
Red Hat Enterprise Linux 7

Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat Enterprise Linux
physical machine

Last Updated: 2018-04-05

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat Enterprise Linux physical
machine

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com

Yehuda Zimmerman
Red Hat Customer Content Services
yzimmerm@redhat.com

Laura Novich
Red Hat Customer Content Services

Dayle Parker
Red Hat Customer Content Services

Scott Radvan
Red Hat Customer Content Services

Tahlia Richardson
Red Hat Customer Content Services

Legal Notice

Copyright © 2018 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers how to configure a Red Hat Enterprise Linux 7 machine to act as a virtualization
host system, and how to install and configure guest virtual machines using the KVM hypervisor.
Other topics include PCI device configuration, SR-IOV, networking, storage, device and guest virtual
machine management, as well as troubleshooting, compatibility and restrictions. Procedures that
need to be run on the guest virtual machine are explicitly marked as such. All procedures described
in this guide are intended to be performed on an AMD64 or Intel 64 host machine, unless otherwise
stated. For using Red Hat Enterprise Linux 7 virtualization on architectures other than AMD64 and
Intel 64, see . For a more general introduction into virtualization solutions provided by Red Hat, see
the Red Hat Enterprise Linux 7 Virtualization Getting Started Guide.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. DEPLOYMENT

CHAPTER 1. SYSTEM REQUIREMENTS
1.1. HOST SYSTEM REQUIREMENTS
1.2. KVM HYPERVISOR REQUIREMENTS
1.3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY
1.4. SUPPORTED GUEST CPU MODELS

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES
2.1. INSTALLING VIRTUALIZATION PACKAGES DURING A RED HAT ENTERPRISE LINUX INSTALLATION

2.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED HAT ENTERPRISE LINUX SYSTEM

CHAPTER 3. CREATING A VIRTUAL MACHINE
3.1. GUEST VIRTUAL MACHINE DEPLOYMENT CONSIDERATIONS
3.2. CREATING GUESTS WITH VIRT-INSTALL
3.3. CREATING GUESTS WITH VIRT-MANAGER
3.4. COMPARISON OF VIRT-INSTALL AND VIRT-MANAGER INSTALLATION OPTIONS

CHAPTER 4. CLONING VIRTUAL MACHINES
4.1. PREPARING VIRTUAL MACHINES FOR CLONING
4.2. CLONING A VIRTUAL MACHINE

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
5.1. USING KVM VIRTIO DRIVERS FOR EXISTING STORAGE DEVICES
5.2. USING KVM VIRTIO DRIVERS FOR NEW STORAGE DEVICES
5.3. USING KVM VIRTIO DRIVERS FOR NETWORK INTERFACE DEVICES

CHAPTER 6. NETWORK CONFIGURATION
6.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT
6.2. DISABLING VHOST-NET
6.3. ENABLING VHOST-NET ZERO-COPY
6.4. BRIDGED NETWORKING

CHAPTER 7. OVERCOMMITTING WITH KVM
7.1. INTRODUCTION
7.2. OVERCOMMITTING MEMORY
7.3. OVERCOMMITTING VIRTUALIZED CPUS

CHAPTER 8. KVM GUEST TIMING MANAGEMENT
8.1. REQUIRED TIME MANAGEMENT PARAMETERS FOR RED HAT ENTERPRISE LINUX GUESTS
8.2. STEAL TIME ACCOUNTING

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT
9.1. PREPARING THE BOOT SERVER
9.2. BOOTING A GUEST USING PXE

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE
10.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE
10.2. REGISTERING A NEW GUEST VIRTUAL MACHINE
10.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY
10.4. INSTALLING VIRT-WHO MANUALLY
10.5. TROUBLESHOOTING VIRT-WHO

8

9
9

10
11
11

13

13

16

19
19
19
23
35

37
37
40

44
44
45
49

52
52
53
54
54

59
59
59
59

61
62
63

64
64
65

67
67
70
70
71
71

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT
11.1. QEMU GUEST AGENT
11.2. USING THE QEMU GUEST AGENT WITH LIBVIRT
11.3. SPICE AGENT

CHAPTER 12. NESTED VIRTUALIZATION
12.1. OVERVIEW
12.2. SETUP
12.3. RESTRICTIONS AND LIMITATIONS

PART II. ADMINISTRATION

CHAPTER 13. STORAGE POOLS
13.1. DISK-BASED STORAGE POOLS
13.2. PARTITION-BASED STORAGE POOLS
13.3. DIRECTORY-BASED STORAGE POOLS
13.4. LVM-BASED STORAGE POOLS
13.5. ISCSI-BASED STORAGE POOLS
13.6. NFS-BASED STORAGE POOLS
13.7. USING AN NPIV VIRTUAL ADAPTER (VHBA) WITH SCSI DEVICES
13.8. GLUSTERFS STORAGE POOLS

CHAPTER 14. STORAGE VOLUMES
14.1. INTRODUCTION
14.2. CREATING VOLUMES
14.3. CLONING VOLUMES
14.4. DELETING AND REMOVING VOLUMES
14.5. ADDING STORAGE DEVICES TO GUESTS

CHAPTER 15. USING QEMU-IMG
15.1. CHECKING THE DISK IMAGE
15.2. COMMITTING CHANGES TO AN IMAGE
15.3. COMPARING IMAGES
15.4. MAPPING AN IMAGE
15.5. AMENDING AN IMAGE
15.6. CONVERTING AN EXISTING IMAGE TO ANOTHER FORMAT
15.7. CREATING AND FORMATTING NEW IMAGES OR DEVICES
15.8. DISPLAYING IMAGE INFORMATION
15.9. REBASING A BACKING FILE OF AN IMAGE
15.10. RE-SIZING THE DISK IMAGE
15.11. LISTING, CREATING, APPLYING, AND DELETING A SNAPSHOT
15.12. SUPPORTED QEMU-IMG FORMATS

CHAPTER 16. KVM MIGRATION
16.1. MIGRATION DEFINITION AND BENEFITS
16.2. MIGRATION REQUIREMENTS AND LIMITATIONS
16.3. LIVE MIGRATION AND RED HAT ENTERPRISE LINUX VERSION COMPATIBILITY
16.4. SHARED STORAGE EXAMPLE: NFS FOR A SIMPLE MIGRATION
16.5. LIVE KVM MIGRATION WITH VIRSH
16.6. MIGRATING WITH VIRT-MANAGER

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION
17.1. PCI DEVICES
17.2. PCI DEVICE ASSIGNMENT WITH SR-IOV DEVICES
17.3. USB DEVICES

73
73
77
79

82
82
82
84

85

86
88
91
98

104
112
125
131
138

141
141
142
143
144
144

155
155
155
155
156
157
157
157
158
158
159
159
159

161
161
161
163
164
165
170

175
175
188
200

Virtualization Deployment and Administration Guide

2

. .

. .

. .

. .

17.4. CONFIGURING DEVICE CONTROLLERS
17.5. SETTING ADDRESSES FOR DEVICES
17.6. RANDOM NUMBER GENERATOR DEVICE
17.7. ASSIGNING GPU DEVICES

CHAPTER 18. VIRTUAL NETWORKING
18.1. VIRTUAL NETWORK SWITCHES
18.2. BRIDGED MODE
18.3. NETWORK ADDRESS TRANSLATION
18.4. DNS AND DHCP
18.5. ROUTED MODE
18.6. ISOLATED MODE
18.7. THE DEFAULT CONFIGURATION
18.8. EXAMPLES OF COMMON SCENARIOS
18.9. MANAGING A VIRTUAL NETWORK
18.10. CREATING A VIRTUAL NETWORK
18.11. ATTACHING A VIRTUAL NETWORK TO A GUEST
18.12. ATTACHING A VIRTUAL NIC DIRECTLY TO A PHYSICAL INTERFACE
18.13. DYNAMICALLY CHANGING A HOST PHYSICAL MACHINE OR A NETWORK BRIDGE THAT IS
ATTACHED TO A VIRTUAL NIC
18.14. APPLYING NETWORK FILTERING
18.15. CREATING TUNNELS
18.16. SETTING VLAN TAGS
18.17. APPLYING QOS TO YOUR VIRTUAL NETWORK

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS
19.1. TRANSPORT MODES
19.2. REMOTE MANAGEMENT WITH SSH
19.3. REMOTE MANAGEMENT OVER TLS AND SSL
19.4. CONFIGURING A VNC SERVER
19.5. ENHANCING REMOTE MANAGEMENT OF VIRTUAL MACHINES WITH NSS

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)
20.1. STARTING VIRT-MANAGER
20.2. THE VIRTUAL MACHINE MANAGER MAIN WINDOW
20.3. THE VIRTUAL HARDWARE DETAILS WINDOW
20.4. VIRTUAL MACHINE GRAPHICAL CONSOLE
20.5. ADDING A REMOTE CONNECTION
20.6. DISPLAYING GUEST DETAILS
20.7. MANAGING SNAPSHOTS

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH
21.1. GUEST VIRTUAL MACHINE STATES AND TYPES
21.2. DISPLAYING THE VIRSH VERSION
21.3. SENDING COMMANDS WITH ECHO
21.4. CONNECTING TO THE HYPERVISOR WITH VIRSH CONNECT
21.5. DISPLAYING INFORMATION ABOUT A GUEST VIRTUAL MACHINE AND THE HYPERVISOR
21.6. STARTING, RESUMING, AND RESTORING A VIRTUAL MACHINE
21.7. MANAGING A VIRTUAL MACHINE CONFIGURATION
21.8. SHUTTING OFF, SHUTTING DOWN, REBOOTING, AND FORCING A SHUTDOWN OF A GUEST
VIRTUAL MACHINE
21.9. REMOVING AND DELETING A VIRTUAL MACHINE
21.10. CONNECTING THE SERIAL CONSOLE FOR THE GUEST VIRTUAL MACHINE
21.11. INJECTING NON-MASKABLE INTERRUPTS

201
205
207
209

218
218
218
219
220
221
221
222
223
224
225
235
237

241
242
274
275
276

277
277
280
282
285
285

287
287
288
289
294
296
297
304

308
308
309
309
309
310
311
313

316
318
319
319

Table of Contents

3

. .

21.12. RETRIEVING INFORMATION ABOUT YOUR VIRTUAL MACHINE
21.13. WORKING WITH SNAPSHOTS
21.14. DISPLAYING A URI FOR CONNECTION TO A GRAPHICAL DISPLAY
21.15. DISPLAYING THE IP ADDRESS AND PORT NUMBER FOR THE VNC DISPLAY
21.16. DISCARDING BLOCKS NOT IN USE
21.17. GUEST VIRTUAL MACHINE RETRIEVAL COMMANDS
21.18. CONVERTING QEMU ARGUMENTS TO DOMAIN XML
21.19. CREATING A DUMP FILE OF A GUEST VIRTUAL MACHINE'S CORE USING VIRSH DUMP
21.20. CREATING A VIRTUAL MACHINE XML DUMP (CONFIGURATION FILE)
21.21. CREATING A GUEST VIRTUAL MACHINE FROM A CONFIGURATION FILE
21.22. EDITING A GUEST VIRTUAL MACHINE'S XML CONFIGURATION SETTINGS
21.23. ADDING MULTIFUNCTION PCI DEVICES TO KVM GUEST VIRTUAL MACHINES
21.24. DISPLAYING CPU STATISTICS FOR A SPECIFIED GUEST VIRTUAL MACHINE
21.25. TAKING A SCREENSHOT OF THE GUEST CONSOLE
21.26. SENDING A KEYSTROKE COMBINATION TO A SPECIFIED GUEST VIRTUAL MACHINE
21.27. HOST MACHINE MANAGEMENT
21.28. RETRIEVING GUEST VIRTUAL MACHINE INFORMATION
21.29. STORAGE POOL COMMANDS
21.30. STORAGE VOLUME COMMANDS
21.31. DELETING STORAGE VOLUMES
21.32. DELETING A STORAGE VOLUME'S CONTENTS
21.33. DUMPING STORAGE VOLUME INFORMATION TO AN XML FILE
21.34. LISTING VOLUME INFORMATION
21.35. RETRIEVING STORAGE VOLUME INFORMATION
21.36. UPLOADING AND DOWNLOADING STORAGE VOLUMES
21.37. RESIZING STORAGE VOLUMES
21.38. DISPLAYING PER-GUEST VIRTUAL MACHINE INFORMATION
21.39. MANAGING VIRTUAL NETWORKS
21.40. INTERFACE COMMANDS
21.41. MANAGING SNAPSHOTS
21.42. GUEST VIRTUAL MACHINE CPU MODEL CONFIGURATION
21.43. CONFIGURING THE GUEST VIRTUAL MACHINE CPU MODEL
21.44. MANAGING RESOURCES FOR GUEST VIRTUAL MACHINES
21.45. SETTING SCHEDULE PARAMETERS
21.46. DISK I/O THROTTLING
21.47. DISPLAY OR SET BLOCK I/O PARAMETERS
21.48. CONFIGURING MEMORY TUNING

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS
22.1. INTRODUCTION
22.2. TERMINOLOGY
22.3. INSTALLATION
22.4. THE GUESTFISH SHELL
22.5. OTHER COMMANDS
22.6. VIRT-RESCUE: THE RESCUE SHELL
22.7. VIRT-DF: MONITORING DISK USAGE
22.8. VIRT-RESIZE: RESIZING GUEST VIRTUAL MACHINES OFFLINE
22.9. VIRT-INSPECTOR: INSPECTING GUEST VIRTUAL MACHINES
22.10. USING THE API FROM PROGRAMMING LANGUAGES
22.11. VIRT-SYSPREP: RESETTING VIRTUAL MACHINE SETTINGS
22.12. VIRT-CUSTOMIZE: CUSTOMIZING VIRTUAL MACHINE SETTINGS
22.13. VIRT-DIFF: LISTING THE DIFFERENCES BETWEEN VIRTUAL MACHINE FILES
22.14. VIRT-SPARSIFY: RECLAIMING EMPTY DISK SPACE

320
325
328
328
329
329
332
333
334
335
335
335
337
337
338
339
347
348
356
358
358
359
360
360
361
361
361
367
373
375
381
385
386
387
388
388
388

390
390
392
392
392
397
398
399
400
402
404
408
411
415
418

Virtualization Deployment and Administration Guide

4

. .

. .

. .

. .

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT
23.1. VIRT-VIEWER
23.2. REMOTE-VIEWER
23.3. GNOME BOXES

CHAPTER 24. MANIPULATING THE DOMAIN XML
24.1. GENERAL INFORMATION AND METADATA
24.2. OPERATING SYSTEM BOOTING
24.3. SMBIOS SYSTEM INFORMATION
24.4. CPU ALLOCATION
24.5. CPU TUNING
24.6. MEMORY BACKING
24.7. MEMORY TUNING
24.8. MEMORY ALLOCATION
24.9. NUMA NODE TUNING
24.10. BLOCK I/O TUNING
24.11. RESOURCE PARTITIONING
24.12. CPU MODELS AND TOPOLOGY
24.13. EVENTS CONFIGURATION
24.14. POWER MANAGEMENT
24.15. HYPERVISOR FEATURES
24.16. TIMEKEEPING
24.17. TIMER ELEMENT ATTRIBUTES
24.18. DEVICES
24.19. STORAGE POOLS
24.20. STORAGE VOLUMES
24.21. SECURITY LABEL
24.22. A SAMPLE CONFIGURATION FILE

PART III. APPENDICES

APPENDIX A. TROUBLESHOOTING
A.1. DEBUGGING AND TROUBLESHOOTING TOOLS
A.2. CREATING DUMP FILES
A.3. CAPTURING TRACE DATA ON A CONSTANT BASIS USING THE SYSTEMTAP FLIGHT RECORDER

A.4. KVM_STAT
A.5. TROUBLESHOOTING WITH SERIAL CONSOLES
A.6. VIRTUALIZATION LOGS
A.7. LOOP DEVICE ERRORS
A.8. LIVE MIGRATION ERRORS
A.9. ENABLING INTEL VT-X AND AMD-V VIRTUALIZATION HARDWARE EXTENSIONS IN BIOS
A.10. SHUTTING DOWN RED HAT ENTERPRISE LINUX 6 GUESTS ON A RED HAT ENTERPRISE LINUX 7
HOST
A.11. OPTIONAL WORKAROUND TO ALLOW FOR GRACEFUL SHUTDOWN
A.12. KVM NETWORKING PERFORMANCE
A.13. WORKAROUND FOR CREATING EXTERNAL SNAPSHOTS WITH LIBVIRT
A.14. MISSING CHARACTERS ON GUEST CONSOLE WITH JAPANESE KEYBOARD
A.15. GUEST VIRTUAL MACHINE FAILS TO SHUTDOWN
A.16. DISABLE SMART DISK MONITORING FOR GUEST VIRTUAL MACHINES
A.17. LIBGUESTFS TROUBLESHOOTING
A.18. TROUBLESHOOTING SR-IOV
A.19. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

423
423
425
427

432
432
433
436
436
437
439
439
440
441
442
443
443
449
451
452
453
456
457
511
517
522
524

525

526
526
527

529
530
534
535
535
536
536

537
539
542
543
544
544
545
545
546
546

Table of Contents

5

. .

. .

. .

. .

. .

APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE ARCHITECTURES
B.1. USING KVM VIRTUALIZATION ON IBM POWER SYSTEMS
B.2. USING KVM VIRTUALIZATION ON IBM Z SYSTEMS
B.3. USING KVM VIRTUALIZATION ON ARM SYSTEMS

APPENDIX C. VIRTUALIZATION RESTRICTIONS
C.1. SYSTEM RESTRICTIONS
C.2. FEATURE RESTRICTIONS
C.3. APPLICATION RESTRICTIONS
C.4. OTHER RESTRICTIONS
C.5. STORAGE SUPPORT
C.6. USB 3 / XHCI SUPPORT

APPENDIX D. ADDITIONAL RESOURCES
D.1. ONLINE RESOURCES
D.2. INSTALLED DOCUMENTATION

APPENDIX E. WORKING WITH IOMMU GROUPS[1]
E.1. IOMMU OVERVIEW
E.2. A DEEP-DIVE INTO IOMMU GROUPS
E.3. HOW TO IDENTIFY AND ASSIGN IOMMU GROUPS
E.4. IOMMU STRATEGIES AND USE CASES

APPENDIX F. REVISION HISTORY

574
574
576
578

579
579
579
582
582
582
583

584
584
584

585
585
586
587
589

591

Virtualization Deployment and Administration Guide

6

Table of Contents

7

PART I. DEPLOYMENT

Virtualization Deployment and Administration Guide

8

CHAPTER 1. SYSTEM REQUIREMENTS

Virtualization is available with the KVM hypervisor for Red Hat Enterprise Linux 7 on the Intel 64 and
AMD64 architectures. This chapter lists system requirements for running virtual machines, also referred
to as VMs.

