jFrog

DOCKER GUIDE FOR EVERYONE




TABLE OF CONTENTS
Introduction 1
Evolution of Docker 2
What is Docker 3
Why Docker 4
Benefits of Using Docker 5
Docker Architecture 6
Main Components in the Docker System 7
Docker terminology 9
Docker and DevOps 10
Docker with Kubernetes 11
Practicalities of Docker 13
Creating a Dockerfile 17
Docker Use Cases 18
Spotify 18
ADP 18
ING 19
PayPal
Docker Best Practices 20
Docker in the News [recent update] 21
Solution 21
Why is Artifactory better than Docker Hub? 21

JFrog Ltd. | www.jfrog.com


https://jfrog.com/

INTRODUCTION

Containers have become mainstream in the software development world. Today, every
company uses containers to fasten their development life cycle and easy collaboration between
the teams, fostering the DevOps principles within the organization.

Consider the following scenario:

A developer completes a feature or bug fix for an application and then delivers a build for
testing. But, the development and testing systems are different; this results in the application
behaving in unexpected ways. Such a situation creates havoc between teams and degrades the
working atmosphere, affecting the productivity and the morale of development and operations
teams.

Docker has made working with containers very easy and helps developers and operations work

as one team. Docker helped to bridge the gap between Dev and Ops that has existed for many
years.

JFrog Ltd. | www.jfrog.com 1


https://youtu.be/_5IlsCJhCCU
https://jfrog.com/devops-tools/what-is-devops/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook

EVOLUTION OF DOCKER

Long ago, before the introduction of Docker and containers, big firms would go and buy many
servers to make sure their services and business would keep running, uninterrupted. This
process usually meant that firms bought more servers than needed, which was extremely
expensive. But they needed to do this because, as more and more users hit their servers, they
wanted to make sure they could scale well without any downtime or outage.

VMware and IBM entered the scene (there is still a debate on who introduced it first) and
introduced Virtualization that allowed for running multiple operating systems on the same host.
This was a game-changer, but still came with the high price tag of multiple kernels and OSs.
So fast forward to modern-day containerization, the company ‘Docker’ solves a lot of problems.

JFrog Ltd. | www.jfrog.com 2


https://jfrog.com/user-conference/unpacking-the-container-a-deep-dive-into-virtualized-container-technology/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook
https://jfrog.com/

WHAT IS DOCKER

Docker is a boon to the software industry. It is a platform that helps DevOps teams worldwide to
automate the deployment of applications. Docker does it by simplifying the process of building,
running, managing, and also distributing applications by virtualizing the operating system of the
computer on which it is installed and running. The aim is to make applications work efficiently in
different system environments.

JFrog Ltd. | www.jfrog.com 3


https://en.wikipedia.org/wiki/Docker_(software)
https://jfrog.com/

WHY DOCKER

Docker changed the way applications are built and shipped. It has completely revolutionized the
containerization world. With Docker, deploying your software becomes a lot easier; you don’t
have to think about missing a system configuration, underlying infrastructure, or a prerequisite.
Docker enables us to create, deploy, and manage lightweight, stand-alone packages that
contain everything that is needed to run an application. To be specific, it contains all of the
required code, libraries, runtime, system settings, and dependencies. These packages are
called containers. Each container can be deployed with its own portion of the host’'s CPU,
network resources, memory, and everything. Containers can share the host’s kernel and
operating system.

Imagine you’ve thousands of test cases to run connected to a database, and they all go through
sequentially. How much time do you think that will take? Using Docker, these test cases can run
much more quickly. A containerization approach can allow the tests to run in parallel on the
same host at the same time.

JFrog Ltd. | www.jfrog.com 4


https://jfrog.com/knowledge-base/what-are-containers/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook
https://jfrog.com/

S, Ll e
BENEFITS OF USING DOCKER

Enables consistent environment

Easy to use and maintain

Efficient use of the system resources
Increase in the rate of software delivery
Increases operational efficiency
Increases developer productivity

Learn more in my original article: ‘Getting Started with Docker: Facts You Should Know",

JFrog Ltd. | www.jfrog.com 5


https://itnext.io/getting-started-with-docker-facts-you-should-know-d000e5815598
https://jfrog.com/

DOCKER ARCHITECTURE

J

docker build .-{--

.

