the output from the 1s -1 command. One line of it looks like this:

drwxr-xr-x 2 username group 176 2006-10-28 20:09 bin

so it is convenient for awk to parse (by default, whitespace delineates fields in awk).
The output from 1s -1 has the permissions as the first field and the filename as the last

field.

We use a bit of a trick to print the filename. Since the various fields are referenced in
awk using a dollar sign followed by the field number (e.g., $1, $2, $3), and since
awk has a built-in variable called NF that holds the number of fields found on the current
line, $NF always refers to the last field. (For example, the Is output line has eight fields,
so the variable NF contains 8,s0 $NF refers to the eighth field of the input line, which in
our example is the filename.)

Just remember that you don't use a $ to read the value of an awk variable (unlike
bash variables). NF is a valid variable reference by itself. Adding a $ before it changes its

7.11 Keeping Only a Portion of a Line of Qutput | 159

http://www.faqs.org/faqs/computer-lang/awk/faq/

meaning from "the number of fields on the current line" to "the last field on the current
line."

See Also
* man awk
o http://lwww.fags.org/fags/computer-lang/awk/faq/
* Effective awk Programming by Arnold Robbins (O'Reilly)
* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

7.12 Reversing the Words on Each Line

problem

You want to print the input lines with words in the reverse order.

Solution
$ awk '{
for (i=NF; i>0; i--) {
printf "%s ", $i,

vV vV VvV VvV Vv

printf "\n"
p
You don't type the > characters; the shell will print those as a prompt to say that you
haven't ended your command yet (it is looking for the matching single-quote mark).
Because the awk program is enclosed in single quotes, the bash shell lets us type multiple
lines, prompting us with the secondary prompt > until we supply the matching end
quote. We spaced out the program for readability, even though we could have stuffed
it all onto one line like this:

$ awk '{for (i=NF; i>0; i--) {printf "%s ", $i;} printf "\n" }'

Discussion

The awk program has syntax for a for loop, very much in the C language style. It even
supports a printf mechanism for formatted output, again modeled after the C language
version (or the bash version, too). We use the for loop to count down from the last to
the first field, and print each field as we go. We deliberately don't put a \n on that first
printf because we want to keep the several fields on the same line of output. When the
loop is done, we add a newline to terminate the line of output.

The reference to $i is very different in awk compared to bash. In bash, when we write
$i we are getting at the value stored in the variable named i. But in awk, as with most
programming languages, we simply reference the value in i by naming it—that is by
just writing i. So what is meant by $i in awk? The value of the variable i is resolved to

160 | Chapter7: Intermediate Shell Tools |

http://www.faqs.org/faqs/computer-lang/awk/faq/

anumber, and then the dollar-number expression is understood as a reference to a field
(or word) of input—that is, the i-th field. So as i counts down from the last field to
the first, this loop will print the fields in that reversed order.

See Also

* man printf(1)

* man awk

* http://www.faqgs.org/fags/computer-lang/awk/faq/

* Effective awk Programming by Arnold Robbins (O'Reilly)

* sed& awk by Arnold Robbins and Dale Dougherty (O'Reilly)
» "printf" in Appendix A

7.13 Summing a List of Numbers

Problem

You need to sum a list of numbers, including numbers that don't appear on lines by
themselves.

Solution

Use awk both to isolate the field to be summed and to do the summing. Here we'll sum
up the numbers that are the file sizes from the output of an 1s -1 command:

$ 1s -1 | awk '{sum += $5} END {print sum}'

Discussion

We are summing up the fifth field of the 1s -1 output. The output of 1s-1looks like this:
-Tw-r--1-- 1 albing users 267 2005-09-26 21:26 lilmax

and the fields are: permissions, links, owner, group, size (in bytes), date, time, and
filename. We're only interested in the size, so we use $5 in our awk program to reference

that field.

We enclose the two bodies of our awk program in braces ({}); note that there can be
more than one body (or block) of code in an awk program. A block of code preceded
by the literal keyword END is only run once, when the rest of the program has finished.
Similarly, you can prefix a block of code with BEGIN and supply some code that will be
run before any input is read. The BEGIN block is useful for initializing variables, and we
could have used one here to initialize sum, but awk guarantees that variables will start
out empty.

If you look at the output of an 1s -1 command, you will notice that the first line is a
total, and doesn't fit our expected format for the other lines.

7.13 Summing a List of Numbers | 161

http://www.faqs.org/faqs/computer-lang/awk/faq/

We have two choices for dealing with that. We can pretend it's not there, which is the
approach taken above. Since that undesired line doesn't have a fifth field, then our
reference to $5 will be empty, and our sum won't change.

The more conscientious approach would be to eliminate that field. We could do so
before we give the output to awk by using grep:
$ 1s -1 | grep -v '“total' | awk '{sum += $5} END {print sum}'

or we could do a similar thing within awk:

$ 1s -1 | awk '/~total/{getline} {sum += $5} END {print sum}'
The “total is a regular expression (regex); it means "the letters to-t-a-l occurring at the
beginning of a line" (the leading ~ anchors the search to the beginning of a line). For
any line of input matching that regex, the associated block of code will be executed.
The second block of code (the sum) has no leading text, the absence of which tells

awk to execute it for every line of input (meaning this will happen regardless of whether
the line matches the regex).

Now, the whole point of adding the special case for "total" was to exclude such a line
from our summing. Therefore in the ~total block we add a getline command, which
reads in the next line of input. Thus, when the second block of code is reached, it is
with a new line of input. The getline does not re-match all the patterns from the top,
only the ones from there on down. In awk programming, the order of the blocks of
code matters.

See Also

* man awk

* http://www.fags.org/fags/computer-lang/awk/faq/

* Effective awk Programming by Arnold Robbins (O'Reilly)

* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

7.14 Counting String Values

Problem

You need to count all the occurrences of several different strings, including some strings
whose values you don't know beforehand. That is, you're not trying to count the oc-
currences of a pre-determined set of strings. Rather, you are going to encounter some
strings in your data and you want to count these as-yet-unknown strings.

Solution

Use awk's associative arrays (also known as hashes) for your counting.

162 | Chapter7: Intermediate Shell Tools |

http://www.faqs.org/faqs/computer-lang/awk/faq/

For our example, we'll count how many files are owned by various users on our system.
The username shows up as the third field in an 1s-1 output. So we'll use that field
($3) as the index of the array, and increment that member of the array:

#
cookbook filename: asar.awk
#
NF > 7 {
user[$3]++
}
END {
for (i in user) {
printf "%s owns %d files\n", i, user[i]
}
}

We invoke awk a bit differently here. Because this awk script is a bit more complex,
we've putitin a separate file. We use the -f option to tell awk where to get the script file:
$ 1s -1R /usr/local | awk -f asar.awk
bin owns 68 files
albing owns 1801 files
root owns 13755 files
man owns 11491 files

$

Discussion

We use the condition NF > 7 as a qualifier to part of the awk script to weed out the lines
that do not contain filenames, which appear in the 1s -1R output and are useful for
readability because they include blank lines to separate different directories as well as
total counts for each subdirectory. Such lines don't have as many fields (or words). The
expression NF>7 that precedes the opening brace is not enclosed in slashes, which is to
say that it is not a regular expression. It's a logical expression, much like you would use
in an if statement, and it evaluates to true or false. The NF variable is a special built-in
variable that refers to the number of fields for the current line of input. So only if a line
of input has more than seven fields (words of text) will it be processed by the statements
within the braces.

The key line, however, is this one:

user[$3]++
Here the username (e.g., bin) is used as the index to the array. It's called an associative
array, because a hash table (or similar mechanism) is being used to associate each

unique string with a numerical index. awk is doing all that work for you behind the
scenes; you don't have to write any string comparisons and lookups and such.

Once you've built such an array it might seem difficult to get the values back out. For
this, awk has a special form of the for loop. Instead of the numeric for(i=0; i<max; i
++) that awk also supports, there is a particular syntax for associative arrays:

for (i in user)

7.14 Counting String Values | 163

In this expression, the variable 1 will take on successive values (in no particular order)
from the various values used as indexes to the array user. In our example, this means
that i will take on the values (i.e., bin, albing, man, root), one each iteration of the
loop. If you haven't seen associative arrays before, then we hope that you're surprised
and impressed. It is a very powerful feature of awk (and Perl).

See Also

* man awk

o http://lwww.fags.org/fags/computer-lang/awk/faq/

* Effective awk Programming by Arnold Robbins (O'Reilly)

* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

7.15 Showing Data As a Quick and Easy Histogram

Problem

You need a quick screen-based histogram of some data.

Solution
Use the associative arrays of awk, as discussed in the previous recipe:
#
cookbook filename: hist.awk
#
function max(arr, big)
{
big = 0;

for (i in user)

if (user[i] > big) { big=user[i];}
}
return big

}

NF > 7 {
user[$3]++
}

END {

for scaling

maxm = max(user);

for (i in user) {
#printf "%s owns %d files\n", i, user[i]
scaled = 60 * user[i] / maxm ;
printf "%-10.10s [%8d]:", i, user[i]
for (i=0; i<scaled; i++) {

printf "#";

printf "\n";

164 | Chapter7: Intermediate Shell Tools |

http://www.faqs.org/faqs/computer-lang/awk/faq/

}
}

When we run it with the same input as the previous recipe, we get:
$ 1s -1R /usr/local | awk -f hist.awk

bin [68]:#
albing [1801] : ittt
root [13755] : ittt sttt A A 1 1
man [11491] : ittt
$
Discussion

We could have put the code for max as the first code inside the END block, but we wanted
to show you that you can define functions in awk. We are using a bit of fancier
printf. The string format %-10.10s will left justify and pad to 10 characters but also
truncate at 10 characters. The integer format %8d will assure that the integer is printed
in an 8 character field. This gives each histogram the same starting point, by using the
same amount of space regardless of the username or the size of the integer.

Like all arithmetic in awk, the scaling calculation is done with floating point unless we
explicitly truncate the result with a call to the built-in int() function. We don't do so,
which means that the for loop will execute at least once, so that even the smallest
amount of data will still display a single hash mark.

The order of data returned from the for (i in user) loop is in no particular order,
probably based on some convenient ordering of the underlying hash table. If you want-
ed the histogram displayed in a sorted order, either numeric by count or alphabetical
by username, you would have to add some sorting. One way to do this is to break this
program apart into two pieces, sending the output from the first part into the sort
command and then piping that output into the second piece to print the histogram.

See Also
* man awk
* http://www.fags.org/fags/computer-lang/awk/faq/
* Effective awk Programming by Arnold Robbins (O'Reilly)
* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)
* Recipe 8.1

7.16 Showing a Paragraph of Text After a Found Phrase

Problem

You are searching for a phrase in a document, and want to show the paragraph after
the found phrase.

7.16 Showing a Paragraph of Text After a Found Phrase | 165

http://www.faqs.org/faqs/computer-lang/awk/faq/

Solution

We're assuming a simple text file, where paragraph means all the text between blank
lines, so the occurrence of a blank line implies a paragraph break. Given that, it's a
pretty short awk program:

$ cat para.awk

/keyphrase/ { flag=1 }

{ if (flag == 1) { print $0 } }

/"$/ { flag=0 }

$

$ awk -f para.awk < searchthis.txt

Discussion

There arejust three simple code blocks. The first is invoked when a line of input matches
the regular expression (here just the word "keyphrase"). If "keyphrase" occurs anywhere
within a line of input, that is a match and this block of code will be executed. All that
happens in this block is that the flag is set.

The second code block is invoked for every line of input, since there is no regular
expression preceding its open brace. Even the input that matches "keyphrase" will also
be applied to this code block (if we didn't want that effect, we could use a continue
statement in the first block). All this second block does is print the entire input line,
but only if the flag is set.

The third block has a regular expression that, if satistied, will simply reset (turn off)
the flag. That regular expression uses two characters with special meaning—the caret
(™), when used as the first character of a regular expression, matches the beginning of
the line; the dollar sign ($), when used as the last character, matches the end of the line.
So the regular expression ~$ means "an empty line" because it has no characters be-
tween the beginning and end of the line.

We could have used a slightly more complicated regular expression for an empty line
to let it handle any line with just whitespace rather than a completely blank line. That
would make the third line look like this:

/~[:blank:]1*$/ { flag=0 }

Perl programmers love the sort of problem and solution discussed in this recipe, but
we've implemented it with awk because Perl is (mostly) beyond the scope of this book.
If you know Perl, by all means use it. If not, awk might be all you need.

See Also

* man awk

http://lwww.fags.org/fags/computer-lang/awk/faq/
Effective awk Programming by Arnold Robbins (O'Reilly)
sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

166 | Chapter7: Intermediate Shell Tools |

http://www.faqs.org/faqs/computer-lang/awk/faq/

CHAPTER 8
Intermediate Shell Tools Ii

Once again, we have some useful utilities that are not part of the shell but are used in
so many shell scripts that you really should know about them.

Sorting is such a common task, and so useful for readability reasons, that it's good to
know about the sort command. In a similar vein, the tr command will translate or map
from one character to another, or even just delete characters.

One common thread here is that these utilities are written not just as standalone com-
mands, but also as filters that can be included in a pipeline of commands. These sorts
of commands will typically take one to many filenames as parameters (or arguments),
but in the absence of any filenames they will read from standard input. They also write
to standard output. That combination makes it easy to connect to the command with
pipes, as in something | sort | even more.

That makes them especially useful, and avoids the clutter and confusion of a myriad
of temporary files.

8.1 Sorting Your Output

Problem

You would like outputin a sorted order, but you don't want to write (yet again) a custom
sort function for your program or shell script. Hasn't this been done already?

Solution

Use the sort utility. You can sort one or more files by putting the file names on the
command line:
$ sort filel.txt file2.txt myotherfile.xyz

With no filenames on the command, sort will read from standard input so you can pipe
the output from a previous command into sort:

167

$somecommands | sort

Discussion

It can be handy to have your output in sorted order, and handier still not to have to
add sorting code to every program you write. The shell's piping allows you to hook up
sort to any program's standard output.
There a few options to sort, but two of the three most worth remembering are:

$ sort -r
to reverse the order of the sort (where, to borrow a phrase, the last shall be first and
the first, last); and

$ sort -f
to "fold" lower- and uppercase characters together; i.e., to ignore the case differences.
This can be done either with the -f option or with a GNU long-format option:

$ sort --ignore-case

We decided to keep you in suspense, so see the next recipe, Recipe 8.2, for the third
coolest sort option.

See Also

¢® man sort

* Recipe 8.2

8.2 Sorting Numbers

Problem

When sorting numeric data you notice that the order doesn't seem right:

$ sort somedata
2

200

21

250

$

Solution

You need to tell sort that the data should be sorted as numbers. Specify a numeric sort
with the -n option:

$ sort -n somedata
2

21

200

168 | Chapter8: Intermediate Shell Tools Il

250
$

Discussion

There is nothing wrong with the original (if odd) sort order if you realize that it is an
alphabetic sort on the data (i.e., 21 comes after 200 because 1 comes after 0 in an
alphabetic sort). Of course, what you probably want is numeric ordering, so you need
to use the -n option.

sort -rncanbe very handy in giving you a descending frequency list of something when
combined with uniq -c. For example, let's display the most popular shells on this sys-
tem:

$ cut -d':' -f7 /etc/passwd | sort | uniq -c | sort -rn
20 /bin/sh
10 /bin/false
2 /bin/bash
1 /bin/sync

cut -d':" -7 /etc/passwd isolates the shell from the /etc/passwd file. Then we have to
do an initial sort so that uniq will work. uniq -c counts consecutive, duplicate lines,
which is why we need the pre-sort. Then sort -rn gives us a reverse, numerical sort,
with the most popular shell at the top.

If you don't need to count the occurrences and just want a unique list of values—i.e.,
if you want sort to remove duplicates—then you can use the -u option on the sort
command (and omit the unig command). So to find just the list of different shells on
this system:

cut -d':' -f7 /etc/passwd | sort -u

See Also

* man sort
* man uniq

¢® man cut

8.3 Sorting IP Addresses

Problem

You want to sort a list of numeric IP address, but you'd like to sort by the last portion
of the number or by the entire address logically.

Solution

To sort by the last octet only (old syntax):

8.3 Sorting IP Addresses | 169

$ sort -t. -n +3.0 ipaddr.list

10.0.0.2
192.168.0.2
192.168.0.4
10.0.0.5
192.168.0.12
10.0.0.20

$

To sort the entire address as you would expect (POSIX syntax):

$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n ipaddr.list
10.0.0.2

10.0.0.5

10.0.0.20

192.168.0.2

192.168.0.4

192.168.0.12

$

Discussion

We know this is numeric data, so we use the -n option. The -t option indicates the
character to use as a separator between fields (in our case, a period) so that we can also
specify which fields to sort first. In the first example, we start sorting with the third
field (zero-based) from the left, and the very first character (again, zero-based) of that
field, so +3.0.

In the second example, we used the new POSIX specification instead of the traditional
(but obsolete) +pos1 -pos2 method. Unlike the older method, it is not zero-based, so
fields start at 1.

$ sort -t . -k 1,1n -k 2,2n -k 3,3n -k 4,4n ipaddr.list

Wow, that's ugly. Here it is in the old format: sort -t. +0n -1 +1n -2 +2n -3 +3n
-4, which is just as bad.

Using -t. to define the field delimiter is the same, but the sort-key fields are given quite
differently. In this case, -k 1,1n means "start sorting at the beginning of field one (1)
and (,) stop sorting at the end of field one (1) and do a numerical sort (n). Once you
get that, the rest is easy. When using more than one field, it's very important to tell
sort where to stop. The default is to go to the end of the line, which is often not what
you want and which will really confuse you if you don't understand what it's doing.

The order that sort uses is affected by your locale setting. If your results
are not as expected, that's one thing to check.

Your sort order will vary from system to system depending on whether your sort com-
mand defaults to using a stable sort. A stable sort preserves the original order in the

170 | Chapter8: Intermediate Shell Tools Il

sorted data when the sort fields are equal. Linux and Solaris do not default to a stable
sort, but NetBSD does. And while -S turns off the stable sort on NetBSD, it sets the
buffer size on other versions of sort.

If we run this sort command on a Linux or Solaris system:

$ sort -t. -kan ipaddr.list

or this command on a NetBSD system
$ sort -t. -S -k4n ipaddr.list

we will get the data sorted as shown in the 1st column of Table 8-1. Remove the -S on
a NetBSD system, and sort will produce the ordering as shown in the second column.

Table 8-1. Sort ordering comparison of Linux, Solaris, and NetBSD

Linux and Solaris (default) and NetBSD (with-S) NetBSD stable (default) sort ordering

10.0.0.2 # sluggish 192.168.0.2 # laptop
192.168.0.2 # laptop 10.0.0.2 # sluggish
10.0.0.4 # mainframe 192.168.0.4 # office
192.168.0.4 # office 10.0.0.4 # mainframe
192.168.0.12 # speedy 192.168.0.12 # speedy
10.0.0.20 # lanyard 10.0.0.20 # lanyard

If our input file, ipaddr.list, had all the 192.168 addresses first, followed by all the 10.
addresses, then the stable sort would leave the 192.168 address first when there is a tie,
that is when two elements in our sort have the same value. We can see in Table 8-1 that
this situation exists for laptop and sluggish, since each has a 2 as its fourth field, and
also for mainframe and office, which tie with 4. In the default Linux sort (and NetBSD
with the -S option specified), the order is not guaranteed.

To get back to something easy, and just for practice, let's sort by the text in our IP
address list. This time we want our separator to be the # character and we want an
alphabetic sort on the second field, so we get:

$ sort -t'#' -k2 ipaddr.list

10.0.0.20 # lanyard
192.168.0.2 # laptop
10.0.0.5 # mainframe
192.168.0.4 # office
10.0.0.2 # sluggish
192.168.0.12 # speedy

$

The sorting will start with the second key, and in this case, go through the end of the
line. With just the one separator (#) per line, we didn't need to specify the ending,
though we could have written -k2, 2.

8.3 Sorting IP Addresses | 171

See Also

¢ man sort

* Appendix B's example ./functions/inetaddr, as provided in the bash tarball

8.4 Cutting Out Parts of Your Output

Problem

You need to look at only part of your fixed-width or column-based data. You'd like to
take a subset of it, based on the column position.

Solution

Use the cut command with the -c option to take particular columns: Note that our
example 'ps' command only works with certain systems; e.g., CentOS-4, Fedora Core
5, and Ubuntu work, but Red Hat 8, NetBSD, Solaris, and Mac OS X all garble the
output due to using different columns:

$ ps -1 | cut -c12-15

PID

5391

7285

7286

$

or:

$ ps -elf | cut -c58-
(output not shown)

Discussion

With the cut command we specify what portion of the lines we want to keep. In the
first example, we are keeping columns 12 (starting at column one) through 15, inclu-
sive. In the second case, we specify starting at column 58 but don't specify the end of
the range so that cut will take from column 58 on through the end of the line.

Most of the data manipulation we've looked at has been based on fields, relative posi-
tions separated by characters called delimiters. The cut command can do that too, but
it is one of the few utilities that you'll use with bash that can also easily deal with fixed-
width, columnar data (via the -c option).

Using cut to print out fields rather than columns is possible, though more limited than
other choices such as awk. The default delimiter between fields is the Tab character,
but you can specify a different delimiter with the -d option. Here is an example of a
cut command using fields:

$ cut -d'#' -f2 < ipaddr.list

172 | Chapter8: Intermediate Shell Tools Il

and an equivalent awk command:
$ awk -F'#' '{print $2}' < ipaddr.list
You can even use cut to handle non-matching delimiters by using more than one cut.

You may be better off using a regular expression with awk for this, but sometimes a
couple of quick and dirty cuts are faster to figure out and type.

Here is how you can get the field out from between square brackets. Note that the first
cut uses a delimiter of open square bracket (-d'[') and field 2 (-f2 starting at 1). Because
the first cut has already removed part of the line, the second cut uses a delimiter of
closed square bracket (-d']") and field 1 (-f1).

$ cat delimited data
Line [11].
Line [12].
Line [13].

$ cut -d'[' -f2 delimited data | cut -d']' -f1
11
12
13

See Also

¢ man cut

* man awk

8.5 Removing Duplicate Lines

Problem

After selecting and/or sorting some data you notice that there are many duplicate lines
in your results. You'd like to get rid of the duplicates, so that you can see just the unique
values.

Solution
You have two choices available to you. If you've just been sorting your output, add the -
u option to the sort command:

$somesequence | sort -u
If you aren't running sort, just pipe the output into unig—provided, that is, that the
output is sorted, so that identical lines are adjacent:

$somesequence > myfile
$ uniq myfile

8.5 Removing Duplicate Lines | 173

Discussion

Since uniq requires the data to be sorted already, we're more likely to just add the -u
option to sort unless we also need to count the number of duplicates (-c, see
Recipe 8.2), or see only the duplicates (-d), which uniq can do.

,—_ Don't accidentally overwrite a valuable file by mistake; the uniq com-
"*’@ mand is a bit odd in its parameters. Whereas most Unix/Linux com-
mands take multiple input files on the command line, uniq does not. In
fact, the first (non-option) argument is taken to be the (one and only)
input file and any second argument, if supplied, is taken as the output
file. So if you supply two filenames on the command line, the second

one will get clobbered without warning.

See Also

* man sort
* man uniq

* Recipe 8.2

8.6 Compressing Files

Problem

You need to compress some files and aren't sure of the best way to do it.

Solution

First, you need to understand that in traditional Unix, archiving (or combining) and
compressing files are two different operations using two different tools, while in the
DOS and Windows world it's typically one operation with one tool. A "tarball" is cre-
ated by combining several files and/or directories using the tar (tape archive) command,
then compressed using the compress, gzip, or bzip2 tools. This results in files like tar-
ball.tar.Z, tarball.tar.gz, tarball.tgz, or tarball.tar.bz2. Having said that, many other
tools, including zip, are supported.

In order to use the correct format, you need to understand where your data will be
used. If you are simply compressing some files for yourself, use whatever you find
easiest. If other people will need to use your data, consider what platform they will be
using and what they are comfortable with.

The Unix traditional tarball was tarball.tar.Z, but gzip is now much more common and
bzip2 (which offers better compression than gzip) is gaining ground. There is also a tool
question. Some versions of tar allow you to use the compression of your choice auto-
matically while creating the archive. Others don't.

174 | Chapter8: Intermediate Shell Tools Il

The universally accepted Unix or Linux format would be a tarball.tar.gz created like
this:

$ tar cf tarball name.tar directory of files
$ gzip tarball name.tar

If you have GNU tar, you could use -Z for compress (don't, this is obsolete), -z for gzip
(safest), or -j for bzip2 (highest compression). Don't forget to use an appropriate file-
name, this is not automatic.

$ tar czf tarball name.tgz directory of files

While tar and gzip are available for many platforms, if you need to share with Windows
you are better off using zip, which is nearly universal. zip and unzip are supplied by the
InfoZip packages on Unix and almost any other platform you can possibly think of.
Unfortunately, they are not always installed by default. Run the command by itself for
some helpful usage information, since these tools are not like most other Unix tools.
And note the -1 option to convert Unix line endings to DOS line endings, or -11 for
the reverse.

$ zip -r zipfile name directory of files

Discussion

There are far too many compression algorithms and tools to talk about here; others
include: AR, ARC, AR]J, BIN, BZ2, CAB, CAB, JAR, CPIO, DEB, HQX, LHA, LZH,
RAR, RPM, UUE, and ZOO.

When using tar,we strongly recommend using a relative directory to store all the files.
If you use an absolute directory, you might overwrite something on another system
that you shouldn't. If you don't use any directory, you'll clutter up whatever directory
the user is in when they extract the files (see Recipe 8.8). The recommended use is the
name and possibly version of the data you are processing. Table 8-2 shows some ex-
amples.

Table 8-2. Good and bad examples of naming files for the tar utility

Good Bad

/myapp_1.0.1 myapp.c
myapp.h
myapp.man

/bintools /Just/local/bin

It is worth noting that Red Hat Package Manager (RPM) files are actually CPIO files
with a header. You can get a shell or Perl script called rpm2cpio (http://fedora.redhat
.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html) to strip that header and
then extract the files like this:

$ rpm2cpio some.rpm | cpio -i

8.6 Compressing Files | 175

http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html
http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html

Debian's .deb files are actually ar archives containing gzipped or bzipped tar archives.
They may be extracted with the standard ar, gunzip, or bunzip2 tools.

Many of the Windows-based tools such as WinZip, PKZIP, FilZip, and 7-Zip can han-
dle many or all of the above formats and more (including tarballs and RPMs).

See Also

* man tar

* man gzip

* man bzip2

* man compress

* man zip

* man rpm

* man ar

* man dpkg

o http://www.info-zip.org/

* http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html
* http://en.wikipedia.org/wiki/Deb_(file_format)

e http://lwww.rpm.org/

* http://en.wikipedia.org/wiki/RPM_Package_Manager
* Recipe 7.9

* Recipe 8.7

* Recipe 8.8

* Recipe 17.3

8.7 Uncompressing Files

Problem

You need to uncompress one or more files ending in extensions like tar, tar.gz, gz,
tgz, Z, or zip.

Solution

Figure out what you are dealing with and use the right tool. Table 8-3 maps common
extensions to programs capable of handling them.

176 | Chapter8: Intermediate Shell Tools Il

http://www.info-zip.org/
http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-extra-packaging-tools.html
http://en.wikipedia.org/wiki/Deb_(file_format)
http://www.rpm.org/
http://en.wikipedia.org/wiki/RPM_Package_Manager

Table 8-3. Common file extensions and compression utilities

File extension Command

.tar tar tf (list contents), tar xf (extract)

.tar.gz, .tgz GNUtar:tar tzf (listcontents), tar xzf (extract)
else:gunzip file && tar xf file

.tar.bz2 GNU tar: tar tjf (list contents), tar xjf (extract)
else:gunzip2 file && tar xffile

.tar.z GNU tar: tar tZf (list contents), tar xZf (extract)
else:uncompress file && tar xf file

.zip unzip (often not installed by default)

You should also try the file command:

$ file what_is this.*
what_is this.1: GNU tar archive
what_is this.2: gzip compressed data, from Unix

$ gunzip what_is this.2
gunzip: what_is this.2: unknown suffix -- ignored

$ mv what_is this.2 what _is this.2.gz
$ gunzip what_is this.2.gz

$ file what is this.2
what_is this.2: GNU tar archive

Discussion
If the file extension matches none of those listed in Table 8-3 and the file command
doesn't help, but you are sure it's an archive of some kind, then you should do a web
search for it.

See Also

* Recipe 7.9
* Recipe 8.6

8.8 Checking a tar Archive for Unique Directories

Problem

You want to untar an archive, but you want to know beforehand into which directories
it is going to write. You can look at the table of contents of the tarfile by using tar-t,
but this output can be very large and it's easy to miss something.

8.8 Checking a tar Archive for Unique Directories | 177

Solution

Use an awk script to parse off the directory names from the tar archive's table of con-
tents, then use sort -u to leave you with just the unique directory names:

$ tar tf some.tar | awk -F/ '{print $1}' | sort -u

Discussion

The t option will produce the table of contents for the file specified with the f option
whose filename follows. The awk command specifies a non-default field separator by
using -F/ to specify a slash as the separator between fields. Thus, the print $1 will print
the first directory name in the pathname.

Finally, all the directory names will be sorted and only unique ones will be printed.