For information on installing the virtualization packages, see Chapter 2, Installing the Virtualization
Packages.

1.1. HOST SYSTEM REQUIREMENTS

Minimum host system requirements

6 GB free disk space.

2 GB RAM.

Recommended system requirements

One core or thread for each virtualized CPU and one for the host.

2 GB of RAM, plus additional RAM for virtual machines.

6 GB disk space for the host, plus the required disk space for the virtual machine(s).

Most guest operating systems require at least 6 GB of disk space. Additional storage space for
each guest depends on their workload.

Swap space

Swap space in Linux is used when the amount of physical memory (RAM) is full. If the system
needs more memory resources and the RAM is full, inactive pages in memory are moved to the
swap space. While swap space can help machines with a small amount of RAM, it should not be
considered a replacement for more RAM. Swap space is located on hard drives, which have a
slower access time than physical memory. The size of your swap partition can be calculated
from the physical RAM of the host. The Red Hat Customer Portal contains an article on safely
and efficiently determining the size of the swap partition:
https://access.redhat.com/site/solutions/15244.

When using raw image files, the total disk space required is equal to or greater than the sum
of the space required by the image files, the 6 GB of space required by the host operating
system, and the swap space for the guest.

Equation 1.1. Calculating required space for guest virtual machines using raw images

total for raw format = images + hostspace + swap

For qcow images, you must also calculate the expected maximum storage requirements of
the guest (total for qcow format), as qcow and qcow2 images are able to grow as
required. To allow for this expansion, first multiply the expected maximum storage
requirements of the guest (expected maximum guest storage) by 1.01, and add to
this the space required by the host (host), and the necessary swap space (swap).

CHAPTER 1. SYSTEM REQUIREMENTS

9

https://access.redhat.com/site/solutions/15244

Equation 1.2. Calculating required space for guest virtual machines using qcow
images

total for qcow format = (expected maximum guest storage * 1.01) + host + swap

Guest virtual machine requirements are further outlined in Chapter 7, Overcommitting with KVM.

1.2. KVM HYPERVISOR REQUIREMENTS

The KVM hypervisor requires:

an Intel processor with the Intel VT-x and Intel 64 virtualization extensions for x86-based
systems; or

an AMD processor with the AMD-V and the AMD64 virtualization extensions.

Virtualization extensions (Intel VT-x or AMD-V) are required for full virtualization. Enter the following
commands to determine whether your system has the hardware virtualization extensions, and that they
are enabled.

Procedure 1.1. Verifying virtualization extensions

1. Verify the CPU virtualization extensions are available
enter the following command to verify the CPU virtualization extensions are available:

$ grep -E 'svm|vmx' /proc/cpuinfo

2. Analyze the output

The following example output contains a vmx entry, indicating an Intel processor with the
Intel VT-x extension:

flags : fpu tsc msr pae mce cx8 vmx apic mtrr mca cmov pat
pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm syscall lm constant_tsc pni
monitor ds_cpl
vmx est tm2 cx16 xtpr lahf_lm

The following example output contains an svm entry, indicating an AMD processor with the
AMD-V extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36
clflush
mmx fxsr sse sse2 ht syscall nx mmxext svm fxsr_opt lm 3dnowext
3dnow pni cx16
lahf_lm cmp_legacy svm cr8legacy ts fid vid ttp tm stc

If the grep -E 'svm|vmx' /proc/cpuinfo command returns any output, the processor
contains the hardware virtualization extensions. In some circumstances, manufacturers disable
the virtualization extensions in the BIOS. If the extensions do not appear, or full virtualization
does not work, see Procedure A.3, “Enabling virtualization extensions in BIOS” for instructions
on enabling the extensions in your BIOS configuration utility.

3. Ensure the KVM kernel modules are loaded

Virtualization Deployment and Administration Guide

10

As an additional check, verify that the kvm modules are loaded in the kernel with the following
command:

lsmod | grep kvm

If the output includes kvm_intel or kvm_amd, the kvm hardware virtualization modules are
loaded.

NOTE

The virsh utility (provided by the libvirt-client package) can output a full list of your
system's virtualization capabilities with the following command:

virsh capabilities

1.3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY

Red Hat Enterprise Linux 7 servers have certain support limits.

The following URLs explain the processor and memory amount limitations for Red Hat Enterprise Linux:

For host systems: https://access.redhat.com/articles/rhel-limits

For the KVM hypervisor: https://access.redhat.com/articles/rhel-kvm-limits

The following URL lists guest operating systems certified to run on a Red Hat Enterprise Linux KVM host:

https://access.redhat.com/articles/973133

NOTE

For additional information on the KVM hypervisor's restrictions and support limits, see
Appendix C, Virtualization Restrictions.

1.4. SUPPORTED GUEST CPU MODELS

Every hypervisor has its own policy for which CPU features the guest will see by default. The set of CPU
features presented to the guest by the hypervisor depends on the CPU model chosen in the guest virtual
machine configuration.

1.4.1. Listing the Guest CPU Models

To view a full list of the CPU models supported for an architecture type, run the virsh cpu-models
architecture command. For example:

$ virsh cpu-models x86_64
486
pentium
pentium2
pentium3
pentiumpro
coreduo

CHAPTER 1. SYSTEM REQUIREMENTS

11

https://access.redhat.com/articles/rhel-limits
https://access.redhat.com/articles/rhel-kvm-limits
https://access.redhat.com/articles/973133

n270
core2duo
qemu32
kvm32
cpu64-rhel5
cpu64-rhel6
kvm64
qemu64
Conroe
Penryn
Nehalem
Westmere
SandyBridge
Haswell
athlon
phenom
Opteron_G1
Opteron_G2
Opteron_G3
Opteron_G4
Opteron_G5

$ virsh cpu-models ppc64
POWER7
POWER7_v2.1
POWER7_v2.3
POWER7+_v2.1
POWER8_v1.0

The full list of supported CPU models and features is contained in the cpu_map.xml file, located in
/usr/share/libvirt/:

cat /usr/share/libvirt/cpu_map.xml

A guest's CPU model and features can be changed in the <cpu> section of the domain XML file. See
Section 24.12, “CPU Models and Topology” for more information.

The host model can be configured to use a specified feature set as needed. For more information, see
Section 24.12.1, “Changing the Feature Set for a Specified CPU”.

Virtualization Deployment and Administration Guide

12

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES
To use virtualization, Red Hat virtualization packages must be installed on your computer. Virtualization
packages can be installed when installing Red Hat Enterprise Linux or after installation using the yum
command and Subscription Manager.

The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.

2.1. INSTALLING VIRTUALIZATION PACKAGES DURING A RED HAT
ENTERPRISE LINUX INSTALLATION

This section provides information about installing virtualization packages while installing Red Hat
Enterprise Linux.

NOTE

For detailed information about installing Red Hat Enterprise Linux, see the Red Hat
Enterprise Linux 7 Installation Guide.

IMPORTANT

The Anaconda interface only offers the option to install Red Hat virtualization packages
during the installation of Red Hat Enterprise Linux Server.

When installing a Red Hat Enterprise Linux Workstation, the Red Hat virtualization
packages can only be installed after the workstation installation is complete. See
Section 2.2, “Installing Virtualization Packages on an Existing Red Hat Enterprise Linux
System”

Procedure 2.1. Installing virtualization packages

1. Select software
Follow the installation procedure until the Installation Summary screen.

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

13

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Figure 2.1. The Installation Summary screen

In the Installation Summary screen, click Software Selection. The Software
Selection screen opens.

2. Select the server type and package groups
You can install Red Hat Enterprise Linux 7 with only the basic virtualization packages or with
packages that allow management of guests through a graphical user interface. Do one of the
following:

Install a minimal virtualization host

Select the Virtualization Host radio button in the Base Environment pane and the
Virtualization Platform check box in the Add-Ons for Selected Environment
pane. This installs a basic virtualization environment which can be run with virsh or
remotely over the network.

Virtualization Deployment and Administration Guide

14

Figure 2.2. Virtualization Host selected in the Software Selection screen

Install a virtualization host with a graphical user interface

Select the Server with GUI radio button in the Base Environment pane and the
Virtualization Client, Virtualization Hypervisor, and Virtualization
Tools check boxes in the Add-Ons for Selected Environment pane. This installs a
virtualization environment along with graphical tools for installing and managing guest virtual
machines.

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

15

Figure 2.3. Server with GUI selected in the software selection screen

3. Finalize installation
Click Done and continue with the installation.

IMPORTANT

You need a valid Red Hat Enterprise Linux subscription to receive updates for the
virtualization packages.

2.1.1. Installing KVM Packages with Kickstart Files

To use a Kickstart file to install Red Hat Enterprise Linux with the virtualization packages, append the
following package groups in the %packages section of your Kickstart file:

@virtualization-hypervisor
@virtualization-client
@virtualization-platform
@virtualization-tools

For more information about installing with Kickstart files, see the Red Hat Enterprise Linux 7 Installation
Guide.

2.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED
HAT ENTERPRISE LINUX SYSTEM

This section describes the steps for installing the KVM hypervisor on an existing Red Hat Enterprise
Linux 7 system.

Virtualization Deployment and Administration Guide

16

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-kickstart-installations.html

To install the packages, your machine must be registered and subscribed to the Red Hat Customer
Portal. To register using Red Hat Subscription Manager, run the subscription-manager register
command and follow the prompts. Alternatively, run the Red Hat Subscription Manager application from
Applications → System Tools on the desktop to register.

If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one. For more
information on registering and subscribing a system to the Red Hat Customer Portal, see
https://access.redhat.com/solutions/253273.

2.2.1. Installing Virtualization Packages Manually

To use virtualization on Red Hat Enterprise Linux, at minimum, you need to install the following
packages:

qemu-kvm: This package provides the user-level KVM emulator and facilitates communication
between hosts and guest virtual machines.

qemu-img: This package provides disk management for guest virtual machines.

NOTE

The qemu-img package is installed as a dependency of the qemu-kvm package.

libvirt: This package provides the server and host-side libraries for interacting with hypervisors
and host systems, and the libvirtd daemon that handles the library calls, manages virtual
machines, and controls the hypervisor.

To install these packages, enter the following command:

yum install qemu-kvm libvirt

Several additional virtualization management packages are also available and are recommended when
using virtualization:

virt-install: This package provides the virt-install command for creating virtual machines
from the command line.

libvirt-python: This package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager: This package provides the virt-manager tool, also known as Virtual Machine
Manager. This is a graphical tool for administering virtual machines. It uses the libvirt-client
library as the management API.

libvirt-client: This package provides the client-side APIs and libraries for accessing libvirt servers.
The libvirt-client package includes the virsh command-line tool to manage and control virtual
machines and hypervisors from the command line or a special virtualization shell.

You can install all of these recommended virtualization packages with the following command:

yum install virt-install libvirt-python virt-manager virt-install
libvirt-client

2.2.2. Installing Virtualization Package Groups

CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES

17

https://www.redhat.com/wapps/store/catalog.html
https://access.redhat.com/solutions/253273

The virtualization packages can also be installed from package groups. The following table describes the
virtualization package groups and what they provide.

Table 2.1. Virtualization Package Groups

Package Group Description Mandatory Packages Optional Packages

Virtualization
Hypervisor

Smallest possible
virtualization host
installation

libvirt, qemu-kvm, qemu-
img

qemu-kvm-tools

Virtualization
Client

Clients for installing and
managing virtualization
instances

gnome-boxes, virt-install,
virt-manager, virt-viewer,
qemu-img

virt-top, libguestfs-tools,
libguestfs-tools-c

Virtualization
Platform

Provides an interface for
accessing and
controlling virtual
machines and
containers

libvirt, libvirt-client, virt-
who, qemu-img

fence-virtd-libvirt, fence-
virtd-multicast, fence-
virtd-serial, libvirt-cim,
libvirt-java, libvirt-snmp,
perl-Sys-Virt

Virtualization
Tools

Tools for offline virtual
image management

libguestfs, qemu-img libguestfs-java,
libguestfs-tools,
libguestfs-tools-c

To install a package group, run the yum groupinstall package_group command. Use the --
optional option to install the optional packages in the package group. For example, to install the
Virtualization Tools package group with all of its optional packages, run:

yum groupinstall "Virtualization Tools" --optional

Virtualization Deployment and Administration Guide

18

CHAPTER 3. CREATING A VIRTUAL MACHINE
After you have installed the virtualization packages on your Red Hat Enterprise Linux 7 host system, you
can create virtual machines and install guest operating systems using the virt-manager interface.
Alternatively, you can use the virt-install command-line utility by a list of parameters or with a
script. Both methods are covered by this chapter.

3.1. GUEST VIRTUAL MACHINE DEPLOYMENT CONSIDERATIONS

Various factors should be considered before creating any guest virtual machines. The role of a virtual
machine should be evaluated before deployment, but regular monitoring and assessment based on
variable factors (load, amount of clients) should also be performed. The factors include:

Performance

Guest virtual machines should be deployed and configured based on their intended tasks. Some
guest systems (for instance, guests running a database server) may require special performance
considerations. Guests may require more assigned CPUs or memory based on their role and
projected system load.

Input/Output requirements and types of Input/Output

Some guest virtual machines may have a particularly high I/O requirement or may require further
considerations or projections based on the type of I/O (for instance, typical disk block size access, or
the amount of clients).

Storage

Some guest virtual machines may require higher priority access to storage or faster disk types, or
may require exclusive access to areas of storage. The amount of storage used by guests should also
be regularly monitored and taken into account when deploying and maintaining storage. Make sure to
read all the considerations outlined in Red Hat Enterprise Linux 7 Virtualization Security Guide. It is
also important to understand that your physical storage may limit your options in your virtual storage.

Networking and network infrastructure

Depending upon your environment, some guest virtual machines could require faster network links
than other guests. Bandwidth or latency are often factors when deploying and maintaining guests,
especially as requirements or load changes.

Request requirements

SCSI requests can only be issued to guest virtual machines on virtio drives if the virtio drives are
backed by whole disks, and the disk device parameter is set to lun in the domain XML file, as shown
in the following example:

<devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='block' device='lun'>

3.2. CREATING GUESTS WITH VIRT-INSTALL

You can use the virt-install command to create virtual machines and install operating system on
those virtual machines from the command line. virt-install can be used either interactively or as

CHAPTER 3. CREATING A VIRTUAL MACHINE

19

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html

part of a script to automate the creation of virtual machines. If you are using an interactive graphical
installation, you must have virt-viewer installed before you run virt-install. In addition, you can
start an unattended installation of virtual machine operating systems using virt-install with kickstart
files.

NOTE

You might need root privileges in order for some virt-install commands to complete
successfully.

The virt-install utility uses a number of command-line options. However, most virt-install
options are not required.

The main required options for virtual guest machine installations are:

--name

The name of the virtual machine.

--memory

The amount of memory (RAM) to allocate to the guest, in MiB.

Guest storage

Use one of the following guest storage options:

--disk

The storage configuration details for the virtual machine. If you use the --disk none
option, the virtual machine is created with no disk space.

--filesystem

The path to the file system for the virtual machine guest.

Installation method

Use one of the following installation methods:

--location

The location of the installation media.

--cdrom

The file or device used as a virtual CD-ROM device. It can be path to an ISO image, or to a
CDROM device. It can also be a URL from which to fetch or access a minimal boot ISO
image.

--pxe

Uses the PXE boot protocol to load the initial ramdisk and kernel for starting the guest
installation process.

--import

Virtualization Deployment and Administration Guide

20

Skips the OS installation process and builds a guest around an existing disk image. The
device used for booting is the first device specified by the disk or filesystem option.

--boot

The post-install VM boot configuration. This option allows specifying a boot device order,
permanently booting off kernel and initrd with optional kernel arguments and enabling a BIOS
boot menu.

To see a complete list of options, enter the following command:

virt-install --help

To see a complete list of attributes for an option, enter the following command:

virt install --option=?

The virt-install man page also documents each command option, important variables, and
examples.

Prior to running virt-install, you may also need to use qemu-img to configure storage options. For
instructions on using qemu-img, refer to Chapter 15, Using qemu-img.

3.2.1. Installing a virtual machine from an ISO image

The following example installs a virtual machine from an ISO image:

virt-install \
 --name guest1-rhel7 \
 --memory 2048 \
 --vcpus 2 \
 --disk size=8 \
 --cdrom /path/to/rhel7.iso \
 --os-variant rhel7

The --cdrom /path/to/rhel7.iso option specifies that the virtual machine will be installed from the
CD or DVD image at the specified location.

3.2.2. Importing a virtual machine image

The following example imports a virtual machine from a virtual disk image:

virt-install \
 --name guest1-rhel7 \
 --memory 2048 \
 --vcpus 2 \
 --disk /path/to/imported/disk.qcow \
 --import \
 --os-variant rhel7

The --import option specifies that the virtual machine will be imported from the virtual disk image
specified by the --disk /path/to/imported/disk.qcow option.

CHAPTER 3. CREATING A VIRTUAL MACHINE

21

3.2.3. Installing a virtual machine from the network

The following example installs a virtual machine from a network location:

virt-install \
 --name guest1-rhel7 \
 --memory 2048 \
 --vcpus 2 \
 --disk size=8 \
 --location http://example.com/path/to/os \
 --os-variant rhel7

The --location http://example.com/path/to/os option specifies that the installation tree is at
the specified network location.

3.2.4. Installing a virtual machine using PXE

When installing a virtual machine using the PXE boot protocol, both the --network option specifying a
bridged network and the --pxe option must be specified.