S

4

#
|

Docker daemon I 4
- .'"._ = - =
~ . Y4
* ~
N
A
-
v

b

<
\
f L) .
docker pull = j| | Containers \.\ Images }—

x ' NGIMX
\‘
= - /
¥ 4

docker run —

Image Source Credits: Docker

Docker works on a client-server architecture. There is something called Docker client that talks
to the Docker daemon, which does the heavy lifting of building, running, and distributing Docker
containers. Both the Docker client and Docker daemon can run on the same system, or the
other way is, you can connect a Docker client to a remote Docker daemon. The Docker client
and daemon communicate using a REST API, through UNIX sockets or network interface.

JFrog Ltd. | www.jfrog.com


http://www.docker.com/
https://jfrog.com/

MAIN COMPONENTS OF THE DOCKER SYSTEM

{Im

container

Ad

image

Client
manages docker CLI manages

REST API

X Server data

network docker daemon volumes

manages w manages

Image source: ThinkPalm

Docker Image

Docker Images are made up of multiple layers of read-only filesystems. These
filesystems are described and created using a Dockerfile, which is just a text file with a
set of pre-written commands.

For every line of text written or instruction given in a Dockerfile, a layer is created and is
placed on top of another layer forming a docker image, which will ultimately be used to
create a docker container.

Docker has created a public registry, hub.docker.com, where people can store their
docker images. Docker images can also be stored in a local, private registry.

Docker Container

A container is an isolated application, built from one or more images, and acts as an
entire packaged system which includes all the libraries and dependencies required for
an application to run. Docker containers come without an OS. They use the Host OS for
functionality, hence it is a more portable, efficient and lightweight system that comes with
a guarantee that the software will run in any environment.

Docker Engine

It is the nucleus of the Docker system, an application that is installed on the host
machine that follows client-server architecture.

JFrog Ltd. | www.jfrog.com 7


https://jfrog.com/knowledge-base/a-beginners-guide-to-understanding-and-building-docker-images/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook
https://thinkpalm.com/blogs/everything-need-know-docker-adoption-software-containerization/
https://jfrog.com/

There are 3 main components in the Docker Engine:

Server is the docker daemon named dockerd. Creates and manages docker images,
containers, networks, etc.

Rest API instructs docker daemon what to do.

Command Line Interface (CLI) is the client used to enter docker commands.

e Docker client
Docker client is the key component in the Docker system which is used by users to
interact with Docker via a command-line interface (CLI). When we run the docker
commands, the client sends these commands to the daemon ‘dockerd’, to build, run, and
stop the application.

e Docker Registry
This is the place where Docker images are stored. Docker Hub and Docker Cloud are
public registries that can be accessed by everyone and anyone, whereas, anther option
is having your own private registry. Docker by default is configured to look for images on
Docker Hub. You can also have an Artifactory Docker Registry for more security and
optimization of your builds.

JFrog Ltd. | www.jfrog.com 8


https://jfrog.com/integration/docker-registry/
https://jfrog.com/

DOCKER TERMINOLOGY

e Image: Image is basically an executable package that has everything that is needed for
running applications, which includes a configuration file, environment variables, runtime
constraints, and libraries.

e Dockerfile: This contains all the instructions for building the Docker image. It is basically
a simple text file with instructions to build an image. You can also refer to this as the
automation of Docker image creation.

e Build: Creating an image snapshot from the Dockerfile.

e Tag: Version of an image. Every image will have a tag name. If a tag is not explicitly set
when using the ‘docker image tag’ command, the tag of ‘latest’ will be applied.

e Container: A lightweight software package/unit created from a specific image version.

e DockerHub: Image repository where we can find different types of images.

e Docker Daemon: Docker daemon runs on the host system. Users cannot communicate
directly with Docker daemon but only through Docker clients.

e Docker Engine: The system that allows you to create and run Docker containers.

e Docker Client: It is the chief user interface for Docker in the Docker binary format.
Docker daemon will receive the docker commands from users and authenticates the
communication with Docker daemon.

e Docker registry. Docker reqistry is a solution that stores your Docker images. This

service is responsible for hosting and distributing images. The default registry is the
Docker Hub.