If a line of the output contains a single period then some files will be extracted into the
current directory when you unpack this tar file, so be sure to be in the directory you
desire.

Similarly, if the filenames in the archive are all local and without a leading ./ then you
will get a list of filenames that will be created in the current directory.

If the output contains a blank line, that means that some of the files are specified with
absolute pathnames (i.e., beginning with /), so again be careful, as extracting such an
archive might clobber something that you don't want replaced.

See Also

* man tar

* man awk
* Recipe 8.1
* Recipe 8.2
* Recipe 8.3

8.9 Translating Characters

Problem

You need to convert one character to another in all of your text.

Solution

Use the tr command to translate one character to another. For example:

$tr ';' '," <be.fore >af.ter

178 | Chapter8: Intermediate Shell Tools Il

Discussion

In its simplest form, a tr command replaces occurrences of the first (and only) character
of the first argument with the first (and only) character of the second argument.

In the example solution, we redirected input from the file named be.fore and sent the
output into the file named af.ter and we translated all occurrences of a semicolon into
a comma.

Why do we use the single quotes around the semicolon and the comma? Well, a sem-
icolon has special meaning to bash, so if we didn't quote it bash would break our com-
mand into two commands, resulting in an error. The comma has no special meaning,
but we quote it out of habit to avoid any special meaning we may have forgotten about
—i.e., it's safer always to use the quotes, then we never forget to use them when we
need them.

The tr command can do more that one translation at a time by putting the several
characters to be translated in the first argument and their corresponding resultant
characters in the second argument. Just remember, it's a one-for-one substitution. For
example:

$ tr ";:.12" "," <other.punct >commas.all

will translate all occurrences of the punctuation symbols of semicolon, colon, period,
exclamation point and question mark to commas. Since the second argument is shorter
than the first, its last (and here, its only) character is repeated to match the length of
the first argument, so that each character has a corresponding character for the trans-
lation.

Now this kind of translation could be done with the sed command, though sed syntax
is a bit trickier. The tr command is not as powerful, since it doesn't use regular expres-
sions, but it does have some special syntax for ranges of characters—and that can be
quite useful as we'll see in Recipe 8.10.

See Also

¢ mantr

8.10 Converting Uppercase to Lowercase

Problem

You need to eliminate case distinctions in a stream of text.

Solution

You can translate all uppercase characters (A-Z7) to lowercase (a—z) using the tr com-
mand and specifying a range of characters, as in:

8.10 Converting Uppercase to Lowercase | 179

$ tr 'A-Z' 'a-z' <be.fore >af.ter
There is also special syntax in tr for specifying this sort of range for upper-and lower-
case conversions:

$ tr '[:upper:]' '[:lower:]' <be.fore >af.ter

Discussion

Although tr doesn't support regular expressions, it does support a range of characters.
Just make sure that both arguments end up with the same number of characters. If the
second argument is shorter, its last character will be repeated to match the length of
the first argument. If the first argument is shorter, the second argument will be trun-
cated to match the length of the first.

Here's a very simplistic encoding of a text message using a simple substitution cypher
that offsets each character by 13 places (i.e., ROT13). An interesting characteristic of
ROT13 is that the same process is used to both encipher and decipher the text:

$ cat /tmp/joke
Q: Why did the chicken cross the road?
A: To get to the other side.

$ tr 'A-Za-z' 'N-ZA-Mn-za-m' < /tmp/joke
D: Jul qvq gur puvpxra pebff gur ebnq?
N: Gb trg gb gur bgure fvgr.

$ tr 'A-Za-z' 'N-ZA-Mn-za-m' < /tmp/joke | tr 'A-Za-z' 'N-ZA-Mn-za-m'

Q: Why did the chicken cross the road?
A: To get to the other side.

See Also

* mantr

* http://en.wikipedia.org/wiki/Rot13

8.11 Converting DOS Files to Linux Format

Problem

You need to convert DOS formatted text files to the Linux format. In DOS, each line
ends with a pair of characters—the return and the newline. In Linux, each line ends
with a single newline. So how can you delete that extra DOS character?

Solution

Use the -d option on tr to delete the character(s) in the supplied list. For example, to
delete all DOS carriage returns (\r), use the command:

$ tr -d '\r' <file.dos >file.txt

180 | Chapter8: Intermediate Shell Tools Il

http://en.wikipedia.org/wiki/Rot13

This will delete all \r characters in the file, not just those at the end of
‘%% a line. Typical text files rarely have characters like that inline, but it is

possible. You may wish to look into the dos2unix and unix2dos pro-
grams if you are worried about this.

Discussion

The tr utility has a few special escape sequences that it recognizes, among them \r for
carriage return and \n for newline. The other special backslash sequences are listed in
Table 8-4.

Table 8-4. The special escape sequences of the tr utility

Sequence Meaning

\ooo Character with octal value 000 (1-3 octal digits)
\\ A backslash character (i.e., escapes the backslash itself)
\a "audible" bell, the ASCII BEL character (since "b" was taken for backspace)
\b Backspace
\f Form feed
\n Newline
\r Return
\t Tab (sometimes called a "horizontal" tab)
\v Vertical tab
See Also
* man tr

8.12 Removing Smart Quotes

Problem

You want simple ASCII text out of a document in MS Word, but when you save it as
text some odd characters still remain.

Solution

Translate the odd characters back to simple ASCII like this:
$ tr '\221\222\223\224\226\227" '\047\047""--"' <odd.txt >plain.txt

8.12 Removing Smart Quotes | 181

Discussion

Such "smart quotes" come from the Windows-1252 character set, and may also show
up in email messages that you save as text. To quote from Wikipedia on this subject:

A few mail clients send curved quotes using the Windows-1252 codes but mark the text
as ISO-8859-1 causing problems for decoders that do not make the dubious assumption
that C1 control codes in ISO-8859-1 text were meant to be Windows-1252 printable
characters.

To clean up such text, we can use the tr command. The 221 and 222 (octal) curved
single-quotes will be translated to simple single quotes. We specify them in octal
(047) to make it easier on us, since the shell uses single quotes as a delimiter. The 223
and 224 (octal) are opening and closing curved quotes, and will be translated to simple
double quotes. The double quotes can be typed within the second argument since the
single quotes protect them from shell interpretation. The 226 and 227 (octal) are dash
characters and will be translated to hyphens (and no, that second hyphen in the second
argument is not technically needed, since tr will repeat the last character to match the
length of the first argument, but it's better to be specific).

See Also

* mantr

* http://en.wikipedia.org/wiki/Curved_quotes for way more than you might ever have
wanted to know about quotation marks and related character set issues

8.13 Counting Lines, Words, or Characters in a File

Problem

You need to know how many lines, words, or characters are in a given file.

Solution
Use the we (word count) command with awk in a command substitution.

The normal output of wc is something like this:

$ wc data _file
5 15 60 data_file

Lines only
$ wc -1 data_file
5 data_file

Words only
$ wc -w data_file
15 data_file

182 | Chapter8: Intermediate Shell Tools Il

http://en.wikipedia.org/wiki/Curved_quotes

Characters (often the same as bytes) only
$ wc -c data_file
60 data_file

Note 60B
$ 1s -1 data_file
-rw-r--r-- 1 jp users 60B Dec 6 03:18 data_file

You may be tempted to just do something like this:
data_file lines=$(wc -1 "$data_file")

That won't do what you expect, since you'll get something like "5 data_file" as the
value. Instead, try this:

data_file lines=$(wc -1 "$data file" | awk '{print $1}")

Discussion

If your version of we is locale aware, the number of characters will not equal the number
of bytes in some character sets.

See Also

¢ man wc

* Recipe 15.7

8.14 Rewrapping Paragraphs

Problem

You have some text with lines that are too long or too short, so you'd like to re-wrap
them to be more readable.

Solution

Use the fmt command, optionally with a goal and maximum line length:

$ fmt mangled text
$ fmt 55 60 mangled text

Discussion

One tricky thing about fmt is that it expects blank lines to separate headers and para-
graphs. If your input file doesn't have those blanks, it has no way to tell the difference
between different paragraphs and extra newlines inside the same paragraph. So you
will end up with one giant paragraph, with the correct line lengths.

The pr command might also be of some interest for formatting text.

8.14 Rewrapping Paragraphs | 183

See Also

e man fmt

* man pr

8.15 Doing More with less

"less is more!"

Problem

You'd like to take better advantage of the features of the less pager.

Solution
Read the less manpage and use the $LESS variable with ~/lessfilter and ~/.lesspipe files.

less takes options from the $LESS variable, so rather than creating an alias with your
favorite options, put them in that variable. It takes both long and short options, and
any command-line options will override the variable. We recommend using the long
options in the $LESS variable since they are easy to read. For example:

export LESS="--LONG-PROMPT --LINE-NUMBERS --ignore-case --QUIET"

But that is just the beginning. less is expandable via input preprocessors, which are
simply programs or scripts that pre-process the file that less is about to display. This is
handled by setting the $LESSOPEN and $LESSCLOSE environment variables appropriately.

You could build your own, but save yourself some time and look into Wolfgang Frie-
bel's lesspipe.sh available at http://www-zeuthen.desy.de/~friebel/unix/lesspipe.html (but
see the discussion below first). The script works by setting and exporting the $LES
SOPEN environment variable when run by itself:

$./lesspipe.sh

LESSOPEN="]|./lesspipe.sh %s"
export LESSOPEN

So you simply run it in an eval statement, like eval $(/path/to/lessfilter.sh) or
eval’ /path/to/lessfilter.sh", and then use less as usual. The list of supported formats
for version 1.53 is:

gzip, compress, bzip2, zip, rar, tar, nroff, ar archive, pdf, ps, dvi, shared library, exe-
cutable, directory, RPM, Microsoft Word, OpenOffice 1.x and OASIS (OpenDocument)
formats, Debian, MP3 files, image formats (png, gif, jpeg, tiff, ...), utf-16 text, iso images
and filesystems on removable media via /dev/xxx

But there is a catch. These formats require various external tools, so not all features in
the example lesspipe.sh will work if you don't have them. The package also contains ./
configure (or make) scripts to generate a version of the filter that will work on your
system, given the tools that you have available.

184 | Chapter8: Intermediate Shell Tools Il

http://www-zeuthen.desy.de/~friebel/unix/lesspipe.html

Discussion

less is unique in that it is a GNU tool that was already installed by default on every
single test system we tried—every one. Not even bash can say this. And version differ-
ences aside, it works the same on all of them. Quite a claim to fame.

However, the same cannot be said for lesspipe* and less open filters. We found other
versions, with wildly variable capabilities, besides the ones listed above.
* Red Hat has a /usr/bin/lesspipe.sh that can't be used like eval “lesspipe’.

* Debian hasa/usr/bin/lesspipe that can be eval'ed and also supports additional filters
via a ~/.lessfilter file.

* SUSE Linux has a /usr/bin/lessopen.sh that can't be eval'ed.

* FreeBSD has a trivial /usr/bin/lesspipe.sh (no eval, .Z, .gz, or .bz2).

* Solaris, HP-UX, the other BSDs, and the Mac have nothing by default.
To see if you already have one of these, try this on your systems. This Debian system
has the Debian lesspipe installed but not in use (since $LESSOPEN is not defined):

$ type lesspipe.sh; type lesspipe; set | grep LESS
-bash3: type: lesspipe.sh: not found
lesspipe is /usr/bin/lesspipe

This Ubuntu system has the Debian lesspipe installed and in use:

$ type lesspipe.sh; type lesspipe; set | grep LESS
-bash: type: lesspipe.sh: not found

lesspipe is hashed (/usr/bin/lesspipe)
LESSCLOSE="/usr/bin/lesspipe %s %s'

LESSOPEN="| /usr/bin/lesspipe %s'

We recommend that you download, configure, and use Wolfgang Friebel's less-
pipe.sh because it's the most capable. We also recommend that you read the less man-
page because it's very interesting.

See Also

* man less

* man lesspipe

* man lesspipe.sh

o http://lwww.greenwoodsoftware.com/less/

* http://www-zeuthen.desy.de/~friebelfunix/lesspipe.html

8.15 Doing More with less | 185

http://www.greenwoodsoftware.com/less/
http://www-zeuthen.desy.de/~friebel/unix/lesspipe.html

CHAPTER 9
Finding Files: find, locate, slocate

How easy is it for you to search for files throughout your filesystem?

For the first few files that you created, it was easy enough just to remember their names
and where you kept them. Then when you got more files, you created subdirectories
(or folders in GUI-speak) to clump your files into related groups. Soon there were sub-
directories inside of subdirectories, and now you are having trouble remembering
where you put things. Of course, with larger and larger disks it is getting easier to just
keep creating and never deleting any files (and for some of us, this getting older thing
isn't helping either).

But how do you find that file you were just editing last week? Or the attachment that
you saved in a subdirectory (it seemed such a logical choice at the time). Or maybe your
filesystem has become cluttered with MP3 files scattered all over it.

Various attempts have been made to provide graphical interfaces to help you search for
files, which is all well and good—but how do you use the results from a GUI-style
search as input to other commands?

bash and the GNU tools can help. They provide some very powerful search capabilities
that enable you to search by filename, dates of creation or modification, even content.
They send the results to standard output, perfect for use in other commands or scripts.

So stop your wondering—here's the information you need.

9.1 Finding All Your MP3 Files

Problem

You have MP3 audio files scattered all over your filesystem. You'd like to move them
allinto a single location so that you can organize them and then copy them onto a music
player.

187

Solution

The find utility can locate all of those files and then execute a command to move them
where you want. For example:

$ find . -name "*.mp3' -print -exec mv '{}' ~/songs \;

Discussion

The syntax for the find utility is unlike other Unix tools. It doesn't use options in the
typical way, with dash and single-letter collections up front followed by several words
of arguments. Rather, the options look like short words, and are ordered in a logical
sequence describing the logic of which files are to be found, and what to do with them,
if anything, when they are found. These word-like options are often called predicates.

A find command's first arguments are the directory or directories in which to search. A
typical use is simply (.) for the current directory. But you can provide a whole list of
directories, or even search the entire filesystem (permissions allowing) by specifying
the root of the filesystem (/) as the starting point.

In our example the first option (the -name predicate) specifies the pattern we will search
for. Its syntax is like the bash pattern matching syntax, so *.mp3 will match all filenames
that end in the characters ".mp3". Any file that matches this pattern is considered to
return true and will thus continue to the next predicate of the command.

Think of it this way: find will climb around on the filesystem and each filename that it
finds it will present to this gauntlet of conditions that must be run. Any condition that
is true is passed. Encounter a false and that filename's turn is immediately over, and
the next filename is processed.

Now the -print condition is easy. It is always true and it has the side effect of printing
the name to standard output. So any file that has made it this far in the sequence of
conditions will have its name printed.

The -exec is a bit odd. Any filename making it this far will become part of a command
that is executed. The remainder of the line, up to the \ ;, is the command to be executed.
The {} is replaced by the name of the file that was found. So in our example, if find
encounters a file named mhsr.mp3 in the ./music/jazz subdirectory, then the command
that will be executed will be:

mv ./music/jazz/mhsr.mp3 ~/songs

The command will be issued for each file that matches the pattern. If lots and lots of
matching files are found, lots and lots of commands will be issued. Sometimes this is
too demanding of system resources and it can be a better idea to use find just to find
the files and print the filenames into a datafile and issue fewer commands by consoli-
dating arguments several to a line. (But with machines getting faster all the time, this
is less and less of an issue. It might even be something worthwhile for your dual core
or quad core processor to do.)

188 | Chapter9: Finding Files: find, locate, slocate

See Also

* man find

* Recipe 1.3
* Recipe 1.4
* Recipe 9.2

9.2 Handling Filenames Containing 0dd Characters

Problem

You used a find command like the one in Recipe 9.1 but the results were not what you
intended because many of your filenames contain odd characters.

Solution

First, understand that to Unix folks, odd means "anything not a lowercase letter, or
maybe a number." So uppercase, spaces, punctuation, and character accents are all
odd. But you'll find all of those and more in the names of many songs and bands.

Depending on the oddness of the characters, your system, tools, and goal, it might be
enough to simply quote the replacement string (i.e., put single quotes around the {},
asin'{}") . You did test your command first, right?

If that's no good, try using the -printo argument to find and the -0 argument to xargs. -
printo tells find to use the null character (\0) instead of whitespace as the output de-
limiter between pathnames found. -0 then tells xargs the input delimiter. These will
always work, but they are not supported on every system.

The xargs command takes whitespace delimited (except when using -0) pathnames
from standard input and executes a specified command on as many of them as possible
(up to a bit less than the system's ARG_MAX value; see Recipe 15.13). Since there is a lot
of overhead associated with calling other commands, using xargs can drastically speed
up operations because you are calling the other command as few times as possible,
rather than each time a pathname is found.

So, to rewrite the solution from Recipe 9.1 to handle odd characters:
$ find . -name '*.mp3' -printo | xargs -i -0 mv '{}' ~/songs

Here is a similar example demonstrating how to use xargs to work around spaces in a
path or filename when locating and then coping files:

$ locate P1100087.JPG PC220010.]PG PA310075.JPG PA310076.IPG | xargs -i cp '{}' .

9.2 Handling Filenames Containing Odd Characters | 189

Discussion

There are two problems with this approach. One is that not all versions of xargs support
the -i option, and the other is that the -ioption eliminates argument grouping, thus
negating the speed increase we were hoping for. The problem is that the mv command
needs the destination directory as the final argument, but traditional xargs will simply
take its input and tack it onto the end of the given command until it runs out of space
or input. The results of that behavior applied to an mv command would be very, very
ugly. So some versions of xargs provide a -i switch that defaults to using {} (like find),
but using -i requires that the command be run one at a time. So the only benefit over
using find's -exec is the odd character handling.

However, the xargs utility is most effective when used in conjunction with find and a
command like chmod that just wants a list of arguments to process. You can really see
a vast speed improvement when handling large numbers of pathnames. For example:

$ find some_directory -type f -printo | xargs -0 chmod 0644
See Also

* man find

* man xargs

¢ Recipe 9.1

¢ Recipe 15.13

9.3 Speeding Up Operations on Found Files

Problem

You used a find command like the one in Recipe 9.1 and the resulting operations take
a long time because you found a lot of files, so you want to speed it up.

Solution

See the discussion on xargs Recipe 9.2.

See Also

* Recipe 9.1
* Recipe 9.2

190 | Chapter9: Finding Files: find, locate, slocate

9.4 Finding Files Across Symbolic Links

Problem

You issued a find command to find your .mp3 files but it didn't find all of them—it
missed all those that were part of your filesystem but were mounted via a symbolic
link. Is find unable to cross that kind of boundary?

Solution

Use the -follow predicate. The example we used before becomes:

$ find . -follow -name '*.mp3' -printo | xargs -i -0 mv '{}' ~/songs

Discussion

Sometimes you don't want find to cross over onto other filesystems, which is where
symbolic links originated. So the default for find is not to follow a symbolic link. If you
do want it to do so, then use the -follow option as the first option in the list on your
find command.

See Also

e man find

9.5 Finding Files Irrespective of Case

Problem
Some of your MP3 files end with .MP3 rather than .mp3. How do you find those?

Solution

Use the -iname predicate (if your version of find supports it) to run a case-insensitive
search, rather than just -name. For example:

$ find . -follow -iname '*.mp3' -printo | xargs -i -0 mv '{}' ~/songs

Discussion

Sometimes you care about the case of the filename and sometimes you don't. Use the
-iname option when you don't care, in situations like this, where .mp3 or .MP3 both
indicate that the file is probably an MP3 file. (We say probably because on Unix-like
systems you can name a file anything that you want. It isn't forced to have a particular
extension.)

One of the most common places where you'll see the upper- and lowercase issue is
when dealing with Microsoft Windows-compatible filesystems, especially older or

9.5 Finding Files Irrespective of Case | 191

"lowest common denominator" filesystems. A digital camera that we use stores its files
with filenames like PICT001.JPG, incrementing the number with each picture. If you
were to try:

$ find . -name '*.jpg' -print
you wouldn't find many pictures. In this case you could also try:

$ find . -name "*.[Jj][Pp][Gg]"' -print
since that regular expression will match either letter in brackets, but that isn't as easy
to type, especially if the pattern that you want to match is much longer. In practice, -
iname is an easier choice. The catch is that not every version of find supports the -
iname predicate. If your system doesn't support it, you could try tricky regular expres-

sions as shown above, use multiple -name options with the case variations you expect,
or install the GNU version of find.

See Also

¢ man find

9.6 Finding Files by Date

Problem

Suppose someone sent you a JPEG image file that you saved on your filesystem a few
months ago. Now you don't remember where you put it. How can you find it?

Solution

Use a find command with the -mtime predicate, which checks the date of last modifi-
cation. For example:

find . -name '*.jpg' -mtime +90 -print

Discussion

The -mtime predicate takes an argument to specify the timeframe for the search. The
90 stands for 90 days. By using a plus sign on the number (+90) we indicate that we're
looking for a file modified more than 90 days ago. Write -90 (using a minus sign) for
less than 90 days. Use neither a plus nor minus to mean exactly 90 days.

There are several predicates for searching based on file modification times and each
take a quantity argument. Using a plus, minus, or no sign indicates greater than, less
than, or equals, respectively, for all of those predicates.

The find utility also has logical AND, OR, and NOT constructs so if you know that the
file was at least one week old (7 days) but not more than 14 days old, you can combine
the predicates like this:

192 | Chapter9: Finding Files: find, locate, slocate

$ find . -mtime +7 -a -mtime -14 -print
You can get even more complicated using OR as well as AND and even NOT to combine
conditions, as in:

$ find . -mtime +14 -name '*.text' -o \(-mtime -14 -name '*.txt' \) -print
This will print out the names of files ending in . text that are older than 14 days, as well

as those that are newer than 14 days but have .txt as their last 4 characters.

Youwill likely need parentheses to get the precedence right. Two predicates in sequence
are like a logical AND, which binds tighter than an OR (in find as in most languages).
Use parentheses as much as you need to make it unambiguous.

Parentheses have a special meaning to bash, so we need to escape that meaning, and
write them as \(and \) or inside of single quotes as '(" and ")". You cannot use single
quotes around the entire expression though, as that will confuse the find command. It
wants each predicate as its own word.

See Also

¢ man find

9.7 Finding Files by Type

Problem

You are looking for a directory with the word "java" in it. When you tried:
$ find . -name '*java*' -print

you got way too many files—including all the Java source files in your part of the
filesystem.

Solution

Use the -type predicate to select only directories:

$ find . -type d -name '*java*' -print

Discussion

We put the -type d first followed by the -name *java*. Either order would have found
the same set of files. By putting the -type d first in the list of options, though, the search
will be slightly more efficient: as each file is encountered, the test will be made to see
if it is a directory and then only directories will have their names checked against the
pattern. All files have names; relatively few are directories. So this ordering eliminates
most files from further consideration before we ever do the string comparison. Is it a
big deal? With processors getting faster all the time, it matters less so. With disk sizes
getting bigger all the time, it matters more so. There are several types of files for which

9.7 Finding Files by Type | 193

you can check, not just directories. Table 9-1 lists the single characters used to find
these types of files.

Table 9-1. Characters used by find's -type predicate
Key Meaning
b block special file
4 character special file
d directory
p pipe (or "fifo")
f

plain ol file
I symbolic link
S socket
D (Solaris only) "door"
See Also

* man find

9.8 Finding Files by Size

Problem

You want to do a little housecleaning, and to get the most out of your effort you are
going to start by finding your largest files and deciding if you need to keep them around.
But how do you find your largest files?

Solution

Use the -size predicate in the find command to select files above, below, or exactly a
certain size. For example:

find . -size +3000k -print

Discussion

Like the numeric argument to -mtime, the -size predicate's numeric argument can be
preceded by a minus sign, plus sign, or no sign at all to indicate less than, greater than,
or exactly equal to the numeric argument. So we've indicated, in our example, that
we're looking for files that are greater than the size indicated.

The size indicated includes a unit of k for kilobytes. If you use c for the unit, that means
just bytes (or characters). If you use b, or don't put any unit, that indicates a size in
blocks. (The block is a 512-byte block, historically a common unit in Unix systems.)
So we're looking for files that are greater than 3 MB in size.

194 | Chapter9: Finding Files: find, locate, slocate

See Also

e man find

e man du

9.9 Finding Files by Content

Problem

How do you find a file of some known content? Let's say that you had written an
important letter and saved it as a text file, putting .txt on the end of the filename. Beyond
that, the only thing you remember about the content of the letter is that you had used
the word "portend."

Solution

If you are in the vicinity of that file, say within the current directory, you can start with
a simple grep:
grep -i portend *.txt

With the -i option, grep will ignore upper-and lowercase difference. This command
may not be sufficient to find what you're looking for, but start simply. Of course, if you
think the file might be in one of your many subdirectories, you can try to reach all the
files that are in subdirectories of the current directory with this command:

grep -i portend */*.txt
Let's face it, though, that's not a very thorough search.

If that doesn't do it, let's use a more complete solution: the find command. Use the -
exec option on find so that if the predicates are true up to that point, it will execute a
command for each file it finds. You can invoke grep or other utilities like this:

find . -name "*.txt' -exec grep -Hi portend '{}' \;

Discussion

We use the -name "*.txt" construct to help narrow down the search. Any such test will
help, since having to run a separate executable for each file that it finds is costly in time
and CPU horsepower. Maybe you have a rough idea of how old the file is (e.g., -mdate
-5 or some such).

The '{}' is where the filename is put when executing the command. The \; indicates

the end of the command, in case you want to continue with more predicates. Both the
braces and the semicolon need to be escaped, so we quote one and use the backslash
for the other. It doesn't matter which way we escape them, only that we do escape them,
so that bash doesn't misinterpret them.

9.9 Finding Files by Content | 195

On some systems, the -H option will print the name of the file if grep finds something.
Normally, with only one filename on the command, grep won't bother to name the file,
it just prints out the matching line that it finds. Since we're searching through many
files, we need to know which file was grepped.

If you're running a version of grep that doesn't have the -H option, then just put /dev/
null as one of the filenames on the grep command. The grep command will then have
more than one file to open, and will print out the filename if it finds the text.

See Also

e man find

9.10 Finding Existing Files and Content Fast

Problem

You'd like to be able to find files without having to wait for a long find command to
complete, or you need to find a file with some specific content.

Solution

If your system has locate, slocate, Beagle, Spotlight or some other indexer, you are
already set. If not, look into them.

Aswe discussed in Recipe 1.3, locate and slocate consult database files about the system
(usually compiled and updated by a cron job) to find file or command names almost
instantly. The location of the actual database files, what is indexed therein, and how
often, may vary from system to system. Consult your system's manpages for details.

$ locate apropos

/usr/bin/apropos

/usr/share/man/de/man1/apropos.1.gz

/usr/share/man/es/man1/apropos.1.gz

/usr/share/man/it/man1/apropos.1.gz

/usr/share/man/ja/man1/apropos.1.gz

/usr/share/man/man1/apropos.1.gz

locate and slocate don't index content though, so see Recipe 9.9 for that.

Beagle and Spotlight are examples of a fairly recent technology known as desktop
search engines or indexers. Google Desktop Search and Copernic Desktop Search are
two examples from the Microsoft Windows world. Desktop search tools use some kind
of indexer to crawl, parse, and index the names and contents of all of the files (and
usually email messages) in your personal file space; i.e., your home directory on a Unix
or Linux system. This information is then almost instantly available to you when you
look for it. These tools are usually very configurable, graphical, operate on a per-user
basis, and index the contents of your files.

196 | Chapter9: Finding Files: find, locate, slocate

Discussion

slocate stores permission information (in addition to filenames and paths) so that it will
not list programs to which the user does not have access. On most Linux systems
locate is a symbolic link to slocate; other systems may have separate programs, or may
not have slocate at all. Both of these are command-line tools that crawl and index the
entire filesystem, more or less, but they only contain filenames and locations.

See Also

* man locate

* man slocate

* http://beagle-project.org/

* http://www.apple.com/macosx/features/spotlight/

* http://desktop.google.com/

* http://www.copernic.com/en/products/desktop-search/
* Recipe 1.3

* Recipe 9.9

9.11 Finding a File Using a List of Possible Locations

Problem

You need to execute, source, or read a file, but it may be located in a number of different
places in or outside of the $PATH.

Solution

If you are going to source the file and it's located somewhere on the $PATH, just source
it. bash's built-in source command (also known by the shorter-to-type but harder-to-
read POSIX name ".") will search the $PATH if the sourcepath shell option is set, which
it is by default:

$ source myfile
If you want to execute a file only if you know it exists in the $PATH and is executable,
and you have bash version 2.05b or higher, use type -P to search the $PATH. Unlike

the which command, type -P only produces output when it finds the file, which makes
it much easier to use in this case:

LS=$(type -P 1s)
[-x $LS] 8& $LS

--OR--

LS=$(type -P 1s)

9.11 Finding a File Using a List of Possible Locations | 197

http://beagle-project.org/
http://www.apple.com/macosx/features/spotlight/
http://desktop.google.com/
http://www.copernic.com/en/products/desktop-search/

if [-x $LS]; then
: commands involving $LS here

fi
If you need to look in a variety of locations, possibly including the $PATH, use a for loop.
To search the $PATH, use the variable substitution operator ${variable/pattern/
replacement} to replace the : separator with a space, and then use for as usual. To search
the $PATH and other possible locations, just list them:

for path in ${PATH//:/ }; do

[-x "$path/1s"] && $path/ls
done

--OR--

for path in ${PATH//:/ } /opt/foo/bin /opt/bar/bin; do
[-x "$path/1s"] && $path/ls
done

If the file is not in the $PATH, but could be in a list of locations, possibly even under
different names, list the entire path and name:
for file in /usr/local/bin/inputrc /etc/inputrc ~/.inputrc; do

[-f "$file"] && bind -f "$file" && break # Use the first one found
done

Perform any additional tests as needed. For example, you may wish to use screen when
logging in if it's present on the system:
for path in ${PATH//:/ }; do
if [-x "$path/screen"]; then
If screen(1) exists and is executable:
for file in /opt/bin/settings/run_screen ~/settings/run_screen; do
[-x "$file"] & $file && break # Execute the first one found
done
fi
done

See Recipe 16.20 for more details on this code fragment.