The following example installs a virtual machine using PXE:

virt-install \
 --name guest1-rhel7 \
 --memory 2048 \
 --vcpus 2 \
 --disk size=8 \
 --network=bridge:br0 \
 --pxe \
 --os-variant rhel7

3.2.5. Installing a virtual machine with Kickstart

The following example installs a virtual machine using a kickstart file:

virt-install \
 --name guest1-rhel7 \
 --memory 2048 \
 --vcpus 2 \
 --disk size=8 \
 --location http://example.com/path/to/os \
 --os-variant rhel7 \
 --initrd-inject /path/to/ks.cfg \
 --extra-args="ks=file:/ks.cfg console=tty0 console=ttyS0,115200n8"

The initrd-inject and the extra-args options specify that the virtual machine will be installed
using a Kickstarter file.

3.2.6. Configuring the guest virtual machine network during guest creation

When creating a guest virtual machine, you can specify and configure the network for the virtual
machine. This section provides the options for each of the guest virtual machine main network types.

Virtualization Deployment and Administration Guide

22

Default network with NAT
The default network uses libvirtd's network address translation (NAT) virtual network switch. For
more information about NAT, see Section 6.1, “Network Address Translation (NAT) with libvirt”.

Before creating a guest virtual machine with the default network with NAT, ensure that the libvirt-
daemon-config-network package is installed.

To configure a NAT network for the guest virtual machine, use the following option for virt-install:

--network default

NOTE

If no network option is specified, the guest virtual machine is configured with a default
network with NAT.

Bridged network with DHCP
When configured for bridged networking, the guest uses an external DHCP server. This option should be
used if the host has a static networking configuration and the guest requires full inbound and outbound
connectivity with the local area network (LAN). It should be used if live migration will be performed with
the guest virtual machine. To configure a bridged network with DHCP for the guest virtual machine, use
the following option:

--network br0

NOTE

The bridge must be created separately, prior to running virt-install. For details on
creating a network bridge, see Section 6.4.1, “Configuring Bridged Networking on a Red
Hat Enterprise Linux 7 Host”.

Bridged network with a static IP address
Bridged networking can also be used to configure the guest to use a static IP address. To configure a
bridged network with a static IP address for the guest virtual machine, use the following options:

--network br0 \
--extra-args
"ip=192.168.1.2::192.168.1.1:255.255.255.0:test.example.com:eth0:none"

For more information on network booting options, see the Red Hat Enterprise Linux 7 Virtualization
Guide.

No network
To configure a guest virtual machine with no network interface, use the following option:

--network=none

3.3. CREATING GUESTS WITH VIRT-MANAGER

The Virtual Machine Manager, also known as virt-manager, is a graphical tool for creating and
managing guest virtual machines.

CHAPTER 3. CREATING A VIRTUAL MACHINE

23

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html#sect-boot-options-installer

This section covers how to install a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat
Enterprise Linux 7 host using virt-manager.

These procedures assume that the KVM hypervisor and all other required packages are installed and the
host is configured for virtualization. For more information on installing the virtualization packages, refer to
Chapter 2, Installing the Virtualization Packages.

3.3.1. virt-manager installation overview

The New VM wizard breaks down the virtual machine creation process into five steps:

1. Choosing the hypervisor and installation type

2. Locating and configuring the installation media

3. Configuring memory and CPU options

4. Configuring the virtual machine's storage

5. Configuring virtual machine name, networking, architecture, and other hardware settings

Ensure that virt-manager can access the installation media (whether locally or over the network)
before you continue.

3.3.2. Creating a Red Hat Enterprise Linux 7 Guest with virt-manager

This procedure covers creating a Red Hat Enterprise Linux 7 guest virtual machine with a locally stored
installation DVD or DVD image. Red Hat Enterprise Linux 7 DVD images are available from the Red Hat
Customer Portal.

Procedure 3.1. Creating a Red Hat Enterprise Linux 7 guest virtual machine with virt-manager
using local installation media

1. Optional: Preparation
Prepare the storage environment for the virtual machine. For more information on preparing
storage, refer to Chapter 13, Storage Pools.

IMPORTANT

Various storage types may be used for storing guest virtual machines. However,
for a virtual machine to be able to use migration features, the virtual machine
must be created on networked storage.

Red Hat Enterprise Linux 7 requires at least 1 GB of storage space. However, Red Hat
recommends at least 5 GB of storage space for a Red Hat Enterprise Linux 7 installation and for
the procedures in this guide.

2. Open virt-manager and start the wizard
Open virt-manager by executing the virt-manager command as root or opening
Applications → System Tools → Virtual Machine Manager. Alternatively, run the
virt-manager command as root.

Virtualization Deployment and Administration Guide

24

https://access.redhat.com/downloads/content/71/ver=/rhel---7/

Figure 3.1. The Virtual Machine Manager window

Optionally, open a remote hypervisor by selecting the hypervisor and clicking the Connect
button.

Click to start the new virtualized guest wizard.

The New VM window opens.

3. Specify installation type
Select the installation type:

Local install media (ISO image or CDROM)

This method uses a CD-ROM, DVD, or image of an installation disk (for example, .iso).

Network Install (HTTP, FTP, or NFS)

This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora installation
tree to install a guest. The installation tree must be accessible through either HTTP, FTP, or
NFS.

If you select Network Install, provide the installation URL and also Kernel options, if
required.

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest virtual
machine. Setting up a PXE server is covered in the Red Hat Enterprise Linux 7 Installation
Guide. To install via network boot, the guest must have a routable IP address or shared
network device.

If you select Network Boot, continue to STEP 5. After all steps are completed, a DHCP
request is sent and if a valid PXE server is found the guest virtual machine's installation
processes will start.

CHAPTER 3. CREATING A VIRTUAL MACHINE

25

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-installation-server-setup.html#sect-network-boot-setup-bios

Import existing disk image

This method allows you to create a new guest virtual machine and import a disk image
(containing a pre-installed, bootable operating system) to it.

Figure 3.2. Virtual machine installation method

Click Forward to continue.

4. Select the installation source

a. If you selected Local install media (ISO image or CDROM), specify your intended
local installation media.

Virtualization Deployment and Administration Guide

26

Figure 3.3. Local ISO image installation

If you wish to install from a CD-ROM or DVD, select the Use CDROM or DVD radio
button, and select the appropriate disk drive from the drop-down list of drives available.

If you wish to install from an ISO image, select Use ISO image, and then click the
Browse... button to open the Locate media volume window.

Select the installation image you wish to use, and click Choose Volume.

If no images are displayed in the Locate media volume window, click the Browse
Local button to browse the host machine for the installation image or DVD drive
containing the installation disk. Select the installation image or DVD drive containing the
installation disk and click Open; the volume is selected for use and you are returned to
the Create a new virtual machine wizard.

CHAPTER 3. CREATING A VIRTUAL MACHINE

27

IMPORTANT

For ISO image files and guest storage images, the recommended
location to use is /var/lib/libvirt/images/. Any other location
may require additional configuration by SELinux. Refer to the Red Hat
Enterprise Linux Virtualization Security Guide or the Red Hat Enterprise
Linux SELinux User's and Administrator's Guide for more details on
configuring SELinux.

b. If you selected Network Install, input the URL of the installation source and also the
required Kernel options, if any. The URL must point to the root directory of an installation
tree, which must be accessible through either HTTP, FTP, or NFS.

To perform a kickstart installation, specify the URL of a kickstart file in Kernel options,
starting with ks=

Figure 3.4. Network kickstart installation

Virtualization Deployment and Administration Guide

28

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

NOTE

For a complete list of kernel options, see the Red Hat Enterprise Linux 7
Installation Guide.

Next, configure the OS type and Version of the installation. Ensure that you select the
appropriate operating system type for your virtual machine. This can be specified manually or by
selecting the Automatically detect operating system based on install media
check box.

Click Forward to continue.

5. Configure memory (RAM) and virtual CPUs
Specify the number of CPUs and amount of memory (RAM) to allocate to the virtual machine.
The wizard shows the number of CPUs and amount of memory you can allocate; these values
affect the host's and guest's performance.

Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively. Red
Hat supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at least
1024MB of RAM for each logical core.

Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multi-threaded
application, assign the number of virtual CPUs the guest virtual machine will require to run
efficiently.

You cannot assign more virtual CPUs than there are physical processors (or hyper-threads)
available on the host system. The number of virtual CPUs available is noted in the Up to X
available field.

CHAPTER 3. CREATING A VIRTUAL MACHINE

29

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-anaconda-boot-options.html

Figure 3.5. Configuring Memory and CPU

After you have configured the memory and CPU settings, click Forward to continue.

NOTE

Memory and virtual CPUs can be overcommitted. For more information on
overcommitting, refer to Chapter 7, Overcommitting with KVM.

6. Configure storage
Enable and assign sufficient space for your virtual machine and any applications it requires.
Assign at least 5 GB for a desktop installation or at least 1 GB for a minimal installation.

Virtualization Deployment and Administration Guide

30

Figure 3.6. Configuring virtual storage

NOTE

Live and offline migrations require virtual machines to be installed on shared
network storage. For information on setting up shared storage for virtual
machines, refer to Section 16.4, “Shared Storage Example: NFS for a Simple
Migration”.

a. With the default local storage
Select the Create a disk image on the computer's hard drive radio button to
create a file-based image in the default storage pool, the /var/lib/libvirt/images/
directory. Enter the size of the disk image to be created. If the Allocate entire disk
now check box is selected, a disk image of the size specified will be created immediately. If
not, the disk image will grow as it becomes filled.

CHAPTER 3. CREATING A VIRTUAL MACHINE

31

NOTE

Although the storage pool is a virtual container it is limited by two factors:
maximum size allowed to it by qemu-kvm and the size of the disk on the host
physical machine. Storage pools may not exceed the size of the disk on the
host physical machine. The maximum sizes are as follows:

virtio-blk = 2^63 bytes or 8 Exabytes(using raw files or disk)

Ext4 = ~ 16 TB (using 4 KB block size)

XFS = ~8 Exabytes

qcow2 and host file systems keep their own metadata and scalability
should be evaluated/tuned when trying very large image sizes. Using raw
disks means fewer layers that could affect scalability or max size.

Click Forward to create a disk image on the local hard drive. Alternatively, select Select
managed or other existing storage, then select Browse to configure managed
storage.

b. With a storage pool
If you select Select managed or other existing storage to use a storage pool,
click Browse to open the Locate or create storage volume window.

Figure 3.7. The Choose Storage Volume window

i. Select a storage pool from the Storage Pools list.

ii. Optional: Click to create a new storage volume. The Add a Storage Volume
screen will appear. Enter the name of the new storage volume.

Virtualization Deployment and Administration Guide

32

Choose a format option from the Format drop-down menu. Format options include raw,
qcow2, and qed. Adjust other fields as needed. Note that the qcow2 version used here
is version 3. To change the qcow version refer to Section 24.20.2, “Setting Target
Elements”

Figure 3.8. The Add a Storage Volume window

Select the new volume and click Choose volume. Next, click Finish to return to the New VM
wizard. Click Forward to continue.

7. Name and final configuration
Name the virtual machine. Virtual machine names can contain letters, numbers and the following
characters: underscores (_), periods (.), and hyphens (-). Virtual machine names must be
unique for migration and cannot consist only of numbers.

By default, the virtual machine will be created with network address translation (NAT) for a
network called 'default' . To change the network selection, click Network selection and
select a host device and source mode.

Verify the settings of the virtual machine and click Finish when you are satisfied; this will create
the virtual machine with specified networking settings, virtualization type, and architecture.

CHAPTER 3. CREATING A VIRTUAL MACHINE

33

Figure 3.9. Verifying the configuration

Or, to further configure the virtual machine's hardware, check the Customize configuration
before install check box to change the guest's storage or network devices, to use the
paravirtualized (virtio) drivers or to add additional devices. This opens another wizard that will
allow you to add, remove, and configure the virtual machine's hardware settings.

NOTE

Red Hat Enterprise Linux 4 or Red Hat Enterprise Linux 5 guest virtual machines
cannot be installed using graphical mode. As such, you must select "Cirrus"
instead of "QXL" as a video card.

After configuring the virtual machine's hardware, click Apply. virt-manager will then create
the virtual machine with your specified hardware settings.

Virtualization Deployment and Administration Guide

34

WARNING

When installing a Red Hat Enterprise Linux 7 guest virtual machine from a
remote medium but without a configured TCP/IP connection, the installation
fails. However, when installing a guest virtual machine of Red Hat
Enterprise Linux 5 or 6 in such circumstances, the installer opens a
"Configure TCP/IP" interface.

For further information about this difference, see the related knowledgebase
article.

Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more
information on installing Red Hat Enterprise Linux 7, refer to the Red Hat Enterprise Linux 7
Installation Guide.

A Red Hat Enterprise Linux 7 guest virtual machine is now created from an ISO installation disk image.

3.4. COMPARISON OF VIRT-INSTALL AND VIRT-MANAGER
INSTALLATION OPTIONS

This table provides a quick reference to compare equivalent virt-install and virt-manager
installation options for when installing a virtual machine.

Most virt-install options are not required. The minimum requirements are --name, --memory,
guest storage (--disk, --filesystem or --disk none), and an install method (--location, --
cdrom, --pxe, --import, or boot). These options are further specified with arguments; to see a
complete list of command options and related arguments, enter the following command:

virt-install --help

In virt-manager, at minimum, a name, installation method, memory (RAM), vCPUs, storage are
required.

Table 3.1. virt-install and virt-manager configuration comparison for guest installations

Configuration on virtual
machine

virt-install option virt-manager installation wizard
label and step number

Virtual machine name --name, -n Name (step 5)

RAM to allocate (MiB) --ram, -r Memory (RAM) (step 3)

Storage - specify storage media --disk Enable storage for this virtual
machine → Create a disk image
on the computer's hard drive, or
Select managed or other existing
storage (step 4)



CHAPTER 3. CREATING A VIRTUAL MACHINE

35

https://access.redhat.com/solutions/511263
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Storage - export a host directory
to the guest

--filesystem Enable storage for this virtual
machine → Select managed or
other existing storage (step 4)

Storage - configure no local disk
storage on the guest

--nodisks Deselect the Enable storage for
this virtual machine check box
(step 4)

Installation media location (local
install)

--file Local install media → Locate your
install media (steps 1-2)

Installation via distribution tree
(network install)

--location Network install → URL (steps 1-2)

Install guest with PXE --pxe Network boot (step 1)

Number of vCPUs --vcpus CPUs (step 3)

Host network --network Advanced options drop-down
menu (step 5)

Operating system variant/version --os-variant Version (step 2)

Graphical display method --graphics, --nographics * virt-manager provides GUI
installation only

Configuration on virtual
machine

virt-install option virt-manager installation wizard
label and step number

Virtualization Deployment and Administration Guide

36

CHAPTER 4. CLONING VIRTUAL MACHINES
There are two types of guest virtual machine instances used in creating guest copies:

Clones are instances of a single virtual machine. Clones can be used to set up a network of
identical virtual machines, and they can also be distributed to other destinations.

Templates are instances of a virtual machine that are designed to be used as a source for
cloning. You can create multiple clones from a template and make minor modifications to each
clone. This is useful in seeing the effects of these changes on the system.

Both clones and templates are virtual machine instances. The difference between them is in how they
are used.

For the created clone to work properly, information and configurations unique to the virtual machine that
is being cloned usually has to be removed before cloning. The information that needs to be removed
differs, based on how the clones will be used.

The information and configurations to be removed may be on any of the following levels:

Platform level information and configurations include anything assigned to the virtual machine by
the virtualization solution. Examples include the number of Network Interface Cards (NICs) and
their MAC addresses.

Guest operating system level information and configurations include anything configured within
the virtual machine. Examples include SSH keys.

Application level information and configurations include anything configured by an application
installed on the virtual machine. Examples include activation codes and registration information.

NOTE

This chapter does not include information about removing the application level,
because the information and approach is specific to each application.

As a result, some of the information and configurations must be removed from within the virtual machine,
while other information and configurations must be removed from the virtual machine using the
virtualization environment (for example, Virtual Machine Manager or VMware).

NOTE

For information on cloning storage volumes, see Section 14.3, “Cloning Volumes”.

4.1. PREPARING VIRTUAL MACHINES FOR CLONING

Before cloning a virtual machine, it must be prepared by running the virt-sysprep utility on its disk image,
or by using the following steps:

Procedure 4.1. Preparing a virtual machine for cloning

1. Setup the virtual machine

a. Build the virtual machine that is to be used for the clone or template.

CHAPTER 4. CLONING VIRTUAL MACHINES

37

Install any software needed on the clone.

Configure any non-unique settings for the operating system.

Configure any non-unique application settings.

2. Remove the network configuration

a. Remove any persistent udev rules using the following command:

rm -f /etc/udev/rules.d/70-persistent-net.rules

NOTE

If udev rules are not removed, the name of the first NIC may be eth1 instead
of eth0.

b. Remove unique network details from ifcfg scripts by making the following edits to
/etc/sysconfig/network-scripts/ifcfg-eth[x]:

i. Remove the HWADDR and Static lines

NOTE

If the HWADDR does not match the new guest's MAC address, the ifcfg
will be ignored. Therefore, it is important to remove the HWADDR from
the file.

DEVICE=eth[x]
BOOTPROTO=none
ONBOOT=yes
#NETWORK=10.0.1.0 <- REMOVE
#NETMASK=255.255.255.0 <- REMOVE
#IPADDR=10.0.1.20 <- REMOVE
#HWADDR=xx:xx:xx:xx:xx <- REMOVE
#USERCTL=no <- REMOVE
Remove any other *unique* or non-desired settings, such as
UUID.

ii. Ensure that a DHCP configuration remains that does not include a HWADDR or any
unique information.

DEVICE=eth[x]
BOOTPROTO=dhcp
ONBOOT=yes

iii. Ensure that the file includes the following lines:

DEVICE=eth[x]
ONBOOT=yes

c. If the following files exist, ensure that they contain the same content:

Virtualization Deployment and Administration Guide

38

/etc/sysconfig/networking/devices/ifcfg-eth[x]

/etc/sysconfig/networking/profiles/default/ifcfg-eth[x]

NOTE

If NetworkManager or any special settings were used with the virtual
machine, ensure that any additional unique information is removed from the
ifcfg scripts.