JFrog Ltd. | www.jfrog.com 9


https://jfrog.com/integration/docker-registry/
https://jfrog.com/

DOCKER AND DEVOPS

Docker, as a tool, fits perfectly well in the DevOps ecosystem. It is built for the modern software
firms that are keeping pace with the rapid changes in technology. You cannot ignore Docker in
your DevOps toolchain; it has become a de facto tool and almost irreplaceable.

The things that make Docker so good for DevOps enablement are its use cases and
advantages that it brings to the software development process by containerizing the applications
that support the ease of development and fast release cycles.

Docker can solve most of the Dev and Ops problems, and the main one, ‘It works on my
machine,” enables teams to both collaborate effectively and work efficiently.

According to RightScale 2019 State of the Cloud Report, Docker is already winning the
container game with an amazing YoY adoption growth.

With Docker, you can make immutable dev, staging, and production environments. You will
have a high level of control over all changes because they are made using immutable Docker
images and containers. You can always roll back to the previous version at any given moment if
you want to.

Development, staging, and production environments become more alike. With Docker, it is more
likely that if a feature works in the development environment, it will work in staging and
production, too.

Datadog took a sampling of its customer base, representing more than 10,000 companies and
700 million containers, in its report on the survey, it is shown that, at the beginning of April 2018,
23.4 percent of Datadog customers had adopted Docker, up from 20.3 percent one year earlier.
Since 2015, the share of customers running Docker has grown at a rate of about 3 to 5 points
per year.

JFrog Ltd. | www.jfrog.com 10


https://www.datadoghq.com/docker-adoption/
https://info.flexerasoftware.com/SLO-WP-State-of-the-Cloud-2019
https://jfrog.com/devops-tools/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook
https://jfrog.com/

Docker with Kubernetes

Docker helps to “create” containers, and Kubernetes allows you to “manage” them at runtime.
Use Docker for packaging and shipping the app. Employ Kubernetes to deploy and scale your
app. Startups or small companies with fewer containers usually can manage them without
having to use Kubernetes, but as the companies grow, their infrastructure needs will rise;
hence, the number of containers will increase, which can be difficult to manage. This is where
Kubernetes comes into play.

When used together, Docker and Kubernetes serve as digital transformation enablers and tools
for modern cloud architecture. Using both has become a new norm in the industry for faster
application deployments and releases. While building your stack, it is highly recommended to
understand the high-level differences between Docker and Kubernetes.

Let containers help to unveil the mysteries of cloud computing regardless of the cloud journey
you choose.

Let’s take a simple scenario of a CI/CD setup using Docker and Kubernetes:

sonarqube \

TStatc code analysis
° 2. Build and test 4. Initialize Ansible
® glt é ilm %
Jenkins ANSIBLE

| 3. Store artifacts

5. Deploy

1.Code commit

o060 &

A N2gioS'| un—] §OCK @ kubernetes

6. Monitor the infrastructure

The developers’ code is pushed into the Git repository.
The build and test happen with Maven in Jenkins.

Using Ansible as a deployment tool, we will write Ansible playbooks to deploy on AWS.

A o nd -

We will introduce JFrog Artifactory as the repository manager after the build process

from Jenkins; the artifacts will be stored in Artifactory.

JFrog Ltd. | www.jfrog.com 11


https://jfrog.com/integration/kubernetes-docker-registry/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook
https://jfrog.com/

[Note: The build process itself can use Artifactory as a proxy and/or cache for any
required third party dependencies.]

5. Ansible can communicate with Artifactory, take the artifacts and deploy them onto the
Amazon EC2 instance.

6. SonarQube can help in reviewing the code by providing static code analysis.

7. We then introduce Docker as a containerization tool. Just like the way we did on Amazon
EC2, we will deploy the app in Docker containers by creating a Dockerfile and Docker
images.

8. Once this above setup is done, we will introduce Kubernetes to create a Kubernetes
cluster, and by using Docker images, we will be able to deploy.

9. Finally, we will use Nagios to monitor the infrastructure.

Learn more in my original article about how Docker and Kubernetes work together.