Discussion

Using for to iterate through each possible location may seem like overkill, but it's ac-
tually very flexible and allows you to search wherever you need to, apply whatever other
tests are appropriate, and then do whatever you want with the file if found. By replac-
ing : with a space in the $PATH, we turn it into the kind of space-delimited list for expects
(but as we also saw, any space delimited list will work). Adapting this technique as
needed will allow you to write some very flexible and portable shell scripts that can be
very tolerant of file locations.

You may be tempted to set $IFS=":" to directly parse the $PATH, rather than preparsing
itinto $path. That will work, but involves extra work with variables and isn't as flexible.

You may also be tempted to do something like the following:

198 | Chapter9: Finding Files: find, locate, slocate

["$(which myfile)"] 8& bind -f $(which myfile)

The problem here is not when the file exists, but when it doesn't. The which utility
behaves differently on different systems. The Red Hat which is also aliased to provide
details when the argument is an alias, and to set various command-line switches; and
it returns a not found message (while which on Debian or FreeBSD do not). But if you
try that line on NetBSD you could end up trying to bind no myfile in /sbin /usr/
sbin /bin /usr/bin /usr/pkg/sbin /usr/pkg/bin /usr/X11R6/bin /usr/ local/sbin /
usr/local/bin, which is not what you meant.

The command command is also interesting in this context. It's been around longer than
type -P and may be useful under some circumstances.

Red Hat Enterprise Linux 4.x behaves like this:
$ alias which

alias which="alias | /usr/bin/which --tty-only --read-alias --show-dot --show-tilde'

$ which rd
alias rd="rmdir'
/bin/rmdir

$ which 1s
alias 1s="ls --color=auto -F -h'
/bin/1s

$ which cat
/bin/cat

$ which cattt
/usr/bin/which: no cattt in (/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/
X11R6/bin: /home/jp/bin)

$ command -v rd
alias rd="rmdir'

$ command -v 1s
alias 1s='ls --color=auto -F -h'

$ command -v cat
/bin/cat

Debian and FreeBSD (but not NetBSD or OpenBSD) behave like this:

$ alias which
-bash3: alias: which: not found

$ which rd

$ which 1s
/bin/1s

$ which cat
/bin/cat

9.11 Finding a File Using a List of Possible Locations | 199

$ which cattt

$ command -v rd
-bash: command: rd: not found

$ command -v 1s
/bin/1s

$ command -v cat
/bin/cat

$ command -v 11
alias 11="1s -1'

See Also
* help type
* man which
* help source
* man source
¢ Recipe 16.20
* Recipe 17.4

200 | Chapter9: Finding Files: find, locate, slocate

CHAPTER 10
Additional Features for Scripting

Many scripts are written as simple one-off scripts that are only used by their author,
consisting of only a few lines, perhaps only a single loop, if that. But some scripts are
heavy-duty scripts that will see a lot of use from a variety of users. Such scripts will
often need to take advantage of features that allow for better sharing and reuse of code.
These advanced scripting tips and techniques can be useful for many kinds of scripts,
and are often found in larger systems of scripts such as the /etc/init.d scripts on many
Linux systems. You don't have to be a system administrator to appreciate and use these
techniques. They will prove themselves on any large scripting effort.

10.1 "Daemon-izing" Your Script

Problem

Sometimes you want a script to run as a daemon, i.e., in the background and never
ending. To do this properly you need to be able to detach your script from its controlling
tty, that is from the terminal session used to start the daemon. Simply putting an am-
persand on the command isn't enough. If you start your daemon script on a remote
system via an SSH (or similar) session, you'll notice that when you log out, the SSH
session doesn't end and your window is hung until that script ends (which, being a
daemon, it won't).

Solution

Use the following to invoke your script, run it in the background, and still allow yourself
to log out:

nohup mydaemonscript 0<&-1>/dev/null 2>81 &

or:

nohup mydaemonscript >>/var/log/myadmin.log 2>81 <&- &

201

Discussion

You need to close the controlling tty, which is connected in three ways to your (or any)
job: standard input (STDIN), standard output (STDOUT), and standard error
(STDERR). We can close STDOUT and STDERR by pointing them at another file—
typically either a log file, so that you can retrieve their output at a later time, or at the
file /dev/null to throw away all their output. We use the redirecting operator > to do this.

But what about STDIN? The cleanest way to deal with STDIN is to close the file de-
scriptor. The bash syntax to do that is like a redirect, but with a dash for the file-name
(0<&- or <&-).

We use the nohup command so that the script is run without being interrupted by a
hangup signal when we log off.

In the first example, we use the file descriptor numbers (i.e., 0, 1, 2) explicitly in all
three redirections. They are optional in the case of STDIN and STDOUT, so in our
second example we don't use them explicitly. We also put the input redirect at the end
of the second command rather than at the beginning, since the order here is not im-
portant. (However, the order is important and the file descriptor numbers are necessary
in redirecting STDERR.)

See Also

* Chapter 2 and Chapter 3 for more on redirecting input and redirecting output

10.2 Reusing Code with Includes and Sourcing

Problem

There are a set of shell variable assignments that you would like to have common across
a set of scripts that you are writing. You tried putting this configuration information
in its own script. But when you run that script from within another script, the values
don't stick; e.g., your configuration is running in another shell, and when that shell
exits, so do your values. Is there some way to run that configuration script within the
current shell?

Solution

Use the bash shell's source command or POSIX single period (.) to read in the contents
of that configuration file. The lines of that file will be processed as if encountered in
the current script.

Here's an example of some configuration data:

$ cat myprefs.cfg
SCRATCH_DIR=/var/tmp
IMG_FMT=png

202 | Chapter10: Additional Features for Scripting

SND_FMT=o0gg
$

It is just a simple script consisting of three assignments. Here's another script, one that
will use these values:

#

use the user prefs

source $HOME/myprefs.cfg

cd ${SCRATCH DIR:-/tmp}

echo You prefer $IMG FMT image files
echo You prefer $SND_FMT sound files

and so forth.

Discussion

The script that is going to use the configuration file uses the source command to read
in the file. It can also use a dot (.) in place of the word source. A dot is easy and quick
to type, but hard to notice in a script or screen shot:

. $HOME/myprefs.cfg

You wouldn't be the first person to look right past the dot and think that the script was
just being executed.

bash also has a third syntax, one that comes from the input processor readline, a topic
we will not get into here. We'll just say that an equivalent action can occur with this
syntax:

$include $HOME/myprefs.cfg

provided that the file is in your search path (or else specify an explicit path) and that
the file has execute permissions and, of course, read permission, too. That dollar sign
is not the command prompt, but part of the directive $include.

Sourcing is both a powerful and a dangerous feature of bash scripting. It gives you a
way to create a configuration file and then share that file among several scripts. With
that mechanism, you can change your configuration by editing one file, not several
scripts.

The contents of the configuration file are not limited to simple variable assignment,
however. Any valid shell command is legal syntax, because when you source a file like
this, it is simply getting its input from a different source, but it is still the bash shell
processing bash commands. Regardless of what shell commands are in that sourced
file, for example loops or invoking other commands, it is all legitimate shell input and
will be run as if it were part of your script.

Here's a modified configuration file:

$ cat myprefs.cfg
SCRATCH_DIR=/var/tmp
IMG_FMT=$(cat $HOME/myimage.pref)
if [-e /media/mp3]

10.2 Reusing Code with Includes and Sourcing | 203

then

SND_FMT=mp3
else

SND_FMT=o0gg
fi
echo config file loaded
$

This configuration file is hardly what one thinks of as a passive list of configured vari-
ables. It can run other commands (e.g., cat) and use if statements to vary its choices. It
even ends by echoing a message. Be careful when you source something, as it's a wide
open door into your script.

One of the best uses of sourcing scripts comes when you can define bash functions (as
we will show you in Recipe 10.3). These functions can then be shared as a common
library of functions among all the scripts that source the script of function definitions.

See Also

* The bash manpage for more about readline
* Recipe 10.3
¢ Recipe 10.4

10.3 Using Configuration Files in a Script

Problem

You want to use one or more external configuration files for one or more scripts.

Solution

You could write a lot of code to parse some special configuration file format. Do yourself
a favor and don't do that. Just make the config file a shell script and use the solution
in Recipe 10.2.

Discussion

This is just a specific application of sourcing a file. However, it's worth noting that you
may need to give a little thought as to how you can reduce all of your configuration
needs to bash-legal syntax. In particular, you can make use of Boolean flags, and op-
tional variables (see Chapter 5 and Recipe 15.11).

In config file

VERBOSE=0 # '' for off, 1 for on
SSH_USER="jbagadonutz@' # Note trailing @, set to '' to use the current user
In script

["$VERBOSE"] || echo "Verbose msg from $) goes to STDERR" >&2
[...]
sshSSH_USERREMOTE_HOST [...]

204 | Chapter10: Additional Features for Scripting

Of course, depending on the user to get the configuration file correct can be chancy,
so instead of requiring the user to read the comment and add the trailing @, we could
do it in the script:

If $SSH USER is set and doesn't have a trailing @ add it:
[-n "$SSH_USER" -a "$SSH_USER" = "${SSH USER%@}"] && SSH_USER="$SSH_USER@"

Or just use:

ssh ${SSH_USER:+${SSH_USER}@}${REMOTE_HOST} [...]
to make that same substitution right in place. The bash variable operator :+ will do the
following: if $SSH_USER has a value, it will return the value to the right of the :+ (in this

case we specified the variable itself along with an extra @); otherwise, if unset or empty,
it will return nothing.

See Also

e Chapter 5
¢ Recipe 10.2
¢ Recipe 15.11

10.4 Defining Functions

Problem

There are several places in your shell script where you would like to give the user a
usage message (a message describing the proper syntax for the command), but you don't
want to keep repeating the code for the same echo statement. Isn't there a way to do
this just once and have several references to it? If you could make the usage message
its own script, then you could just invoke it anywhere in your original script—but that
requires two scripts, not one. Besides, it seems odd to have the message for how to use
one script be the output of a different script. Isn't there a better way to do this?

Solution

You need a bash function. At the beginning of your script put something like this:

function usage ()

{
printf "usage: %s [-a | - b] file1l ... filen\n" $0 > &2

}

Then later in your script you can write code like this:

if [$# -1t 1]
then

usage

fi

10.4 Defining Functions | 205

Discussion

Functions may be defined in several ways ([function] name () compound-command
[redirections]). We could write a function definition any of these ways:

function usage ()

printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

function usage {
printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

usage ()
{

printf "usage: %s [-a | - b] file1 ... filen\n" $0 > &2
}

usage () {
printf "usage: %s [-a | - b] filex ... filen\n" $0 > &2

Either the reserved word function or the trailing () must be present. If function is used,
the () are optional. We like using the word function because itis very clear and readable,
and it is easy to grep for; e.g., grep '"“function' script will list the functions in your
script.

This function definition should go at the front of your shell script, or at least some-
where before you need to invoke it. The definition is, in a sense, just another bash
statement. But once it has been executed, then the function is defined. If you invoke
the function before it is defined you will get a "command not found" error. That's why
we always put our function definitions first before any other commands in our script.

Our function does very little; it is just a printf statement. Because we only have one
usage message, if we ever add a new option, we don't need to modify several statements,
just this one.

The only argument to printf beyond the format string is $0, the name by which the shell
script was invoked. You might even want to use the expression $(basename $0) so that
only the last part of any pathname is included.

Since the usage message is an error message, we redirect the output of the printf to
standard error. We could also have put that redirection on the outside of the function
definition, so that all output from the function would be redirected:

function usage ()

printf "usage: %s [-a | - b] file1 ... filen\n" $0
} > &

206 | Chapter10: Additional Features for Scripting

See Also

* Recipe 7.1
* Recipe 13
* Recipe 16.14
* Recipe 19.14

10.5 Using Functions: Parameters and Return Values

Problem

You want to use a function and you need to get some values into the function. How do
you pass in parameters? How do you get values back?

Solution

You don't put parentheses around the arguments like you might expect from some
programming languages. Put any parameters for a bash function right after the func-
tion's name, separated by whitespace, just like you were invoking any shell script or
command. Don't forget to quote them if necessary!

define the function:
function max ()
{...}

#

call the function:
#

max 128 $SIM

max $VAR $CNT

You have two ways to get values back from a function. You can assign values to variables
inside the body of your function. Those variables will be global to the whole script
unless they are explicitly declared local within the function:

cookbook filename: func_max.1

define the function:
function max ()
{
local HIDN
if [$1 -gt $2]
then
BIGR=$1
else
BIGR=$2
fi
HIDN=5
}

For example:

10.5 Using Functions: Parameters and Return Values | 207

call the function:
max 128 $SIM

use the result:
echo $BIGR

The other way is to use echo or printf to send output to standard output. Then you
must invoke the function inside a $(), capturing the output and using the result, or it
will be wasted on the screen:

cookbook filename: func_max.2

define the function:
function max ()

if [$1 -gt $2]
then
echo $1
else
echo $2
fi
}

For example:

call the function:
BIGR=$(max 128 $SIM)
use the result
echo $BIGR

Discussion

Putting parameters on the invocation of the function is just like calling any shell script.
The parameters are just the other words on the command line.

Within the function, the parameters are referred to as if they were command-line ar-
guments by using $1, $2, etc. However, $0 is left alone. It remains the name by which
the entire script was invoked. On return from the function, $1, $2, etc. are back to
referring to the parameters with which the script was invoked.

Also of interest is the SFUNCNAME array. SFUNCNAME all by itself references the
zeroth element of the array, which is the name of the currently executing function. In
other words, SFUNCNAME is to a function as $0 is to a script, except without all the
path information. The rest of the array elements are what amounts to a call stack, with
"main" as the bottom or last element. This variable only exists while a function is ex-
ecuting.

We included the useless variable $HIDN just to show that it is local to the function
definition. Even though we can assign it values inside the function, any such value
would not be available elsewhere in the script. It is a variable whose value is local to
that function; it comes into existence when the function is called, and is gone once the
function returns.

208 | Chapter10: Additional Features for Scripting

Returning values by setting variables is more efficient, and can handle lots of data—
many variables can be set—but the approach has its drawbacks. It requires that the
function and the rest of the script agree on variable names for the information hand-
off. This kind of coupling has maintenance issues. The other approach, using the output
as the way to return values, does reduce this coupling, but is limited in its usefulness
—it is limited in how much data it can return before your script has to spend lots of
effort parsing the results of the function. So which to use? As with much of engineering,
this, too, is a trade-off and you have to decide based on your specific needs.

See Also

* Recipe 1.6
* Recipe 16.4

10.6 Trapping Interrupts

Problem

You are writing a script that needs to be able to trap signals and respond accordingly.

Solution

Use the trap utility to set signal handlers. First, use trap -1 (or kill -1) to list the
signals you may trap. They vary from system to system:

NetBSD
$ trap -1
1) SIGHUP
5) SIGTRAP
9) SIGKILL
13) SIGPIPE
17) SIGSTOP
21) SIGTTIN
25) SIGXFSZ
29) SIGINFO
Linux
$ trap -1
1) SIGHUP
5) SIGTRAP
9) SIGKILL
13) SIGPIPE
18) SIGCONT
22) SIGTTOU

2)

6)

10)
14)
18)
22)
26)
30)

26) SIGVTALRM

30) SIGPWR

35) SIGRTMIN+2
39) SIGRTMIN+6

43) SIGRTMIN+10
47) SIGRTMIN+14
51) SIGRTMAX-13

SIGINT
SIGABRT
SIGBUS
SIGALRM
SIGTSTP
SIGTTOU
SIGVTALRM
SIGUSR1

2) SIGINT

6) SIGABRT
10) SIGUSR1
14) SIGALRM
19) SIGSTOP
23) SIGURG

27) SIGPROF
31) SIGSYS

36) SIGRTMI
40) SIGRTMI
44) SIGRTMI
48) SIGRTMI
52) SIGRTMA

3) SIGQUIT 4)
7) SIGEMT 8)
11) SIGSEGV 12)
15) SIGTERM 16)
19) SIGCONT 20)
23) SIGIO 24)
27) SIGPROF 28)
31) SIGUSR2 32)
3) SIGQUIT
7) SIGBUS

11) SIGSEGV
15) SIGTERM
20) SIGTSTP
24) SIGXCPU
28) SIGWINCH
33) SIGRTMIN
N+3 37) SIGRTMIN
N+7 41) SIGRTMIN
N+11 45) SIGRTMIN
N+15 49) SIGRTMAX
X-12 53) SIGRTMAX

SIGILL
SIGFPE
SIGSYS
SIGURG
SIGCHLD
SIGXCPU
SIGWINCH
SIGPWR

4) SIGILL

8) SIGFPE

12) SIGUSR2

17) SIGCHLD

21) SIGTTIN

25) SIGXFSZ

29) SIGIO

34) SIGRTMIN+1
+4 38) SIGRTMIN+5
+8 42) SIGRTMIN+9
+12 46) SIGRTMIN+13
-15 50) SIGRTMAX-14
-11 54) SIGRTMAX-10

10.6 Trapping Interrupts | 209

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

Next, set your trap(s) and signal handlers. Note that the exit status of your script will
be 128+signal number if the command was terminated by signal signal number. Here
is a simple case where we only care that we got a signal and don't care what it was. If
our trap had been trap '' ABRT EXIT HUP INT QUIT TERM, this script would be rather
hard to kill because any of those signals would just be ignored.

$ cat hard to kill

#!/bin/bash

trap ' echo "You got me! $?" ' ABRT EXIT HUP INT QUIT TERM
trap ' echo "Later... $?"; exit ' USR1

sleep 120

$./hard to kill
~CYou got me! 130
You got me! 130

$./hard_to kill &
[1] 26354

$ kill -USR1 %1

User defined signal 1

Later... 158

You got me! 0

[1]+ Done ./hard_to kill

$./hard_to kill &
[1] 28180

$ kill %1
You got me! 0
[1]+ Terminated ./hard_to_kill

This is a more interesting example:

#!/usr/bin/env bash
cookbook filename: hard_to_kill

function trapped {
if ["$1" = "USR1"]; then
echo "Got me with a $1 trap!"
exit
else
echo "Received $1 trap--neener, neener"
fi

trap "trapped ABRT" ABRT
trap "trapped EXIT" EXIT
trap "trapped HUP" HUP
trap "trapped INT" INT
trap "trapped KILL" KILL # This won't actually work

210 | Chapter10: Additional Features for Scripting

trap "trapped QUIT" QUIT
trap "trapped TERM" TERM
trap "trapped USR1" USR1 # This one is special

Just hang out and do nothing, without introducing "third-party"
trap behavior, such as if we used 'sleep'
while ((1)); do
: is a NOOP
done

Here we invoke this example then try to kill it:

$./hard to kill

~CReceived INT trap--neener, neener
~CReceived INT trap--neener, neener
~CReceived INT trap--neener, neener

A

z

[1]+ Stopped ./hard_to_kill

$ kill -TERM %1

[1]+ Stopped ./hard_to_kill
Received TERM trap--neener, neener

$ jobs

[1]+ Stopped ./hard_to_kill

$ bg

[1]+ ./hard_to_kill &

$ jobs

[1]+ Running ./hard_to kill &

$ kill -TERM %1
Received TERM trap--neener, neener

$ kill -HUP %1

Received HUP trap--neener, neener
$ kill -USR1 %1

Got me with a USR1 trap!

Received EXIT trap--neener, neener

[1]+ Done ./hard_to_kill

Discussion

First, we should mention that you can't actually trap -SIGKILL (-9). That signal kills
processes dead immediately, so they have no chance to trap anything. So maybe our
examples weren't really so hard to kill after all. But remember that this signal does not
allow the script or program to clean up or shut down gracefully at any time. That's
often a bad thing, so try to avoid using kill-KILL unless you have no other choice.

Usage for trap is as follows:

trap [-1p] [arg] [signal [signal]]

10.6 Trapping Interrupts | 211

The first nonoption argument to trap is the code to execute when the given signal is
received. As shown above, that code can be self-contained, or a call to a function. For
most nontrivial uses a call to one or more error handling functions is probably best,
since that lends itself well to cleanup and graceful termination features. If this argument
the null string, the given signal or signals will be ignored. If the argument is - or missing,
but one or more signals are listed, they will be reset to the shell defaults. -1 lists the
signal names as show above, while -p will print any current traps and their handlers.

When using more than one trap handler, we recommend you take the extra time to
alphabetize signal names because that makes them easier to read and find later on.

Asnoted above, the exit status of your script will be 128+signal number if the command
was terminated by signal signal number.

There are three pseudosignals for various special purposes. The DEBUG signal is similar
to EXIT but is used before every command for debugging purposes. The RETURN signal
is triggered when execution resumes after a function or source (.) call. And the ERR signal
is triggered after a simple command fails. Consult the bash Reference for more specific
details and caveats, especially dealing with functions using the declare built-in or the
set -o functrace option.

Note there are some POSIX differences that affect trap. As noted in the
bash Reference, "starting bash with the --posix command-line option or
executing set -o posix while bash is running will cause bash to conform
" more closely to the POSIX 1003.2 standard by changing the behavior to
match that specified by POSIX in areas where the bash default differs."
In particular, this will cause kill and trap to display signal names without
the leading SIG and the output of kill -1 will be different. And trap will
handle its argument somewhat more strictly, in particular it will require
a leading - in order to reset the trap to shell default. In other words it
requires trap -USR1, notjusttrap USR1. We recommend that you always
include the - even when not necessary, because it makes your intent
clearer in the code.

See Also
* help trap
* Recipe 1.16
* Recipe 10.1
* Recipe 14.11
¢ Recipe 17.7

2

—_

2 | Chapter10: Additional Features for Scripting

10.7 Redefining Commands with alias

Problem

You'd like to slightly alter the definition of a command, perhaps so that you always use
a particular option on a command (e.g., always using -a on the Is command or -i on
the rm command).

Solution

Use the alias feature of bash for interactive shells (only). The alias command is smart
enough not to go into an endless loop when you say something like:

alias 1s="1ls -a'

In fact, just type alias with no other arguments and you can see a list of aliases that
are already defined for you in your bash session. Some installations may already have
several available for you.

Discussion

The alias mechanism is a straightforward text substitution. It occurs very early in the
command-line processing, so other substitutions will occur after the alias. For example,
if you want to define the single letter "h" to be the command that lists your home
directory, you can do it like this:

alias h="1ls $HOME'

or like this:

alias h="1s ~'

The use of single quotes is significant in the first instance, meaning that the variable
$HOME will not be evaluated when the definition of the alias is made. Only when you
run the command will the (string) substitution be made, and only then will the $HOME
variable be evaluated. That way if you change the definition of $HOME the alias will move
with it, so to speak.

If, instead, you used double quotes, then the substitution of the variable's value would
be made right away and the alias would be defined with the value of $HOME substituted.
You can see this by typing alias with no arguments so that bash lists all the alias def-
initions. You would see something like this:

alias h="1ls /home/youracct’

If you don't like what your alias does and want to get rid of it, just use unalias and the
name of the alias that you no longer want. For example:

unalias h

10.7 Redefining Commands with alias | 213

will remove the definition that we just made above. If you get really messed up, you
can use unalias -a to remove all the alias definitions in your current shell session. But
whatif someone has created an alias for unalias? Simple, if you prefix it with a backslash,
alias expansion is not performed. So use \unalias-a instead.

Aliases do not allow arguments. For example, you cannot do this:

Does NOT work, arguments NOT allowed
$ alias='mkdir $1 && cd $1'

The difference between $1 and $HOME is that $HOME is defined (one way or another) when
the alias itself is defined, while you'd expect $1 to be passed in at runtime. Sorry, that
doesn't work. Use a function instead.

See Also

* Appendix C for more on command-line processing
¢ Recipe 10.4

¢ Recipe 10.5

* Recipe 14.4

¢ Recipe 16.14

10.8 Avoiding Aliases, Functions

Problem

You've written an alias or function to override a real command, and now you want to
execute the real command.

Solution

Use the bash shell's builtin command to ignore shell functions and aliases to run the
actual built-in command.

Use the command command to ignore shell functions and aliases to run the actual
external command.

If you only want to avoid alias expansion, but still allow function definitions to be
considered, then prefix the command with \ to just prevent alias expansion.