3. Remove registration details

a. Remove registration details using one of the following:

For Red Hat Network (RHN) registered guest virtual machines, run the following
command:

rm /etc/sysconfig/rhn/systemid

For Red Hat Subscription Manager (RHSM) registered guest virtual machines:

If the original virtual machine will not be used, run the following commands:

subscription-manager unsubscribe --all
subscription-manager unregister
subscription-manager clean

If the original virtual machine will be used, run only the following command:

subscription-manager clean

NOTE

The original RHSM profile remains in the portal.

4. Removing other unique details

a. Remove any sshd public/private key pairs using the following command:

rm -rf /etc/ssh/ssh_host_*

NOTE

Removing ssh keys prevents problems with ssh clients not trusting these
hosts.

b. Remove any other application-specific identifiers or configurations that may cause conflicts if
running on multiple machines.

5. Configure the virtual machine to run configuration wizards on the next boot

CHAPTER 4. CLONING VIRTUAL MACHINES

39

a. Configure the virtual machine to run the relevant configuration wizards the next time it is
booted by doing one of the following:

For Red Hat Enterprise Linux 6 and below, create an empty file on the root file system
called .unconfigured using the following command:

touch /.unconfigured

For Red Hat Enterprise Linux 7, enable the first boot and initial-setup wizards by running
the following commands:

sed -ie 's/RUN_FIRSTBOOT=NO/RUN_FIRSTBOOT=YES/'
/etc/sysconfig/firstboot
systemctl enable firstboot-graphical
systemctl enable initial-setup-graphical

NOTE

The wizards that run on the next boot depend on the configurations that have
been removed from the virtual machine. In addition, on the first boot of the
clone, it is recommended that you change the hostname.

4.2. CLONING A VIRTUAL MACHINE

Before proceeding with cloning, shut down the virtual machine. You can clone the virtual machine using
virt-clone or virt-manager.

4.2.1. Cloning Guests with virt-clone

You can use virt-clone to clone virtual machines from the command line.

Note that you need root privileges for virt-clone to complete successfully.

The virt-clone command provides a number of options that can be passed on the command line.
These include general options, storage configuration options, networking configuration options, and
miscellaneous options. Only the --original is required. To see a complete list of options, enter the
following command:

virt-clone --help

The virt-clone man page also documents each command option, important variables, and examples.

The following example shows how to clone a guest virtual machine called "demo" on the default
connection, automatically generating a new name and disk clone path.

Example 4.1. Using virt-clone to clone a guest

virt-clone --original demo --auto-clone

The following example shows how to clone a QEMU guest virtual machine called "demo" with multiple
disks.

Virtualization Deployment and Administration Guide

40

Example 4.2. Using virt-clone to clone a guest

virt-clone --connect qemu:///system --original demo --name newdemo --
file /var/lib/libvirt/images/newdemo.img --file
/var/lib/libvirt/images/newdata.img

4.2.2. Cloning Guests with virt-manager

This procedure describes cloning a guest virtual machine using the virt-manager utility.

Procedure 4.2. Cloning a Virtual Machine with virt-manager

1. Open virt-manager
Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

Select the guest virtual machine you want to clone from the list of guest virtual machines in
Virtual Machine Manager.

Right-click the guest virtual machine you want to clone and select Clone. The Clone Virtual
Machine window opens.

CHAPTER 4. CLONING VIRTUAL MACHINES

41

Figure 4.1. Clone Virtual Machine window

2. Configure the clone

To change the name of the clone, enter a new name for the clone.

Virtualization Deployment and Administration Guide

42

To change the networking configuration, click Details.

Enter a new MAC address for the clone.

Click OK.

Figure 4.2. Change MAC Address window

For each disk in the cloned guest virtual machine, select one of the following options:

Clone this disk - The disk will be cloned for the cloned guest virtual machine

Share disk with guest virtual machine name - The disk will be shared by
the guest virtual machine that will be cloned and its clone

Details - Opens the Change storage path window, which enables selecting a new
path for the disk

Figure 4.3. Change storage path window

3. Clone the guest virtual machine
Click Clone.

CHAPTER 4. CLONING VIRTUAL MACHINES

43

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
Paravirtualized drivers enhance the performance of guests, decreasing guest I/O latency and increasing
throughput almost to bare-metal levels. It is recommended to use the paravirtualized drivers for fully
virtualized guests running I/O-heavy tasks and applications.

Virtio drivers are KVM's paravirtualized device drivers, available for guest virtual machines running on
KVM hosts. These drivers are included in the virtio package. The virtio package supports block
(storage) devices and network interface controllers.

NOTE

PCI devices are limited by the virtualized system architecture. Refer to Chapter 17, Guest
Virtual Machine Device Configuration for additional limitations when using assigned
devices.

5.1. USING KVM VIRTIO DRIVERS FOR EXISTING STORAGE DEVICES

You can modify an existing hard disk device attached to the guest to use the virtio driver instead of
the virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note that the
guest virtual machine does not need to be shut down to perform these steps, however the change will not
be applied until the guest is completely shut down and rebooted.

Procedure 5.1. Using KVM virtio drivers for existing devices

1. Ensure that you have installed the appropriate driver (viostor), before continuing with this
procedure.

2. Run the virsh edit guestname command as root to edit the XML configuration file for your
device. For example, virsh edit guest1. The configuration files are located in the
/etc/libvirt/qemu/ directory.

3. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a
virtual machine not using the virtio drivers.

<disk type='file' device='disk'>
 ...
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='hda' bus='ide'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x07'
function='0x0'/>
</disk>

4. Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if the
disk was previously IDE, it has a target similar to hda, hdb, or hdc. When changing to
bus=virtio the target needs to be changed to vda, vdb, or vdc accordingly.

<disk type='file' device='disk'>
 ...
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='vda' bus='virtio'/>

Virtualization Deployment and Administration Guide

44

 <address type='pci' domain='0x0000' bus='0x00' slot='0x07'
function='0x0'/>
</disk>

5. Remove the address tag inside the disk tags. This must be done for this procedure to work.
Libvirt will regenerate the address tag appropriately the next time the virtual machine is started.

Alternatively, virt-manager, virsh attach-disk or virsh attach-interface can add a new
device using the virtio drivers.

Refer to the libvirt website for more details on using Virtio: http://www.linux-kvm.org/page/Virtio

5.2. USING KVM VIRTIO DRIVERS FOR NEW STORAGE DEVICES

This procedure covers creating new storage devices using the KVM virtio drivers with virt-manager.

Alternatively, the virsh attach-disk or virsh attach-interface commands can be used to
attach devices using the virtio drivers.

IMPORTANT

Ensure the drivers have been installed on the guest before proceeding to install new
devices. If the drivers are unavailable the device will not be recognized and will not work.

Procedure 5.2. Adding a storage device using the virtio storage driver

1. Open the guest virtual machine by double clicking the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking .

3. In the Show virtual hardware details tab, click the Add Hardware button.

4. Select hardware type
Select Storage as the Hardware type.

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

45

http://www.linux-kvm.org/page/Virtio

Figure 5.1. The Add new virtual hardware wizard

5. Select the storage device and driver
Create a new disk image or select a storage pool volume.

Set the Device type to Disk device and the Bus type to VirtIO to use the virtio drivers.

Virtualization Deployment and Administration Guide

46

Figure 5.2. The Add New Virtual Hardware wizard

Click Finish to complete the procedure.

Procedure 5.3. Adding a network device using the virtio network driver

1. Open the guest virtual machine by double clicking the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking .

3. In the Show virtual hardware details tab, click the Add Hardware button.

4. Select hardware type
Select Network as the Hardware type.

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

47

Figure 5.3. The Add new virtual hardware wizard

5. Select the network device and driver
Set the Device model to virtio to use the virtio drivers. Choose the required Host device.

Virtualization Deployment and Administration Guide

48

Figure 5.4. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Once all new devices are added, reboot the virtual machine. Virtual machines may not recognize the
devices until the guest is rebooted.

5.3. USING KVM VIRTIO DRIVERS FOR NETWORK INTERFACE
DEVICES

When network interfaces use KVM virtio drivers, KVM does not emulate networking hardware which
removes processing overhead and can increase the guest performance. In Red Hat Enterprise Linux 7,
virtio is used as the default network interface type. However, if this is configured differently on your
system, you can use the following procedures:

To attach a virtio network device to a guest, use the virsh attach-interface command
with the model --virtio option.

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

49

Alternatively, in the virt-manager interface, navigate to the guest's Virtual hardware
details screen and click Add Hardware. In the Add New Virtual Hardware screen,
select Network, and change Device model to virtio:

To change the type of an existing interface to virtio, use the virsh edit command to edit
the XML configuration of the intended guest, and change the model type attribute to virtio,
for example as follows:

Alternatively, in the virt-manager interface, navigate to the guest's Virtual hardware
details screen, select the NIC item, and change Model type to virtio:

 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet1'/>
 <model type='virtio'/>
 <driver name='vhost' txmode='iothread' ioeventfd='on'
event_idx='off'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

50

NOTE

If the naming of network interfaces inside the guest is not consistent across reboots,
ensure all interfaces presented to the guest are of the same device model, preferably
virtio-net. For details, see the Red Hat KnowledgeBase.

CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

51

https://access.redhat.com/solutions/3219091

CHAPTER 6. NETWORK CONFIGURATION
This chapter provides an introduction to the common networking configurations used by libvirt-based
guest virtual machines.

Red Hat Enterprise Linux 7 supports the following networking setups for virtualization:

virtual networks using Network Address Translation (NAT)

directly allocated physical devices using PCI device assignment

directly allocated virtual functions using PCIe SR-IOV

bridged networks

You must enable NAT, network bridging or directly assign a PCI device to allow external hosts access to
network services on guest virtual machines.

6.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT

One of the most common methods for sharing network connections is to use Network Address
Translation (NAT) forwarding (also known as virtual networks).

Host Configuration

Every standard libvirt installation provides NAT-based connectivity to virtual machines as the default
virtual network. Verify that it is available with the virsh net-list --all command.

virsh net-list --all
Name State Autostart

default active yes

If it is missing, the following can be used in the XML configuration file (such as
/etc/libvirtd/qemu/myguest.xml) for the guest:

ll /etc/libvirt/qemu/
total 12
drwx------. 3 root root 4096 Nov 7 23:02 networks
-rw-------. 1 root root 2205 Nov 20 01:20 r6.4.xml
-rw-------. 1 root root 2208 Nov 8 03:19 r6.xml

The default network is defined from /etc/libvirt/qemu/networks/default.xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

virsh net-start default
Network default started

Virtualization Deployment and Administration Guide

52

Once the libvirt default network is running, you will see an isolated bridge device. This device does
not have any physical interfaces added. The new device uses NAT and IP forwarding to connect to the
physical network. Do not add new interfaces.

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes

libvirt adds iptables rules which allow traffic to and from guest virtual machines attached to the
virbr0 device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. libvirt then attempts to
enable the ip_forward parameter. Some other applications may disable ip_forward, so the best
option is to add the following to /etc/sysctl.conf.

 net.ipv4.ip_forward = 1

Guest Virtual Machine Configuration

Once the host configuration is complete, a guest virtual machine can be connected to the virtual network
based on its name. To connect a guest to the 'default' virtual network, the following can be used in the
XML configuration file (such as /etc/libvirtd/qemu/myguest.xml) for the guest:

<interface type='network'>
 <source network='default'/>
</interface>

NOTE

Defining a MAC address is optional. If you do not define one, a MAC address is
automatically generated and used as the MAC address of the bridge device used by the
network. Manually setting the MAC address may be useful to maintain consistency or
easy reference throughout your environment, or to avoid the very small chance of a
conflict.

<interface type='network'>
 <source network='default'/>
 <mac address='00:16:3e:1a:b3:4a'/>
</interface>

6.2. DISABLING VHOST-NET

The vhost-net module is a kernel-level back end for virtio networking that reduces virtualization
overhead by moving virtio packet processing tasks out of user space (the QEMU process) and into the
kernel (the vhost-net driver). vhost-net is only available for virtio network interfaces. If the vhost-net
kernel module is loaded, it is enabled by default for all virtio interfaces, but can be disabled in the
interface configuration if a particular workload experiences a degradation in performance when vhost-net
is in use.

Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host,
performance degradation can occur if the guest virtual machine processes incoming data at a rate
slower than the host machine sends it. In this situation, enabling vhost-net causes the UDP socket's
receive buffer to overflow more quickly, which results in greater packet loss. It is therefore better to
disable vhost-net in this situation to slow the traffic, and improve overall performance.

CHAPTER 6. NETWORK CONFIGURATION

53

To disable vhost-net, edit the <interface> sub-element in the guest virtual machine's XML
configuration file and define the network as follows:

<interface type="network">
 ...
 <model type="virtio"/>
 <driver name="qemu"/>
 ...
</interface>

Setting the driver name to qemu forces packet processing into QEMU user space, effectively disabling
vhost-net for that interface.

6.3. ENABLING VHOST-NET ZERO-COPY

In Red Hat Enterprise Linux 7, vhost-net zero-copy is disabled by default. To enable this action on a
permanent basis, add a new file vhost-net.conf to /etc/modprobe.d with the following content:

options vhost_net experimental_zcopytx=1

If you want to disable this again, you can run the following:

modprobe -r vhost_net

modprobe vhost_net experimental_zcopytx=0

The first command removes the old file, the second one makes a new file (like above) and disables zero-
copy. You can use this to enable as well but the change will not be permanent.

To confirm that this has taken effect, check the output of cat
/sys/module/vhost_net/parameters/experimental_zcopytx. It should show:

$ cat /sys/module/vhost_net/parameters/experimental_zcopytx
0

6.4. BRIDGED NETWORKING

Bridged networking (also known as network bridging or virtual network switching) is used to place virtual
machine network interfaces on the same network as the physical interface. Bridges require minimal
configuration and make a virtual machine appear on an existing network, which reduces management
overhead and network complexity. As bridges contain few components and configuration variables, they
provide a transparent setup which is straightforward to understand and troubleshoot, if required.

Bridging can be configured in a virtualized environment using standard Red Hat Enterprise Linux tools,
virt-manager, or libvirt, and is described in the following sections.

However, even in a virtualized environment, bridges may be more easily created using the host
operating system's networking tools. More information about this bridge creation method can be found in
the Red Hat Enterprise Linux 7 Networking Guide.

6.4.1. Configuring Bridged Networking on a Red Hat Enterprise Linux 7 Host

Virtualization Deployment and Administration Guide

54

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

Bridged networking can be configured for virtual machines on a Red Hat Enterprise Linux host,
independent of the virtualization management tools. This configuration is mainly recommended when the
virtualization bridge is the host's only network interface, or is the host's management network interface.

For instructions on configuring network bridging without using virtualization tools, see the Red Hat
Enterprise Linux 7 Networking Guide.

6.4.2. Bridged Networking with Virtual Machine Manager

This section provides instructions on creating a bridge from a host machine's interface to a guest virtual
machine using virt-manager.

NOTE

Depending on your environment, setting up a bridge with libvirt tools in Red Hat
Enterprise Linux 7 may require disabling Network Manager, which is not recommended by
Red Hat. A bridge created with libvirt also requires libvirtd to be running for the bridge to
maintain network connectivity.

It is recommended to configure bridged networking on the physical Red Hat Enterprise
Linux host as described in the Red Hat Enterprise Linux 7 Networking Guide, while using
libvirt after bridge creation to add virtual machine interfaces to the bridges.

Procedure 6.1. Creating a bridge with virt-manager

1. From the virt-manager main menu, click Edit ⇒ Connection Details to open the Connection
Details window.

2. Click the Network Interfaces tab.

3. Click the + at the bottom of the window to configure a new network interface.

4. In the Interface type drop-down menu, select Bridge, and then click Forward to continue.

CHAPTER 6. NETWORK CONFIGURATION

55

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

Figure 6.1. Adding a bridge

5. a. In the Name field, enter a name for the bridge, such as br0.

b. Select a Start mode from the drop-down menu. Choose from one of the following:

none - deactivates the bridge

onboot - activates the bridge on the next guest virtual machine reboot

hotplug - activates the bridge even if the guest virtual machine is running

c. Check the Activate now check box to activate the bridge immediately.

d. To configure either the IP settings or Bridge settings, click the appropriate Configure
button. A separate window will open to specify the required settings. Make any necessary
changes and click OK when done.

e. Select the physical interface to connect to your virtual machines. If the interface is currently
in use by another guest virtual machine, you will receive a warning message.

Virtualization Deployment and Administration Guide

56

6. Click Finish and the wizard closes, taking you back to the Connections menu.

Figure 6.2. Adding a bridge

Select the bridge to use, and click Apply to exit the wizard.

To stop the interface, click the Stop Interface key. Once the bridge is stopped, to delete the
interface, click the Delete Interface key.

6.4.3. Bridged Networking with libvirt

Depending on your environment, setting up a bridge with libvirt in Red Hat Enterprise Linux 7 may
require disabling Network Manager, which is not recommended by Red Hat. This also requires libvirtd to
be running for the bridge to operate.

CHAPTER 6. NETWORK CONFIGURATION

57

It is recommended to configure bridged networking on the physical Red Hat Enterprise Linux host as
described in the Red Hat Enterprise Linux 7 Networking Guide.

IMPORTANT

libvirt is now able to take advantage of new kernel tunable parameters to manage host
bridge forwarding database (FDB) entries, thus potentially improving system network
performance when bridging multiple virtual machines. Set the macTableManager
attribute of a network's <bridge> element to 'libvirt' in the host's XML configuration
file:

<bridge name='br0' macTableManager='libvirt'/>

This will turn off learning (flood) mode on all bridge ports, and libvirt will add or remove
entries to the FDB as necessary. Along with removing the overhead of learning the proper
forwarding ports for MAC addresses, this also allows the kernel to disable promiscuous
mode on the physical device that connects the bridge to the network, which further
reduces overhead.

Virtualization Deployment and Administration Guide

58

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

CHAPTER 7. OVERCOMMITTING WITH KVM

7.1. INTRODUCTION

The KVM hypervisor automatically overcommits CPUs and memory. This means that more virtualized
CPUs and memory can be allocated to virtual machines than there are physical resources on the system.
This is possible because most processes do not access 100% of their allocated resources all the time.