JFrog Ltd. | www.jfrog.com 12


https://containerjournal.com/topics/container-ecosystems/how-docker-and-kubernetes-work-together/
https://jfrog.com/

PRACTICALITIES OF DOCKER

Steps to install Docker

Below is the link for docker installation provided by Docker. There is clear
documentation available for installing docker on your chosen platform.

https://docs.docker.com/engine/install/

Once docker is installed, check the version of docker

root@gcp-slave-instance:~# docker —-version
Docker version 19.03.8, build afacb8b7f0

root@gcp-slave-instance:~# I

Few basic Docker commands

e docker ps
Gives you the list of active containers on your machine

root@gcp-slave-instance:~# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

39deel9e7b38 httpd "httpd-foreground” 47 seconds ago Up 45 seconds 80/tcp serene joliot
root@gcp-slave-instance:~# ]

In the output we can see it displays several details about the container

CONTAINER ID: Each and every container will be assigned a unique ID

IMAGE: Every Image has an attached tag

Note:
If the image comes from Docker Hub, it will show [REPOSITORY:TAG], but if it is
tagged with 'latest’, it will only show [REPOSITORY].

If it's an image that comes from some other registry other than Docker Hub, then
it will display [REGISTRY/REPOSITORY:TAG].

Otherwise, if it's an image you've built and it hasn't been tagged at all yet, it will
display as [IMAGE ID].

JFrog Ltd. | www.jfrog.com 13


https://docs.docker.com/engine/install/
https://jfrog.com/

COMMAND: The command specified in the Dockerfile that will be executed by
the container when it is launched.

CREATED: Shows the detail when it was created

STATUS: Shows how long the container has been running

PORTS: Exposed port(s), if any

NAMES: Random name that is assigned by docker for container created unless

you specify a name when launching the container

e docker ps -a
Gives you the full list of containers including the ones which are stopped or
crashed

root@gcp-slave-instance:~# docker ps -a
CONTATNER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
Dcece606addy mysgl "docker-entrypoint.s.." 2 minutes ago Exited (1) 2 minutes ago hopeful sanderson

39dee19e7h38 httpd "httpd-foreground” 4 minutes ago Exited (0) 36 seconds ago serene joliot
root@gcp-slave-instance:~ |

e docker images
Gives you the list of images present in the system

root@gcp-—slave-instance: ~# docker images

REPOSITORY TAG IMAGE ID CREATED
latest 8e8c6f8dco9df 24 hours ago
latest bdcl69d27d36 2 days ago

root@gcp—slave—instance:~# [

e docker run ARGUMENT IMAGE-NAME
It will create a container using the image name

root@gcp-slave-instance:~# docker run -itd httpd
39deel97b3892b338408e96b4c6630d0b30b68392b0c85a8dblefec8o41b92d

root@gcp-slave-instance:~# [

Here arguments -itd (or -i, -t, and -d) means

i — Interactive

t — Connected to terminal

d — Detached Mode

We can run the container using whatever arguments are required for our purposes.

e docker stop CONTAINER-ID/NAME
To stop the container

JFrog Ltd. | www.jfrog.com 14


https://jfrog.com/

root@gcp-slave-instance:~# docker ps

ICONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
c242f3177c7a httpd "httpd-foreground™ 4 minutes ago Up 4 minutes stoic_jones
[root@gcp-slave-instance:~# docker stop httpd

rror response from daemon: No such container: httpd

[root@gcp-slave-instance:~# docker stop c242f£3177c7a

c242£3177cTa

root@gcp-slave-instance:~# docker ps

ICONTATINER ID IMAGE COMMAND STATUS

root@gcp-slave-instance:~# |

e docker rm CONTAINER-ID/NAME
To remove a container

root@gcp-slave-instance:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
39dee19%e7b38 httpd "httpd-foreground"” 17 minutes ago Exited (0) 13 minutes ago serene_joliot
root@gcp-slave-instance:~# docker rm serene joliot