Use the type command (also with -a) to figure out what you've got.
Here are some examples:

$ alias echo='echo ~~'

$ echo test
~~~ test

214 | Chapter10: Additional Features for Scripting



$ \echo test
test

$ builtin echo test
test

$ type echo
echo is aliased to “echo ~~'

$ unalias echo

$ type echo
echo is a shell builtin

$ type -a echo
echo is a shell builtin
echo is /bin/echo

$ echo test
test

Here is a function definition that we will discuss:
function cd ()

if [[ $1="..." 1]
then

builtin cd ../..
else

builtin cd $1

fi

}

Discussion

The alias command is smart enough not to go into an endless loop when you say
something like alias 1s='ls-a' or alias echo='echo ~~~', so in our first example we
need to do nothing special on the righthand side of our alias definition to refer to the
actual echo command.

When we have echo defined as an alias, then the type command will tell us not only
that this is an alias, but will show us the alias definition. Similarly with function defi-
nitions, we would be shown the actual body of the function. type -a some_command will
show us all of the places (aliases, built-ins, functions, and external) that contain
some_command (as long as you are not also using -p).

In our last example, the function overrides the definition of ¢d so that we can add a
simple shortcut. We want our function to understand that cd.. means to go up two
directories;i.e.,cd ../.. (see Recipe 13). All other arguments will be treated as normal.
Our function simply looks for a match with ... and substitutes the real meaning. But
how, within (or without) the function, do you invoke the underlying cd command so
as to actually change directories? The builtin command tells bash to assume that the

10.8 Avoiding Aliases, Functions | 215



command that follows is a shell built-in command and not to use any alias or function
definition. We use it within the function, but it can be used at any time to refer, un-
ambiguously, to the actual command, avoiding any function name that might be over-
riding it.

If your function name was that of an executable, like s, and not a built-in command,
then you can override any alias and/or function definition by just referring to the full
path to the executable, such as /bin/ls rather than just Is as the command. If you don't
know its full path name, just prefix the command with the keyword command and
bash will ignore any alias and function definitions with that name and use the actual
command. Please note, however, that the $PATH variable will still be used to determine
the location of the command. If you are running the wrong Is because your $PATH has
some unexpected values, adding a command will not help in that situation.

See Also
* help builtin
* help command
* help type
* Recipe 14.4
* Recipe 13

216 | Chapter10: Additional Features for Scripting



CHAPTER 11
Working with Dates and Times

Working with dates and times should be simple, but it's not. Regardless of whether
you're writing a shell script or a much larger program, time keeping is full of complex-
ities: different formats for displaying the time and date, Daylight Saving Time, leap
years, leap seconds, and all of that. For example, imagine that you have a list of contracts
and the dates on which they were signed. You'd like to compute expiration dates for
all of those contracts. It's not a trivial problem: does a leap year get in the way? Is it the
sort of contract where daylight saving time is likely to be a problem? And how do you
format the output so that it's unambiguous? Does 7/4/07 mean July 4, 2007, or does it
mean April 7?

Dates and times permeate every aspect of computing. Sooner or later you are going to
have to deal with them: in system, application, or transaction logs; in data processing
scripts; in user or administrative tasks; and more. This chapter will help you deal with
them as simply and cleanly as possible. Computers are very good at keeping time ac-
curately, particularly if they are using the Network Time Protocol (NTP) to keep them-
selves synced with national and international time standards. They're also great at un-
derstanding the variations in Daylight Saving Time from locale to locale. To work with
time in a shell script, you need the Unix date command (or even better, the GNU version
of the date command, which is standard on Linux). date is capable of displaying dates
in different formats and even doing date arithmetic correctly.

Note that gawk (the GNU version of awk), has the same strftime formatting as the GNU
date command. We're not going to cover gawk usage here except for one trivial example.
We recommend sticking with GNU date because it's much easier to use and it has the
very useful -d argument. But keep gawk in mind should you ever encounter a system
that has gawk but not GNU date.

217



11.1 Formatting Dates for Display

Problem

You need to format dates or time for output.

Solution

Use the date command with a strftime format specification. See "Date and Time String
Formatting with strftime" in Appendix A or the strftime manpage for the list of format
specifications supported.

# Setting environment variables can be helpful in scripts:
$ STRICT _ISO 8601="%Y-%m-%dT%H:%M:%S%z"'  # http://greenwichmeantime.com/info/iso.htm

$ ISO_8601="%Y-%m-%d %H:%M:%S %Z' # Almost IS0-8601, but more human-readable
$ IS0_8601_1="%Y-%m-%d %T %Z' # %T is the same as %H:%M:%S
$ DATEFILE="%Y%mo%d%HAM%S " # Suitable for use in a file name

$ date "+$ISO_8601"
2006-05-08 14:36:51 CDT

gawk "BEGIN {print strftime(\"$IS0_8601\")}"
2006-12-07 04:38:54 EST

# Same as previous $ISO 8601
$ date '+%Y-%m-%d %H:%M:%S %Z'
2006-05-08 14:36:51 CDT

$ date -d '2005-11-06' "+$ISO_8601"
2005-11-06 00:00:00 CST

$ date "+Program starting at: $ISO_8601"
Program starting at: 2006-05-08 14:36:51 CDT

$ printf "%b" "Program starting at: $(date '+$ISO_8601')\n"
Program starting at: $ISO_8601

$ echo "I can rename a file like this: mv file.log file $(date +$DATEFILE).log"
I can rename a file like this: mv file.log file 20060508143724.log

Discussion

You may be tempted to place the + in the environment variable to simplify the later
command. On some systems the date command is more picky about the existence and
placement of the + than on others. Our advice is to explicitly add it to the date command
itself.

Many more formatting options are available, see the date manpage or the C
strftime() function (man 3 strftime) on your system for a full list.

218 | Chapter 11: Working with Dates and Times



Unless otherwise specified, the time zone is assumed to be local time as defined by your
system. The %z format is a nonstandard extension used by the GNU date command; it
may not work on your system.

ISO 8601 is the recommended standard for displaying dates and times and should be
used if at all possible. It offers a number of advantages over other display formats:

* Itisarecognized standard

* Itis unambiguous

* It is easy to read while still being easy to parse programmatically (e.g., using awk
or cut)
* It sorts as expected when used in columnar data or in filenames
Try to avoid MM/DD/YY or DD/MM/YY or even worse M/D/YY or D/M/YY formats.
They do not sort well and they are ambiguous, since either the day or the month may
come first depending on geographical location, which also makes them hard to parse.

Likewise, use 24-hour time when possible to avoid even more ambiguity and parsing
problems.

See Also

* man date

* http://lwww.cl.cam.ac.uk/~mgk25/iso-time.html
o http://'www.qgsl.net/glsmd/isopdf.htm

* http://greenwichmeantime.com/infoliso.htm

* "Date and Time String Formatting with strftime" in Appendix A

11.2 Supplying a Default Date

Problem

You want your script to provide a useful default date, and perhaps prompt the user to
verify it.

Solution

Using the GNU date command, assign the most likely date to a variable, then allow the
user to change it:

#!/usr/bin/env bash
# cookbook filename: default date

# Use Noon time to prevent a script running around midnight and a clock a
# few seconds off from causing off by one day errors.
START DATE=$(date -d 'last week Monday 12:00:00' '+%Y-%m-%d")

11.2 Supplying a Default Date | 219


http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.qsl.net/g1smd/isopdf.htm
http://greenwichmeantime.com/info/iso.htm

while [ 1 ]; do
printf "%b" "The starting date is $START DATE, is that correct? (Y/new date)"
read answer

# Anything other than ENTER, "Y" or "y" is validated as a new date
# could use "[Yy]*" to allow the user to spell out "yes"...
# validate the new date format as: CCYY-MM-DD
case "$answer" in
[Yy]) break

[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9])
printf "%b" "Overriding $START_DATE with $answer\n"
START_DATE="$answer"

»

*)  printf "%b" "Invalid date, please try again...\n
esac
done

END_DATE=$(date -d "$START DATE +7 days" '+%Y-%m-%d")

echo "START_DATE: $START_DATE"
echo "END_DATE: $END_DATE"
Discussion

Not all date commands support the -d option, but the GNU version does. Our advice
is to obtain and use the GNU date command if at all possible.

Leave out the user verification code if your script is running unattended or at a known
time (e.g., from cron).

See Recipe 11.1 for information about how to format the dates and times.

We use code like this in scripts that generate SQL queries. The script runs at a given
time and creates a SQL query for a specific date range to generate a report.

See Also

* man date
¢ Recipe 11.1
* Recipe 11.3

11.3 Automating Date Ranges

Problem

You have one date (perhaps from Recipe 11.2) and you would like to generate the other
automatically.

220 | Chapter11: Working with Dates and Times



Solution

The GNU date command is very powerful and flexible, but the power of -d isn't doc-
umented well. Your system may document this under getdate (try the getdate manpage).
Here are some examples:

$ date '+%Y-%m-%d %H:%M:%S %z’
2005-11-05 01:03:00 -0500

$ date -d 'today' '+%Y-Zm-%d %H:%M:%S %z'
2005-11-05 01:04:39 -0500

$ date -d 'yesterday' '+%Y-%m-%d %H:%M:%S %z’
2005-11-04 01:04:48 -0500

$ date -d 'tomorrow' '+%Y-%m-%d %H:%M:%S %z'
2005-11-06 01:04:55 -0500

$ date -d 'Monday' '+%Y-%m-%d %H:%M:%S %z’
2005-11-07 00:00:00 -0500

$ date -d 'this Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-07 00:00:00 -0500

$ date -d 'last Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-10-31 00:00:00 -0500

$ date -d 'next Monday' '+%Y-%m-%d %H:%M:%S %z'
2005-11-07 00:00:00 -0500

$ date -d 'last week' '+%Y-%m-%d %H:%M:%S %z'
2005-10-29 01:05:24 -0400

$ date -d 'next week' '+%Y-%m-%d %H:%M:%S %z'
2005-11-12 01:05:29 -0500

$ date -d '2 weeks' '+%Y-%m-%d %H:%M:%S %z'
2005-11-19 01:05:42 -0500

$ date -d '-2 weeks' '+%Y-%m-%d %H:%M:%S %z'
2005-10-22 01:05:47 -0400

$ date -d '2 weeks ago' '+%Y-%m-%d %H:%M:%S %z'
2005-10-22 01:06:00 -0400

$ date -d '+4 days' '+%Y-%m-%d %H:%M:%S %z’
2005-11-09 01:06:23 -0500

$ date -d '-6 days' '+%Y-%m-%d %H:%M:%S %z’
2005-10-30 01:06:30 -0400

$ date -d '2000-01-01 +12 days' '+%Y-%m-%d %H:%M:%S %z'
2000-01-13 00:00:00 -0500

11.3 Automating Date Ranges | 221



$ date -d '3 months 1 day' '+%Y-%m-%d %H:%M:%S %z’
2006-02-06 01:03:00 -0500

Discussion

The -d option allows you to specify a specific date instead of using now, but not all
date commands support it. The GNU version supports it and our advice is to obtain
and use that version if at all possible.

Using -d can be tricky. These arguments work as expected:

$ date '+%a %Y-%m-%d’
Sat 2005-11-05

$ date -d 'today' '+%a %Y-%m-%d'
Sat 2005-11-05

$ date -d 'Saturday' '+%a %Y-%m-%d’
Sat 2005-11-05

$ date -d 'last Saturday' '+%a %Y-%m-%d'
Sat 2005-10-29

$ date -d 'this Saturday' '+%a %Y-%m-%d'
Sat 2005-11-05

But if you run this on Saturday you would expect to see next Saturday, but instead you
get today:

$ date -d 'next Saturday' '+%a %Y-%m-%d'
Sat 2005-11-05

Also watch out for this week or DAY because as soon as that is in the past, this week
becomes next week. So if you run this on Saturday 2005-11-05, you get these results,
which may not be what you were thinking:

$ date -d 'this week Friday' '+%a %Y-%m-%d’
Fri 2005-11-11

The -d options can be incredibly useful, but be sure to thoroughly test your code and
provide appropriate error checking.

Ifyoudon'thave GNU date, you may find the shell functions presented in "Shell Corner:
Date-Related Shell Functions" in the September 2005 issue of UnixReview to be very
useful. The article presents five shell functions:

pn_month
Previous and next x months relative to the given month

end_month
End of month of the given month
pn_day
Previous and next x days of the given day

222 | Chapter11: Working with Dates and Times



cur_weekday
Day of week for the given day

pn_weekday

Previous and next x day of weeks relative to the given day
And these were added not long before this book went to press:
pn_day nr

(Non-recursive) Previous and next x days of the given day
days_between

Number of days between two dates

Note that pn_month, end_month, and cur_weekday are independent of the rest of the
functions. However, pn_day is built on top of pn_month and end_month, and pn_weekday
is built on top of pn_day and cur_weekday.

See Also

* man date

* man getdate

*  http://www.unixreview.com/documents/s=9884/ur0509a/ur0509a.html
o http://'www.unixlabplus.com/unix-prog/date_function/

* Recipe 11.2

11.4 Converting Dates and Times to Epoch Seconds

Problem

You want to convert a date and time to Epoch seconds to make it easier to do date and
time arithmetic.

Solution

Use the GNU date command with the nonstandard -d option and a standard %s format:

# "Now" is easy
$ date '+%s’
1131172934

# Some other time needs the non-standard -d

$ date -d '2005-11-05 12:00:00 +0000' '+%s’
1131192000

Discussion

If you do not have the GNU date command available, this is a harder problem to solve.
Our advice is to obtain and use the GNU date command if at all possible. If that is not

11.4 Converting Dates and Times to Epoch Seconds | 223


http://www.unixreview.com/documents/s=9884/ur0509a/ur0509a.html
http://www.unixlabplus.com/unix-prog/date_function/

possible you might be able to use Perl. Here are three ways to print the time right now
in Epoch seconds:

$ perl -e 'print time, qq(\n);'

1154158997

# Same as above
$ perl -e 'use Time::Local; print timelocal(localtime()) . qq(\n);'
1154158997

$ perl -e 'use POSIX quw(strftime); print strftime("%s", localtime()) . qq(\n);'
1154159097

Using Perl to convert a specific day and time instead of right now is even harder due to
Perl's date/time data structure. Years start at 1900 and months (but not days) start at
zero instead of one. The format of the command is: timelocal (sec, min, hour, day,
month-1, year-1900). So to convert 2005-11-05 06:59:49 to Epoch seconds:

# The given time is in local time

$ perl -e 'use Time::Local; printtimelocal("49", "59", "06", "05", "10", "105") .
-qq(\n);'

1131191989

# The given time is in UTC time

$ perl -e 'use Time::local; print timegm("49", "59", "06", "05", "10", "105") .
qq(\n);"’

1131173989

See Also

* man date
¢ Recipe 11.5
* "Date and Time String Formatting with strftime" in Appendix A

11.5 Converting Epoch Seconds to Dates and Times

Problem

You need to convert Epoch seconds to a human-readable date and time.

Solution

Use the GNU date command with your desired format from Recipe 11.1:
EPOCH="1131173989'

$ date -d "1970-01-01 UTC $EPOCH seconds" +"%Y-%m-%d %T %z"
2005-11-05 01:59:49 -0500

$ date --utc --date "1970-01-01 $EPOCH seconds" +"%Y-%m-%d %T %z"
2005-11-05 06:59:49 +0000

224 | Chapter 11: Working with Dates and Times



Discussion

Since Epoch seconds are simply the number of seconds since the Epoch (which is Mid-

night on January 1, 1970, also known as 1970-01-01T00:00:00), this command starts

at the Epoch, adds the Epoch seconds, and displays the date and time as you wish.

If you don't have GNU date on your system you can try one of these Perl one-liners:
EPOCH="1131173989'

$ perl -e "print scalar(gmtime($EPOCH)), qq(\n);" # UTC
Sat Nov 5 06:59:49 2005

$ perl -e "print scalar(localtime($EPOCH)), qq(\n);" # Your local time
Sat Nov 5 01:59:49 2005

$ perl -e "use POSIX gqw(strftime); print strftime('%Y-%m-%d %H:%M:%S",
localtime($EPOCH)), qq(\n);"
2005-11-05 01:59:49

See Also

* man date

¢ Recipe 11.1

* Recipe 11.4

* "Date and Time String Formatting with strftime" in Appendix A

11.6 Getting Yesterday or Tomorrow with Perl

Problem

You need to get yesterday or tomorrow's date, and you have Perl but not GNU date on
your system.

Solution

Use this Perl one-liner, adjusting the number of seconds added to or subtracted from
time:
# Yesterday at this same time (note subtraction)

$ perl -e "use POSIX qw(strftime); print strftime('%Y-%m-%d', localtime(time -
86400)), qq(\n);"

# Tomorrow at this same time (note addition)
$ perl -e "use POSIX quw(strftime); print strftime('%Y-%m-%d', localtime(time +
86400)), qq(\n);"

11.6 Getting Yesterday or Tomorrow with Perl | 225



Discussion

This is really just a specific application of the recipes above, but is so common that it's
worth talking about by itself. See Recipe 11.7 for a handy table of values that may be
of use.

See Also

* Recipe 11.2
* Recipe 11.3
¢ Recipe 11.4
* Recipe 11.5
¢ Recipe 11.7
* "Date and Time String Formatting with strftime" in Appendix A

11.7 Figuring Out Date and Time Arithmetic

Problem

You need to do some kind of arithmetic with dates and times.

Solution

If you can't get the answer you need using the date command (see Recipe 11.3), convert
your existing dates and times to Epoch seconds using Recipe 11.4, perform your cal-
culations, then convert the resulting Epoch seconds back to your desired format using
Recipe 11.5.

W

If you don't have GNU date, you may find the shell functions presented
in "Shell Corner: Date-Related Shell Functions" in the September 2005
s issue of Unix Review to be very useful. See Recipe 11.3.

For example, suppose you have log data from a machine where the time was badly off.
Everyone should already be using the Network Time Protocol (NTP) so this doesn't
happen, but just suppose:

CORRECTION="'172800" # 2 days worth of seconds

# Code to extract the date portion from the data
# into $bad_date go here

# Suppose it's this:
bad date='Jan 2 05:13:05' # syslog formated date

# Convert to Epoch using GNU date

226 | Chapter11: Working with Dates and Times



bad_epoch=$(date -d "$bad_date" '+%s"')

# Apply correction
good_epoch=$(( bad_epoch + $CORRECTION ))

# Make corrected date human-readable
good_date=$(date -d "1970-01-01 UTC $good_epoch seconds") # GNU Date
good_date_iso=$(date -d "1970-01-01 UTC $good epoch seconds" +'%Y-%m-%d %T') # GNU

Date

echo "bad_date: $bad_date"
echo "bad_epoch: $bad_epoch"
echo "Correction: +$CORRECTION"
echo "good_epoch: $good_epoch”
echo "good date: $good date"

echo "good date iso:  $good date iso"

# Code to insert the $good date back into the data goes here

Watch out for years! Some Unix commands like Is and syslog try to be
‘*@ easy to read and omit the year under certain conditions. You may need
to take that into account when calculating your correction factor. If you
have data from a large range of dates or from different time zones, you

will have to find some way to break it into separate files and process
them individually.

Discussion

Dealing with any kind of date arithmetic is much easier using Epoch seconds than any
other format of which we are aware. You don't have to worry about hours, days, weeks,
oryears, you just do some simple addition or subtraction and you're all set. Using Epoch
seconds also avoids all the convoluted rules about leap years and seconds, and if you
standardize on one time zone (usually UTC, which used to be called GMT) you can
even avoid time zones.

Table 11-1 lists values that may be of use.

Table 11-1. Conversion table of common Epoch time values

Seconds Minutes  Hours  Days
60 1

300 5

600 10

3,600 60 1

18,000 300 5

36,000 600 10

86,400 1,440 24 1

172,800 2,880 48 2

11.7 Figuring Out Date and Time Arithmetic | 227



Seconds Minutes  Hours  Days
604,800 10,080 168 7
1,209,600  20.160 336 14
2,592,000 43,200 720 30
31,536,000 525,600 8,760 365

See Also

* http://lwww.jpsdomain.org/metworking/time.html
* Recipe 11.3

¢ Recipe 11.4

* Recipe 11.5

¢ Recipe 13.12

11.8 Handling Time Zones, Daylight Saving Time, and Leap
Years

Problem

You need to account for time zones, Daylight Saving Time, and leap years or seconds.

Solution

Don't. This is a lot trickier than it sounds. Leave it to code that's already been in use
and debugged for years, and just use a tool that can handle your needs. Odds are high
that one of the other recipes in this chapter has covered what you need, probably using
GNU date. If not, there is almost certainly another tool out there that can do the job.
For example, there are a number of excellent Perl modules that deal with dates and
times.

Really, we aren't kidding. This is a real nightmare to get right. Save yourself a lot of
agony and just use a tool.

See Also

¢ Recipe 11.1
¢ Recipe 11.3
* Recipe 11.4
¢ Recipe 11.5
* Recipe 11.7

228 | Chapter11: Working with Dates and Times


http://www.jpsdomain.org/networking/time.html

11.9 Using date and cron to Run a Script on the Nth Day

Problem

You need to run a script on the Nth weekday of the month (e.g., the second Wednes-
day), and most crons will not allow that.

Solution

Use a bit of shell code in the command to be run. In your Linux Vixie Cron crontab
adapt one of the following lines. If you are using another cron program, you may need
to convert the day of the week names to numbers according to the schedule your
cron uses (0—6 or 1-7) and use +%w (day of week as number) in place of +%a (locale's
abbreviated weekday name):

# Vixie Cron

# Min Hour DoM Mnth DoW Program
# 0-59 0-23 1-31 1-12 0-7

# Vixie Cron requires % to be escaped or you get an error!

# Run the first Wednesday @ 23:00
00 23 1-7 * Wed [ "$(date '+\%a')" == "Wed" ] && /path/to/command args to command

# Run the second Thursday @ 23:00
00 23 8-14 * Thu [ "$(date '+\%a')" == "Thu" ] && /path/to/command

# Run the third Friday @ 23:00
00 23 15-21 * Fri [ "$(date '+\%a')" == "Fri" ] 8&& /path/to/command

# Run the fourth Saturday @ 23:00
00 23 22-27 * Sat [ "$(date '+\%a')" == "Sat" ] & /path/to/command

# Run the fifth Sunday @ 23:00
00 23 28-31 * Sun [ "$(date '+\%a')" == "Sun" ] & /path/to/command

Note that any given day of the week doesn't always happen five times
during one month, so be sure you really know what you are asking for
if you schedule something for the fifth week of the month.

bin/sh: 1: Syntax error: EOF in backquote substitution but other
versions of cron may not, so check your man page.

Note that Vixie Cron requires % to be escaped or you get an error like /

If cron seems like it’s not working, try restarting your MTA (e.g. send-
mail). Some versions of cron on some systems (e.g Vixie Cron on Red
s+ Hat) are tied into the sendmail process. See https://bugzilla.redhat.com/
" show_bug.cgi?id=247228.

11.9 Using date and cron to Run a Script on the NthDay | 229


https://bugzilla.redhat.com/show_bug.cgi?id=247228
https://bugzilla.redhat.com/show_bug.cgi?id=247228

Discussion

Most versions of cron (including Linux's Vixie Cron) do not allow you to schedule a
job on the Nth day of the month. To get around that, we schedule the job to run during
the range of days when the Nth day we need occurs, then check to see if it is the correct
day on which to run. The "second Wednesday of the month" must occur somewhere
in the range of the 8th to 14th day of the month. So we simply run every day and see if
it's Wednesday. If so, we execute our command.

Table 11-2 shows the ranges noted above.

Table 11-2. Day ranges for each week of a month

Week Day range
First 1to7
Second 8t014
Third 151021
Fourth 2t027

Fifth (see previous warning note) 28 to 31

We know this almost seems too simplistic; check a calendar if you don't believe us:

$ cal 10 2006
October 2006

S M Tu W Th F S
12 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

See Also

e man 5 crontab

e man cal

230 | Chapter11: Working with Dates and Times



CHAPTER 12
End-User Tasks As Shell Scripts

You have seen a lot of smaller scripts and syntax up to now. Our examples have, of
necessity, been small in scale and scope. Now we would like to show you a few larger
(though not large) examples. They are meant to give you useful, real world examples
of actual uses of shell scripts beyond just system administration tasks. We hope you
find them useful or usable. More than that, we hope you learn something about bash
by reading through them and maybe trying them yourself or even tweaking them for
your own use.

12.1 Starting Simple by Printing Dashes

Problem

To print a line of dashes with a simple command might sound easy—and it is. But as
soon as you think you've got a simple script, it begins to grow. What about varying the
length of the line of dashes? What about changing the character from a dash to a user-
supplied character? Do you see how easily feature creep occurs? Can we write a simple
script that takes those extensions into account without getting too complex?

Solution

Consider this script:

1 #!/usr/bin/env bash

2 # cookbook filename: dash

3 # dash - print a line of dashes

4 # options: # how many (default 72)

5 # -c X use char X instead of dashes
6 #

7 function usagexit ( )

8

9 printf "usage: %s [-c X] [#]\n" $(basename $0)
10 exit 2
11 } >&

231



12 LEN=72

13 CHAR="-'

14 while (( $# > 0))
15 do

16 case $1 in

17 [0-9]*) LEN=$1;;
18 -c) shift

19 CHAR=$1;;
20 *) usagexit;;
21 esac

22 shift

23 done

24 if (( LEN > 4096 ))

25 then

26 echo "too large" >82
27 exit 3

28 fi

29 # build the string to the exact length
30 DASHES=""

31 for ((i=0; i<LEN; i++))

32 do

33 DASHES="${DASHES}${CHAR}"

34 done

35 printf "%s\n" "$DASHES"

Discussion

The basic task is accomplished by building a string of the required number of dashes
(oran alternate character) and then printing that string to standard output (STD-OUT).
That takes only the six lines from 30-35. Lines 12 and 13 set the default values. All the
other lines are spent on argument parsing, error checking, user messages, and com-
ments.

You will find that it's pretty typical for a robust, end-user script. Less than 20 percent
of the code does more than 80 percent of the work. But that 80 percent of the code is
what makes it usable and "friendly" for your users.

In line 9 we use basename to trim off any leading pathname characters when displaying
this script's name. That way no matter how the user invokes the script (for example, ./
dashes, /homelusername/bin/dashes, or even ../..Jover/there/dashes), it will still be re-
ferred to as just dashes in the usage message.

The argument parsing is done while there are some arguments to parse (line 14). As
arguments are handled, each shift built-in will decrement the number of arguments
and eventually get us out of the while loop. There are only two possible allowable
arguments: specifying a number for the length (line 17), and a -c option followed by a
character (see lines 18-19). Anything else (line 20) will result in the usage message and
an early exit.

232 | Chapter12: End-User Tasks As Shell Scripts



We could be more careful in parsing the -c and its argument. By not using more so-
phisticated parsing (e.g., getopt Recipe 13.1), the option and it's argument must be
separated by whitespace. (In running the script one must type -c n and not -cn.) We
don't even check to see that the second argument is supplied at all. Furthermore, it
could be not just a single letter but a whole string. (Can you think of a simple way to
limit this, by just taking the first character of the argument? Do you need/want to? Why
not let the user specify a string instead of a single character?)

The parsing of the numerical argument could also use some more sophisticated tech-
niques. The patterns in a case statement follow the rules of pathname expansion and
are not regular expressions. It might be tempting to assume that the case pattern
[0-9]* means only digits, but that would be the regular expression meaning. In the
case statement it means any string that begins with a digit. Not catching erroneous
input like 9.5 or 612more will result in errors in the script later on. The use of an if
statement with its more sophisticated regular expression matching might be useful here.

Asafinal comment on the code: atline 24 the script enforces a maximum length, though
it is completely arbitrary. Would you keep or remove such a restriction?

You can see from this example that even simple scripts can be come quite involved,
mostly due to error checking, argument parsing, and the like. For scripts that you write
for yourself, such techniques are often glossed over or skipped entirely—after all, as
the only user of the script you know the proper usage and are willing to use it correctly
or have it fail in an ugly display of error messages. For scripts that you want to share,
however, such is not the case, and much care and effort will likely be put into tough-
ening up your script.

See Also

* Recipe 5.8

* Recipe 5.11
* Recipe 5.12
* Recipe 6.15
* Recipe 13.1

12.2 Viewing Photos in an Album

Problem

You have a directory full of images like the ones you just downloaded from your digital
camera. You want a quick and easy way to view them all, so that you can pick out the
good ones.

12.2 Viewing Photos in an Album | 233



../fRoughActionl.jpg - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:z| - |:> - %’ @ @ |D file:f{/home/albing/photosfalbum/RoughActionl.html E]

[TPersonal [OMEPIS |[5Media | News |[C|Google &Radar & Forecast Java API

./RoughActionl.jpg

First Prev  Next Last

Figure 12-1. Sample mkalbum web page
Solution

Write a shell script that will generate a set of html pages so that you can view your
photos with a browser. Call it mkalbum and put it somewhere like your ~/bin directory.

On the command line, cd into the directory where you want your album created (typ-
ically where your photos are located). Then run some command that will generate the
list of photos that you want included in this album (e.g., 1s *.jpg, but see also
Recipe 9.5), and pipe this output into the mkalbum shell script, which we will explain
later. You need to put the name of the album (i.e., the name of a directory that will be
created by the script) on the command line as the only argument to the shell script. It
might look something like this:

$ 1s *.jpg | mkalbum rugbymatch
Figure 12-1 shows a sample of the generated web page.

The large title is the photo (i.e., the filename); there are hyperlinks to other pages for
first, last, next, and previous.

The following is the shell script (mkalbum) that will generate a set of html pages, one
page per image (the line numbers are not part of the script, but are put here to make it
easier to discuss):

1 #!/usr/bin/env bash
2 # cookbook filename: mkalbum

234 | Chapter12: End-User Tasks As Shell Scripts



O W oo~N OV~ W

VMUV UVUVUVUVUDSDDREDDDEDDEDREDRDWWWWWWWWWWNNNNNNNNNNRRERRERRRRRR R
NOUDRWNROOU®®INIOUBWNROO®®INAOAOUIBRWNROOU®XNOUBWNROWOOONOUTDWNR

# mkalbum - make an html "album" of a pile of photo files.
# ver. 0.2
#
# An album is a directory of html pages.
# It will be created in the current directory.
#
# An album page is the html to display one photo, with
# a title that is the filename of the photo, along with
# hyperlinks to the first, previous, next, and last photos.
#
# ERROUT
ERROUT ()
{
printf "%b" "$@'
} >8&2
#
# USAGE
USAGE ()
ERROUT "usage: %s <newdir>\n" $(basename $0)
}
# EMIT(thisph, startph, prevph, nextph, lastph)
EMIT()
THISPH="../$1"
STRTPH="${2%.*}.html"
PREVPH="${3%.*}.html"
NEXTPH="${4%.*}.html"
LASTPH="${5%.*} .html"
if [ -z "$3" ]
then
PREVLINE='<TD> Prev </TD>'
else
PREVLINE='<TD> <A HREF="'$PREVPH'"> Prev </A> </TD>'
fi
if [ -z "$4" ]
then
NEXTLINE='<TD> Next </TD>'
else
NEXTLINE='<TD> <A HREF="'$NEXTPH'"> Next </A> </TD>'
fi