As a result, under-utilized virtualized servers or desktops can run on fewer hosts, which saves a number
of system resources, with the net effect of less power, cooling, and investment in server hardware.

7.2. OVERCOMMITTING MEMORY

Guest virtual machines running on a KVM hypervisor do not have dedicated blocks of physical RAM
assigned to them. Instead, each guest virtual machine functions as a Linux process where the host
physical machine's Linux kernel allocates memory only when requested. In addition the host's memory
manager can move the guest virtual machine's memory between its own physical memory and swap
space.

Overcommitting requires allotting sufficient swap space on the host physical machine to accommodate
all guest virtual machines as well as enough memory for the host physical machine's processes. As a
basic rule, the host physical machine's operating system requires a maximum of 4GB of memory along
with a minimum of 4GB of swap space. For advanced instructions on determining an appropriate size for
the swap partition, see the Red Hat KnowledgeBase.

IMPORTANT

Overcommitting is not an ideal solution for general memory issues. The recommended
methods to deal with memory shortage are to allocate less memory per guest, add more
physical memory to the host, or utilize swap space.

A virtual machine will run slower if it is swapped frequently. In addition, overcommitting
can cause the system to run out of memory (OOM), which may lead to the Linux kernel
shutting down important system processes. If you decide to overcommit memory, ensure
sufficient testing is performed. Contact Red Hat support for assistance with
overcommitting.

Overcommitting does not work with all virtual machines, but has been found to work in a desktop
virtualization setup with minimal intensive usage or running several identical guests with KSM. For more
information on KSM and overcommitting, see the Red Hat Enterprise Linux 7 Virtualization Tuning and
Optimization Guide.

IMPORTANT

When device assignment is in use, all virtual machine memory must be statically pre-
allocated to enable direct memory access (DMA) with the assigned device. Memory
overcommit is therefore not supported with device assignment.

7.3. OVERCOMMITTING VIRTUALIZED CPUS

The KVM hypervisor supports overcommitting virtualized CPUs (vCPUs). Virtualized CPUs can be
overcommitted as far as load limits of guest virtual machines allow. Use caution when overcommitting
vCPUs, as loads near 100% may cause dropped requests or unusable response times.

CHAPTER 7. OVERCOMMITTING WITH KVM

59

https://access.redhat.com/site/solutions/15244
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/chap-KSM.html

In Red Hat Enterprise Linux 7, it is possible to overcommit guests with more than one vCPU, known as
symmetric multiprocessing (SMP) virtual machines. However, you may experience performance
deterioration when running more cores on the virtual machine than are present on your physical CPU.

For example, a virtual machine with four vCPUs should not be run on a host machine with a dual core
processor, but on a quad core host. Overcommitting SMP virtual machines beyond the physical number
of processing cores causes significant performance degradation, due to programs getting less CPU time
than required. In addition, it is not recommended to have more than 10 total allocated vCPUs per
physical processor core.

With SMP guests, some processing overhead is inherent. CPU overcommitting can increase the SMP
overhead, because using time-slicing to allocate resources to guests can make inter-CPU
communication inside a guest slower. This overhead increases with guests that have a larger number of
vCPUs, or a larger overcommit ratio.

Virtualized CPUs are overcommitted best when when a single host has multiple guests, and each guest
has a small number of vCPUs, compared to the number of host CPUs. KVM should safely support
guests with loads under 100% at a ratio of five vCPUs (on 5 virtual machines) to one physical CPU on
one single host. The KVM hypervisor will switch between all of the virtual machines, making sure that the
load is balanced.

For best performance, Red Hat recommends assigning guests only as many vCPUs as are required to
run the programs that are inside each guest.

IMPORTANT

Applications that use 100% of memory or processing resources may become unstable in
overcommitted environments. Do not overcommit memory or CPUs in a production
environment without extensive testing, as the CPU overcommit ratio and the amount of
SMP are workload-dependent.

Virtualization Deployment and Administration Guide

60

CHAPTER 8. KVM GUEST TIMING MANAGEMENT
Virtualization involves several challenges for time keeping in guest virtual machines.

Interrupts cannot always be delivered simultaneously and instantaneously to all guest virtual
machines. This is because interrupts in virtual machines are not true interrupts. Instead, they are
injected into the guest virtual machine by the host machine.

The host may be running another guest virtual machine, or a different process. Therefore, the
precise timing typically required by interrupts may not always be possible.

Guest virtual machines without accurate time keeping may experience issues with network applications
and processes, as session validity, migration, and other network activities rely on timestamps to remain
correct.

KVM avoids these issues by providing guest virtual machines with a paravirtualized clock (kvm-clock).
However, it is still important to test timing before attempting activities that may be affected by time
keeping inaccuracies, such as guest migration.

IMPORTANT

To avoid the problems described above, the Network Time Protocol (NTP) should be
configured on the host and the guest virtual machines. On guests using Red Hat
Enterprise Linux 6 and earlier, NTP is implemented by the ntpd service. For more
information, see the Red Hat Enterprise 6 Deployment Guide.

On systems using Red Hat Enterprise Linux 7, NTP time synchronization service can be
provided by ntpd or by the chronyd service. Note that Chrony has some advantages on
virtual machines. For more information, see the Configuring NTP Using the chrony Suite
and Configuring NTP Using ntpd sections in the Red Hat Enterprise Linux 7 System
Administrator's Guide.

The mechanics of guest virtual machine time synchronization

By default, the guest synchronizes its time with the hypervisor as follows:

When the guest system boots, the guest reads the time from the emulated Real Time Clock
(RTC).

When the NTP protocol is initiated, it automatically synchronizes the guest clock. Afterwards,
during normal guest operation, NTP performs clock adjustments in the guest.

When a guest is resumed after a pause or a restoration process, a command to synchronize the
guest clock to a specified value should be issued by the management software (such as virt-
manager). This synchronization works only if the QEMU guest agent is installed in the guest and
supports the feature. The value to which the guest clock synchronizes is usually the host clock
value.

Constant Time Stamp Counter (TSC)

Modern Intel and AMD CPUs provide a constant Time Stamp Counter (TSC). The count frequency of the
constant TSC does not vary when the CPU core itself changes frequency, for example to comply with a
power-saving policy. A CPU with a constant TSC frequency is necessary in order to use the TSC as a
clock source for KVM guests.

CHAPTER 8. KVM GUEST TIMING MANAGEMENT

61

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_NTP_Using_ntpd.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_ntpd.html

Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if
your CPU has the constant_tsc flag enter the following command:

$ cat /proc/cpuinfo | grep constant_tsc

If any output is given, your CPU has the constant_tsc bit. If no output is given, follow the instructions
below.

Configuring Hosts without a Constant Time Stamp Counter

Systems without a constant TSC frequency cannot use the TSC as a clock source for virtual machines,
and require additional configuration. Power management features interfere with accurate time keeping
and must be disabled for guest virtual machines to accurately keep time with KVM.

IMPORTANT

These instructions are for AMD revision F CPUs only.

If the CPU lacks the constant_tsc bit, disable all power management features . Each system has
several timers it uses to keep time. The TSC is not stable on the host, which is sometimes caused by
cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep states can stop
the TSC. To prevent the kernel using deep C states append processor.max_cstate=1 to the kernel
boot. To make this change persistent, edit values of the GRUB_CMDLINE_LINUX key in the
/etc/default/grubfile. For example. if you want to enable emergency mode for each boot, edit the
entry as follows:

GRUB_CMDLINE_LINUX="emergency"

Note that you can specify multiple parameters for the GRUB_CMDLINE_LINUX key, similarly to adding
the parameters in the GRUB 2 boot menu.

To disable cpufreq (only necessary on hosts without the constant_tsc), install kernel-tools and
enable the cpupower.service (systemctl enable cpupower.service). If you want to disable
this service every time the guest virtual machine boots, change the configuration file in
/etc/sysconfig/cpupower and change the CPUPOWER_START_OPTS and
CPUPOWER_STOP_OPTS. Valid limits can be found in the
/sys/devices/system/cpu/cpuid/cpufreq/scaling_available_governors files. For more
information on this package or on power management and governors, refer to the Red Hat Enterprise
Linux 7 Power Management Guide.

8.1. REQUIRED TIME MANAGEMENT PARAMETERS FOR RED HAT
ENTERPRISE LINUX GUESTS

For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are required
for their system time to be synchronised correctly. These parameters can be set by appending them to
the end of the /kernel line in the /etc/grub2.cfg file of the guest virtual machine.

NOTE

Red Hat Enterprise Linux 5.5 and later, Red Hat Enterprise Linux 6.0 and later, and Red
Hat Enterprise Linux 7 use kvm-clock as their default clock source. Running kvm-clock
avoids the need for additional kernel parameters, and is recommended by Red Hat.

Virtualization Deployment and Administration Guide

62

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Power_Management_Guide/index.html

The table below lists versions of Red Hat Enterprise Linux and the parameters required on the specified
systems.

Table 8.1. Kernel parameter requirements

Red Hat Enterprise Linux version Additional guest kernel parameters

7.0 and later on AMD64 and Intel 64 systems with
kvm-clock

Additional parameters are not required

6.1 and later on AMD64 and Intel 64 systems with
kvm-clock

Additional parameters are not required

6.0 on AMD64 and Intel 64 systems with kvm-clock Additional parameters are not required

6.0 on AMD64 and Intel 64 systems without kvm-
clock

notsc lpj=n

NOTE

The lpj parameter requires a numeric value equal to the loops per jiffy value of the
specific CPU on which the guest virtual machine runs. If you do not know this value, do
not set the lpj parameter.

8.2. STEAL TIME ACCOUNTING

Steal time is the amount of CPU time needed by a guest virtual machine that is not provided by the host.
Steal time occurs when the host allocates these resources elsewhere: for example, to another guest.

Steal time is reported in the CPU time fields in /proc/stat. It is automatically reported by utilities such
as top and vmstat. It is displayed as "%st", or in the "st" column. Note that it cannot be switched off.

Large amounts of steal time indicate CPU contention, which can reduce guest performance. To relieve
CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the host.

CHAPTER 8. KVM GUEST TIMING MANAGEMENT

63

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT
Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot and
load their configuration off the network itself. This section demonstrates some basic configuration steps
to configure PXE guests with libvirt.

This section does not cover the creation of boot images or PXE servers. It is used to explain how to
configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting
enabled.

WARNING

These procedures are provided only as an example. Ensure that you have sufficient
backups before proceeding.

9.1. PREPARING THE BOOT SERVER

To perform the steps in this chapter you will need:

A PXE Server (DHCP and TFTP) - This can be a libvirt internal server, manually-configured
dhcpd and tftpd, dnsmasq, a server configured by Cobbler, or some other server.

Boot images - for example, PXELINUX configured manually or by Cobbler.

9.1.1. Setting up a PXE Boot Server on a Private libvirt Network

This example uses the default network. Perform the following steps:

Procedure 9.1. Configuring the PXE boot server

1. Place the PXE boot images and configuration in /var/lib/tftpboot.

2. enter the following commands:

virsh net-destroy default
virsh net-edit default

3. Edit the <ip> element in the configuration file for the default network to include the appropriate
address, network mask, DHCP address range, and boot file, where BOOT_FILENAME
represents the file name you are using to boot the guest virtual machine.

<ip address='192.168.122.1' netmask='255.255.255.0'>
 <tftp root='/var/lib/tftpboot' />
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254' />
 <bootp file='BOOT_FILENAME' />
 </dhcp>
</ip>



Virtualization Deployment and Administration Guide

64

4. Run:

virsh net-start default

5. Boot the guest using PXE (refer to Section 9.2, “Booting a Guest Using PXE”).

9.2. BOOTING A GUEST USING PXE

This section demonstrates how to boot a guest virtual machine with PXE.

9.2.1. Using bridged networking

Procedure 9.2. Booting a guest using PXE and bridged networking

1. Ensure bridging is enabled such that the PXE boot server is available on the network.

2. Boot a guest virtual machine with PXE booting enabled. You can use the virt-install
command to create a new virtual machine with PXE booting enabled, as shown in the following
example command:

virt-install --pxe --network bridge=breth0 --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that
the XML guest configuration file has a <boot dev='network'/> element inside the <os>
element, as shown in the following example:

<os>
 <type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>
<interface type='bridge'>
 <mac address='52:54:00:5a:ad:cb'/>
 <source bridge='breth0'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03'
function='0x0'/>
</interface>

9.2.2. Using a Private libvirt Network

Procedure 9.3. Using a private libvirt network

1. Configure PXE booting on libvirt as shown in Section 9.1.1, “Setting up a PXE Boot Server on a
Private libvirt Network”.

2. Boot a guest virtual machine using libvirt with PXE booting enabled. You can use the virt-
install command to create/install a new virtual machine using PXE:

virt-install --pxe --network network=default --prompt

CHAPTER 9. NETWORK BOOTING WITH LIBVIRT

65

Alternatively, ensure that the guest network is configured to use your private libvirt network, and that the
XML guest configuration file has a <boot dev='network'/> element inside the <os> element, as
shown in the following example:

<os>
 <type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>

Also ensure that the guest virtual machine is connected to the private network:

<interface type='network'>
 <mac address='52:54:00:66:79:14'/>
 <source network='default'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03'
function='0x0'/>
</interface>

Virtualization Deployment and Administration Guide

66

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL
MACHINE
Red Hat Enterprise Linux 6 and 7 require that every guest virtual machine is mapped to a specific
hypervisor in order to ensure that every guest is allocated the same level of subscription service. To do
this you need to install a subscription agent that automatically detects all guest Virtual Machines (VMs)
on each KVM hypervisor that is installed and registered, which in turn will create a mapping file that sits
on the host. This mapping file ensures that all guest VMs receive the following benefits:

Subscriptions specific to virtual systems are readily available and can be applied to all of the
associated guest VMs.

All subscription benefits that can be inherited from the hypervisor are readily available and can
be applied to all of the associated guest VMs.

NOTE

The information provided in this chapter is specific to Red Hat Enterprise Linux
subscriptions only. If you also have a Red Hat Virtualization subscription, or a Red Hat
Satellite subscription, you should also consult the virt-who information provided with those
subscriptions. More information on Red Hat Subscription Management can also be found
in the Red Hat Subscription Management Guide found on the customer portal.

10.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE

1. Register the KVM hypervisor
Register the KVM Hypervisor by running the subscription-manager register
[options] command in a terminal as the root user on the host physical machine. More options
are available using the # subscription-manager register --help menu. In cases where
you are using a user name and password, use the credentials that are known to the subscription
manager. If this is your very first time subscribing and you do not have a user account, contact
customer support. For example to register the VM as 'admin' with 'secret' as a password, you
would send the following command:

[root@rhel-server ~]# subscription-manager register --username=admin
--password=secret --auto-attach --type=hypervisor

2. Install the virt-who packages
Install the virt-who packages, by running the following command on the host physical machine:

yum install virt-who

3. Create a virt-who configuration file
For each hypervisor, add a configuration file in the /etc/virt-who.d/ directory. At a
minimum, the file must contain the following snippet:

[libvirt]
type=libvirt

For more detailed information on configuring virt-who, refer to Section 10.1.1, “Configuring
virt-who”.

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

67

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/index.html

4. Start the virt-who service
Start the virt-who service by running the following command on the host physical machine:

systemctl start virt-who.service
systemctl enable virt-who.service

5. Confirm virt-who service is receiving guest information
At this point, the virt-who service will start collecting a list of domains from the host. Check the
/var/log/rhsm/rhsm.log file on the host physical machine to confirm that the file contains a
list of the guest VMs. For example:

2015-05-28 12:33:31,424 DEBUG: Libvirt domains found: [{'guestId':
'58d59128-cfbb-4f2c-93de-230307db2ce0', 'attributes': {'active': 0,
'virtWhoType': 'libvirt', 'hypervisorType': 'QEMU'}, 'state': 5}]

Procedure 10.1. Managing the subscription on the customer portal

1. Subscribing the hypervisor
As the virtual machines will be receiving the same subscription benefits as the hypervisor, it is
important that the hypervisor has a valid subscription and that the subscription is available for
the VMs to use.

a. Login to the customer portal
Login to the Red Hat customer portal https://access.redhat.com/ and click the
Subscriptions button at the top of the page.

b. Click the Systems link
In the Subscriber Inventory section (towards the bottom of the page), click Systems
link.

c. Select the hypervisor
On the Systems page, there is a table of all subscribed systems. Click the name of the
hypervisor (localhost.localdomain for example). In the details page that opens, click Attach
a subscription and select all the subscriptions listed. Click Attach Selected. This
will attach the host's physical subscription to the hypervisor so that the guests can benefit
from the subscription.

2. Subscribing the guest virtual machines - first time use
This step is for those who have a new subscription and have never subscribed a guest virtual
machine before. If you are adding virtual machines, skip this step. To consume the subscription
assigned to the hypervisor profile on the machine running the virt-who service, auto subscribe by
running the following command in a terminal, on the guest virtual machine as root.

[root@virt-who ~]# subscription-manager attach --auto

3. Subscribing additional guest virtual machines
If you just subscribed a for the first time, skip this step. If you are adding additional virtual
machines, note that running this command will not necessarily re-attach the same subscriptions
to the guest virtual machine. This is because removing all subscriptions then allowing auto-
attach to resolve what is necessary for a given guest virtual machine may result in different
subscriptions consumed than before. This may not have any effect on your system, but it is
something you should be aware about. If you used a manual attachment procedure to attach the
virtual machine, which is not described below, you will need to re-attach those virtual machines

Virtualization Deployment and Administration Guide

68

https://access.redhat.com/

manually as the auto-attach will not work. Use the following command to first remove the
subscriptions for the old guests, and then use the auto-attach to attach subscriptions to all the
guests. Run these commands on the guest virtual machine.

[root@virt-who ~]# subscription-manager remove --all
[root@virt-who ~]# subscription-manager attach --auto

4. Confirm subscriptions are attached
Confirm that the subscription is attached to the hypervisor by running the following command on
the guest virtual machine:

[root@virt-who ~]# subscription-manager list --consumed

Output similar to the following will be displayed. Pay attention to the Subscription Details. It
should say 'Subscription is current'.