serene joliot

root@gcp-slave-instance:~# docker ps -a

ICONTATNER ID IMAGE COMMAND STATUS

root@gcp-slave-instance:~# I

e docker rmi IMAGE-ID
To remove a docker image

rootldgcp—slave—instance:~#

[REPOSITORY TAG IMAGE ID CREATED

httpd latest bdcl69d27d36 2 days ago

root@gcp-slave-instance:~# docker rmi bdcl69d27d36

Untagged: httpd:latest

Untagged: httpd@sha?256:d5dc0d279039da76a8b490d89abc96daB83a33842493d4336b4d2ccdfbd36d7409
:bdcl69d27d36e2438ec8452c7dd7a52a05561b5de7bef8391849b0513a6£774b
:6535aa332fb72ca508£550fefB8ffb832d4cebc72a48720b4265%910d447668181
:cTbcelfab718a11501a672c895a729b1fdf8099d00fel152bef8c2534ee455976
T5b6b2392924b062257ed97ebc2f3a2a9f50a922b9%4c3f7c342d0aed2370e8bec
:267e2020blbd0bl82eb02d1alf3e2f72efc542890ef615%ed9c3570322608de0
:b60ebc3becef2f42ecd2648b3acfTbaf6del fa780cal6d9180f3bda3f266feTbe

rootl@gcp-slave-instance:~# docker images

[REPOSITORY TA IMAGE ID

root@gcp-slave-instance:~# l

e docker exec -it container name /bin/bash

Get access to shell of container
With this command we can run our required code within the container.

root@qcp-slave-instance:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

20abe7597¢02 httpd "httpd-foreqround” 2 minutes ago Up 2 minutes 80/tep adoring proskuriakova
rootgcp-slave-instance:~# docker exec -it 20abc7597c02 /bin/bash

root@20abc7597c02: /usr/local /apache?# l

Containers are dynamic in nature. They move a lot. Today a container might be on
server A, tomorrow it may be on server B, so they will be shuffled and relocated as
required. A Docker volume acts as a data warehouse, or data storage attached
externally to container. Let’s say for example, in the data directory (data) we have data1
and data2 as files that are part of the data associated for our application to work with

root@gcp-slave—-instance:~# mkdir data

rootl@gcp-slave-instance:~# 1s

JFrog Ltd. | www.jfrog.com 15


https://jfrog.com/

but we do not want these files to actually be stored within the container; instead of that,
we want the data directory to be mounted, so the actual read and write will happen
within data1 and data2 and it will look like they are part of the container. Directories
mounted like this are called Volumes.

root@qcp-slave-instance:~+ docker run -itd --name httpd-container -v /root/data:/root/files httpd
19d4114¢3523d36147337346d6943¢5839d0531e99299b382426¢d%al 7e5191

rootlgcp-slave-instance:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS BORTS NAMES
19d4114c3523 httpd "httpd-foreqround" 15 seconds ago Up 13 seconds 80/tcp httpd-container

root@867ebcbhb500f9: /# cd Sfrootbt
root@867ebcb500f9:~# 1s

files

root@867ebcb500f9:~# cd files
root@867ebecbbh00f9:~/filesf 1s
datal dataZ?Z

Now that we have a basic idea about creating, deleting and starting a container, further
will see how to create your own image.

On our server machine we need to install Apache2 by running below mentioned
commands:

sudo apt-get update

sudo apt-get install apache2

JFrog Ltd. | www.jfrog.com 16


https://jfrog.com/

CREATING A DOCKERFILE

Create a directory called ‘sample-code’. Within that directory, create a Dockerfile and
index.html file.

instance:~# 1s

root@gcp—slave—instance:~# cd sample—code
root@gcp—slave—instance:~/sample—code# 1s
1 Dockerfile index.html

rootl@gcp—-slave—-instance:~/sample—code# l

httpd
index.html /user/local/apacheZ/htdocs/index.html

Every Dockerfile starts with the FROM command which tells where the base image is
coming from. Here,we are using httpd as our base image. Next,we want to add a file

index.html, which will act as our source, and our destination will be
/usr/local/apache2/htdocs/index.html. When we run this file, docker will create an image
out of it. Once the image is created we can use this image to create a container.

docker build -t FIRST-IMAGE: this command will build an image where FIRST_IMAGE
is the name of image

docker run -itd --name FIRST_CONTAINER -p 8090:80 FIRST_IMAGE: this
command will build the container where FIRST_CONTAINER is name of container
mapped to port 80

we can see the output : http://server_IP:port

Learn more about Docker practicalities in my original article ‘Getting started with
Docker’.

JFrog Ltd. | www.jfrog.com 17


https://itnext.io/getting-started-with-docker-facts-you-should-know-d000e5815598
https://itnext.io/getting-started-with-docker-facts-you-should-know-d000e5815598
https://jfrog.com/

DOCKER USE CASES

Let us see some successful Docker use cases.