cat <<EOF
<HTML>
<HEAD><TITLE>$THISPH</TITLE></HEAD>
<BODY>
<H2>$THISPH</H2>
<TABLE WIDTH="25%">
<TR>
<TD> <A HREF="$STRTPH"> First </A> </TD>
$PREVLINE
$NEXTLINE
<TD> <A HREF="$LASTPH"> Last </A> </TD>
</TR>

12.2 Viewing Photos in an Album | 235



58 </TABLE>

59  <IMG SRC="$THISPH" alt="$THISPH"
60 BORDER="1" VSPACE="4" HSPACE="4"
61 WIDTH="800" HEIGHT="600"/>
62 </BODY>

63 </HTML>

64 EOF

65 }

66

67 if (( $# 1=1))

68 then

69 USAGE

70 exit -1

71 fi

72 ALBUM="$1"

73 if [ -d "${ALBUM}" ]

74 then

75 ERROUT "Directory [%s] already exists.\n" ${ALBUM}
76 USAGE

77 exit -2

78 else

79 mkdir "$ALBUM"

80 fi

81 cd "$ALBUM"

82

83 PREV=""

84 FIRST=""

85 LAST="last"

86

87 while read PHOTO

88 do

89 # prime the pump

90 if [ -z "${CURRENT}" ]

91 then

92 CURRENT="$PHOTO"
93 FIRST="$PHOTO"
94 continue

95 fi

96

97 PHILE=$(basename "${CURRENT}")

98 EMIT "$CURRENT" "$FIRST" "$PREV" "$PHOTO" "$LAST" > "${PHILE%.*}.html"
99

100 # set up for next iteration

101 PREV="$CURRENT"

102 CURRENT="$PHOTO"

103

104 done

105

106 PHILE=$(basename ${CURRENT})

107 EMIT "$CURRENT" "$FIRST" "$PREV" "" "$LAST" > "${PHILE%.*}.html"
108

109 # make the symlink for "last"

110 1n -s "${PHILE%.*}.html" ./last.html

111

112 # make a link for index.html

236 | Chapter12: End-User Tasks As Shell Scripts



113 1n -s "${FIRST%.*}.html" ./index.html
114

Discussion

While there are plenty of free or inexpensive photo viewers, using bash to build a simple
photo album helps to illustrate the power of shell programming, and gives us a meatier
example to discuss.

The shell script begins (line 1) with the special comment that defines which executable
to use to run this script. Then follows some comments describing the script. Let's just
put in one more word encouraging you to be sure to comment your script. Even the
sparsest comments are worth something 3 days or 13 months from now when you wish
you could remember what this script was all about.

After the comments we have put our function definitions. The ERROUT function (lines
14-17) will act very much like printf (since all it does is invoke printf) but with the
added twist that it redirects its output to standard error. This saves you from having to
remember to redirect the output on every printf of error messages.

While normally we put the redirection at the end of a command, here (line 17) it is put
at the end of a function definition to tell bash to redirect all output that emanates from
this function.

The USAGE function (lines 21-24), while not strictly necessary as a separate function, is
a handy way to document up front how you expect your script to be invoked. Rather
than hard-coding the name of the script in our usage message, we like to use the $0
special variable in case the script is renamed. Since $0 is the name of the script as it was
invoked, if the script is invoked with its full pathname (e.g., /usr/local/bin/mkalbum)
then $0 is the full pathname and the usage message would include the full pathname.
By taking the basename (line 23) we get rid of all that path noise.

The EMIT function (lines 27-65) is a larger function. Its purpose is to emit the HTML
for each page of the album. Each page is its own (static) web page, with hyperlinks to
the previous and next image as well as links to the first and last image. The EMIT function
doesn't know much; it is given the names of all the images to which to link. It takes
those names and converts them to page names, which for our script are the same as the
image name but with the file extension changed to html. So for example if $2 held the
filename pict001.jpg, the result of ${2%.*}.html would be pict001.html.

Since there is so much HTML to emit, rather than have printf after printf statement, we
use the cat command and a here-document (line 46) to allow us to type the literal HTML
in the script, line after line, along with shell variable expansion being applied to the
lines. The cat command is simply copying (concatenating) the STDIN to the STDOUT.
In our script we redirect STDIN to take its input from the succeeding lines of text, i.e.,
a here-document. By not quoting the end-of-input word (just EOF and not 'EOF' or \EOF),
bash will continue to do variable substitution on our input lines, enabling us to use
variable names based on our parameters for various titles and hyperlinks.

12.2 Viewing Photos in an Album | 237



We could have passed in a filename to the EMIT function, and have had EMIT redirect
its own output to that file. But such redirection was not really logically a part of the
emit idea (c.f. ERROUT whose whole purpose was the redirection). The purpose of EMIT
was to create the HTML; where we send that HTML is another matter. Because bash
allows us to redirect output so easily, it is possible to make that a separate step. Besides,
it was easier to debug when the method just wrote its output to STDOUT.

The last two commands in the script (lines 110 and 113) create symbolic links as short
cuts to the first and last photos. This way the script doesn't need to figure out the name
of the first and last pages of the album, it just uses the hardcoded names index.html
and last.html, respectively, when generating all the other album pages. Then as a last
step, since the last filename processed is the last photo in our album, it creates the link
to it. Similarly with the first page, although we know that name right away, we waited
until the end to put it with the other symbolic link, just as a matter of style—to keep
the two similar operations in proximity.

See Also

* http://www.w3schools.com

* HTML & XHTML: The Definitive Guide by Chuch Musciano and Bill Kennedy
(O'Reilly)

* Recipe 3.2

* Recipe 3.3

* Recipe 3.4

* Recipe 5.13

* Recipe 5.14

* Recipe 5.18

* Recipe 5.19

* Recipe 9.5

* Recipe 16.9

12.3 Loading Your MP3 Player

Problem

You have a collection of MP3 files that you would like to put in your MP3 player. But
you have more music than can fit on your MP3 player. How can you load your player
with music without having to baby-sit it by dragging and dropping files until it is full?

238 | Chapter12: End-User Tasks As Shell Scripts


http://www.w3schools.com

Solution

Use a shell script to keep track of the available space as it copies files onto the MP3
player, quitting when it is full.

1 #!/usr/bin/env bash

2 # cookbook filename: load_mp3

3 # Fill up my mp3 player with as many songs as will fit.
4 # N.B.: This assumes that the mp3 player is mounted on /media/mp3
5#

6

7H#

8 # determine the size of a file

9 #

10 function FILESIZE ()

11 {

12 FN=${1:-/dev/null}

13 if [[ -e $FN ]]

14 then

15 # FZ=$(1s -s $FN | cut -d ' ' -f 1)
16 set -- $(1s -s "$FN")

17 FZ=$1

18 fi

19 }

20

21 #

22 # compute the freespace on the mp3 player
23 #

24 function FREESPACE

25 {

26 # FREE=$(df /media/mp3 | awk '/~\/dev/ {print $4}')
27 set -- $(df /media/mp3 | grep '~/dev/")
28 FREE=$4

29 }

30

31 # subtract the (given) filesize from the (global) freespace
32 function REDUCE ()

33 (( FREE-=${1:-0}))

34

35 #

36 # main:

37 #

38 let SUM=0

39 let COUNT=0

40 export FZ

41 export FREE

42 FREESPACE

43 find . -name '*.mp3' -print | \

44 (while read PATHNM

45 do

46 FILESIZE "$PATHNM"

47 if ((FZ <= FREE))

48 then

49 echo loading $PATHNM

50 cp "$PATHNM" /media/mp3

12.3 Loading Your MP3 Player | 239



51 if (($2 ==0))

52 then

53 let SUM+=FZ

54 let COUNT++

55 REDUCE $FZ

56 else

57 echo "bad copy of $PATHNM to /media/mp3"
58 rm -f /media/mp3/$(basename "$PATHNM")
59 # recompute because we don't know how far it got
60 FREESPACE

61 fi

62 # any reason to go on?

63 if (( FREE <= 0 ))

64 then

65 break

66 fi

67 else

68 echo skipping $PATHNM

69 fi

70 done

71 printf "loaded %d songs (%d blocks)" $COUNT $SUM
72 printf " onto /media/mp3 (%d blocks free)\n" $FREE

73)
74 # end of script

Discussion

Invoke this script and it will copy any MP3 file that it finds from the current directory
on down (toward the leaf nodes of the tree) onto an MP3 player (or other device)
mounted on /media/mp3. The script will try to determine the freespace on the device
before it begins its copying, and then it will subtract the disk size of copied items so as
to know when to quit (i.e., when the device is full, or as full as we can get it).

The script is simple to invoke:
$ Fillmp3

and then you can watch as it copies files, or you can go grab a cup of coffee—it depends
on how fast your disk and your MP3 memory writes go.

Let's look at some bash features used in this script, referencing them by line number.

Let's start at line 35, after the opening comments and the function definitions. (We'll
return to the function definitions later.) The main body of the shell script starts by
initializing some variables (lines 38-39) and exporting some variables so they will be
available globally. At line 42 we call the FREESPACE function to determine how much
free space is available on the MP3 player before we begin copying files.

Line 43 has the find command that will locate all the MP3 files (actually only those files
whose names end in ".mp3"). This information is piped into a while loop that begins
on line 44.

240 | Chapter12: End-User Tasks As Shell Scripts



Why is the while loop wrapped inside of parentheses? The parentheses mean that the
statements inside it will be run inside of a subshell. But what we're concerned about
here is that we group the while statement with the printf statements that follow (lines
71 and 72). Since each statement in a pipeline is run in its own subshell, and since the
find pipes its output into the while loop, then none of the counting that we do inside
the while loop will be available outside of that loop. By putting the while and the
printfs inside of a subshell, they are now both executing in the same shell environment
and can share variables.

Let's look inside the while loop and see what it's doing:
46 FILESIZE "$PATHNM"

47 if ((FZ <= FREE))

48 then

49 echo loading $PATHNM
50 cp "$PATHNM" /media/mp3
51 if (($2==0))

52 then

For each filename that it reads (from the find command's output) it will use the FILE
SIZE function to determine the size of that file (see below for a discussion of that func-
tion). Then it checks (line 47) to see if the file is smaller than the remaining disk space,
i.e., whether there is room for this file. If so, it will echo the filename so we can see what
it's doing and then it will copy (line 50) the file onto the MP3 player.

It's important to check and see if the copy command completed successfully (line 51).
The $? is the result of the previous command, so it represents the result of the the ¢p
command. If the copy is successtul, then we can deduct its size from the space available
on the MP3 player. But if the copy failed, then we need to try to remove the copy (since,
if it is there at all, it will be incomplete). We use the -f option on rm so as to avoid error
messages if the file never got created. Then we recalculate the free space to be sure that
we have the count right. (After all, the copy might have failed because somehow our
estimate was wrong and we really are out of space.)

In the main part of the script, all three of our if statements (lines 47, 51, and 63) use
the double parentheses around the expression. All three are numerical if statements,
and we wanted to use the familiar operators (vis. <= and ==). These same if conditions
could have been checked using the square bracket ([) form of the if statement, but then
the operators would be -1e and -eq. We do use a different form of the if statement in
line 13, in the FILESIZE function. There we need to check the existence of the file (whose
name is in the variable $FN). That is simple to write with the -e operator, but that is not
available to the arithmetic-style if statement (i.e., when using parentheses instead of
square brackets).

Speaking of arithmetic expressions, lets take a look at the REDUCE function and see what's
going on there:

32 function REDUCE ( )
33 (( FREE-=${1:-0}))

12.3 Loading Your MP3 Player | 241



Most people write functions using curly braces to delimit the body of the function.
However, in bash, any compound statement will work. In this case we chose the double
parentheses of arithmetic evaluation, since that is all we need the function to do.
Whatever value is supplied on the command line that invokes REDUCE will be the first
(positional) parameter (i.e., $1). We simply subtract that value from $FREE to get the
new value for $FREE. That is why we used the arithmetic expression syntax—so that we
can use the -= operator.

While we are looking at the functions, let's look at two lines in the FILESIZE function.
Take a close look at these lines:

16 set -- $(1s -s "$FN")
17 FZ=$1

There is a lot going on in those few characters. First, the Is command is run inside of a
subshell (the $() construct). The -s option on Is gives us the size, in blocks, of the file
along with the file name. The output of the command is returned as words on the
command line for the set command. The purpose of the set command here is to parse
the words of the Is output. Now there are lots of ways we could do that, but this ap-
proach is a useful technique to remember.

The set -- will take the remaining words on the command line and make them the new
positional parameters. If you write set --this is a test, then $1 is this and $3 is a.
The previous values for $1, $2, etc are lost, but in line 12 we saved into $FN the only
parameter that gets passed in to this function. Having done so, we are free to reuse the
positional parameters, and we use them by having the shell do the parsing for us. We
can then get at the file size as $1, as you see in line 17. (By the way, in this case, since
this is inside a function, it is only the function's positional parameters that are changed,
not those from the invoking of the script.)

We use this technique of having the shell do our parsing for us, again on line 27 in the
other function:

27 set -- $(df /media/mp3 | grep '~/dev/')
28 FREE=$4

The output of the df command will report on the size, in blocks, available on the device.
We pipe the output through grep, since we only want the one line with our device's
information and we don't want the heading line that df produces. Once bash has set
our arguments, we can grab the free space on the device as $4.

The comment on line 26 shows an alternative way to parse the output of the df com-
mand. We could just pipe the output into awk and let it parse the output from df for us:

26 # FREE=$(df /media/mp3 | awk '/~\/dev/ {print $4}")

By using the expression in slashes, we tell awk to pay attention only to lines with a
leading /dev. (The caret anchors the search to the beginning of the line and the back-
slash escapes the meaning of the slash, so as not to end the search expression at that
point and to include a slash as the first character to find.)

242 | Chapter12: End-User Tasks As Shell Scripts



So which approach to use? They both involve invoking an external program, in one
case grep and in the other awk. There are usually several ways to accomplish the same
thing (in bash as in life), so the choice is yours. In our experience, it usually comes down
to which one you think of first.

See Also

* man df

* man grep

* man awk

* Recipe 10.4
¢ Recipe 10.5
* Recipe 19.8

12.4 Burninga (D

Problem

You have a directory full of files on your Linux system that you would like to burn to
a CD. Do you need an expensive CD burning program, or can you do it with the shell
and some open source programs?

Solution

You can do it with two open source programs called mkisofs and cdrecord, and a
bash script to help you keep all the options straight.

Start by putting all the files that you want to copy to CD into a directory structure. The
script will take that directory, make an ISO filesystem image from those files, then burn
the ISO image. All it takes is a bunch of disk space and a bit of time—but you can get
up and wander while the bash script runs.

This script may not work on your system. We include it here as an ex-

‘*ﬁﬂ@ ample of shell scripting, not as a workable CD recording and backup

mechanism.

#!/usr/bin/env bash
# cookbook filename: cdscript
# cdscript - prep and burn a CD from a dir.
#
# usage: cdscript dir [ cddev ]
#
if[[s# <1 ] $#>2]]
then
echo 'usage: cdscript dir [ cddev ]

W oo~NOUVTHAE WN R

12.4 Burninga (D | 243



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50

exit 2
fi

# set the defaults

SRCDIR=$1

# your device might be "ATAPI:0,0,0" or other digits
CDDEV=${2:-"ATAPI:0,0,0"}

ISOIMAGE=/tmp/cd$$.1iso0

echo "building ISO image..."
#
# make the ISO fs image
#
mkisofs -A "$(cat ~/.cdAnnotation)" \
-p "$(hostname)" -V "$(basename $SRCDIR)" \
-r -0 "$ISOIMAGE" $SRCDIR
STATUS=$?
if [ $STATUS -ne 0 ]
then
echo "Error. ISO image failed."
echo "Investigate then remove $ISOIMAGE"
exit $STATUS
fi

echo "ISO image built; burning to cd..."
#
# burn the (D
#
SPD=8
OPTS="-eject -v fs=64M driveropts=burnproof"
cdrecord $OPTS -speed=$SPD dev=${CDDEV} $ISOIMAGE
STATUS=$?
if [ $STATUS -ne 0 ]
then
echo "Error. CD Burn failed."
echo "Investigate then remove $ISOIMAGE"
exit $STATUS
fi

rm -f $ISOIMAGE
echo "Done."

Discussion
Here is a quick look at some of the odder constructs in this script.

At line 17:

17

ISOIMAGE=/tmp/cd$$.1is0

we construct a temporary filename by using the $$ variable, which gives us our process
number. As long as this script is running, it will be the one and only process of that
number, so it gives us a name that is unique among all other running processes. (See
Recipe 14.11 for a better way.)

244 | Chapter12: End-User Tasks As Shell Scripts



In line 26, we save the status of the mkisofs command. Well-written Unix and Linux
commands (and bash shell scripts) will return 0 on success (i.e., nothing went wrong)
and a nonzero value if they fail. We could have just used the $? in the if statement on
line 27 except that we want to preserve the status from the mkisofs command so that,
in the event of failure, we can pass that back out as the return value of this script (line
31). We do the same with the cdrecord command and its return value on lines 41—47.

It may take a bit of thought to unpack lines 23-25:

23 mkisofs -A "$(cat ~/.cdAnnotation)" \
24 -p "$(hostname)" -V "$(basename $SRCDIR)" \
25 -r -0 "$ISOIMAGE" $SRCDIR

All three lines are just a single line of input to bash which has been separated across
lines by putting the backslash as the very last character on the line in order to escape
the normal meaning of an end of line. Be sure you don't put a space after the trailing \.
But that's just the tip of the iceberg here. There are three subshells that are invoked
whose outputis used in the construction of the final command line that invokes mkisofs.

First there is an invocation of the cat program to dump the contents of a file
called .cdAnnotation located in the home directory (~/) of the user invoking this script.
The purpose is to provide a string to the -A option, which the manpage describes as "a
text string that will be written into the volume header." Similarly, the -p option wants
another such string, this time indicating the preparer of the image. For our script it
seemed like it might be handy to put the hostname where the script is run as the pre-
parer, so we run hostname in a subshell. Finally, the volume name is specified with the -
V parameter, and for that we will use the name of the directory where all the files are
found. Since that directory is specified on the command line to our script, but will likely
be a full pathname, we use basename in a subshell to peel off the leading directory
pathname, if any (so, for example, /usr/local/stuff becomes just stuff).

See Also
* Recipe 14.11

12.5 Comparing Two Documents

Problem

It is easy to compare two text files (see Recipe 17.10). But what about documents
produced by your suite of office applications? They are not stored as text, so how can
you compare them? If you have two versions of the same document, and you need to
know what the content changes are (if any) between the two versions, is there anything
you can do besides printing them out and comparing page after page?

12.5 Comparing Two Documents | 245



Solution

First, use an office suite that will let you save your documents in Open Document
Format (ODF). This is the case for packages like OpenOffice.org while other commer-
cial packages have promised to add support soon. Once you have your files in ODF,
you can use a shell script to compare just the content of the files. We stress the word
content here because the formatting differences are another issue, and it is (usually) the
content that is the most important determinant of which version is new or more im-

portant to the end user.

Here is a bash script that can be used to compare two OpenOffice.org files, which are
saved in ODF (but use the conventional suffix odt to indicate a text-oriented document,

as opposed to a spreadsheet or a presentation file).

1

W oo~NOUT A~ WN

WWWWWWWWWWNNNNNNNNNNRRRRERRRERRRRR
OO NOUVBRWNROOONOUBRWNROWOLOONOGOUDAWRNLR

#!/usr/bin/env bash
# cookbook filename: oodiff

# oodiff -- diff the CONTENTS of two OpenOffice.org files

# works only on .odt files

#

function usagexit ()

{
echo "usage: $0 file1 file2"
echo "where both files must be .odt files"
exit $1

1 >&2

# assure two readable arg filenames which end in
if (($#1=2))
then
usagexit 1
fi
if [[ $1 != *.odt || $2 != *.odt ]]
then
usagexit 2
fi
if [[ ! -r$1 ]! -r$2]]
then
usagexit 3
fi

BAS1=$(basename "$1" .odt)
BAS2=$(basename "$2" .odt)

# unzip them someplace private
PRIV1="/tmp/${BAS1}.9$ 1"
PRIV2="/tmp/${BAS2}.$$ 2"

# make absolute
HERE=$ (pwd )
if [[ ${1:0:1} == '/" 1]
then
FULL1="${1}"
else

.odt

246 | Chapter12: End-User Tasks As Shell Scripts



40 FULL1="${HERE}/${1}"

41 fi

42

43 # make absolute

a4 if [[ ${2:0:1} == "/" 1]

45 then

46 FULL2="¢{2}"

47 else

48 FULL2="${HERE}/${2}"

49 fi

50

51 # mkdir scratch areas and check for failure

52 # N.B. must have whitespace around the { and } and
53 # must have the trailing ; in the {} lists

54 mkdir "$PRIV1" || { echo "Unable to mkdir '$PRIV1'" ; exit 4; }
55 mkdir "$PRIV2" || { echo "Unable to mkdir '$PRIV2'" ; exit 5; }
56

57 cd "$PRIV1"

58 unzip -q "$FULL1"

59 sed -e 's/>/>\

60 /g' -e 's/</\

61 </g' content.xml > contentwnl.xml

62

63 cd "$PRIV2"

64 unzip -q "$FULL2"

65 sed -e 's/>/>\

66 /g' -e 's/</\

67 </g' content.xml > contentwnl.xml

68

69 cd "$HERE"

70

71 diff "${PRIV1}/contentwnl.xml" "${PRIV2}/contentwnl.xml"
72

73 rm -rf "$PRIV1" "$PRIV2"

Discussion

Underlying this script is the knowledge that OpenOffice.org files are stored like ZIP
files. Unzip them and there are a collection of XML files that define your document.
One of those files contains the content of your document, that is, the paragraphs of
text without any formatting (but with XML tags to tie each snippet of text to its for-
matting). The basic idea behind the script is to unzip the two documents and compare
the content pieces using diff, and then clean up the mess that we've made.

One other step is taken to make the diffs easier to read. Since the content is all in XML
and there aren't a lot of newlines, the script will insert a newline after every tag and
before every end-tag (tags that begin with a slash, as in </ ... >). While this introduces
a lot of blank lines, it also enables diff to focus on the real differences: the textual
content.

12.5 Comparing Two Documents | 247



As far as shell syntax goes, you have seen all this in other recipes in the book, but it
may be worth explaining a few pieces of syntax just to be sure you can tell what is going
on in the script.

Line 11 redirects all the output from this shell function to STDERR. That seems ap-
propriate since this is a help message, not the normal output of this program. By putting
the redirect on the function definition, we don't need to remember to redirect every
output line separately.

Line 36 contains the terse expression if [[ ${1:0:1} == '/' 1], which checks to see
whether the first argument begins with a slash character. The ${1:0:1} is the syntax for
a substring of a shell variable. The variable is ${1}, the first positional parameter.
The :0:1 syntax says to start at an offset of zero and that the substring should be one
character long.

Lines 59—60 and 60-61 may be a little hard to read because they involve escaping the
newline character so that it becomes part of the sed substitution string. The substitution
expression takes each > in the first substitution and each < in the second, and replaces
it with itself plus a newline. We do this to our content file in order to spread out the
XML and get the content on lines by itself. That way the diff doesn't show any XML
tags, just content text.

See Also

* Recipe 8.7

* Recipe 13.3
* Recipe 14.11
* Recipe 17.3
* Recipe 17.10

248 | Chapter12: End-User Tasks As Shell Scripts



CHAPTER 13
Parsing and Similar Tasks

This is a chapter of tasks that programmers might recognize. It's not necessarily more
advanced than other bash script recipes in the book, but if you are not a programmer,
these tasks might seem obscure or irrelevant to your use of bash. We won't do much
explaining of the reasons why you'd find yourself in these situations (as a programmer,
you'll recognize some if not all of them). Even if you don't recognize the situation, you
should read them for what you can learn about bash.

Some of the recipes in this chapter include the parsing of command-line arguments.
Recall that the typical way to specify options on a shell script is to have a leading minus
sign and a single letter. For example, an option for your script to give fewer messages
might use -q as a flag to mean quiet mode. Sometimes an option might take an argu-
ment. For example, a user option where you need to specify a username might use -u
followed by the username. This distinction will be made clear in this chapter's first
recipe.

13.1 Parsing Arguments for Your Shell Script

Problem

You want to have some options on your shell script, some flags that you can use to alter
its behavior. You could do the parsing directly, using ${#} to tell you how many ar-
guments have been supplied, and testing ${1:0:1} to test the first character of the first
argument to see if it is a minus sign. You would need some if/then or case logic to

identify which option it is and whether it takes an argument. What if the user doesn't
supply a required argument? What if the user calls your script with two options com-
bined (e.g., -ab)? Will you also parse for that? The need to parse options for a shell
script is a common situation. Lots of scripts have options. Isn't there a more standard
way to do this?

249



Solution
Use bash's built-in getopts command to help parse options.

Here is an example, based largely on the example in the manpage for getopts:

#!/usr/bin/env bash
# cookbook filename: getopts_example
#
# using getopts
#
aflag=
bflag=
while getopts 'ab:' OPTION
do

case $OPTION in

a) aflag=1

b) bflag=1
bval="$OPTARG"

?) printf "Usage: %s: [-a] [-b value] args\n" $(basename $0) >&2
exit 2
esac

done
shift $(($OPTIND - 1))

if [ "$aflag" ]
then
printf "Option -a specified\n"
fi
if [ "$bflag" ]
then
printf 'Option -b "%s" specified\n' "$bval"
fi
printf "Remaining arguments are: %s\n" "$*"

Discussion

There are two kinds of options supported here. The first and simpler kind is an option
that stands alone. It typically represents a flag to modify a command's behavior. An
example of this sort of option is the -1 option on the Is command. The second kind of
option requires an argument. An example of this is the mysql command's -u option,
which requires that a username be supplied, as inmysql -u sysadmin. Let's look at how
getopts supports the parsing of both kinds.

The use of getopts has two arguments.

getopts 'ab:' OPTION

The first is a list of option letters. The second is the name of a shell variable. In our
example, we are defining -a and -b as the only two valid options, so the first argument
in getopts has just those two letters...and a colon. What does the colon signify? It

250 | Chapter13: Parsing and Similar Tasks



indicates that -b needs an argument, just like -u username or -f filename might be used.
The colon needs to be adjacent to any option letter taking an argument. For example,
if only -a took an argument we would need to write 'a:b' instead.

The getopts built-in will set the variable named in the second argument to the value
that it finds when it parses the shell script's argument list ($1, $2, etc). If it finds an
argument with a leading minus sign, it will treat that as an option argument and put
the letter into the given variable ($0PTION in our example). Then it returns true (i.e., 0)
so that the while loop will process the option then continue to parse options by repeated
calls to getopts until it runs out of arguments (or encounters a double minus -- to allow
users to put an explicit end to the options). Then getopts returns false (i.e., non-zero)
and the while loop ends.

Inside the loop, when the parsing has found an option letter for processing, we use a
case statement on the variable $0PTION to set flags or otherwise take action when the
option is encountered. For options that take arguments, that argument is placed in the
shell variable $0PTARG (a fixed name not related to our use of $0PTION as our variable).
We need to save that value by assigning it to another variable because as the parsing
continues to loop, the variable $0PTARG will be reset on each call to getopts.

The third case of our case statement is a question mark, a shell pattern that matches
any single character. When getopts finds an option that is not in the set of expected
options (‘ab: "' in our example) then it will return a literal question mark in the variable
($OPTION in our example). So we could have made our case statement read \?) or '?") for
an exact match, but the ? as a pattern match of any single character provides a conve-
nient default for our case statement. It will match a literal question mark as well as
matching any other single character.

In the usage message that we print, we have made two changes from the example script
in the manpage. First, we use $(basename $0) to give the name of the script without all
the extra pathnames that may have been part of how it was invoked. Secondly, we
redirect this message to standard error (>82) because that is really where such messages
belong. All of the error messages from getopts that occur when an unknown option or
missing argument is encountered are always written to standard error. We add our
usage message to that chorus.

When the while loop terminates, we see the next line to be executed is:

shift $(($OPTIND - 1))
which is a shift statement used to move the positional parameters of the shell script
from $1, $2, etc. down a given number of positions (tossing the lower ones). The variable
$OPTIND is an index into the arguments that getopts uses to keep track of where it is

when it parses. Once we are done parsing, we can toss all the options that we've pro-
cessed by doing this shift statement. For example, if we had this command line:

myscript -a -b alt plow harvest reap

13.1 Parsing Arguments for Your Shell Script | 251



then after parsing for options, $0PTIND would be set to 4. By doing a shift of three
($OPTIND-1) we would get rid of the options and then a quick echo$* would give this:

plow harvest reap
So, the remaining (non-option) arguments are ready for use in your script (in a for loop

perhaps). In our example script, the last line is a printf showing all the remaining ar-
guments.

See Also

* help case

* help getopts
* help getopt

* Recipe 5.8

¢ Recipe 5.11

* Recipe 5.12
* Recipe 6.10
* Recipe 6.14
* Recipe 6.15
* Recipe 13.2

13.2 Parsing Arguments with Your Own Error Messages

Problem

You are using getopts to parse your options for your shell script. But you don't like the