[root@virt-who ~]# subscription-manager list --consumed
+---+
 Consumed Subscriptions
+---+
Subscription Name: Awesome OS with unlimited virtual guests
Provides: Awesome OS Server Bits
SKU: awesomeos-virt-unlimited
Contract: 0
Account: ######### Your account number #####
Serial: ######### Your serial number ######
Pool ID: XYZ123

Provides Management: No
Active: True
Quantity Used: 1
Service Level:
Service Type:
Status Details: Subscription is current

Subscription Type:
Starts: 01/01/2015
Ends: 12/31/2015
System Type: Virtual

The ID for the subscription to attach to the system is displayed here. You will need this ID if you
need to attach the subscription manually.

Indicates if your subscription is current. If your subscription is not current, an error message
appears. One example is Guest has not been reported on any host and is using a temporary
unmapped guest subscription. In this case the guest needs to be subscribed. In other cases, use
the information as indicated in Section 10.5.2, “I have subscription status errors, what do I do?” .

5. Register additional guests

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

69

When you install new guest VMs on the hypervisor, you must register the new VM and use the
subscription attached to the hypervisor, by running the following commands on the guest virtual
machine:

subscription-manager register
subscription-manager attach --auto
subscription-manager list --consumed

10.1.1. Configuring virt-who

The virt-who service is configured using the following files:

virt-who.conf - Contains general configuration information including the interval for checking
connected hypervisors for changes.

hypervisor_name.conf - Contains configuration information for a specific hypervisor.

A web-based wizard is provided to generate hypervisor configuration files and the snippets required for
virt-who.conf. To run the wizard, browse to Red Hat Virtualization Agent (virt-who) Configuration
Helper.

On the second page of the wizard, select the following options:

Where does your virt-who report to? : Subscription Asset Manager

Hypervisor Type: libvirt

Follow the wizard to complete the configuration.

For more information on hypervisor configuration files, see the virt-who-config man page.

10.2. REGISTERING A NEW GUEST VIRTUAL MACHINE

In cases where a new guest virtual machine is to be created on a host that is already registered and
running, the virt-who service must also be running. This ensures that the virt-who service maps the guest
to a hypervisor, so the system is properly registered as a virtual system. To register the virtual machine,
enter the following command:

[root@virt-server ~]# subscription-manager register --username=admin --
password=secret --auto-attach

10.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY

If the guest virtual machine is running, unregister the system, by running the following command in a
terminal window as root on the guest:

[root@virt-guest ~]# subscription-manager unregister

If the system has been deleted, however, the virtual service cannot tell whether the service is deleted or
paused. In that case, you must manually remove the system from the server side, using the following
steps:

1. Login to the Subscription Manager

Virtualization Deployment and Administration Guide

70

https://access.redhat.com/labs/virtwhoconfig/

The Subscription Manager is located on the Red Hat Customer Portal. Login to the Customer
Portal using your user name and password, by clicking the login icon at the top of the screen.

2. Click the Subscriptions tab
Click the Subscriptions tab.

3. Click the Systems link
Scroll down the page and click the Systems link.

4. Delete the system
To delete the system profile, locate the specified system's profile in the table, select the check
box beside its name and click Delete.

10.4. INSTALLING VIRT-WHO MANUALLY

This section will describe how to manually attach the subscription provided by the hypervisor.

Procedure 10.2. How to attach a subscription manually

1. List subscription information and find the Pool ID
First you need to list the available subscriptions which are of the virtual type. Enter the following
command:

[root@server1 ~]# subscription-manager list --avail --match-
installed | grep 'Virtual' -B12
Subscription Name: Red Hat Enterprise Linux ES (Basic for
Virtualization)
Provides: Red Hat Beta
 Oracle Java (for RHEL Server)
 Red Hat Enterprise Linux Server
SKU: -------
Pool ID: XYZ123
Available: 40
Suggested: 1
Service Level: Basic
Service Type: L1-L3
Multi-Entitlement: No
Ends: 01/02/2017
System Type: Virtual

Note the Pool ID displayed. Copy this ID as you will need it in the next step.

2. Attach the subscription with the Pool ID
Using the Pool ID you copied in the previous step run the attach command. Replace the Pool ID
XYZ123 with the Pool ID you retrieved. Enter the following command:

[root@server1 ~]# subscription-manager attach --pool=XYZ123

Successfully attached a subscription for: Red Hat Enterprise Linux
ES (Basic for Virtualization)

10.5. TROUBLESHOOTING VIRT-WHO

CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

71

https://access.redhat.com/

10.5.1. Why is the hypervisor status red?

Scenario: On the server side, you deploy a guest on a hypervisor that does not have a subscription. 24
hours later, the hypervisor displays its status as red. To remedy this situation you must get a subscription
for that hypervisor. Or, permanently migrate the guest to a hypervisor with a subscription.

10.5.2. I have subscription status errors, what do I do?

Scenario: Any of the following error messages display:

System not properly subscribed

Status unknown

Late binding of a guest to a hypervisor through virt-who (host/guest mapping)

To find the reason for the error open the virt-who log file, named rhsm.log, located in the
/var/log/rhsm/ directory.

Virtualization Deployment and Administration Guide

72

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU
GUEST AGENT AND SPICE AGENT
Agents in Red Hat Enterprise Linux such as the QEMU guest agent and the SPICE agent can be
deployed to help the virtualization tools run more optimally on your system. These agents are described
in this chapter.

NOTE

To further optimize and tune host and guest performance, see the Red Hat Enterprise
Linux 7 Virtualization Tuning and Optimization Guide.

11.1. QEMU GUEST AGENT

The QEMU guest agent runs inside the guest and allows the host machine to issue commands to the
guest operating system using libvirt, helping with functions such as freezing and thawing filesystems.
The guest operating system then responds to those commands asynchronously. The QEMU guest agent
package, qemu-guest-agent, is installed by default in Red Hat Enterprise Linux 7.

This section covers the libvirt commands and options available to the guest agent.

IMPORTANT

Note that it is only safe to rely on the QEMU guest agent when run by trusted guests. An
untrusted guest may maliciously ignore or abuse the guest agent protocol, and although
built-in safeguards exist to prevent a denial of service attack on the host, the host requires
guest co-operation for operations to run as expected.

Note that QEMU guest agent can be used to enable and disable virtual CPUs (vCPUs) while the guest is
running, thus adjusting the number of vCPUs without using the hot plug and hot unplug features. For
more information, refer to Section 21.38.6, “Configuring Virtual CPU Count”.

11.1.1. Setting up Communication between the QEMU Guest Agent and Host

The host machine communicates with the QEMU guest agent through a VirtIO serial connection
between the host and guest machines. A VirtIO serial channel is connected to the host via a character
device driver (typically a Unix socket), and the guest listens on this serial channel.

NOTE

The qemu-guest-agent does not detect if the host is listening to the VirtIO serial channel.
However, as the current use for this channel is to listen for host-to-guest events, the
probability of a guest virtual machine running into problems by writing to the channel with
no listener is very low. Additionally, the qemu-guest-agent protocol includes
synchronization markers that allow the host physical machine to force a guest virtual
machine back into sync when issuing a command, and libvirt already uses these markers,
so that guest virtual machines are able to safely discard any earlier pending undelivered
responses.

11.1.1.1. Configuring the QEMU Guest Agent on a Linux Guest

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

73

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/index.html

The QEMU guest agent can be configured on a running or shut down virtual machine. If configured on a
running guest, the guest will start using the guest agent immediately. If the guest is shut down, the
QEMU guest agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the
QEMU guest agent. The following instructions describe how to configure the QEMU guest agent on a
Linux guest.

Procedure 11.1. Setting up communication between guest agent and host with virsh on a shut
down Linux guest

1. Shut down the virtual machine
Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
QEMU guest agent:

virsh shutdown rhel7

2. Add the QEMU guest agent channel to the guest XML configuration
Edit the guest's XML file to add the QEMU guest agent details:

virsh edit rhel7

Add the following to the guest's XML file and save the changes:

3. Start the virtual machine

virsh start rhel7

4. Install the QEMU guest agent on the guest
Install the QEMU guest agent if not yet installed in the guest virtual machine:

yum install qemu-guest-agent

5. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

systemctl start qemu-guest-agent

Alternatively, the QEMU guest agent can be configured on a running guest with the following steps:

Procedure 11.2. Setting up communication between guest agent and host on a running Linux
guest

1. Create an XML file for the QEMU guest agent

<channel type='unix'>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
</channel>

cat agent.xml
<channel type='unix'>
 <target type='virtio' name='org.qemu.guest_agent.0'/>

Virtualization Deployment and Administration Guide

74

2. Attach the QEMU guest agent to the virtual machine
Attach the QEMU guest agent to the running virtual machine (named rhel7 in this example) with
this command:

virsh attach-device rhel7 agent.xml

3. Install the QEMU guest agent on the guest
Install the QEMU guest agent if not yet installed in the guest virtual machine:

yum install qemu-guest-agent

4. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

systemctl start qemu-guest-agent

Procedure 11.3. Setting up communication between the QEMU guest agent and host with virt-
manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the QEMU guest agent.

To shut down the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the light switch icon from the menu bar.

2. Add the QEMU guest agent channel to the guest
Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the guest
window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

Select the QEMU guest agent from the Name drop-down list and click Finish:

</channel>

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

75

Figure 11.1. Selecting the QEMU guest agent channel device

3. Start the virtual machine
To start the virtual machine, select it from the list of virtual machines in Virtual Machine

Manager, then click on the menu bar.

4. Install the QEMU guest agent on the guest
Open the guest with virt-manager and install the QEMU guest agent if not yet installed in the
guest virtual machine:

yum install qemu-guest-agent

5. Start the QEMU guest agent in the guest
Start the QEMU guest agent service in the guest:

systemctl start qemu-guest-agent

The QEMU guest agent is now configured on the rhel7 virtual machine.

Virtualization Deployment and Administration Guide

76

11.2. USING THE QEMU GUEST AGENT WITH LIBVIRT

Installing the QEMU guest agent allows various libvirt commands to become more powerful. The guest
agent enhances the following virsh commands:

virsh shutdown --mode=agent - This shutdown method is more reliable than virsh
shutdown --mode=acpi, as virsh shutdown used with the QEMU guest agent is
guaranteed to shut down a cooperative guest in a clean state. If the agent is not present, libvirt
must instead rely on injecting an ACPI shutdown event, but some guests ignore that event and
thus will not shut down.

Can be used with the same syntax for virsh reboot.

virsh snapshot-create --quiesce - Allows the guest to flush its I/O into a stable state
before the snapshot is created, which allows use of the snapshot without having to perform a
fsck or losing partial database transactions. The guest agent allows a high level of disk contents
stability by providing guest co-operation.

virsh domfsfreeze and virsh domfsthaw - Quiesces the guest filesystem in isolation.

virsh domfstrim - Instructs the guest to trim its filesystem.

virsh domtime - Queries or sets the guest's clock.

virsh setvcpus --guest - Instructs the guest to take CPUs offline.

virsh domifaddr --source agent - Queries the guest operating system's IP address via
the guest agent.

virsh domfsinfo - Shows a list of mounted filesystems within the running guest.

virsh set-user-password - Sets the password for a user account in the guest.

11.2.1. Creating a Guest Disk Backup

libvirt can communicate with qemu-guest-agent to ensure that snapshots of guest virtual machine file
systems are consistent internally and ready to use as needed. Guest system administrators can write
and install application-specific freeze/thaw hook scripts. Before freezing the filesystems, the qemu-guest-
agent invokes the main hook script (included in the qemu-guest-agent package). The freezing process
temporarily deactivates all guest virtual machine applications.

The snapshot process is comprised of the following steps:

File system applications / databases flush working buffers to the virtual disk and stop accepting
client connections

Applications bring their data files into a consistent state

Main hook script returns

qemu-guest-agent freezes the filesystems and the management stack takes a snapshot

Snapshot is confirmed

Filesystem function resumes

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

77

Thawing happens in reverse order.

To create a snapshot of the guest's file system, run the virsh snapshot-create --quiesce --
disk-only command (alternatively, run virsh snapshot-create-as guest_name --quiesce
--disk-only, explained in further detail in Section 21.41.2, “Creating a Snapshot for the Current Guest
Virtual Machine”).

NOTE

An application-specific hook script might need various SELinux permissions in order to
run correctly, as is done when the script needs to connect to a socket in order to talk to a
database. In general, local SELinux policies should be developed and installed for such
purposes. Accessing file system nodes should work out of the box, after issuing the
restorecon -FvvR command listed in Table 11.1, “QEMU guest agent package
contents” in the table row labeled /etc/qemu-ga/fsfreeze-hook.d/.

The qemu-guest-agent binary RPM includes the following files:

Table 11.1. QEMU guest agent package contents

File name Description

/usr/lib/systemd/system/qemu-guest-
agent.service

Service control script (start/stop) for the QEMU guest
agent.

/etc/sysconfig/qemu-ga Configuration file for the QEMU guest agent, as it is
read by the
/usr/lib/systemd/system/qemu-guest-
agent.service control script. The settings are
documented in the file with shell script comments.

/usr/bin/qemu-ga QEMU guest agent binary file.

/etc/qemu-ga Root directory for hook scripts.

/etc/qemu-ga/fsfreeze-hook Main hook script. No modifications are needed here.

/etc/qemu-ga/fsfreeze-hook.d Directory for individual, application-specific hook
scripts. The guest system administrator should copy
hook scripts manually into this directory, ensure
proper file mode bits for them, and then run
restorecon -FvvR on this directory.

/usr/share/qemu-kvm/qemu-ga/ Directory with sample scripts (for example purposes
only). The scripts contained here are not executed.

The main hook script, /etc/qemu-ga/fsfreeze-hook logs its own messages, as well as the
application-specific script's standard output and error messages, in the following log file:
/var/log/qemu-ga/fsfreeze-hook.log. For more information, refer to the libvirt upstream
website.

Virtualization Deployment and Administration Guide

78

http://wiki.libvirt.org/page/Qemu_guest_agent

11.3. SPICE AGENT

The SPICE agent helps run graphical applications such as virt-manager more smoothly, by helping
integrate the guest operating system with the SPICE client.

For example, when resizing a window in virt-manager, the SPICE agent allows for automatic X session
resolution adjustment to the client resolution. The SPICE agent also provides support for copy and paste
between the host and guest, and prevents mouse cursor lag.

For system-specific information on the SPICE agent's capabilities, see the spice-vdagent package's
README file.

11.3.1. Setting up Communication between the SPICE Agent and Host

The SPICE agent can be configured on a running or shut down virtual machine. If configured on a
running guest, the guest will start using the guest agent immediately. If the guest is shut down, the
SPICE agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the
SPICE agent. The following instructions describe how to configure the SPICE agent on a Linux guest.

Procedure 11.4. Setting up communication between guest agent and host with virsh on a Linux
guest

1. Shut down the virtual machine
Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
SPICE agent:

virsh shutdown rhel7

2. Add the SPICE agent channel to the guest XML configuration
Edit the guest's XML file to add the SPICE agent details:

virsh edit rhel7

Add the following to the guest's XML file and save the changes:

3. Start the virtual machine

virsh start rhel7

4. Install the SPICE agent on the guest
Install the SPICE agent if not yet installed in the guest virtual machine:

yum install spice-vdagent

5. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

<channel type='spicevmc'>
 <target type='virtio' name='com.redhat.spice.0'/>
</channel>

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

79

systemctl start spice-vdagent

Alternatively, the SPICE agent can be configured on a running guest with the following steps:

Procedure 11.5. Setting up communication between SPICE agent and host on a running Linux
guest

1. Create an XML file for the SPICE agent

2. Attach the SPICE agent to the virtual machine
Attach the SPICE agent to the running virtual machine (named rhel7 in this example) with this
command:

virsh attach-device rhel7 agent.xml

3. Install the SPICE agent on the guest
Install the SPICE agent if not yet installed in the guest virtual machine:

yum install spice-vdagent

4. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

systemctl start spice-vdagent

Procedure 11.6. Setting up communication between the SPICE agent and host with virt-
manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the SPICE agent.

To shut down the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the light switch icon from the menu bar.

2. Add the SPICE agent channel to the guest
Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the guest
window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

Select the SPICE agent from the Name drop-down list, edit the channel address, and click
Finish:

cat agent.xml
<channel type='spicevmc'>
 <target type='virtio' name='com.redhat.spice.0'/>
</channel>

Virtualization Deployment and Administration Guide

80

Figure 11.2. Selecting the SPICE agent channel device

3. Start the virtual machine
To start the virtual machine, select it from the list of virtual machines in Virtual Machine

Manager, then click on the menu bar.

4. Install the SPICE agent on the guest
Open the guest with virt-manager and install the SPICE agent if not yet installed in the guest
virtual machine:

yum install spice-vdagent

5. Start the SPICE agent in the guest
Start the SPICE agent service in the guest:

systemctl start spice-vdagent

The SPICE agent is now configured on the rhel7 virtual machine.

CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT

81

CHAPTER 12. NESTED VIRTUALIZATION

12.1. OVERVIEW

As of Red Hat Enterprise Linux 7.5, nested virtualization is available as a Technology Preview for KVM
guest virtual machines. With this feature, a guest virtual machine (also referred to as level 1 or L1) that
runs on a physical host (level 0 or L0) can act as a hypervisor, and create its own guest virtual machines
(L2).

Nested virtualization is useful in a variety of scenarios, such as debugging hypervisors in a constrained
environment and testing larger virtual deployments on a limited amount of physical resources. However,
note that nested virtualization is not supported or recommended in production user environments, and is
primarily intended for development and testing.

Nested virtualization relies on host virtualization extensions to function, and it should not to be confused
with running guests in a virtual environment using the QEMU Tiny Code Generator (TCG) emulation,
which is not supported in Red Hat Enterprise Linux.

12.2. SETUP

Follow these steps to enable, configure, and start using nested virtualization:

1. Enable: The feature is disabled by default. To enable it, use the following procedure on the L0
host physical machine.

For Intel:

1. Check whether nested virtualization is available on your host system.

$ cat /sys/module/kvm_intel/parameters/nested

If this command returns Y or 1, the feature is enabled.

If the command returns 0 or N, use steps b and c.