Spotify

This digital music service company, with millions of users, runs a microservices architecture with
as many as 300 servers for every engineer on staff. Spotify struggled to manage the
deployment pipeline with so many microservices. It then turned to a highly sophisticated
platform like Docker to help developers pass the same container through their CI/CD pipeline for
easy delivery.

From build to test to production, they ensured that the container that passed the build and test
process was the same in production.

After using Docker, the company guaranteed that all of their services remain up and running
throughout, providing a great user experience for their customers. They even built their new
platform called 'Helios' based on Docker containers to deploy their containers across their entire
fleet and maintain their development ecosystem.

ADP

ADP is one of those companies that keep using Docker to manage their application
infrastructure better. ADP is the largest global provider of cloud-based human resources
services. ADP handles HR for more than 600,000 clients from payroll to benefits, which caused
a challenge in terms of security and scalability. To solve the security issue, ADP uses Docker
Datacenter. Docker Content Trust enables their IT ops team to sign images and ensure that
only signed binaries run in production. They also perform automated container scanning. Using
multiple Docker Trusted Registries enables them to build an advanced trust workflow for their
application development process.

ING

As one of the top 10 financial global leaders, ING is widespread with thousands of developers
working in coordination and collectively.

Ing's IT organization in the Netherlands alone has more than 1,800 people. It created
unprecedented challenges of coordinating change across large groups of people,
methodologies, processes, and technology, leading to low-quality software.

Then ING thought of Docker as a better tool to align its IT organization and mitigate the
challenges faced. After using Docker, ING can move faster with their CD pipeline running in
Docker containers. The increased level of automation helped them to release quality software
quickly and with more efficiency.

JFrog Ltd. | www.jfrog.com 18


https://jfrog.com/

PayPal

PayPal started using Docker to help them achieve high availability, performance, and new
operational efficiencies. It also helped them with a 50% increase in the speed of their
developers’ build-test-deploy cycles when developing and testing locally. PayPal also increased
application availability through Docker’s dynamic placement capabilities and improved security
by using Docker to automate and granularly control access to resources. Docker usage at
PayPal empowered developers to innovate and try new tools and frameworks, thereby
increasing the overall productivity and team efficiency.

Source credits:
https://dzone.com/articles/top-10-benefits-you-will-get-by-using-docker

https://hackernoon.com/what-is-docker-and-benefits-of-docker-re2d32jh

JFrog Ltd. | www.jfrog.com 19


https://hackernoon.com/what-is-docker-and-benefits-of-docker-re2d32jh
https://dzone.com/articles/top-10-benefits-you-will-get-by-using-docker
https://jfrog.com/

DOCKER BEST PRACTICES

Before approaching Docker, you must know some best practices to reap the benefits of this tool
to the fullest extent. Listed here are some Docker best practices to keep in mind,

e Build images to do just one thing (Also, See Security Best Practices for Docker Images)

e Use tags to reference specific versions of your image
e Prefer minimalist base images

e Use multi-stage builds

e Don’t use a root user, whenever possible

e Use official, purpose-built images

e Enable Docker content frust

e Use Docker Bench for security

e Use Artifactory to manage Docker images

e |Leverage Docker enterprise features for additional protection
e Writing a Dockerfile_is always critical, build docker image which is slim and smart, not
bloated

e Persist necessary data outside of a container using Volumes

e Use Docker compose to use as Infrastructure As Code and keep track using tags

e Role-based access control

e Do not add user credentials/keys/critical data to the image. Use it as a deployment
variable

e Make use of docker caching, try pushing any "COPY . ." commands as close to the end

of the Dockerfile as possible
e Use .dockerignore file
e Don't install debugging tools to reduce image size
e Always use resource limits with docker/containers
e Use swarm mode for small application
e Don't blindly trust downloads from the DockerHub! Verify them! See more at ‘DockerHub

Breach Can Have a Long Reach’

e Make Docker image with tuned kernel parameters

e Use alpine image

Learn more in the original article ‘WWhy we love Docker and best practices for DevOps’