error messages that it writes when it encounters bad input. Can you still use getopts
but write your own error handling?

Solution

If you just want getopts to be quiet and not report any errors at all, just assign
$OPTERR=0 before you begin parsing. But if you want getopts to give you more informa-
tion without the error messages, then just begin the option list with a colon. (The
v--- in the comments below is meant to be an arrow pointing to a particular place in
the line below it, to show that special colon.)

#!/usr/bin/env bash

# cookbook filename: getopts_custom

#
# using getopts - with custom error messages
#

aflag=
bflag=

252 | Chapter13: Parsing and Similar Tasks



# since we don't want getopts to generate error
# messages, but want this script to issue its
# own messages, we will put, in the option list, a
# leading ':' v---here to silence getopts.
while getopts :ab: FOUND
do

case $FOUND in

a) aflag=1

b) bflag=1
bval="$OPTARG"

\:) printf "argument missing from -%s option\n" $OPTARG
printf "Usage: %s: [-a] [-b value] args\n" $(basename $0)
exit 2

\?) printf "unknown option: -%s\n" $OPTARG
printf "Usage: %s: [-a] [-b value] args\n" $(basename $0)
exit 2
35
esac >82
done
shift $(($OPTIND - 1))

if [ "$aflag" ]
then
printf "Option -a specified\n"

fi
if [ "$bflag" ]
then
printf 'Option -b "%s" specified\n' "$bval"
fi

printf "Remaining arguments are: %s\n" "$*"

Discussion

The script is very much the same as the recipe Recipe 13.1. See that discussion for more
background. One difference here is that getopts may now return a colon. It does so
when an option is missing (e.g., you invoke the script with -b but without an argument
for it). In that case, it puts the option letter into $OPTARG so that you know what option
it was that was missing its argument.

Similarly, if an unsupported option is given (e.g., if you tried -d when invoking our
example) getopts returns a question mark as the value for $FOUND, and puts the letter
(the d in this case) into $OPTARG so that it can be used in your error messages.

We put a backslash in front of both the colon and the question mark to indicate that
these are literals and not any special patterns or shell syntax. While not necessary for
the colon, it looks better to have the parallel construction with the two punctuations
both being escaped.

We added an I/O redirection on the esac (the end of the case statement), so that all
output from the various printf statements will be redirected to standard error. This is

13.2 Parsing Arguments with Your Own Error Messages | 253



in keeping with the purpose of standard error and is just easier to put it here than
remembering to put it on each printf individually.

See Also

* help case

* help getopts
* help getopt

* Recipe 5.8

* Recipe 5.11

* Recipe 5.12
* Recipe 6.15
* Recipe 13.1

13.3 Parsing Some HTML

Problem

You want to pull the strings out of some HTML. For example, you'd like to get at the
href="urlstringstuff" type strings from the <a> tags within a chunk of HTML.

Solution

For a quick and easy shell parse of HTML, provided it doesn't have to be foolproof,
you might want to try something like this:

cat $1 | sed -e 's/>/>\
/g' | grep '<a' | while IFS=""" read a b c ; do echo $b; done

Discussion

Parsing HTML from bash is pretty tricky, mostly because bash tends to be very line
oriented whereas HTML was designed to treat newlines like whitespace. So it's not
uncommon to see tags split across two or more lines as in:

<a href="blah...blah...blah
other stuff >

There are also two ways to write <a> tags, one with a separate ending </a> tag, and one
without, where instead the singular <a> tag itself ends with a />. So, with multiple tags
on a line and the last tag split across lines, it's a bit messy to parse, and our simple
bash technique for this is often not foolproof.

Here are the steps involved in our solution. First, break the multiple tags on one line
into at most one line per tag:

254 | Chapter13: Parsing and Similar Tasks



cat file | sed -e 's/>/>\

/g’
Yes, that's a newline right after the backslash so that it substitutes each end-of-tag
character (i.e., the ») with that same character and then a newline. That will put tags
on separate lines with maybe a few extra blank lines. The trailing g tells sed to do the
search and replace globally, i.e., multiple times on a line if need be.

Then you can pipe that output into grep to grab just the <a tag lines or maybe just lines
with double quotes:

cat file | sed -e 's/>/>\
/g' | grep '<a'

or:

cat file | sed -e 's/>/>\

/g" | grep """
(that'sgrep'".*""). The single quotes tell the shell to take the inner characters literally
and not do any shell expansion on them; the rest is a regular expression to match a
double quote followed by any character (.) any number of times (*) followed by another
double quote. (This won't work if the string itself is split across lines.)

To parse out the contents of what's inside the double quotes, one trick is to use the
shell's Internal Field Separator ($IFS) to tell it to use the double quote (") as the sepa-
rator; or you can do a similar thing with awk and its -F option (F for field separator).

For example:
cat $1 | sed -e 's/>/>\
/gn | grep LI | awk -F'" u{ print $2}|
(Or use the grep '<a' if you just want <a tags and not all quoted strings.)

If you want to use the $IFS shell trick, rather than awk, it would be:

cat $1 | sed -e 's/>/>\

/g' | grep '<a' | while IFS='""' read PRE URL POST ; do echo $URL; done
where the grep output is piped into a while loop and the while loop will read the input
into three fields (PRE, URL, and POST). By preceding the read command with the
IFS=""", we set that environment variable just for the read command, not for the entire
script. Thus, for the line of input that it reads, it will parse with the quotes as its notion
of what separates the words of the input line. It will set PRE to be everything up to the
first quote, URL to be everything from there to the next quote, and POST to be everything
thereafter. Then the script just echoes the second variable, URL. That's all the characters
between the quotes.

See Also

* man sed

* man grep

13.3 Parsing Some HTML | 255



13.4 Parsing Output into an Array

Problem

You want the output of some program or script to be put into an array.

Solution

#!/usr/bin/env bash

# cookbook filename: parseViaArray

#

# find the file size

# use an array to parse the 1s -1 output into words

LSL=$(1s -1d $1)

declare -a MYRA
MYRA=($LSL)

echo the file $1 is ${MYRA[4]} bytes.

Discussion

In our example, we take the output from the 1s -1 command and parse the words by
putting them into an array. Then we can just refer to each array element to get at each
word. The typical output from the 1s -1 command looks like this (yours may vary due
to locale):

-rw-r--r--1 albing users 113 2006-10-10 23:33 mystuff.txt

Arrays are easy to initialize if you know the values as you write the script. The format
is simple. We begin by declaring the variable to be an array, and then we assign it values:

declare -a MYRA
MYRA=(first second third home)

The same can be done by using a variable inside those parentheses. Just be sure not to
use quotes around the variable. Writing MYRA=$("$LSL") will put the entire string into
the first argument, since it is all contained as one quoted string. Then ${MYRA[0]} will
be the only array element, and it will contain the entire string, which is not what you
wanted.

We also could have shortened this script by combining the steps, and it would look
like this:

declare -a MYRA
MYRA=($(1s -1d $1))

If you want to know how many elements you have in your new array, just reference the
variable ${#MYRA[*]} or ${#MYRA[@]}, either of which is a lot of special characters to type.

256 | Chapter13: Parsing and Similar Tasks



See Also
* Recipe 5.19

13.5 Parsing Qutput with a Function Call

Problem

You want to parse the output of some program into various variables to be used else-
where in your program. Arrays are great when you are looping through the values, but
not very readable if you want to refer to each separately, rather than by an index.

Solution

Use a function call to parse the words:

#!/usr/bin/env bash

# cookbook filename: parseViaFunc

#

# parse 1s -1 via function call

# an example of output from 1s -1 follows:

# -Tw-r--r-- 1 albing users 126 2006-10-10 22:50 fnsize

function lsparts ()

{
PERMS=$1
LCOUNT=$2
OWNER=$3
GROUP=$4
SIZE=$5
CRDATE=$6
CRDAY=$7
CRTIME=$8
FILE=$9

}

lsparts $(1s -1 "$1")
echo $FILE has $LCOUNT 'link(s)' and is $SIZE bytes long.

Here's what it looks like when it runs:

$ ./fnsize fnsize
fnsize has 1 link(s) and is 311 bytes long.
$

Discussion

We can let bash do the work of parsing by putting the text to be parsed on a function
call. Calling a function is much like calling a shell script. bash parses the words into
separate variables and assigns them to $1, $2, etc. Our function can just assign each

13.5 Parsing Output with a Function Call | 257



positional parameter to a separate variable. If the variables are not declared locally then
they are available outside as well as inside the function.

We put quotes around the reference to $1 in the Is command in case the filename
supplied has spaces in its name. The quotes keep it all together so that Is sees it as a
single filename and not as a series of separate filenames.

We use quotes in the expression 'link(s) ' to avoid special treatment of the parentheses
by bash. Alternatively, we could have put the entire phrase (except for the echo itself)
inside of double quotes—double, not single, quotes so that the variable substitution
(for $FILE, etc.) still occurs.

You might need to adjust the field list depending on how your computer
g and Is command present the date. For example: you might need to add
CRDAY=$7 and adjust CRTIME to $8 and FILE to $9.

See Also

¢ Recipe 10.4
* Recipe 10.5
¢ Recipe 13.8
* Recipe 17.7

13.6 Parsing Text with a read Statement

Problem

The are many ways to parse text with bash. What if [ don't want to use a function? Is
there another way?

Solution

Use the read statement.

#!/usr/bin/env bash

# cookbook filename: parseViaRead

#

# parse 1s -1 with a read statement

# an example of output from 1s -1 follows:

# -rw-r--r-- 1 albing users 126 2006-10-10 22:50 fnsize

1s -1 "$1" | { read PERMS LCOUNT OWNER GROUP SIZE CRDATE CRTIME FILE ;
echo $FILE has $LCOUNT 'link(s)' and is $SIZE bytes long. ;
}

258 | Chapter13: Parsing and Similar Tasks



Discussion

Here we let read do all the parsing. It will break apart the input into words, where words
are separated by whitespace, and assign each word to the variables named on the
read command. Actually, you can even change the separator, by setting the bash vari-
able $IFS (which means Internal Field Separator) to whatever character you want for
parsing; just remember to set it back!

As you can see from the sample output of 1s -1, we have tried to choose names that
get at the meaning of each word in that output. Since FILE is the last word, any extra
fields will also be part of that variable. That way if the name has whitespace in it like
"Beethoven Fifth Symphony" then all three words will end up in $FILE.

See Also

* Recipe 2.14
¢ Recipe 19.8

13.7 Parsing with read into an Array

Problem

You've got a varying number of words on each line of input, so you can't just assign
each word to a predetermined variable.

Solution

Use the -a option on the read statement, and the words will be read into an array
variable.

read -a MYRAY

Discussion

Whether coming from user input or a pipeline, read will parse the input into words,
putting each word in its own array element. The variable does not need to be declared
as an array—using it in this fashion is enough to make it into an array. Each element
can be referenced with the bash array syntax, which is a zero-based array. So the second
word on a line of input will be put into ${MYRAY[1]} in our example. The number of
words will determine the size of the array. In our example, the size of the array is $
{#MYRAY[@]}.

See Also

* Recipe 3.5
* Recipe 13.6

13.7 Parsing with read into an Array | 259



13.8 Getting Your Plurals Right

Problem

You want to use a plural noun when you have more than one of an object. But you
don't want to scatter if statements all through your code.

Solution

#!/usr/bin/env bash

# cookbook filename: pluralize

#

# A function to make words plural by adding an s
# when the value ($2) is != 1 or -1

# It only adds an 's'; it is not very smart.

#

function plural ()

if [ $2 -eq 1 -0 $2 -eq -1 ]
then
echo ${1}
else
echo ${1}s
fi
}

while read num name
do

echo $num $(plural "$name" $num)
done

Discussion

The function, though only set to handle the simple addition of an s, will do fine for
many nouns. The function doesn't do any error checking of the number or contents of
the arguments. If you wanted to use this script in a serious application, you might want

to add those kinds of checks.

We put the name in quotes when we call the plural function in case there are embedded
blanks in the name. It did, after all, come from the read statement, and the last variable
on a read statement gets all the remaining text from the input line. You can see that in
the following example.

We put the solution script into a file named pluralize and ran it against the following
data:

$ cat input.file

1 hen

2 duck

3 squawking goose

4 limerick oyster

5 corpulent porpoise

260 | Chapter13: Parsing and Similar Tasks



$ ./pluralize < input.file
1 hen

2 ducks

3 squawking gooses

4 limerick oysters

5 corpulent porpoises

$

"Gooses" isn't correct English, but the script did what was intended. If you like the C-
like syntax better, you could write the if statement like this:

if (($2==1]| $2=="-1))

The square bracket (i.e., the test built-in) is the older form, more common across the
various versions of bash, but either should work. Use whichever form's syntax is easiest
for you to remember.

We don't expect you would keep a file like pluralize around, but the plural function
might be handy to have as part of a larger scripting project. Then whenever you report
on the count of something you could use the plural function as part of the reference,
as shown in the while loop above.

See Also
* Recipe 6.11

13.9 Taking It One Character at a Time

Problem

You have some parsing to do and for whatever reason nothing else will do—you need
to take your strings apart one character at a time.

Solution

The substring function for variables will let you take things apart and another feature
tells you how long a string is:

#!/usr/bin/env bash

# cookbook filename: onebyone

#

# parsing input one character at a time

while read ALINE
do
for ((i=0; i < ${H#ALINE}; i++))
do
ACHAR=${ALINE:i:1}
# do something here, e.g. echo $ACHAR
echo $ACHAR

13.9 Taking It One Characterata Time | 261



done
done

Discussion

The read will take input from standard in and put it, a line at a time, into the variable
$ALINE. Since there are no other variables on the read command, it takes the entire line
and doesn't divvy it up.

The for loop will loop once for each character in the $ALINE variable. We can compute
how many times to loop by using ${#ALINE}, which returns the length of the contents
of $ALINE.

Each time through the loop we assign ACHAR the value of the one-character substring of
ALINE that begins at the ith position. That's simple enough. Now, what was it you
needed to parse this way?

See Also

* Check out the other parsing techniques in this chapter to see if you can avoid
working at this low level

13.10 Cleaning Up an SVN Source Tree

Problem

Subversion's svn status command shows all the files that have been modified, but if
you have scratch files or other garbage lying around in your source tree, svn will list
those, too. It would be useful to have a way to clean up your source tree, removing
those files unknown to Subversion.

Subversion won't know about new files unless and until you do an svn
: add command. Don't run this script until you've added any new source

files, or they'll be gone for good.

Solution

svn status src | grep '"\?' | cut -c8- | \
while read fn; do echo "$fn"; rm -rf "$fn"; done

Discussion

The svn status output lists one file per line. It puts an M as the first character of a line
for files that have been modified, an A for newly added (but not yet committed) files,
and a question mark for those about which it knows nothing. We just grep for those
lines beginning with a question mark and cut off the leading eight columns of each line
of output so that we are left with just the filename on each line. We read those filenames

262 | Chapter13: Parsing and Similar Tasks



with a read statement in a while loop. The echo isn't strictly necessary, but it's useful
to see what's being removed, just in case there is a mistake or an error. You can at least
see that it's gone for good. When we do the remove, we use the -rf options in case the
file is a directory, but mostly just to keep the remove quiet. Problems encountered with
permissions and such are squelched by the -f option. It just removes the file as best as
your permissions allow. We put the reference to the file-name in quotes "$fn" in case
there are special characters (like spaces) in the filename.

See Also

* Recipe 6.11
* Appendix D

13.11 Setting Up a Database with MySQL

Problem

You want to create and initialize several databases using MySQL. You want them all
to be initialized using the same SQL commands. Each database needs its own name,
but each database will have the same contents, at least at initialization. You may need
to do this setup over and over, as in the case where these databases are used as part of
a test suite that needs to be reset when tests are rerun.

Solution

A simple bash script can help with this administrative task:

#!/usr/bin/env bash

# cookbook filename: dbiniter

#

# initialize databases from a standard file
# creating databases as needed.

DBLIST=$(mysql -e "SHOW DATABASES;" | tail -n +2)
select DB in $DBLIST "new..."
do
if [[ $DB == "new..." ]]
then
printf "%b" "name for new db:
read DB rest
echo creating new database $DB
mysql -e "CREATE DATABASE IF NOT EXISTS $DB;"

fi

if [ "$DB" ]

then
echo Initializing database: $DB
mysql $DB < ourInit.sql

13.11 Setting Up a Database with MySQL | 263



fi
done

Discussion
The tail+2 is added to remove the heading from the list of databases (see Recipe 2.12).

The select creates the menus showing the existing databases. We added the literal
"new.." as an additional choice (see Recipe 3.7 and Recipe 6.16).

When the user wants to create a new database, we prompt for and read a new name,
but we use two fields on the read command as a bit of error handling. If the user types
more than one name on the line, we only use the first name—it gets put into the variable
$DB while the rest of the input is put into $rest and ignored. (We could add an error
check to see if $rest is null.)

Whether created anew or chosen from the list of extant databases, if the $DB variable is
not empty, it will invoke mysgl one more time to feed it the set of SQL statements that
we've put into the file ourlnit.sql as our standardized initialization sequence.

If you're going to use a script like this, you might need to add parameters to your
mysql command, such as -u and -p to prompt for username and password. It will de-
pend on how your database and its permissions are configured or whether you have a
file named .my.cnf with your MySQL defaults.

We could also have added an error check after the creation of the new database to see
if it succeeded; if it did not succeed, we could unset DB thereby bypassing the initiali-
zation. However, as many a math textbook has said, "we leave that as an exercise for
the reader.”

See Also

* Recipe 2.12
¢ Recipe 3.7

* Recipe 6.16
* Recipe 14.20

13.12 Isolating Specific Fields in Data

Problem

You need to extract one or more fields from each line of output.

Solution

Use cut if there are delimiters you can easily pick out, even if they are different for the
beginning and end of the field you need:

264 | Chapter13: Parsing and Similar Tasks



# Here's an easy one, what users, home directories and shells do
# we have on this NetBSD system

$ cut -d':' -f1,6,7 /etc/passwd

root:/root:/bin/csh

toor:/root:/bin/sh

daemon:/:/sbin/nologin

operator: /usr/guest/operator:/sbin/nologin
bin:/:/sbin/nologin

games: /usr/games:/sbin/nologin
postfix:/var/spool/postfix:/sbin/nologin

named: /var/chroot/named: /sbin/nologin
ntpd:/var/chroot/ntpd:/sbin/nologin

sshd: /var/chroot/sshd:/sbin/nologin

smmsp: /nonexistent:/sbin/nologin

uucp: /var/spool/uucppublic:/usr/libexec/uucp/uucico
nobody: /nonexistent:/sbin/nologin
jp:/home/jp:/usr/pkg/bin/bash

# What is the most popular shell on the system?

$ cut -d':' -f7 /etc/passwd | sort | uniq -c | sort -rn
10 /sbin/nologin

2 /usr/pkg/bin/bash

1 /bin/csh

1 /bin/sh

1 /usr/libexec/uucp/uucico

# Now let's see the first two directory levels

$ cut -d':' -f6 /etc/passwd | cut -d'/' -f1-3 | sort -u
/

/home/jp

/nonexistent

/root

/usr/games

/usr/guest

/var/chroot

/var/spool

Use awk to split on multiples of whitespace, or if you need to rearrange the order of
the output fields. Note the > denotes a tab character in the output. The default is space
but you can change that using $0FS:

# Users, home directories and shells, but swap the last two
# and use a tab delimiter

$ awk 'BEGIN {FS=":"; OFS="\t"; } { print $1,$7,$6; }' /etc/passwd
root » /bin/csh » /root

toor » /bin/sh > /root

daemon > /sbin/nologin » /

operator » /sbin/nologin > /usr/guest/operator

bin » /sbin/nologin » /

games > /sbin/nologin » /usr/games

postfix » /sbin/nologin » /var/spool/postfix

named > /sbin/nologin » /var/chroot/named

ntpd > /sbin/nologin » /var/chroot/ntpd

sshd » /sbin/nologin » /var/chroot/sshd

smmsp > /sbin/nologin » /nonexistent

13.12 Isolating Specific Fields in Data | 265



uucp > /usr/libexec/uucp/uucico » /var/spool/uucppublic
nobody > /sbin/nologin > /nonexistent
jp » /usr/pkg/bin/bash > /home/jp

# Multiples of whitespace and swapped, first field removed
$ grep ' [1-9]' /etc/hosts | awk '{print $3,$2}'
10.255.255.255 10.0.0.0

172.31.255.255 172.16.0.0

192.168.255.255 192.168.0.0

Usegrep -otodisplay just the part that matched your pattern. This is particularly handy
when you can't express delimiters in a way that lends itself to the above solutions. For
example, say you need to extract all IP addresses from a file, no matter where they are.
Note we use egrep because of the regular expression (regex), but -o should work with
whichever GNU grep flavor you use, but it is probably not supported on non-GNU
versions. Check your documentation.

$ cat has_ipas

This is line 1 with 1 IPA: 10.10.10.10

Line 2 has 2; they are 10.10.10.11 and 10.10.10.12.
Line three is ftp_ server=10.10.10.13:21.

$ egrep -0 '[0-91{1,31\.[0-91{1,31\.[0-91{1,3)\.[0-9]{1,3}" has_ipas
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.13

Discussion

The possibilities are endless, and we haven't even scratched the surface here. This is
the very essence of what the Unix toolchain idea is all about. Take a number of small
tools that do one thing well and combine them as needed to solve problems.

Also, the regex we used for IP addresses is naive and could match other things, including
invalid addresses. For a much better pattern, use the Perl Compatible Regular Expres-
sions (PCRE) regex from Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reil-
ly), if your grep supports -P. Or use Perl.

$ grep -oP '([01]?\d\d?|2[0-4]\d|25[0-5])\. ([01]?\d\d?|2[0-4]\d|25[0-5])\. ([01]?\d\
d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])" has_ipas

10.10.10.10

10.10.10.11

10.10.10.12

10.10.10.13

$ perl -ne 'while ( m/([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]2\d\d?|2[0-4]\d|25[0-5])\.
([01]2\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])/g ) { print qq($1.$2.%3.
$4\n); }' has_ipas

10.10.10.10

10.10.10.11

266 | Chapter13: Parsing and Similar Tasks



10.10.10.12
10.10.10.13

See Also

* man cut

* man awk

* man grep

* Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
* Recipe 8.4

* Recipe 13.14

¢ Recipe 15.10

* Recipe 17.16

13.13 Updating Specific Fields in Data Files

Problem

You need to extract certain parts (fields) of a line (record) and update them.

Solution

In the simple case, you want to extract a single field from a line, then perform some
operation on it. For that, you can use cut or awk. See Recipe 13.12 for details.

For the more complicated case, you need to modify a field in a data file without ex-
tracting it. If it's a simple search and replace, use sed.

For example, let's switch everyone from csh to sh on this NetBSD system.

$ grep csh /etc/passwd
root:*:0:0:Charlie &:/root:/bin/csh

$ sed 's/csh$/sh/' /etc/passwd | grep '“root’
root:*:0:0:Charlie &:/root:/bin/sh

You can use awk if you need to do arithmetic on a field or modify a string only in a
certain field:

$ cat data_file
Line 1 ends
Line 2 ends
Line 3 ends
Line 4 ends
Line 5 ends

$ awk '{print $1, $2+5, $3}' data_file
Line 6 ends

13.13 Updating Specific Fields in Data Files | 267



Line 7 ends
Line 8 ends
Line 9 ends
Line 10 ends

# If the second field contains '3', change it to '8' and mark it
$ awk '{ if ($2 == "3") print $1, $2+5, $3, "Tweaked" ; else print $0; }' data_file

Line 1 ends

Line 2 ends

Line 8 ends Tweaked

Line 4 ends

Line 5 ends
Discussion

The possibilities here are as endless as your data, but hopefully the examples above will
give you enough of a start to easily modify your data.

See Also

man awk

man sed
http://sed.sourceforge.net/sedfaq.html
http://sed.sourceforge.net/sed1line.txt
Recipe 11.7

Recipe 13.12

13.14 Trimming Whitespace

Problem

You need to trim leading and/or trailing whitespace from lines for fields of data.

Solution

These solutions rely on a bash- specific treatment of read and $REPLY. See the end of
the discussion for an alternate solution.

First, we'll show a file with some leading and trailing whitespace. Note we add ~~ to
show the whitespace. Note the > denotes a literal tab character in the output:

# Show the whitespace in our sample file

$ while read; do echo ~~"$REPLY"~~; done < whitespace
~~ This line has leading spaces.~

~~This line has trailing spaces. ~~

~~ This line has both leading and trailing spaces. ~~
~~ > Leading tab.~

~~Trailing tab. » ~~

268 | Chapter13: Parsing and Similar Tasks


http://sed.sourceforge.net/sedfaq.html
http://sed.sourceforge.net/sed1line.txt

~~ > Leading and trailing tab. » ~~

~~ > Leading mixed whitespace.~

~~Trailing mixed whitespace. > ~

~~ 3> Leading and trailing mixed whitespace. > ~

To trim both leading and trailing whitespace use $IFS add the built-in REPLY variable
(see the discussion for why this works):

$ while readREPLY; do echo ~~"$REPLY"~~; done < whitespace
~~This line has leading spaces.~~

~~This line has trailing spaces.~

~~This line has both leading and trailing spaces.~~
~~Leading tab.~~

~~Trailing tab.~~

~~Leading and trailing tab.~~

~~Leading mixed whitespace.~~

~~Trailing mixed whitespace.~~

~~Leading and trailing mixed whitespace.~~

To trim only leading or only trailing spaces, use a simple pattern match:

# Leading spaces only

$ while read; do echo "~~${REPLY## }~~"; done < whitespace
~~This line has leading spaces.~~

~~This line has trailing spaces. ~~

~~This line has both leading and trailing spaces. ~~
~~ 3 Leading tab.~

~~Trailing tab. ~~

~~ > Leading and trailing tab. > ~~

~~ > Leading mixed whitespace.~

~~Trailing mixed whitespace. > ~

~~ > Leading and trailing mixed whitespace. » ~

# Trailing spaces only

$ while read; do echo "~~${ REPLY%% }~~"; done < whitespace
~~ This line has leading spaces.~

~~This line has trailing spaces.~™

~~ This line has both leading and trailing spaces.~™

~~ 3> Leading tab.~

~~Trailing tab. ~~

~~ > Leading and trailing tab. » ~~

~ > Leading mixed whitespace.~
~~Trailing mixed whitespace. > ~
~ > Leading and trailing mixed whitespace. > ~

Trimming only leading or only trailing whitespace (including tab) is a bit more com-
plicated:

# You need this either way
$ shopt -s extglob

# Leading whitespaces only

$ while read; do echo "~~${REPLY##+([[:space:]])}™"; done < whitespace
~~This line has leading spaces.~~

~~This line has trailing spaces. ~~

~~This line has both leading and trailing spaces. ~~

~~Leading tab.~~

13.14 Trimming Whitespace | 269



~~Trailing tab. ~~

~~Leading and trailing tab. » ~~

~~Leading mixed whitespace.~

~~Trailing mixed whitespace. >~

~~Leading and trailing mixed whitespace. >

# Trailing whitespaces only

$ while read; do echo "~~${REPLY%%+([[:space:]])}"; done < whitespace
~~ This line has leading spaces.~™

~~This line has trailing spaces.~™

~~ This line has both leading and trailing spaces.~
~~ 3 Leading tab.~~

~~Trailing tab.~~

~~ 3 Leading and trailing tab.~~

~ > Leading mixed whitespace.~

~~Trailing mixed whitespace.~~

~ % Leading and trailing mixed whitespace.~™

Discussion

OK, at this point you are probably looking at these lines and wondering how we're
going to make this comprehensible. It turns out there's a simple, if subtle explanation.

Here we go. The first example used the default $REPLY variable that read uses when you
do not supply your own variable name(s). Chet Ramey (maintainer of bash) made a
design decision that, "[if] there are no variables, save the text of the line read to the
variable $REPLY [unchanged, else parse using $IFS]."

$ while read; do echo ~~"$REPLY"~~; done < whitespace

But when we supply one or more variable names to read, it does parse the input, using
the values in $IFS (which are space, tab, and newline by default). One step of that
parsing process is to trim leading and trailing whitespace—just what we want:

$ while read REPLY; do echo ~~"$REPLY"~~; done < whitespace

To trim leading or trailing (but not both) spaces is easy using the ${##} or ${%%}
operators (see Recipe 6.7):

$ while read; do echo "~~${REPLY## }~~"; done < whitespace
$ while read; do echo "~~${REPLY%% }~~"; done < whitespace

But covering tabs is a little harder. If we had only tabs, we could use the ${##} or $
{%%} operators and insert literal tabs using the Ctrl-V Ctrl-I key sequence. But that's
risky since it's probable there's a mix of spaces and tabs, and some text editors or unwary
users may strip out the tabs. So we turn on extended globbing and use a character class
to make our intent clear. The [:space:] character class would work without extglob,
but we need to say "one or more occurrences" using +() or else it will trim a single space
or tabs, but not multiples or both on the same line.
# This works, need extglob for +() part

$ shopt -s extglob
$ while read; do echo "~~${REPLY##+([[:space:]])}"; done < whitespace

270 | Chapter13: Parsing and Similar Tasks



$ while read; do echo "~~${REPLY%%+([[:space:]])}~"; done < whitespace

# This doesn't

$ while read; do echo "~~${REPLY##[[:space:]]}~~"; done < whitespace
~~This line has leading spaces.™

~~This line has trailing spaces. ~~

~~This line has both leading and trailing spaces. ~~
~~Leading tab.~~

~~Trailing tab. ~~

~~Leading and trailing tab. ~~

~ % Leading mixed whitespace.~

~~Trailing mixed whitespace. >

~ > Leading and trailing mixed whitespace. >

Here's a different take, exploiting the same $IFS parsing, but to parse out fields (or
words) instead of records (or lines):

$ for i in $(cat white space); do echo ~~$i~~; done
~~This~~
~~1line~~
~~has~~
~~leading™~
~~white~~
~~space.™
~~This~~
~~line~~
~~has~~
~~trailing~~
~~white~~
~~space.™
~~This~~
~~1line~~
~~has~~
~~both~~
~~leading™~
~~and~~
~~trailing~~
~~“white~~
~~space.™™

Finally, although the original solutions rely on Chet's design decision about read and
$REPLY, this solution does not:

shopt -s extglob

while IFS= read -r line; do

echo "None: ~~$line~~" # preserve all whitespaces