2. Unload the kvm_intel module:

modprobe -r kvm_intel

3. Activate the nesting feature:

modprobe kvm_intel nested=1

4. The nesting feature is now enabled only until the next reboot of the L0 host. To enable it
permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm_intel nested=1

For AMD:

1. Check whether nested virtualization is available on your system:

Virtualization Deployment and Administration Guide

82

$ cat /sys/module/kvm_amd/parameters/nested

If this command returns Y or 1, the feature is enabled.

If the command returns 0 or N, use steps b and c.

2. Unload the kvm_amd module

modprobe -r kvm_amd

3. Activate the nesting feature

modprobe kvm_amd nested=1

4. The nesting feature is now enabled only until the next reboot of the L0 host. To enable it
permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm_amd nested=1

2. Configure your L1 virtual machine for nested virtualization using one of the following methods:

virt-manager

1. Open the GUI of the intended guest and click the Show Virtual Hardware Details icon.

2. Select the Processor menu, and in the Configuration section, type host-passthrough
in the Model field (do not use the drop-down selection), and click Apply.

Domain XML

Add the following line to the domain XML file of the guest:

CHAPTER 12. NESTED VIRTUALIZATION

83

<cpu mode='host-passthrough'/>

If the guest's XML configuration file already contains a <cpu> element, rewrite it.

3. To start using nested virtualization, install an L2 guest within the L1 guest. To do this, follow the
same procedure as when installing the L1 guest - see Chapter 3, Creating a Virtual Machine for
more information.

12.3. RESTRICTIONS AND LIMITATIONS

It is strongly recommended to run Red Hat Enterprise Linux 7.2 or later in the L0 host and the L1
guests. L2 guests can contain any guest system supported by Red Hat.

It is not supported to migrate L1 or L2 guests.

Use of L2 guests as hypervisors and creating L3 guests is not supported.

Not all features available on the host are available to be utilized by the L1 hypervisor. For
instance, IOMMU/VT-d or APICv cannot be used by the L1 hypervisor.

To use nested virtualization, the host CPU must have the necessary feature flags. To determine
if the L0 and L1 hypervisors are set up correctly, use the cat /proc/cpuinfo command on
both L0 and L1, and make sure that the following flags are listed for the respective CPUs on both
hypervisors:

For Intel - vmx (Hardware Virtualization) and ept (Extended Page Tables)

For AMD - svm (equivalent to vmx) and npt (equivalent to ept)

Virtualization Deployment and Administration Guide

84

PART II. ADMINISTRATION

PART II. ADMINISTRATION

85

CHAPTER 13. STORAGE POOLS
This chapter includes instructions on creating storage pools of assorted types. A storage pool is a
quantity of storage set aside by an administrator, often a dedicated storage administrator, for use by
guest virtual machines. Storage pools are divided into storage volumes either by the storage
administrator or the system administrator, and the volumes are then assigned to guest virtual machines
as block devices.

For example, the storage administrator responsible for an NFS server creates a shared disk to store all
of the guest virtual machines' data. The system administrator would define a storage pool on the
virtualization host using the details of the shared disk. In this example, the administrator may want
nfs.example.com:/path/to/share to be mounted on /vm_data). When the storage pool is
started, libvirt mounts the share on the specified directory, just as if the system administrator logged in
and executed mount nfs.example.com:/path/to/share /vmdata. If the storage pool is
configured to autostart, libvirt ensures that the NFS shared disk is mounted on the directory specified
when libvirt is started.

Once the storage pool is started, the files in the NFS shared disk are reported as storage volumes, and
the storage volumes' paths may be queried using the libvirt APIs. The storage volumes' paths can then
be copied into the section of a guest virtual machine's XML definition describing the source storage for
the guest virtual machine's block devices.In the case of NFS, an application using the libvirt APIs can
create and delete storage volumes in the storage pool (files in the NFS share) up to the limit of the size
of the pool (the storage capacity of the share). Not all storage pool types support creating and deleting
volumes. Stopping the storage pool (pool-destroy) undoes the start operation, in this case, unmounting
the NFS share. The data on the share is not modified by the destroy operation, despite what the name of
the command suggests. For more details, see man virsh.

A second example is an iSCSI storage pool. A storage administrator provisions an iSCSI target to
present a set of LUNs to the host running the virtual machines. When libvirt is configured to manage that
iSCSI target as a storage pool, libvirt will ensure that the host logs into the iSCSI target and libvirt can
then report the available LUNs as storage volumes. The storage volumes' paths can be queried and
used in virtual machines' XML definitions as in the NFS example. In this case, the LUNs are defined on
the iSCSI server, and libvirt cannot create and delete volumes.

Storage pools and volumes are not required for the proper operation of guest virtual machines. Storage
pools and volumes provide a way for libvirt to ensure that a particular piece of storage will be available
for a guest virtual machine. On systems that do not use storage pools, system administrators must
ensure the availability of the guest virtual machine's storage. For example, adding the NFS share to the
host physical machine's fstab is required so that the share is mounted at boot time.

One of the advantages of using libvirt to manage storage pools and volumes is libvirt's remote protocol,
so it is possible to manage all aspects of a guest virtual machine's life cycle, as well as the configuration
of the resources required by the guest virtual machine. These operations can be performed on a remote
host entirely within the libvirt API. As a result, a management application using libvirt can enable a user
to perform all the required tasks for configuring the host physical machine for a guest virtual machine
such as: allocating resources, running the guest virtual machine, shutting it down and de-allocating the
resources, without requiring shell access or any other control channel.

Although the storage pool is a virtual container it is limited by two factors: maximum size allowed to it by
qemu-kvm and the size of the disk on the host machine. Storage pools may not exceed the size of the
disk on the host machine. The maximum sizes are as follows:

virtio-blk = 2^63 bytes or 8 Exabytes(using raw files or disk)

Ext4 = ~ 16 TB (using 4 KB block size)

Virtualization Deployment and Administration Guide

86

XFS = ~8 Exabytes

qcow2 and host file systems keep their own metadata and scalability should be evaluated/tuned
when trying very large image sizes. Using raw disks means fewer layers that could affect
scalability or max size.

libvirt uses a directory-based storage pool, the /var/lib/libvirt/images/ directory, as the default
storage pool. The default storage pool can be changed to another storage pool.

Local storage pools - Local storage pools are directly attached to the host physical machine
server. Local storage pools include: local directories, directly attached disks, physical partitions,
and LVM volume groups. These storage volumes store guest virtual machine images or are
attached to guest virtual machines as additional storage. As local storage pools are directly
attached to the host physical machine server, they are useful for development, testing and small
deployments that do not require migration or large numbers of guest virtual machines. Local
storage pools are not suitable for many production environments as local storage pools do not
support live migration.

Networked (shared) storage pools - Networked storage pools include storage devices shared
over a network using standard protocols. Networked storage is required when migrating virtual
machines between host physical machines with virt-manager, but is optional when migrating
with virsh. Networked storage pools are managed by libvirt. Supported protocols for networked
storage pools include:

Fibre Channel-based LUNs

iSCSI

NFS

GFS2

SCSI RDMA protocols (SCSI RCP), the block export protocol used in InfiniBand and 10GbE
iWARP adapters.

NOTE

Multi-path storage pools should not be created or used as they are not fully supported.

Example 13.1. NFS storage pool

Suppose a storage administrator responsible for an NFS server creates a share to store guest virtual
machines' data. The system administrator defines a pool on the host physical machine with the
details of the share (nfs.example.com:/path/to/share should be mounted on /vm_data). When
the pool is started, libvirt mounts the share on the specified directory, just as if the system
administrator logged in and executed mount nfs.example.com:/path/to/share /vmdata. If
the pool is configured to autostart, libvirt ensures that the NFS share is mounted on the directory
specified when libvirt is started.

Once the pool starts, the files that the NFS share, are reported as volumes, and the storage volumes'
paths are then queried using the libvirt APIs. The volumes' paths can then be copied into the section
of a guest virtual machine's XML definition file describing the source storage for the guest virtual
machine's block devices. With NFS, applications using the libvirt APIs can create and delete volumes
in the pool (files within the NFS share) up to the limit of the size of the pool (the maximum storage

CHAPTER 13. STORAGE POOLS

87

capacity of the share). Not all pool types support creating and deleting volumes. Stopping the pool
negates the start operation, in this case, unmounts the NFS share. The data on the share is not
modified by the destroy operation, despite the name. See man virsh for more details.

NOTE

Storage pools and volumes are not required for the proper operation of guest virtual
machines. Pools and volumes provide a way for libvirt to ensure that a particular piece of
storage will be available for a guest virtual machine, but some administrators will prefer to
manage their own storage and guest virtual machines will operate properly without any
pools or volumes defined. On systems that do not use pools, system administrators must
ensure the availability of the guest virtual machines' storage using whatever tools they
prefer. For example, adding the NFS share to the host physical machine's fstab is
required so that the share is mounted at boot time.

WARNING

When creating storage pools on a guest, make sure to follow the related security
considerations found in the Red Hat Enterprise Linux 7 Virtualization Security Guide.

13.1. DISK-BASED STORAGE POOLS

This section covers creating disk-based storage devices for guest virtual machines.

WARNING

Guests should not be given write access to whole disks or block devices (for
example, /dev/sdb). Use partitions (for example, /dev/sdb1) or LVM volumes.

If you pass an entire block device to the guest, the guest will likely partition it or
create its own LVM groups on it. This can cause the host physical machine to detect
these partitions or LVM groups and cause errors.

13.1.1. Creating a Disk-based Storage Pool Using virsh

This procedure creates a new storage pool using a disk device with the virsh command.





Virtualization Deployment and Administration Guide

88

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html

WARNING

Dedicating a disk to a storage pool will reformat and erase all data presently stored
on the disk device. It is strongly recommended to back up the data on the storage
device before commencing with the following procedure:

1. Create a GPT disk label on the disk
The disk must be relabeled with a GUID Partition Table (GPT) disk label. GPT disk labels allow
for creating a large numbers of partitions, up to 128 partitions, on each device. GPT partition
tables can store partition data for far more partitions than the MS-DOS partition table.

parted /dev/sdb
GNU Parted 2.1
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel
New disk label type? gpt
(parted) quit
Information: You may need to update /etc/fstab.
#

2. Create the storage pool configuration file
Create a temporary XML text file containing the storage pool information required for the new
device.

The file must be in the format shown below, and contain the following fields:

<name>guest_images_disk</name>

The name parameter determines the name of the storage pool. This example uses the name
guest_images_disk in the example below.

<device path='/dev/sdb'/>

The device parameter with the path attribute specifies the device path of the storage
device. This example uses the device /dev/sdb.

<target> <path>/dev</path></target>

The file system target parameter with the path sub-parameter determines the location on
the host physical machine file system to attach volumes created with this storage pool.

For example, sdb1, sdb2, sdb3. Using /dev/, as in the example below, means volumes
created from this storage pool can be accessed as /dev/sdb1, /dev/sdb2, /dev/sdb3.

<format type='gpt'/>

The format parameter specifies the partition table type. This example uses the gpt in the
example below, to match the GPT disk label type created in the previous step.

Create the XML file for the storage pool device with a text editor.



CHAPTER 13. STORAGE POOLS

89

Example 13.2. Disk-based storage device storage pool

<pool type='disk'>
 <name>guest_images_disk</name>
 <source>
 <device path='/dev/sdb'/>
 <format type='gpt'/>
 </source>
 <target>
 <path>/dev</path>
 </target>
</pool>

3. Start the storage pool
Start the storage pool with the virsh pool-start command. Verify the pool is started with
the virsh pool-list --all command.

virsh pool-start iscsirhel7guest
Pool iscsirhel7guest started
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk active no

4. Attach the device
Add the storage pool definition using the virsh pool-define command with the XML
configuration file created in the previous step.

virsh pool-define ~/guest_images_disk.xml
Pool guest_images_disk defined from /root/guest_images_disk.xml
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk inactive no

5. Turn on autostart
Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the
storage pool when the service starts.

virsh pool-autostart guest_images_disk
Pool guest_images_disk marked as autostarted
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk active yes

6. Verify the storage pool configuration
Verify the storage pool was created correctly, the sizes reported correctly, and the state reports
as running.

Virtualization Deployment and Administration Guide

90

virsh pool-info guest_images_disk
Name: guest_images_disk
UUID: 551a67c8-5f2a-012c-3844-df29b167431c
State: running
Capacity: 465.76 GB
Allocation: 0.00
Available: 465.76 GB
ls -la /dev/sdb
brw-rw----. 1 root disk 8, 16 May 30 14:08 /dev/sdb
virsh vol-list guest_images_disk
Name Path

7. Optional: Remove the temporary configuration file
Remove the temporary storage pool XML configuration file if it is not needed anymore.

rm ~/guest_images_disk.xml

A disk-based storage pool is now available.

13.1.2. Deleting a Storage Pool Using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

13.2. PARTITION-BASED STORAGE POOLS

This section covers using a pre-formatted block device, a partition, as a storage pool.

For the following examples, a host physical machine has a 500GB hard drive (/dev/sdc) partitioned
into one 500GB partition (/dev/sdc1). We set up a storage pool for it using the procedure below.

13.2.1. Creating a Partition-based Storage Pool Using virt-manager

This procedure creates a new storage pool using a partition of a storage device.

Procedure 13.1. Creating a partition-based storage pool with virt-manager

1. Set the File System to ext4
From a command window, enter the following command to set the file system to ext4

mkfs.ext4 /dev/sdc1

2. Open the storage pool settings

CHAPTER 13. STORAGE POOLS

91

a. In the virt-manager graphical interface, select the host physical machine from the main
window.

Open the Edit menu and select Connection Details

b. click the Storage tab of the Connection Details window.

Figure 13.1. Storage tab

3. Create the new storage pool

a. Add a new pool (part 1)
Press the + button (at the bottom of the window). The Add a New Storage Pool wizard
appears.

Choose a Name for the storage pool. This example uses the name guest_images_fs.
Change the Type to fs: Pre-Formatted Block Device.

Virtualization Deployment and Administration Guide

92

Figure 13.2. Storage pool name and type

Press the Forward button to continue.

b. Add a new pool (part 2)
Change the Target Path, , and Source Path fields.

CHAPTER 13. STORAGE POOLS

93

Figure 13.3. Storage pool path

Target Path

Enter the location to mount the source device for the storage pool in the Target Path
field. If the location does not already exist, virt-manager will create the directory.

Source Path

Enter the device in the Source Path field.

This example uses the /dev/sdc1 device.

Verify the details and press the Finish button to create the storage pool.

4. Verify the new storage pool
The new storage pool appears in the storage list on the left after a few seconds. Verify the size
is reported as expected, 2.88 GB Free in this example. Verify the State field reports the new
storage pool as Active.

Select the storage pool. In the Autostart field, click the On Boot check box. This will make
sure the storage device starts whenever the libvirtd service starts.

Virtualization Deployment and Administration Guide

94

Figure 13.4. Storage list confirmation

The storage pool is now created, close the Connection Details window.

13.2.2. Deleting a Storage Pool Using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want

to stop and click at the bottom of the Storage window.

2. Delete the storage pool by clicking . This icon is only enabled if you stop the storage pool
first.

13.2.3. Creating a Partition-based Storage Pool Using virsh

This section covers creating a partition-based storage pool with the virsh command.

CHAPTER 13. STORAGE POOLS

95

WARNING

Do not use this procedure to assign an entire disk as a storage pool (for example,
/dev/sdb). Guests should not be given write access to whole disks or block
devices. Only use this method to assign partitions (for example, /dev/sdb1) to
storage pools.

Procedure 13.2. Creating pre-formatted block device storage pools using virsh

1. Create the storage pool definition
Use the virsh pool-define-as command to create a new storage pool definition. There are
three options that must be provided to define a pre-formatted disk as a storage pool:

Partition name

The name parameter determines the name of the storage pool. This example uses the name
guest_images_fs in the example below.

device

The device parameter with the path attribute specifies the device path of the storage
device. This example uses the partition /dev/sdc1.

mountpoint

The mountpoint on the local file system where the formatted device will be mounted. If the
mount point directory does not exist, the virsh command can create the directory.

The directory /guest_images is used in this example.

virsh pool-define-as guest_images_fs fs - - /dev/sdc1 -
"/guest_images"
Pool guest_images_fs defined

The new pool is now created.

2. Verify the new pool
List the present storage pools.

virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs inactive no

3. Create the mount point
Use the virsh pool-build command to create a mount point for a pre-formatted file system
storage pool.

virsh pool-build guest_images_fs



Virtualization Deployment and Administration Guide

96

Pool guest_images_fs built
ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 31 19:38 .
dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..
virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs inactive no

4. Start the storage pool
Use the virsh pool-start command to mount the file system onto the mount point and
make the pool available for use.

virsh pool-start guest_images_fs
Pool guest_images_fs started
virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs active no

5. Turn on autostart
By default, a storage pool is defined with virsh is not set to automatically start each time
libvirtd starts. Turn on automatic start with the virsh pool-autostart command. The
storage pool is now automatically started each time libvirtd starts.

virsh pool-autostart guest_images_fss
Pool guest_images_fs marked as autostarted

virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs active yes

6. Verify the storage pool
Verify the storage pool was created correctly, the sizes reported are as expected, and the state
is reported as running. Verify there is a "lost+found" directory in the mount point on the file
system, indicating the device is mounted.

virsh pool-info guest_images_fs
Name: guest_images_fs
UUID: c7466869-e82a-a66c-2187-dc9d6f0877d0
State: running
Persistent: yes
Autostart: yes
Capacity: 458.39 GB
Allocation: 197.91 MB
Available: 458.20 GB
mount | grep /guest_images
/dev/sdc1 on /guest_images type ext4 (rw)
ls -la /guest_images

CHAPTER 13. STORAGE POOLS

97

total 24
drwxr-xr-x. 3 root root 4096 May 31 19:47 .
dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..
drwx------. 2 root root 16384 May 31 14:18 lost+found

13.2.4. Deleting a Storage Pool Using virsh

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

13.3. DIRECTORY-BASED STORAGE POOLS

This section covers storing guest virtual machines in a directory on the host physical machine.

Directory-based storage pools can be created with virt-manager or the virsh command-line tools.