JFrog Ltd. | www.jfrog.com 20


https://www.wintellect.com/security-best-practices-for-docker-images/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/docker-hub/official_images/
https://docs.docker.com/engine/security/trust/content_trust/
https://jfrog.com/blog/jfrog-artifactory-secure-private-docker-registry-in-production/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://semaphoreci.com/docs/docker/docker-layer-caching.html
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://duo.com/decipher/docker-hub-breach-can-have-a-long-reach
https://duo.com/decipher/docker-hub-breach-can-have-a-long-reach
https://sneaker-rohit.github.io/Tuning-Kernel-Parameters-In-Docker-Image/
https://hub.docker.com/_/alpine
https://hackernoon.com/docker-and-best-practices-for-devops-c53ta30ki
https://www.wintellect.com/security-best-practices-for-docker-images/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/docker-hub/official_images/
https://docs.docker.com/engine/security/trust/content_trust/
https://jfrog.com/blog/jfrog-artifactory-secure-private-docker-registry-in-production/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://semaphoreci.com/docs/docker/docker-layer-caching.html
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://duo.com/decipher/docker-hub-breach-can-have-a-long-reach
https://duo.com/decipher/docker-hub-breach-can-have-a-long-reach
https://sneaker-rohit.github.io/Tuning-Kernel-Parameters-In-Docker-Image/
https://hub.docker.com/_/alpine
https://hackernoon.com/docker-and-best-practices-for-devops-c53ta30ki
https://jfrog.com/

Ll n=»>°=°"»“~n=n=m>m>IImmnL,,,®,,..==,=~_,5,LH]lLI,,.
DOCKER IN THE NEWS (RECENT UPDATES)

Docker is in the news for two reasons: Image retention limits and download throttling.

d’ docker hub

e Image retention limits
Images stored on DockerHub with free accounts (which is very common for both
open-source projects and automated builds) will be subject to a six-month image
retention policy, after which their images will be deleted if they are inactive.

e Download throttling
Docker introduced a download rate limit of 100 pulls per six hours for anonymous users
and 200 pulls per six hours for free accounts.

Solution

Two groups are potentially going to get affected by the new policies established by Docker - The
open-source contributors who create Docker images and the DevOps enthusiasts who consume
them.

The open-source group will have image retention issues for less used but important images.
DevOps enthusiasts will have challenges using Docker Hub as a system of record, because
images might disappear without warning, breaking builds, and anonymous or free builds can fail
due to throttling of pull requests.

JFrog Ltd. | www.jfrog.com 21


https://jfrog.com/

With the latest image retention and throttling policies by Docker, the free tier users and the
open-source enthusiasts are going to get affected. These communities have no choice but to
move to a highly sophisticated option, that is 'Artifactory’. Yes!

Why is Artifactory better than Docker Hub?

1. Artifactory caches images, so you are not affected by upstream removal.
2. Artifactory serves from the cache, so only 1 pull per image, preventing throttling.

3. Only a single DockerHub license is required for all developers and build machines in an
organization.

4. Artifactory allows you to create multiple Docker registries per instance. You can make
use of a local repository as a private Docker registry to share Docker images across the
organization with fine-grained access control.

5. You can store and also retrieve any type of artifact, including secure docker images that
your development teams produce, and having these artifacts stored in a central,

managed location makes Artifactory an essential part of any software delivery lifecycle.

Learn more in the original article ‘Mitigating DevOps Repository Risks’.

Containers have been getting a lot of attention, and special thanks to Docker for enabling firms
to transform themselves digitally by building and shipping software at a faster rate than usual.
Docker adoption has enhanced developer productivity with greater agility and higher efficiency.
Kubernetes and Docker together are pretty powerful. Docker has had a huge impact on the
toolsets and strategies for deploying and managing containers in general. Also, there isn't much
competition to Docker containers other than cri-o or other open container options.

Let us wait and see how Docker moves as we advance.

Get Started with Artifactory as a Docker Registry

JFrog Ltd. | www.jfrog.com 22


https://jfrog.com/
https://jfrog.com/integration/docker-registry/?utm_source=Docker&utm_medium=pavan&utm_campaign=Guide
https://dzone.com/articles/mitigating-devops-repository-risks
https://jfrog.com/artifactory/?utm_source=DockerGuide&utm_medium=pavan&utm_campaign=ebook