echo "Ld: ~~${linett#+([[:space:]])}~" # trim leading whitespace
echo "Tr: ~~${line%%+([[:space:]])}~" # trim trailing whitespace
line="${linett#+([[:space:]])}" # trim leading and...
line="${line%%+([[:space:]])}" # ...trailing whitespace

echo "All: ~~$line~~" # Show all trimmed

done < whitespace

13.14 Trimming Whitespace | 271



See Also

* Recipe 6.7
* Recipe 13.6

13.15 Compressing Whitespace

Problem

You have runs of whitespace in a file (perhaps it is fixed length, space padded) and you
need to compress the spaces down to a single character or delimiter.

Solution

Use tr or awk as appropriate.

Discussion

If you are trying to compress runs of whitespace down to a single character, you can
use tr, but be aware that you may damage the file if it is not well formed. For example,
if fields are delimited by multiple whitespace characters but internally have spaces,
compressing multiple spaces down to one space will remove that distinction. Imagine
if the _ characters in the following example were spaces instead. Note the - denotes
a literal tab character in the output.

$ cat data_file

Header1 Header2 Header3
Rec1 Field1 Rec1_Field2 Rec1 Field3
Rec2_Field1 Rec2_Field2 Rec2_Field3
Rec3_Field1 Rec3_Field2 Rec3_Field3
$ cat data_file | tr -s ' ' "\t'

Headerl » Header2 > Header3

Recl Field1l » Recl Field2 » Reci_Field3
Rec2_Field1l » Rec2_Field2 » Rec2_Field3
Rec3_Field1l » Rec3_Field2 » Rec3_Field3

If your field delimiter is more than a single character, tr won't work since it translates
single characters from its first set into the matching single character in the second set.
You can use awk to combine or convert field separators. awk's internal field separator
FS accepts regular expressions, so you can separate on pretty much anything. There is
a handy trick to this as well. An assignment to any field causes awk to reassemble the
record using the output field separator OFS. So assigning field one to itself and then
printing the record has the effect of translating FS to OFS without you having to worry
about how many records there are in the data.

272 | Chapter13: Parsing and Similar Tasks



In this example, multiple spaces delimit fields, but fields also have internal spaces, so
the more simple case of awk 'BEGIN { OFS = "\t"} {$1=$1; print }' data_file1l won't
work. Here is a data file:

$ cat data_file1

Header1 Header2 Header3

Reci Field1 Rec1 Field2 Rec1 Field3
Rec2 Field1 Rec2 Field2 Rec2 Field3
Rec3 Field1 Rec3 Field2 Rec3 Field

In the next example, we assign two spaces to FS and tab to OFS. We then make an
assignment ($1 = $1) so awk rebuilds the record, but that results in strings of tabs
replacing the double spaces, so we use gsub to squash the tabs, then we print. Note the >
denotes a literal tab character in the output. The output is a little hard to read, so there
is a hex dump as well. Recall that ASCII tab is 09 while ASCII space is 20.

$ awk 'BEGIN { FS =" "; OFS = "\t" } { $1 = $1; gsub(/\t+ ?/, "\t"); print }'
data_file1

Header1l > Header2 > Header3

Recl Fieldl » Recl Field2 » Recl Field3

Rec2 Field1l » Rec2 Field2 » Rec2 Field3

Rec3 Field1l » Rec3 Field2 > Rec3 Field3

$ awk 'BEGIN { FS =" "; OFS = "\t" } { $1 = $1; gsub(/\t+ 2/, "\t"); print }'
data_file1l | hexdump -C

00000000 48 65 61 64 65 72 31 09 48 65 61 64 65 72 32 09 |Headeri.Header2. |
00000010 48 65 61 64 65 72 33 0a 52 65 63 31 20 46 69 65 |Header3.Rec1 Fie|
00000020 6C 64 31 09 52 65 63 31 20 46 69 65 6¢C 64 32 09 |1ldi.Recl Field2.|
00000030 52 65 63 31 20 46 69 65 6C 64 33 0a 52 65 63 32 |Recl Field3.Rec2|
00000040 20 46 69 65 6C 64 31 09 52 65 63 32 20 46 69 65 | Field1i.Rec2 Fie|
00000050 6C 64 32 09 52 65 63 32 20 46 69 65 6C 64 33 0a |1ld2.Rec2 Field3.|
00000060 52 65 63 33 20 46 69 65 6C 64 31 09 52 65 63 33 |Rec3 Fieldl.Rec3|
00000070 20 46 69 65 6C 64 32 09 52 65 63 33 20 46 69 65 | Field2.Rec3 Fie|
00000080 6¢C 64 0Oa |1d. |

00000083

You can also use awk to trim leading and trailing whitespace in the same way, but as
noted previously, this will replace your field separators unless they are already spaces:

# Remove leading and trailing whitespace,
# but also replace TAB field separators with spaces
$ awk '{ $1 = $1; print }' white_space

See Also

* Effective awk Programming by Arnold Robbins (O'Reilly)

* sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)
¢ Recipe 13.16

* "tr Escape Sequences" in Appendix A

* "Table of ASCII Values" in Appendix A

13.15 Compressing Whitespace | 273



13.16 Processing Fixed-Length Records

Problem

You need to read and process data that is in a fixed-length (also called fixed-width)
form.

Solution

Use Perl or gawk 2.13 or greater. Given a file like:
$ cat fixed-length_file

Header1----------- Header2------------------------- Header3---------
Rec1l Field1 Rec1 Field2 Rec1 Field3
Rec2 Field1 Rec2 Field2 Rec2 Field3
Rec3 Field1 Rec3 Field2 Rec3 Field3

You can process it using GNU's gawk, by setting FIELDWIDTHS to the correct field lengths,
setting OFS as desired, and making an assignment so gawk rebuilds the record (see the
awk trick in Recipe 13.14). However, gawk does not remove the spaces used in padding
the original record, so we use two gsubs to do that, one for all the internal fields and
the other for the last field in each record. Finally, we just print. Note the > denotes a
literal tab character in the output. The output is a little hard to read, so there is a hex
dump as well. Recall that ASCII tab is 09 while ASCII space is 20.

$ gawk ' BEGIN { FIELDWIDTHS = "18 32 16"; OFS = "\t" } { $1 = $1; gsub(/ +\t/, "\
t"); gsub(/ +$/, ""); print }' fixed-length file

Header1i----------- > Header2-----------------------—- > Header3---------

Recl Field1 » Reci Field2 > Recl Field3

Rec2 Field1 » Rec2 Field2 > Rec2 Field3

Rec3 Field1 » Rec3 Field2 > Rec3 Field3

$ gawk ' BEGIN { FIELDWIDTHS = "18 32 16"; OFS = "\t" } { $1 = $1; gsub(/ +\t/, "\
t"); gsub(/ +$/, ""); print }' fixed-length_file | hexdump -C

00000000 48 65 61 64 65 72 31 2d 2d 2d 2d 2d 2d 2d 2d 2d |Header1--------- |
00000010 2d 2d 09 48 65 61 64 65 72 32 2d 2d 2d 2d 2d 2d |--.Header2------ |
00000020 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------
00000030 2d 2d 2d 09 48 65 61 64 65 72 33 2d 2d 2d 2d 2d |---.Header3----- |
00000040 2d 2d 2d 2d 0a 52 65 63 31 20 46 69 65 6C 64 31 |----.Recl Field1|
00000050 09 52 65 63 31 20 46 69 65 6C 64 32 09 52 65 63 |.Recl Field2.Rec|
00000060 31 20 46 69 65 6c 64 33 Oa 52 65 63 32 20 46 69 |1 Field3.Rec2 Fi|
00000070 65 6C 64 31 09 52 65 63 32 20 46 69 65 6C 64 32 |eldl.Rec2 Field2|
00000080 09 52 65 63 32 20 46 69 65 6C 64 33 0a 52 65 63 |.Rec2 Field3.Rec|
00000090 33 20 46 69 65 6C 64 31 09 52 65 63 33 20 46 69 |3 Field1l.Rec3 Fi|
000000a0 65 6C 64 32 09 52 65 63 33 20 46 69 65 6¢ 64 33 |eld2.Rec3 Field3|
000000b0 0a .

000000b1

If you don't have gawk, you can use Perl, which is more straightforward anyway. We
use a non-printing while input loop (-n), unpack each record ($_) asit's read, and turn
the resulting list back into a scalar by joining the elements with a tab. We then print
each record, adding a newline at the end:

274 | Chapter13: Parsing and Similar Tasks



$ perl -ne 'print join("\t", unpack("A18 A32 A16", $ ) ) . "\n";' fixed-length file
Header1----------- % Header2------------------ccuuu-- > Header3---------

Recl Field1l » Recl Field2 > Recl Field3

Rec2 Field1l » Rec2 Field2 > Rec2 Field3

Rec3 Field1l » Rec3 Field2 > Rec3 Field3

$ perl -ne 'print join("\t", unpack("A18 A32 A16", $ ) ) . "\n";' fixed-length file |
hexdump -C

00000000 48 65 61 64 65 72 31 2d 2d 2d 2d 2d 2d 2d 2d 2d |Headeri--------- |
00000010 2d 2d 09 48 65 61 64 65 72 32 2d 2d 2d 2d 2d 2d |--.Header2------ |
00000020 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------

00000030 2d 2d 2d 09 48 65 61 64 65 72 33 2d 2d 2d 2d 2d |---.Header3----- |
00000040 2d 2d 2d 2d 0a 52 65 63 31 20 46 69 65 6C 64 31 |----.Recl Field1|
00000050 09 52 65 63 31 20 46 69 65 6C 64 32 09 52 65 63 |.Recl Field2.Rec|
00000060 31 20 46 69 65 6C 64 33 0a 52 65 63 32 20 46 69 |1 Field3.Rec2 Fi|
00000070 65 6C 64 31 09 52 65 63 32 20 46 69 65 6¢ 64 32 |eldl.Rec2 Field2|
00000080 09 52 65 63 32 20 46 69 65 6C 64 33 Oa 52 65 63 |.Rec2 Field3.Rec|
00000090 33 20 46 69 65 6C 64 31 09 52 65 63 33 20 46 69 |3 Fieldl.Rec3 Fi|
000000a0 65 6C 64 32 09 52 65 63 33 20 46 69 65 6¢ 64 33 |eld2.Rec3 Field3|
000000b0 0Oa [.]

000000b1

See the Perl documentation for the pack and unpack template formats.

Discussion

Anyone with any Unix background will automatically use some kind of delimiter in
output, since the textutils toolchain is never far from mind, so fixed-length (also called
fixed-width) records are rare in the Unix world. They are very common in the main-
frame world however, so they will occasionally crop up in large applications that ori-
ginated on big iron, such as some applications from SAP. As we've just seen, it's no
problem to handle.

One caveat to this recipe is that it requires each record to end in a newline. Many old
mainframe record formats don't, in which case you can use Recipe 13.17 to add new-
lines to the end of each record before processing.

See Also

* man gawk

* http://www.faqgs.org/fags/computer-lang/awk/faq/
* http://perldoc.perl.org/functions/unpack.html

* http://perldoc.perl.org/functions/pack.html

* Recipe 13.14

* Recipe 13.17

13.16 Processing Fixed-Length Records | 275


http://www.faqs.org/faqs/computer-lang/awk/faq/
http://perldoc.perl.org/functions/unpack.html
http://perldoc.perl.org/functions/pack.html

13.17 Processing Files with No Line Breaks

Problem

You have a large file with no line breaks, and you need to process it.

Solution

Pre-process the file and add line breaks in appropriate places. For example, Open-
Office.org's Open Document Format (ODF) files are basically zipped XML files. It is
possible to unzip them and grep the XML, which we did a lot while writing this book.
See Recipe 12.5 for a more comprehensive treatment of ODF files. In this example, we
insert a newline after every closing angle bracket (>). That makes it much easier to
process the file using grep or other textutils. Note that we must enter a backslash fol-
lowed immediately by the Enter key to embed an escaped newline in the sed script:

$ wc -1 content.xml
1 content.xml

$ sed -e 's/>/>\
/g' content.xml | wc -1
1687

If you have fixed-length records with no newlines, do this instead, where 48 is the length
of the record.

$ cat fixed-length
Line_1__aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 2 _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZline 3_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 4_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZline 5 _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 6_ _
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaZZZline 7_ _
3323333333333a33aaaaaaaaaaaaaaaaaaaaazzzline 8
3333333333333aaaaaaaaaaaaaaaaaaaaaaaalzzline 9
3323aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 10 _
332aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 11 _
332aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalZZline 12_
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’l’

$ wc -1 fixed-length
1 fixed-length

$ sed 's/.\{48\}/&\

/g;' fixed-length

Line_1_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’l’
Line_2 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’l’
Line 3 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’
Line_4 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalll
Line 5 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’
Line 6 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’

276 | Chapter13: Parsing and Similar Tasks



Line_7_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_8 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line 9 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_10_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’
Line_11 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’
Line_12_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalz’

$ perl -pe 's/(.{48})/$1\n/g;"' fixed-length

Line_1_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_2_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_3_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_4_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_5__aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal’’
Line_ 6 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line_7_ _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line_8 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line 9 _aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line_10 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line_11 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’
Line_12_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall’

Discussion

This happens often when people create output programatically, especially using canned

modules and especially with HTML or XML output.

Note the sed substitutions have an odd construct that allows an embedded newline. In
sed, a literal ampersand (&) on the righthand side (RHS) of a substitution is replaced
by the entire expression matched on the lefthand side (LHS), and the trailing \ on the
first line escapes the newline so the shell accepts it, but it's still in the sed RHS substi-
tution. This is because sed doesn't recognize \n as a metacharacter on the RHS of s///.

See Also

http://sed.sourceforge.net/sedfaq.html

Effective awk Programming by Arnold Robbins (O'Reilly)
sed & awk by Arnold Robbins and Dale Dougherty (O'Reilly)

Recipe 12.5
Recipe 13.16

13.18 Converting a Data File to (SV

Problem

You have a data file that you need to convert to a Comma Separated Values (CSV) file.

13.18 Converting a Data File to CSV | 277


http://sed.sourceforge.net/sedfaq.html

Solution

Use awk to convert the data into CSV format:

$ awk 'BEGIN { FS="\t"; OFS="\",\"" } { gsub(/"/, "\"\""); $1 = $1; printf "\"%s\"\
n", $0}' tab_delimited

"Line 1","Field 2","Field 3","Field 4","Field 5 with ""internal™" double-quotes"
"Line 2","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 3","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 4","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"

You can do the same thing in Perl also:

$ perl -naF'\t' -e ‘chomp @F; s/"/""/g for @F; print q(").join(q(","), @F).qq("\n);"
tab_delimited

"Line 1","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 2","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 3","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"
"Line 4","Field 2","Field 3","Field 4","Field 5 with ""internal"" double-quotes"

Discussion

First of all, it's tricky to define exactly what CSV really means. There is no formal
specification, and various vendors have implemented various versions. Our version
here is very simple, and should hopefully work just about anywhere. We place double
quotes around all fields (some implementations only quote strings, or strings with in-
ternal commas), and we double internal double quotes.

To do that, we have awk split up the input fields using a tab as the field separator, and
set the output field separator (OFS) to ",". We then globally replace any double quotes
with two double quotes, make an assignment so awk rebuilds the record (see the awk
trick in Recipe 13.14) and print out the record with leading and trailing double quotes.
We have to escape double quotes in several places, which looks a little cluttered, but
otherwise this is very straightforward.

See Also

e awk FAQ
* Recipe 13.14
¢ Recipe 13.19

13.19 Parsing a (SV Data File

Problem

You have a Comma Separated Values (CSV) data file that you need to parse.

278 | Chapter13: Parsing and Similar Tasks



Solution

Unlike the previous recipe for converting to CSV, there is no easy way to do this, since
it's tricky to define exactly what CSV really means.

Possible solutions for you to explore are:
* sed: http://sed.sourceforge.net/sedfaq4.html#s4.12

* awk: http://lorance.freeshell.org/csv/

* Perl: Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly) has a regex to
do this

* Perl: See the CPAN (http://www.cpan.org/) for various modules

* Load the CSV file into a spreadsheet (OpenOffice.org's Calc and Microsoft's Excel
both work), then copy and paste into a text editor and you should get tab delimited
output that you can now use easily

Discussion

As noted in Recipe 13.18, there is no formal specification for CSV, and that fact, com-
bined with data variations, makes this task much harder than it sounds.

See Also
* Recipe 13.18

13.19 Parsinga CSV DataFile | 279


http://sed.sourceforge.net/sedfaq4.html#s4.12
http://lorance.freeshell.org/csv/
http://www.cpan.org/




CHAPTER 14
Writing Secure Shell Scripts

Writing secure shell scripts?! How can shell scripts be secure when you can read the
source code?

Any system that depends on concealing implementation details is attempting to use
security by obscurity, and that is no security at all. Just ask the major software manu-
facturers whose source code is a closely guarded trade secret, yet whose products are
incessantly vulnerable to exploits written by people who have never seen that source
code. Contrast that with the code from OpenSSH and OpenBSD, which is totally open,
yet very secure.

Security by obscurity will never work for long, though some forms of it can be a useful
additional layer of security. For example, having daemons assigned to listen on non-
standard port numbers will keep a lot of the so-called script-kiddies away. But security
by obscurity must never be the only layer of security because sooner or later, someone
is going to discover whatever you've hidden.

As Bruce Schneier says, security is a process. It's not a product, object, or technique,
and it is never finished. As technology, networks, attacks and defenses evolve, so must
your security process. So what does it mean to write secure shell scripts?

Secure shell scripts will reliably do what they are supposed to do, and only what they
are supposed to do. They won't lend themselves to being exploited to gain root access,
they won't accidentally rm -rf /, and they won't leak information, such as passwords.
They will be robust, but will fail gracefully. They will tolerate in advertent user mistakes
and sanitize all user input. They will be as simple as possible, and contain only clear,
readable code and documentation so that the intention of each line is unambiguous.

That sounds a lot like any well-designed, robust program, doesn't it? Security should
be part of any good design process from the start—it shouldn't be tacked on at the end.
In this chapter we've highlighted the most common security weaknesses and questions,
and shown you how to tackle them.

Alot has been written about security over the years. If you're interested, Practical UNIX
& Internet Security by Gene Spafford et al. (O'Reilly) is a good place to start. Chap-

281



ter 15 of Classic Shell Scripting by Nelson H.F. Beebe and Arnold Robbins (O'Reilly),
is another excellent resource. There are also many good online references, such as "A
Lab engineer's check list for writing secure Unix code" at http://www.auscert.org.au/
render.html?it=1975.

The following listing collects the most universal of the secure shell programming tech-
niques, so they are all in one place as a quick reference when you need them or to copy
into a script template. Be sure to read the full recipe for each technique so you under-
stand it.

#!/usr/bin/env bash
# cookbook filename: security template

# Set a sane/secure path

PATH='/usr/local/bin:/bin:/usr/bin'

# It's almost certainly already marked for export, but make sure
\export PATH

# Clear all aliases. Important: leading \ inhibits alias expansion
\unalias -a

# Clear the command path hash
hash -r

# Set the hard limit to 0 to turn off core dumps
ulimit -H -c 0 --

# Set a sane/secure IFS (note this is bash & ksh93 syntax only--not portable!)
IFS=$' \t\n'

# Set a sane/secure umask variable and use it

# Note this does not affect files already redirected on the command line
# 002 results in 0774 perms, 077 results in 0700 perms, etc...

UMASK=002

umask $UMASK

until [ -n "$temp dir" -a ! -d "$temp_dir" ]; do
temp_dir="/tmp/meaningful_prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp_dir \
|| (echo "FATAL: Failed to create temp dir '$temp dir': $?"; exit 100)

# Do our best to clean up temp files no matter what
# Note $temp_dir must be set before this, and must not change!

cleanup="rm -rf $temp dir"
trap "$cleanup" ABRT EXIT HUP INT QUIT

14.1 Avoiding Common Security Problems

Problem

You want to avoid common security problems in your scripting.

282 | Chapter14: Writing Secure Shell Scripts


http://www.auscert.org.au/render.html?it=1975
http://www.auscert.org.au/render.html?it=1975

Solution

Validate all external input, including interactive input and that from configuration files
and interactive use. In particular, never eval input that you have not checked very
thoroughly.

Use secure temporary files, ideally in secure temporary directories.

Make sure you are using trusted external executables.

Discussion

In a way, this recipe barely scratches the surface of scripting and system security. Yet
it also covers the most common security problems you'll find.

Data validation, or rather the lack of it, is a huge deal in computer security right now.
This is the problem that leads to buffer overflows, which are by far the most common
class of exploit going around. bash doesn't suffer from this issue in the same way that
Cdoes, but the concepts are the same. In the bash world it's more likely that unvalidated
input will contain something like ;rm-rf/ than a buffer over-flow; however, neither is
welcome. Validate your data!

Race conditions are another big issue, closely tied to the problem of an attacker gaining
an ability to write over unexpected files. A race condition exists when two or more
separate events must occur in the correct order at the correct time without external
interference. They often result in providing an unprivileged user with read and/or write
access to files they shouldn't be able to access, which in turn can result in so-called
privilege escalation, where an ordinary user can gain root access. Insecure use of tem-
porary files is a very common factor in this kind of attack. Using secure temporary files,
especially inside secure temporary directories, will eliminate this attack vector.

Another common attack vector is trojaned utilities. Like the Trojan horse, these appear
to be one thing while they are in fact something else. The canonical example here is the
trojaned Is command that works just like the real Is command except when run by
root. In that case it creates a new user called r00¢t, with a default password known to
the attacker and deletes itself. Using a secure $PATH is about the best you can do from
the scripting side. From the systems side there are many tools such as Tripwire and
AIDE to help you assure system integrity.

See Also

o http://lwww.tripwiresecurity.com/
o http://www.cs.tut.fi/~rammer/aide.html

* http://osiris.shmoo.com/

14.1 Avoiding Common Security Problems | 283


http://www.tripwiresecurity.com/
http://www.cs.tut.fi/~rammer/aide.html
http://osiris.shmoo.com/

14.2 Avoiding Interpreter Spoofing

Problem

You want to avoid certain kinds of setuid root spoofing attacks.

Solution

Pass a single trailing dash to the shell, as in:
#!/bin/bash -

Discussion

The first line of a script is a magic line (often called the shebang line) that tells the kernel
what interpreter to use to process the rest of the file. The kernel will also look for a
single option to the specified interpreter. There are some attacks that take advantage
of this fact, but if you pass an argument along, they are avoided. See http://www.fags
.org/faqs/unix-faq/faq/part4/section-7.html for details.

However, hard-coding the path to bash may present a portability issue. See
Recipe 15.1 for details.

See Also

* Recipe 14.15
* Recipe 15.1

14.3 Setting a Secure $PATH

Problem

You want to make sure you are using a secure path.

Solution

Set $PATH to a known good state at the beginning of every script:

# Set a sane/secure path

PATH="'/usr/local/bin:/bin:/usr/bin'

# It's almost certainly already marked for export, but make sure
export PATH

Or use the getconf utility to get a path guaranteed by POSIX to find all of the standard
utilities:

export PATH=$(getconf PATH)

284 | Chapter14: Writing Secure Shell Scripts


http://www.faqs.org/faqs/unix-faq/faq/part4/section-7.html
http://www.faqs.org/faqs/unix-faq/faq/part4/section-7.html

Discussion

There are two portability problems with the example above. First, " is more portable
(but less readable) than $(). Second, having the export command on the same line as
the variable assignment won't always work. var="foo'; export var is more portable
than export var='foo'. Also note that the export command need only be used once to
flag a variable to be exported to child processes.

If you don't use getconf, our example is a good default path for starters, though you
may need to adjust it for your particular environment or needs. You might also use the
less portable version:

export PATH='/usr/local/bin:/bin:/usr/bin’

Depending on your security risk and needs, you should also consider using absolute
paths. This tends to be cumbersome and can be an issue where portability is concerned,
as different operating systems put tools in different places. One way to mitigate these
issues to some extent is to use variables. If you do this, sort them so you don't end up
with the same command three times because you missed it scanning the unsorted list.

One other advantage of this method is that it makes it very easy to see exactly what
tools your script depends on, and you can even add a simple function to make sure that
each tool is available and executable before your script really gets going.

#!/usr/bin/env bash
# cookbook filename: finding_tools

# export may or may not also be needed, depending on what you are doing

# These are fairly safe bets
_cp="/bin/cp’
_mv="/bin/mv'
_1m="/bin/rm’

# These are a little trickier
case $(/bin/uname) in
"Linux")
_cut="/bin/cut’
_nice="/bin/nice’

#[...]

55

'Sun0S")
_cut="/usr/bin/cut"
_nice="/usr/bin/nice’

#[...]

14.3 Setting a Secure $PATH | 285



Be careful about the variable names you use. Some programs like Info-
% Zip use environment variables such as $ZIP and $UNZIP to pass settings
to the program itself. So if you do something like ZIP='/usr/bin/
zip', you can spend days pulling your hair out wondering why it works

fine from the command line, but not in your script. Trust us. We learned
this one the hard way. Also RTFM.

See Also

* Recipe 6.14

* Recipe 6.15

* Recipe 14.9

¢ Recipe 14.10

* Recipe 15.2

¢ Recipe 16.3

* Recipe 16.4

* Recipe 19.3

* "Built-in Commands and Reserved Words" in Appendix A

14.4 (learing All Aliases

Problem

You need to make sure that there are no malicious aliases in your environment for
security reasons.

Solution

Use the \unalias-a command to unalias any existing aliases.

Discussion

If an attacker can trick root or even another user into running a command, they will be
able to gain access to data or privileges they shouldn't have. One way to trick another
user into running a malicious program is to create an alias to some other common
program (e.g., Is).
The leading \, which suppresses alias expansion, is very important because without it
you can do evil things like this:

$ alias unalias=echo

$ alias builtin=1s

$ builtin unalias vi
1s: unalias: No such file or directory

286 | Chapter14: Writing Secure Shell Scripts



1s: vi: No such file or directory

$ unalias -a
-a
See Also

* Recipe 10.7
* Recipe 10.8
* Recipe 16.6

14.5 Clearing the Command Hash

Problem

You need to make sure that your command hash has not been subverted.

Solution

Use the hash -r command to clear entries from the command hash.

Discussion

On execution, bash "remembers" the location of most commands found in the $PATH
to speed up subsequent invocations.

If an attacker can trick root or even another user into running a command, they will be
able to gain access to data or privileges they shouldn't have. One way to trick another
user into running a malicious program is to poison the hash so that the wrong program
may be run.

See Also

* Recipe 14.9
* Recipe 14.10
* Recipe 15.2
* Recipe 16.3
* Recipe 16.4
* Recipe 19.3

14.5 Clearing the Command Hash | 287



14.6 Preventing Core Dumps

Problem

You want to prevent your script from dumping core in the case of an unrecoverable
error, since core dumps may contain sensitive data from memory such as passwords.

Solution

Use the bash built-in ulimit to set the core file size limit to 0, typically in your.bashrc file:

ulimit -H -c 0 --

Discussion

Core dumps are intended for debugging and contain an image of the memory used by
the process at the time it failed. As such, the file will contain anything the process had
stored in memory (e.g., user-entered passwords).

Set this in a system-level file such as /etc/profile or /etc/bashrc to which users have no
write access if you don't want them to be able to change it.

See Also

* help ulimit

14.7 Setting a Secure $IFS

Problem

You want to make sure your Internal Field Separator environment variable is clean.

Solution

Set it to a known good state at the beginning of every script using this clear (but not
POSIX-compliant) syntax:

# Set a sane/secure IFS (note this is bash & ksh93 syntax only--not portable!)
IFS=$' \t\n'

Discussion

As noted, this syntax is not portable. However, the canonical portable syntax is unre-
liable because it may easily be inadvertently stripped by editors that trim whitespace.
The values are traditionally space, tab, newline—and the order is important. $*, which
returns all positional parameters, the special ${!prefix@} and ${!prefix*} parameter
expansions, and programmable completion, all use the first value of $IFS as their
separator.

288 | Chapter14: Writing Secure Shell Scripts



The typical method for writing that leaves a trailing space and tab on the first line:

1 IFS=" e > 1
2

Newline, space, tab is less likely to be trimmed, but changes the default order, which
may result in unexpected results from some commands.

1 IFS="e 1
20"
See Also
* Recipe 13.14

14.8 Setting a Secure umask

Problem

You want to make sure you are using a secure umask.

Solution

Use the bash built-in umask to set a known good state at the beginning of every script:

# Set a sane/secure umask variable and use it

# Note this does not affect files already redirected on the command line
# 002 results in 0774 perms, 077 results in 0700 perms, etc...

UMASK=002

umask $UMASK

Discussion

We set the $UMASK variable in case we need to use different masks elsewhere in the
program. You could just as easily do without it; it's not a big deal.

umask 002

W

Remember that umask is a mask that specifies the bits to be taken away
from the default permissions of 777 for directories and 666 for files.
%" When in doubr, test it out:

# Run a new shell so you don't affect your current
environment
/tmp$ bash

# Check the current settings
/tmp$ touch um_current

# Check some other settings

/tmp$ umask 000 ; touch um_000
/tmp$ umask 022 ; touch um_022
/tmp$ umask 077 ; touch um_077

14.8 Setting a Secure umask | 289



/tmp$ 1s -1 um_*

-TW-TW-TW- 1 jp jp 0 Jul 22 06:05 umoo0O
SIW-Y--T-- 1 jp jp 0 Jul 22 06:05 um022
STW------- 1 3jp jp 0 Jul 22 06:05 um077
~TW-TW-T-- 1 jp jp 0 Jul 22 06:05 umcurrent

# Clean up and exit the sub-shell
/tmp$ Tm um_*
/tmp$ exit

See Also

* help umask
* http://linuxzoo.net/page/sec_umask.html

14.9 Finding World-Writable Directories in Your $PATH

Problem

You want to make sure that there are no world-writable directories in root 's $PATH. To
see why, read Recipe 14.10.

Solution

Use this simple script to check your $PATH. Use it in conjunction with su -or sudo to
check paths for other users:

#!/usr/bin/env bash
# cookbook filename: chkpath.1
# Check your $PATH for world-writable or missing directories

exit_code=0

for dir in ${PATH//:/ }; do
[ -L "$dir" ] && printf "%b" "symlink, "
if [ ! -d "$dir" ]; then
printf "%b" "missing\t\t"
(( exit_code++ ))
elif [ "$(1s -1Ld $dir | grep 'Ad....... w. )" 1; then
printf "%b" "world writable\t"
(( exit_code++ ))
else
printf "%b" "ok\t\t"
fi
printf "%b" "$dir\n"
done
exit $exit_code

For example:

# ./chkpath
ok Jusr/local/sbin

290 | Chapter14: Writing Secure Shell Scripts


http://linuxzoo.net/page/sec_umask.html

ok /usr/local/bin

ok /sbinok /bin
ok Jusr/sbin

ok Jusr/bin

ok /usr/X11R6/bin
ok /root/bin
missing /does_not_exist

world writable /tmp
symlink, world writable /tmp/bin
symlink, ok /root/sbin

Discussion

We convert the $PATH to a space-delimited list using the technique from Recipe 9.11,
test for symbolic links (-L), and make sure the directory actually exists (-d). Then we
get a long directory listing (-1), dereferencing symbolic links (-L), and listing the di-
rectory name only (-d), not the directory's contents. Then we finally get to grep for
world-writable directories.

As you can see, we spaced out the ok directories, while directories with a problem may
geta little cluttered. We also broke the usual rule of Unix tools being quiet unless there's
a problem, because we felt it was a useful opportunity to see exactly what is in your
path and give it a once-over in addition to the automated check.

We also provide an exit code of zero on success with no problems detected in the
$PATH, or the count of errors found. With a little more tweaking, we can add the file's
mode, owner, and group into the output, which might be even more valuable to check:

#!/usr/bin/env bash
# cookbook filename: chkpath.2
# Check your $PATH for world-writable or missing directories, with 'stat’

exit_code=0

for dir in ${PATH//:/ }; do
[ -L "$dir" ] && printf "%b" "symlink, "
if [ ! -d "$dir" ]; then
printf "%b" "missing\t\t\t\t"
(( exit_code++ ))
else
stat=$(1ls -1Hd $dir | awk '{print $1, $3, $4}")
if [ "$(echo $stat | grep '"d....... w. ")" ]; then
printf "%b" "world writable\t$stat "
(( exit_code++ ))
else
printf "%b" "ok\t\t$stat "
fi
fi
printf "%b" "$dir\n"

done
exit $exit_code

14.9 Finding World-Writable Directories in Your SPATH | 291



For example:
# ./chkpath ; echo $?

ok drwxr-xr-x root root /usr/local/sbin
ok drwxr-xr-x root root /usr/local/bin
ok drwxr-xr-x root root /sbin
ok drwxr-xr-x root root /bin
ok drwxr-xr-x root root /usr/sbin
ok drwxr-xr-x root root /usr/bin
ok drwxr-xr-x root root /usr/X11R6/bin
ok drwx------ root root /root/bin
missing /does_not_exist
world writable drwxrwxrwt root root /tmp
symlink, ok drwxr-xr-x root root /root/sbin
2

See Also

* Recipe 9.11
¢ Recipe 14.10
* Recipe 15.2
* Recipe 16.3
* Recipe 16.4
* Recipe 19.3

14.10 Adding the Current Directory to the SPATH

Problem

Having to type ./script is tedious and you'd rather just add . (or an empty directory,
meaning a leading or trailing : or a :: in the middle) to your $PATH.

Solution

We advise against doing this for any user, but we strongly advise against doing this for
root. If you absolutely must do this, make sure . comes last. Never do it as root.

Discussion

As you know, the shell searches the directories listed in $PATH when you enter a com-
mand name without a path. The reason not to add . is the same reason not to allow
world-writable directories in your $PATH.

Say you are in /tmp and have . as the first thing in your $PATH. If you type Is and there
happens to be a file called /tmp/ls, you will run that file instead of the /bin/ls you meant
to run. Now what? Well, it depends. It's possible (even likely given the name) that /

292 | Chapter14: Writing Secure Shell Scripts



tmp/ls is a malicious script, and if you have just run it as root there is no telling what it
could do, up to and including deleting itself when it's finished to remove the evidence.

So what if you put it last? Well, have you ever typed mc instead of mv? We have. So
unless Midnight Commander is installed on your system, you could accidentally
run ./mc when you meant /bin/mv, with the same results as above.

Just say no to dot!

See Also

* Section 2.13 of http://www.fags.org/faqs/unix-faq/faq/part2/
* Recipe 9.11
¢ Recipe 14.3
* Recipe 14.9
¢ Recipe 15.2
* Recipe 16.3
¢ Recipe 16.4
* Recipe 19.3

14.11 Using Secure Temporary Files

Problem

You need to create a temporary file or directory, but are aware of the security implica-
tions of using a predictable name.

Solution

The easy and "usually good enough" solution is to just use $RANDOM inline in your script.
For example:

# Make sure $TMP is set to something
[ -n "$TMP" ] || TMP="/tmp'

# Make a "good enough" random temp directory
until [ -n "$temp_dir" -a ! -d "$temp_dir" ]; do
temp_dir="/tmp/meaningful prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp dir
|| { echo "FATAL: Failed to create temp dir '$temp dir': $2?"; exit 100 }
# Make a "good enough" random temp file
until [ -n "$temp file" -a ! -e "$temp_file" ]; do
temp_file="/tmp/meaningful prefix.${RANDOM}${RANDOM}${RANDOM}"
done
touch $temp file && chmod 0600 $temp file
|| { echo "FATAL: Failed to create temp file '$temp file': $?"; exit 101 }

14.11 Using Secure Temporary Files | 293


http://www.faqs.org/faqs/unix-faq/faq/part2/

Even better, use both a random temporary directory and a random filename!

# cookbook filename: make_temp

# Make a "good enough" random temp directory
until [ -n "$temp dir" -a ! -d "$temp dir" ]; do
temp_dir="/tmp/meaningful prefix.${RANDOM}${RANDOM}${RANDOM}"
done
mkdir -p -m 0700 $temp dir \
|| { echo "FATAL: Failed to create temp dir '$temp dir': $?"; exit 100 }

# Make a "good enough" random temp file in the temp dir
temp file="$temp dir/meaningful prefix.${RANDOM}${RANDOM}${RANDOM}"
touch $temp file && chmod 0600 $temp file \
|| { echo "FATAL: Failed to create temp file '$temp file': $?"; exit 101 }

No matter how you do it, don't forget to set a trap to clean up. As noted, $temp dir
must be set before this trap is declared, and its value must not change. If those things
aren't true, rewrite the logic to account for your needs.

# cookbook filename: clean_temp

# Do our best to clean up temp files no matter what

# Note $temp_dir must be set before this, and must not change!
cleanup="rm -rf $temp_dir"

trap "$cleanup” ABRT EXIT HUP INT QUIT

$RANDOM is not available in dash which is /bin/sh in some Linux distribu-
tions. Notably, current versions of Debian and Ubuntu use dash because
it is smaller and faster than bash and thus helps to boot faster. But that

means that /bin/sh which used to be a symlink to bash is now a symlink
to dash instead, and various bash-specific features will not work.

Discussion

$RANDOM has been available since at least bash-2.0, and using it is probably good enough.
Simple code is better and easier to secure than complicated code, so using $RANDOM may
make your code more secure than having to deal with the validation and error-checking
complexities of mktemp or /dev/urandom. You may also tend to use it more because it
is so simple. However, $RANDOM provides only numbers, while mktemp provides num-
bers and upper- and lowercase letters, and urandom provides numbers and lowercase
letters, thus vastly increasing the key space.

However you create it, using a temporary directory in which to work has the following
advantages:

* mkdir -p -m 0700 $temp dir avoids the race condition inherent in touch $temp
file && chmod 0600 $temp file.

* Files created inside the directory are not even visible to a non -root attacker outside
the directory when 0700 permissions are set.

294 | Chapter14: Writing Secure Shell Scripts



* A temporary directory makes it easy to ensure all of your temporary files are re-
moved at exit. If you have temp files scattered about, there's always a chance of
forgetting one when cleaning up.

* You can choose to use meaningful names for temp files inside such a directory,
which may make development and debugging easier, and thus improve script se-
curity and robustness.

* Use of a meaningful prefix in the path makes it clear what scripts are running (this
may be good or bad, but consider that ps or /proc do the same thing). More im-
portantly, it might highlight a script that has failed to clean up after itself, which
could possibly lead to an information leak.

The code above advises using a meaningful_prefix in the path name you are creating.
Some people will undoubtedly argue that since that is predictable, it reduces the secu-
rity. It's true that part of the path is predictable, but we still feel the advantages above
outweigh this objection. If you still disagree, simply omit the meaningful prefix.

Depending on your risk and security needs, you may want to use random temporary
files inside the random temporary directory, as we did above. That will probably not
do anything to materially increase security, but if it makes you feel better, go for it.

We talked about a race condition in touch $temp file8&chmod 0600$temp file. One
way to avoid that is to do this:

saved_umask=$(umask)

umask 077

touch $temp file

umask $saved umask
unset saved_umask

We recommended using both a random temporary directory and a random (or semi-
random) filename since it provides more overall benefits.

If the numeric-only nature of $RANDOM really bothers you, consider combining some
other sources of pseudo-unpredictable and pseudorandom data and a hash function:

nice_long random_string=$( (last ; who ; netstat -a ; free ; date \
; echo $RANDOM) | md5sum | cut -d' ' -f1)

We do not recommend using the fallback method shown here because
% the additional complexity is probably a cure that is worse than the dis-

ease. But it's an interesting look at a way to make things a lot harder
than they need to be.

A theoretically more secure approach is to use the mktemp utility present on many
modern systems, with a fall back to /dev/urandom, also present on many modern sys-
tems, or even $RANDOM. The problem is that mktemp and /dev/urandom are not always
available, and dealing with that in practice in a portable way is much more complicated
than our solution.

14.11 Using Secure Temporary Files | 295



T i B L i o O
# Try to create a secure temp file name or directory

Called like: $temp_file=$(MakeTemp <file|dir> [path/to/name-prefix])
Returns the name of an a ra it in TEMP_NAME

For example:

H H =

$temp_dir=$(MakeTemp dir /tmp/$PROGRAM.fo0)
$temp_file=$(MakeTemp file /tmp/$PROGRAM.fo0)

- o

unction MakeTemp {

# Make sure $TMP is set to something
[ -n "$TMP" ] || TMP="/tmp'

local type name=$1

local prefix=${2:-$TMP/temp} # Unless prefix is defined, use $TMP + temp
local temp type=""

local sanity check=""

case $type name in
file )
temp type=""
ur_cmd="touch’
# Regular file Readable Writable
Owned by me
sanity check="test -f $TEMP_NAME -a -r $TEMP_NAME -a -w $TEMP_NAME -a
-0 $TEMP_NAME'

)
dir|directory )

temp type='-d'

ur_cmd="mkdir -p -mo700'

# Directory Readable Writable
Searchable Owned by me

sanity check="test -d $TEMP_NAME -a -r $TEMP_NAME -a -w $TEMP_NAME -a
-X $TEMP_NAME -a -0 $TEMP_NAME'

LR
* ) Error "\nBad type in $PROGRAM:MakeTemp! Needs file|dir." 1 ;;
esac

# First try mktemp
TEMP_NAME=$(mktemp $temp_type ${prefix}.XXXXXXXXX)

# If that fails try urandom, if that fails give up

if [ -z "$TEMP_NAME" ]; then
TEMP_NAME="${prefix}.$(cat /dev/urandom | od -x | tr -d ' ' | head -1)"
$ur_cmd $TEMP_NAME

fi

# Make sure the file or directory was actually created, or DIE
if ! eval $sanity_check; then
Error "\aFATAL ERROR: can't create temp $type name with '$0:MakeTemp
$*'I\n" 2
else
echo "$TEMP_NAME"
fi

296 | Chapter14: Writing Secure Shell Scripts



} # end of function MakeTemp

See Also

* man mktemp

* Recipe 14.13

* Recipe 15.3

* http://en.wikipedia.org/wiki/Debian_Almquist_shell
* Appendix B, particularly ./scripts.noah/mktmp.bash

14.12 Validating Input

Problem

You've asked for input (e.g., from a user or a program) and to ensure security or data
integrity you need to make sure you got what you asked for.

Solution

There are various ways to validate your input, depending on what the input is and how
strict you need to be.

Use pattern matching for simple "it matches or it doesn't" situations (see Recipe 6.6,
Recipe 6.7, and Recipe 6.8).

[[ "$raw_input" == *.jpg ]] & echo "Got a JPEG file."

Use a case statement when there are various things that might be valid (see
Recipe 6.14 and Recipe 6.15).

# cookbook filename: validate using case

case $raw_input in

* . company ..com ) # Probably a local hostname
*.jpé; ) # Probably a JPEG file
*.[j;j[pP][gG] ) # Probably a JPEG file, case insensitive
foo i;bar ) # entered 'foo' or 'bar
[O-QjEO-Q][O-Q] ) # A 3 digit number
[a-sza-z][a-z][a-z] ) # A 4 lower-case char word
* ” ) # None of the above
esac ”

14.12 Validating Input | 297


http://en.wikipedia.org/wiki/Debian_Almquist_shell

Use a regular expression when pattern matching isn't specific enough and you have
bash version 3.0+ (see Recipe 6.8). This example is looking for a three to six alphanu-
meric character filename with a .jpg extension (case sensitive):

[[ "$raw_input" =~ [[:alpha:]]1{3,6}\.jpg 1] 8& echo "Got a JPEG file."

Discussion

For a larger and more detailed example, see the examples/scripts/shprompt in a recent
bash tarball. Note this was written by Chet Ramey, who maintains bash:

# shprompt -- give a prompt and get an answer satisfying certain criteria

#

# shprompt [-dDfFsy] prompt

#
#
#
#
#
#
#
#
#

= prompt
prompt
= prompt
prompt
prompt
= prompt

< Oa M —Hhwn
n

Chet Ramey
chet@ins.CWRU.

for
for
for
for
for
for

Edu

string

filename

full pathname to a file or directory
a directory name

a full pathname to a directory

y Or n answer

For a similar example, see examples/scripts.noah/y_or_n_p.bash written circa 1993 by
Noah Friedman and later converted to bash version 2 syntax by Chet Ramey. Also in
the examples see: ./functions/isnum.bash, ./functions/isnum2, and ./functions/isvalidip.

See Also

* Recipe 3.5
* Recipe 3.6
* Recipe 3.7

* Recipe 3.8

* Recipe 6.6
* Recipe 6.7
* Recipe 6.8
* Recipe 6.14
* Recipe 6.15
* Recipe 11.2
* Recipe 13.6
* Recipe 13.7
* Appendix B for bash examples

298 | Chapter14: Writing Secure Shell Scripts



14.13 Setting Permissions

Problem

You want to set permissions in a secure manner.

Solution

If you need to set exact permissions for security reasons (or you are sure that you don't
care what is already there, you just need to change it), use chmod with 4-digit octal
modes.

$ chmod 0755some_script

If you only want to add or remove permissions, but need to leave other existing per-
missions unchanged, use the + and - operations in symbolic mode.

$ chmod +xsome_script

If you try to recursively set permissions on all the files in a directory structure using
something like chmod -R0644 some_directory then you'll regret it because you've now
rendered any subdirectories non-executable, which means you won't be able to access
their content, cd into them, or traverse below them. Use find and xargs with chmod to
set the files and directories individually.

$ find some_directory -type f -printo | xargs -0 chmod 0644 # File perms
$ find some_directory -type d -printo | xargs -0 chmod 0755 # Dir. perms

Of course, if you only want to set permissions on the files in a single directory (non-
recursive), just cd in there and set them.

When creating a directory, use mkdir -m mode new directory since you not only ac-
complish two tasks with one command, but you avoid any possible race condition
between creating the directory and setting the permissions.

Discussion

Many people are in the habit of using three-digit octal modes, but we like to use all four
possible digits to be explicit about what we mean to do with all attributes. We also
prefer using octal mode when possible because it's very clear what permissions you are
going to end up with. You may also use the absolute operation (=) in symbolic mode
if you like, but we're traditionalists who like the old octal method best.

Ensuring the final permissions when using the symbolic mode and the + or - operations
is trickier since they are relative and not absolute. Unfortunately, there are many cases
where you can't simply arbitrarily replace the existing permissions using octal mode.
In such cases you have no choice but to use symbolic mode, often using + to add a
permission while not disturbing other existing permissions. Consult your specific sys-
tem's chmod for details, and verify that your results are as you expect.

14.13 Setting Permissions | 299



Note in the last example that although we added (+) rx to everyone (ugo), the owner
still has write (w). That's what we wanted to do here, and that is often the case. But do
you see how, in a security setting, it might be easy to make a mistake and allow an
undesirable permission to slip through the cracks? That's why we like to use the abso-
lute octal mode if possible, and of course we always check the results of our command.

In any case, before you adjust the permissions on a large group of files, thoroughly test
your command. You may also want to backup the permissions and owners of the files.

$ 1s -1

-Iw-r--r--1 jp users 0 Dec 1 02:09 script.sh

# Make file read, write and executable for the owner using octal
$ chmod 0700 script.sh

$1s -1
-TWX------ 1 jp users 0 Dec 1 02:09 script.sh

# Make file read and executable for everyone using symbolic
$ chmod ugo+rx *.sh

$1s -1
-IWXr-Xr-x 1 jp users 0 Dec 1 02:09 script.sh

See Recipe 17.8 for details.

See Also

man chmod
man find
man xargs
Recipe 17.8
Recipe 9.2

14.14 Leaking Passwords into the Process List

Problem

ps may show passwords entered on the command line in the clear. For example:

$ ./cheesy app -u user -p password &
[1] 13301

$ ps
PID TT STAT TIME COMMAND
5280 po S 0:00.08 -bash
9784 po R+ 0:00.00 ps
13301 p0 S 0:00.01 /bin/sh ./cheesy app -u user -p password

300 | Chapter14: Writing Secure Shell Scripts



Solution

Try really hard not to use passwords on the command line.

Discussion
Really. Don't do that.

Many applications that provide a -p or similar switch will also prompt you if a password
required and you do not provide it on the command line. That's great for interactive
use, but not so great in scripts. You may be tempted to write a trivial "wrapper" script
or an alias to try and encapsulate the password on the command line. Unfortunately,
that won't work since the command is eventually run and so ends up in the process list
anyway. If the command can accept the password on STDIN, you may be able to pass
it in that way. That creates other problems, but at least avoids displaying the password
in the process list.

$ ./bad_app ~.hidden/bad_apps_password

If that won't work, you'll need to either find a new app, patch the one you are using,
or just live with it.

See Also

* Recipe 3.8
* Recipe 14.20

14.15 Writing setuid or setgid Scripts

Problem

You have a problem you think you can solve by using the setuid or setgid bit on a shell
script.

Solution

Use Unix groups and file permissions and/or sudo to grant the appropriate users the
least privilege they need to accomplish their task.

Using the setuid or setgid bit on a shell script will create more problems—especially
security problems—than it solves. Some systems (such as Linux) don't even honor the
setuid bit on shell scripts, so creating setuid shell scripts creates an unnecessary porta-
bility problem in addition to the security risks.

Discussion

setuid root scripts are especially dangerous, so don't even think about it. Use sudo.

14.15 Writing setuid or setgid Scripts | 301



setuid and setgid have a different meaning when applied to directories than they do
when applied to executable files. When one of these is set on a directory it causes any
newly created files or subdirectories to be owned by the directory's owner or group,

respectively.

Note you can check a file to see if it is setuid by using test -u or setgid by using test -g.

$ mkdir suid dir sgid dir

$ touch suid file sgid file

$1s -1
total 4
drwxr-xr-x 2 jp users 512 Dec 9
-Irw-r--r-- 1 jp users 0 Dec 9
drwxr-xr-x 2 jp users 512 Dec 9
-Iw-r--r-- 1 jp users 0 Dec 9

$ chmod 4755 suid_dir suid_file

$ chmod 2755 sgid dir sgid file

$1s -1
total 4
drwxr-sr-x 2 jp users 512 Dec 9
-rwxr-sr-x 1 jp users 0 Dec 9
drwsr-xr-x 2 jp users 512 Dec 9
-Iwsr-xr-x 1 jp users 0 Dec 9

03:
03:
03:
03:

03:
03:
03:
03:

45
45
45
45

45
45
45
45

$ [ -u suid dir ] && echo 'Yup, suid'

Yup, suid

$ [ -u sgid dir ] && echo 'Yup, suid'

Nope, not suid

sgid dir
sgid file
suid dir
suid file

sgid dir
sgid file
suid_dir
suid_file

|| echo 'Nope, not suid'

|| echo 'Nope, not suid'

$ [ -g sgid file ] && echo 'Yup, sgid' || echo 'Nope, not sgid'

Yup, sgid

$ [ -g suid file ] && echo 'Yup, sgid' || echo 'Nope, not sgid'

Nope, not sgid

See Also

* man chmod

* Recipe 14.18
* Recipe 14.19
* Recipe 14.20
¢ Recipe 17.15

302 | Chapter14: Writing Secure Shell Scripts



14.16 Restricting Guest Users

The material concerning the restricted shell in this recipe also appears in Learning the
bash Shell by Cameron Newman (O'Reilly).

Problem

You need to allow some guest users on your system and need to restrict what they can

do.

Solution

Avoid using shared accounts if possible, since you lose accountability and create lo-
gistical headaches when users leave and you need to change the password and inform
the other users. Create separate accounts with the least possible permissions necessary
to do whatever is needed. Consider using:

* A chroot jail, as discussed in Recipe 14.17

¢ SSH to allow non-interactive access to commands or resources, as discussed in
Recipe 14.21

e bash's restricted shell

Discussion

The restricted shell is designed to put the user into an environment where their ability
to move around and write files is severely limited. It's usually used for guest accounts.
You can make a user's login shell restricted by putting rbash in the user's /etc/passwd
entry if this option was included when bash was compiled.

The specific constraints imposed by the restricted shell disallow the user from doing
the following;:

* Changing working directories: cd is inoperative. If you try to use it, you will get the
error message from bash cd:restricted.
* Redirecting output to a file: the redirectors >, >|, <>, and >> are not allowed.

* Assigning a new value to the environment variables $ENV, $BASH_ENV, $SHELL, or
$PATH.

* Specifying any commands with slashes (/) in them. The shell will treat files outside
of the current directory as "not found."

* Using the exec built-in.

* Specifying a filename containing a / as an argument to the .(source) built-in com-
mand.

* Importing function definitions from the shell environment at startup.

14.16 Restricting Guest Users | 303



* Adding or deleting built-in commands with the -f and -d options to the enable
built-in command.

* Specifying the -p option to the command built-in command.

* Turning off restricted mode with set+r.

These restrictions go into effect after the user's .bash_profile and environment files are
run. In addition, it is wise to change the owner of the users' .bash_profile and .bashrc
to root, and make these files read-only. The user's home directory should also be made
read-only.

This means that the restricted shell user's entire environment is set up in /etc/profile
and .bash_profile. Since the user can't access /etc/profile and can't overwrite .bash_ pro-
file, this lets the system administrator configure the environment as he sees fit.

Two common ways of setting up such environments are to set up a directory of safe
commands and have that directory be the only one in PATH, and to set up a command
menu from which the user can't escape without exiting the shell.

The restricted shell is not proof against a determined attacker. It can
“% also be difficult to lock down as well as you think you have, since many

common applications such as Vi and Emacs allow shell escapes that
might bypass the restricted shell entirely.

Used wisely it can be a valuable additional layer of security, but it should
not be the only layer.

Note that the original Bourne shell has a restricted version called rsh, which may be
confused with the so-called r-tools (rsh, rcp, rlogin, etc.) Remote Shell program, which
is also rsh. The very insecure Remote Shell rsh has been mostly replaced (we most
sincerely hope) by SSH (the Secure Shell).

See Also

* Recipe 14.17
¢ Recipe 14.21

14.17 Using chroot Jails

Problem

You have to use a script or application that you don't trust.

Solution

Consider placing it in a so-called chroot jail. The chroot command changes the root
directory of the current process to the directory you specify, then returns a shell or

304 | Chapter14: Writing Secure Shell Scripts



exec's a given command. That has the effect of placing the process, and thus the pro-
gram, into a jail from which it theoretically can't escape to the parent directory. So if
that application is compromised or otherwise does something malicious, it can only
affect the small portion of the file system you restricted it to. In conjunction with run-
ning as a user with very limited rights, this is a very useful layer of security to add.

Unfortunately, covering all the details of chroot is beyond the scope of this recipe, since
it would probably require a whole separate book. We present it here to promote aware-
ness of the functionality.

Discussion

So why doesn't everything run in chroot jails? Because many applications need to in-
teract with other applications, files, directories, or sockets all over the file system. That's
the tricky part about using chroot jails; the application can't see outside of its walls, so
everything it needs must be inside those walls. The more complicated the application,
the more difficult it is to run in a jail.

Some applications that must inherently be exposed to the Internet, such as DNS (e.g.,
BIND), web, and mail (e.g., Postfix) servers, may be configured to run in chroot jails
with varying degrees of difficulty. See the documentation for the distribution and spe-
cific applications you are running for details.

Another interesting use of chroot is during system recovery. Once you have booted from
a Live CD and mounted the root file system on your hard drive, you may need to run
a tool such as Lilo or Grub which, depending on your configuration, might need to
believe it's really running onto the damaged system. If the Live CD and the installed
system are not too different, you can usually chroot into the mount point of the damaged
system and fix it. That works because all the tools, libraries, configuration files, and
devices already exist in the jail, since they really are a complete (if not quite working)
system. You might have to experiment with your $PATH in order to find things you need
once you've chrooted though (that's an aspect of the "if the Live CD and the installed
system are not too different" caveat).

On a related note, the NSA's Security Enhanced Linux (SELinux) implementation of
Mandatory Access Controls (MAC) may be of interest. MAC provides a very granular
way to specify at a system level what is and is not allowed, and how various components
of the system may interact. The granular definition is called a security policy and it has
a similar effect to a jail, in that a given application or process can do only what the
policy allows it to do.

Red Hat Linux has incorporated SELinux into its enterprise product. Novell's SUSE
product has a similar MAC implementation called AppArmor, and there are similar
implementations for Solaris, BSD, and OS X.

14.17 Using chroot Jails | 305



See Also

* man chroot

* http://www.nsa.gov/selinux/

* http:/len.wikipedia.org/wiki/Mandatory_access_control
* http://olivier.sessink.nl/jailkit/

o http://lwww.jmcresearch.com/projects/jail/

14.18 Running As a Non-root User

Problem

You'd like to run your scripts as a non-root user, but are afraid you won't be able to do
the things you need to do.

Solution

Run your scripts under non-root user IDs, either as you or as dedicated users, and run
interactively as non-root, but configure sudo to handle any tasks that require elevated
privileges.

Discussion

sudo may be used in a script as easily as it may be used interactively. See the sudoers
NOPASSWD option especially. See Recipe 14.19.

See Also

* man sudo

* man sudoers
* Recipe 14.15
* Recipe 14.19
* Recipe 14.20
¢ Recipe 17.15

14.19 Using sudo More Securely

Problem

You want to use sudo but are worried about granting too many people too many priv-
ileges.

306 | Chapter14: Writing Secure Shell Scripts


http://www.nsa.gov/selinux/
http://en.wikipedia.org/wiki/Mandatory_access_control
http://olivier.sessink.nl/jailkit/
http://www.jmcresearch.com/projects/jail/

Solution

Good! You should be worrying about security. While using sudo is much more secure
than not using it, the default settings may be greatly improved.

Take the time to learn a bit about sudo itself and the /etc/sudoers file. In particular, learn
that in most cases you should not be using the ALL=(ALL) ALL specification! Yes, that
will work, but it's not even remotely secure. The only difference between that and just
giving everyone the root password is that they don't know the root password. They can
still do everything root can do. sudo logs the commands it runs, but that's trivial to
avoid by using sudo bash.

Second, give your needs some serious thought. Just as you shouldn't be using the
ALL=(ALL) ALL specification, you probably shouldn't be managing users one by one
either. The sudoers utility allows for very granular management and we strongly rec-
ommend using it. man sudoers provides a wealth of material and examples, especially
the section on preventing shell escapes.

sudoers allows for four kinds of aliases: user, runas, host, and command. Judicious use
of them as roles or groups will significantly reduce the maintenance burden. For in-
stance, you can set up a User_Alias for BUILD USERS, then define the machines those
users need to run on with Host Alias and the commands they need to run with
Cmnd_Alias. If you set a policy to only edit /etc/sudoers on one machine and copy it
around to all relevant machines periodically using scp with public-key authentication,
you can set up a very secure yet usable system of least privilege.

W

When sudo asks for your password, it's really asking for your password.
As in, your user account. Not root. For some reason people often get
s confused by this at first.

Discussion

Unfortunately, sudo is not installed by default on every system. It is usually installed
on Linux and OpenBSD; other systems will vary. You should consult your system doc-
umentation and install it if it's not already there.

You should always use visudo to edit your /etc/sudoers file. Like vipw,
"‘E’% visudo locks the file so that only one person can edit it at a time, and it

performs some syntax sanity checks before replacing the production file
so that you don't accidentally lock yourself out of your system.

See Also

* man sudo

¢ man sudoers

14.19 Using sudo More Securely | 307



* man visudo

* SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett (O'Reilly)
¢ Recipe 14.15

* Recipe 14.18

¢ Recipe 14.20

* Recipe 17.15

14.20 Using Passwords in Scripts

Problem

You need to hardcode a password in a script.

Solution

This is obviously a bad idea and should be avoided whenever possible. Unfortunately,
sometimes it isn't possible to avoid it.

The first way to try to avoid doing this is to see if you can use sudo with the NOPASSWD
option to avoid having to hardcode a password anywhere. This obviously has its own
risks, but is worth checking out. See Recipe 14.19 for more details.

Another alternative may be to use SSH with public keys and ideally restricted com-
mands. See Recipe 14.21.

If there is no other way around it, about the best you can do is pu