13.3.1. Creating a Directory-based Storage Pool with virt-manager

1. Create the local directory

a. Optional: Create a new directory for the storage pool
Create the directory on the host physical machine for the storage pool. This example uses a
directory named /guest_images.

mkdir /guest_images

b. Set directory ownership
Change the user and group ownership of the directory. The directory must be owned by the
root user.

chown root:root /guest_images

c. Set directory permissions
Change the file permissions of the directory.

chmod 700 /guest_images

d. Verify the changes
Verify the permissions were modified. The output shows a correctly configured empty
directory.

Virtualization Deployment and Administration Guide

98

ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 28 13:57 .
dr-xr-xr-x. 26 root root 4096 May 28 13:57 ..

2. Configure SELinux file contexts
Configure the correct SELinux context for the new directory. Note that the name of the pool and
the directory do not have to match. However, when you shut down the guest virtual machine,
libvirt has to set the context back to a default value. The context of the directory determines what
this default value is. It is worth explicitly labeling the directory virt_image_t, so that when the
guest virtual machine is shutdown, the images get labeled 'virt_image_t' and are thus isolated
from other processes running on the host physical machine.

semanage fcontext -a -t virt_image_t '/guest_images(/.*)?'
restorecon -R /guest_images

3. Open the storage pool settings

a. In the virt-manager graphical interface, select the host physical machine from the main
window.

Open the Edit menu and select Connection Details

b. click the Storage tab of the Connection Details window.

Figure 13.5. Storage tab

4. Create the new storage pool

a. Add a new pool (part 1)
Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

CHAPTER 13. STORAGE POOLS

99

Choose a Name for the storage pool. This example uses the name guest_images. Change
the Type to dir: Filesystem Directory.

Figure 13.6. Name the storage pool

Press the Forward button to continue.

b. Add a new pool (part 2)
Change the Target Path field. For example, /guest_images.

Virtualization Deployment and Administration Guide

100

Figure 13.7. Selecting a path for the storage pool

Verify the details and press the Finish button to create the storage pool.

5. Verify the new storage pool
The new storage pool appears in the storage list on the left after a few seconds. Verify the size
is reported as expected, 36.41 GB Free in this example. Verify the State field reports the new
storage pool as Active.

Select the storage pool. In the Autostart field, confirm that the On Boot check box is
checked. This will make sure the storage pool starts whenever the libvirtd service starts.

CHAPTER 13. STORAGE POOLS

101

Figure 13.8. Verify the storage pool information

The storage pool is now created, close the Connection Details window.

13.3.2. Deleting a Storage Pool Using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want

to stop and click at the bottom of the Storage window.

2. Delete the storage pool by clicking . This icon is only enabled if you stop the storage pool
first.

13.3.3. Creating a Directory-based Storage Pool with virsh

1. Create the storage pool definition
Use the virsh pool-define-as command to define a new storage pool. There are two
options required for creating directory-based storage pools:

The name of the storage pool.

This example uses the name guest_images. All further virsh commands used in this
example use this name.

The path to a file system directory for storing guest image files. If this directory does not
exist, virsh will create it.

Virtualization Deployment and Administration Guide

102

This example uses the /guest_images directory.

 # virsh pool-define-as guest_images dir - - - - "/guest_images"
Pool guest_images defined

2. Verify the storage pool is listed
Verify the storage pool object is created correctly and the state reports it as inactive.

virsh pool-list --all
Name State Autostart

default active yes
guest_images inactive no

3. Create the local directory
Use the virsh pool-build command to build the directory-based storage pool for the
directory guest_images (for example), as shown:

virsh pool-build guest_images
Pool guest_images built
ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 30 02:44 .
dr-xr-xr-x. 26 root root 4096 May 30 02:44 ..
virsh pool-list --all
Name State Autostart

default active yes
guest_images inactive no

4. Start the storage pool
Use the virsh command pool-start to enable a directory storage pool, thereby allowing
volumes of the pool to be used as guest disk images.

virsh pool-start guest_images
Pool guest_images started
virsh pool-list --all
Name State Autostart

default active yes
guest_images active no

5. Turn on autostart
Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the
storage pool when the service starts.

virsh pool-autostart guest_images
Pool guest_images marked as autostarted
virsh pool-list --all
Name State Autostart

default active yes
guest_images active yes

CHAPTER 13. STORAGE POOLS

103

6. Verify the storage pool configuration
Verify the storage pool was created correctly, the size is reported correctly, and the state is
reported as running. If you want the pool to be accessible even if the guest virtual machine is
not running, make sure that Persistent is reported as yes. If you want the pool to start
automatically when the service starts, make sure that Autostart is reported as yes.

virsh pool-info guest_images
Name: guest_images
UUID: 779081bf-7a82-107b-2874-a19a9c51d24c
State: running
Persistent: yes
Autostart: yes
Capacity: 49.22 GB
Allocation: 12.80 GB
Available: 36.41 GB

ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 30 02:44 .
dr-xr-xr-x. 26 root root 4096 May 30 02:44 ..
#

A directory-based storage pool is now available.

13.3.4. Deleting a Storage Pool Using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

13.4. LVM-BASED STORAGE POOLS

This section provides information about using LVM volume groups as storage pools. LVM-based storage
groups provide the full flexibility of LVM. For more details on LVM, refer to the Red Hat Enterprise Linux
Logical Volume Manager Administration Guide.

Virtualization Deployment and Administration Guide

104

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html

NOTE

Be aware of the following:

Thin provisioning is currently not possible with LVM-based storage pools.

To prevent the host from unnecessarily scanning the contents of LVMs used by
the guest, the global_filter option must be configured in
/etc/lvm/lvm.conf. For more information, refer to the Red Hat Enterprise
Linux Logical Volume Manager Administration Guide.

WARNING

LVM-based storage pools require a full disk partition. When activating a new
partition/device with these procedures, the partition will be formatted and all data will
be erased. When using the host's existing Volume Group (VG), nothing will be
erased. It is recommended to back up the storage device before starting the
following procedure.

13.4.1. Creating an LVM-based Storage Pool with virt-manager

LVM-based storage pools can use existing LVM volume groups or create new LVM volume groups on a
blank partition.

For details on creating LVM volume groups, refer to the Red Hat Enterprise Linux Logical Volume
Manager Administration Guide.

1. Open the storage pool settings

a. In the virt-manager graphical interface, select the host from the main window.

Open the Edit menu and select Connection Details

b. click the Storage tab.



CHAPTER 13. STORAGE POOLS

105

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html#lvm_filters
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html#VG_create

Figure 13.9. Storage tab

2. Create the new storage pool

a. Start the Wizard
Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

Choose a Name for the storage pool. We use guest_images_lvm for this example. Then
change the Type to logical: LVM Volume Group, and

Virtualization Deployment and Administration Guide

106

Figure 13.10. Add LVM storage pool

Press Forward to continue.

b. Add a new pool (part 2)
Fill in the Target Path and Source Path fields, and check the Build Pool check box.

Use the Target Path field to either select an existing LVM volume group or as the
name for a new volume group. The default format is
storage_pool_name/lvm_Volume_Group_name.

This example uses a new volume group named /dev/guest_images_lvm.

The Source Path field is optional if an existing LVM volume group is used in the
Target Path.

For new LVM volume groups, input the location of a storage device in the Source
Path field. This example uses a blank partition /dev/sdc.

The Build Pool check box instructs virt-manager to create a new LVM volume
group. If you are using an existing volume group you should not select the Build Pool
check box.

This example is using a blank partition to create a new volume group so the Build
Pool check box must be selected.

CHAPTER 13. STORAGE POOLS

107

Figure 13.11. Add target and source

Verify the details and press the Finish button format the LVM volume group and create the
storage pool.

c. Confirm the device to be formatted
A warning message appears.

Figure 13.12. Warning message

Press the Yes button to proceed to erase all data on the storage device and create the
storage pool.

3. Verify the new storage pool
The new storage pool will appear in the list on the left after a few seconds. Verify the details are
what you expect, 465.76 GB Free in our example. Also verify the State field reports the new
storage pool as Active.

Virtualization Deployment and Administration Guide

108

It is generally a good idea to have the Autostart check box enabled, to ensure the storage
pool starts automatically with libvirtd.

Figure 13.13. Confirm LVM storage pool details

Close the Connection Details dialog, as the task is now complete.

13.4.2. Deleting a Storage Pool Using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want

to stop and click .

CHAPTER 13. STORAGE POOLS

109

Figure 13.14. Stop Icon

2. Delete the storage pool by clicking . This icon is only enabled if you stop the storage pool
first.

13.4.3. Creating an LVM-based Storage Pool with virsh

This section outlines the steps required to create an LVM-based storage pool with the virsh command.
It uses the example of a pool named guest_images_lvm from a single drive (/dev/sdc). This is only
an example and your settings should be substituted as appropriate.

Procedure 13.3. Creating an LVM-based storage pool with virsh

1. Define the pool name guest_images_lvm.

virsh pool-define-as guest_images_lvm logical - - /dev/sdc
libvirt_lvm \ /dev/libvirt_lvm
Pool guest_images_lvm defined

2. Build the pool according to the specified name. If you are using an already existing volume
group, skip this step.

virsh pool-build guest_images_lvm

Pool guest_images_lvm built

3. Initialize the new pool.

virsh pool-start guest_images_lvm

Virtualization Deployment and Administration Guide

110

Pool guest_images_lvm started

4. Show the volume group information with the vgs command.

vgs
VG #PV #LV #SN Attr VSize VFree
libvirt_lvm 1 0 0 wz--n- 465.76g 465.76g

5. Set the pool to start automatically.

virsh pool-autostart guest_images_lvm
Pool guest_images_lvm marked as autostarted

6. List the available pools with the virsh command.

virsh pool-list --all
Name State Autostart

default active yes
guest_images_lvm active yes

7. The following commands demonstrate the creation of three volumes (volume1, volume2 and
volume3) within this pool.

virsh vol-create-as guest_images_lvm volume1 8G
Vol volume1 created

virsh vol-create-as guest_images_lvm volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_lvm volume3 8G
Vol volume3 created

8. List the available volumes in this pool with the virsh command.

virsh vol-list guest_images_lvm
Name Path

volume1 /dev/libvirt_lvm/volume1
volume2 /dev/libvirt_lvm/volume2
volume3 /dev/libvirt_lvm/volume3

9. The following two commands (lvscan and lvs) display further information about the newly
created volumes.

lvscan
ACTIVE '/dev/libvirt_lvm/volume1' [8.00 GiB] inherit
ACTIVE '/dev/libvirt_lvm/volume2' [8.00 GiB] inherit
ACTIVE '/dev/libvirt_lvm/volume3' [8.00 GiB] inherit

lvs
LV VG Attr LSize Pool Origin Data% Move Log

CHAPTER 13. STORAGE POOLS

111

Copy% Convert
volume1 libvirt_lvm -wi-a- 8.00g
volume2 libvirt_lvm -wi-a- 8.00g
volume3 libvirt_lvm -wi-a- 8.00g

13.4.4. Deleting a Storage Pool Using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guests using the same pool, it is best to stop the storage pool
and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

13.5. ISCSI-BASED STORAGE POOLS

This section covers using iSCSI-based devices to store guest virtual machines. This allows for more
flexible storage options such as using iSCSI as a block storage device. The iSCSI devices use an LIO
target, which is a multi-protocol SCSI target for Linux. In addition to iSCSI, LIO also supports Fibre
Channel and Fibre Channel over Ethernet (FCoE).

iSCSI (Internet Small Computer System Interface) is a network protocol for sharing storage devices.
iSCSI connects initiators (storage clients) to targets (storage servers) using SCSI instructions over the IP
layer.

13.5.1. Configuring a Software iSCSI Target

Introduced in Red Hat Enterprise Linux 7, iSCSI targets are created with the targetcli package, which
provides a command set for creating software-backed iSCSI targets.

Procedure 13.4. Creating an iSCSI target

1. Install the required package
Install the targetcli package and all dependencies:

yum install targetcli

2. Launch targetcli
Launch the targetcli command set:

targetcli

Virtualization Deployment and Administration Guide

112

3. Create storage objects
Create three storage objects as follows, using the device created in Section 13.4, “LVM-based
Storage Pools”:

a. Create a block storage object, by changing into the /backstores/block directory and
running the following command:

create [block-name][filepath]

For example:

 # create block1 dev=/dev/vdb1

b. Create a fileio object, by changing into the fileio directory and running the following
command:

create [fileioname] [imagename] [image-size]

For example:

create fileio1 /foo.img 50M

c. Create a ramdisk object by changing into the ramdisk directory, and running the following
command:

create [ramdiskname] [size]

For example:

create ramdisk1 1M

d. Remember the names of the disks you created in this step, as you will need them later.

4. Navigate to the /iscsi directory
Change into the iscsi directory:

#cd /iscsi

5. Create iSCSI target
Create an iSCSI target in one of two ways:

a. create with no additional parameters, automatically generates the IQN.

b. create iqn.2010-05.com.example.server1:iscsirhel7guest creates a specific
IQN on a specific server.

6. Define the target portal group (TPG)
Each iSCSI target needs to have a target portal group (TPG) defined. In this example, the
default tpg1 will be used, but you can add additional tpgs as well. As this is the most common
configuration, the example configures tpg1. To do this, make sure you are still in the /iscsi
directory and change to the /tpg1 directory.

CHAPTER 13. STORAGE POOLS

113

/iscsi>iqn.iqn.2010-05.com.example.server1:iscsirhel7guest/tpg1

7. Define the portal IP address
In order to export the block storage over iSCSI, the portals, LUNs, and ACLs must all be
configured first.

The portal includes the IP address and TCP port that the target will listen on, and the initiators
will connect to. iSCSI uses port 3260, which is the port that will be configured by default. To
connect to this port, enter the following command from the /tpg directory:

portals/ create

This command will have all available IP addresses listening to this port. To specify that only one
specific IP address will listen on the port, run portals/ create [ipaddress], and the
specified IP address will be configured to listen to port 3260.

8. Configure the LUNs and assign the storage objects to the fabric
This step uses the storage devices created in Procedure 13.4, “Creating an iSCSI target”. Make
sure you change into the luns directory for the TPG you created in step 6, or
iscsi>iqn.iqn.2010-05.com.example.server1:iscsirhel7guest, for example.

a. Assign the first LUN to the ramdisk as follows:

create /backstores/ramdisk/ramdisk1

b. Assign the second LUN to the block disk as follows:

create /backstores/block/block1

c. Assign the third LUN to the fileio disk as follows:

create /backstores/fileio/file1

d. Listing the resulting LUNs should resemble this screen output:

/iscsi/iqn.20...csirhel7guest/tpg1 ls

o- tgp1
...
...........[enabled, auth]
 o-
acls...
.....................[0 ACL]
 o-
luns...
....................[3 LUNs]
 | o-
lun0...
........[ramdisk/ramdisk1]
 | o-
lun1...
.[block/block1 (dev/vdb1)]
 | o-
lun2...

Virtualization Deployment and Administration Guide

114

..[fileio/file1 (foo.img)]
 o-
portals..
..................[1 Portal]
 o- IP-
ADDRESS:3260...
...................[OK]

9. Creating ACLs for each initiator
This step allows for the creation of authentication when the initiator connects, and it also allows
for restriction of specified LUNs to specified initiators. Both targets and initiators have unique
names. iSCSI initiators use an IQN.

a. To find the IQN of the iSCSI initiator, enter the following command, replacing the name of
the initiator:

cat /etc/iscsi/initiatorname.iscsi

Use this IQN to create the ACLs.

b. Change to the acls directory.

c. Run the command create [iqn], or to create specific ACLs, refer to the following
example:

create iqn.2010-05.com.example.foo:888

Alternatively, to configure the kernel target to use a single user ID and password for all
initiators, and enable all initiators to log in with that user ID and password, use the following
commands (replacing userid and password):

set auth userid=redhat
set auth password=password123
set attribute authentication=1
set attribute generate_node_acls=1

10. Make the configuration persistent with the saveconfig command. This will overwrite the
previous boot settings. Alternatively, running exit from the targetcli saves the target
configuration by default.

11. Enable the service with systemctl enable target.service to apply the saved settings on
next boot.

Procedure 13.5. Optional steps

1. Create LVM volumes
LVM volumes are useful for iSCSI backing images. LVM snapshots and re-sizing can be
beneficial for guest virtual machines. This example creates an LVM image named virtimage1 on
a new volume group named virtstore on a RAID5 array for hosting guest virtual machines with
iSCSI.

a. Create the RAID array
Creating software RAID5 arrays is covered by the Red Hat Enterprise Linux 7 Storage
Administration Guide.

CHAPTER 13. STORAGE POOLS

115

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-raid.html

b. Create the LVM volume group
Create a logical volume group named virtstore with the vgcreate command.

vgcreate virtstore /dev/md1

c. Create a LVM logical volume
Create a logical volume named virtimage1 on the virtstore volume group with a size of 20GB
using the lvcreate command.

lvcreate **size 20G -n virtimage1 virtstore

The new logical volume, virtimage1, is ready to use for iSCSI.

IMPORTANT

Using LVM volumes for kernel target backstores can cause issues if the
initiator also partitions the exported volume with LVM. This can be solved by
adding global_filter = ["r|^/dev/vg0|"] to /etc/lvm/lvm.conf

2. Optional: Test discovery
Test whether the new iSCSI device is discoverable.

iscsiadm --mode discovery --type sendtargets --portal
server1.example.com
127.0.0.1:3260,1 iqn.2010-05.com.example.server1:iscsirhel7guest

3. Optional: Test attaching the device
Attach the new device (iqn.2010-05.com.example.server1:iscsirhel7guest) to determine whether
the device can be attached.

iscsiadm -d2 -m node --login
scsiadm: Max file limits 1024 1024

Logging in to [iface: default, target: iqn.2010-
05.com.example.server1:iscsirhel7guest, portal: 10.0.0.1,3260]
Login to [iface: default, target: iqn.2010-
05.com.example.server1:iscsirhel7guest, portal: 10.0.0.1,3260]
successful.

4. Detach the device.

iscsiadm -d2 -m node --logout
scsiadm: Max file limits 1024 1024

Logging out of session [sid: 2, target: iqn.2010-
05.com.example.server1:iscsirhel7guest, portal: 10.0.0.1,3260
Logout of [sid: 2, target: iqn.2010-
05.com.example.server1:iscsirhel7guest, portal: 10.0.0.1,3260]
successful.

An iSCSI device is now ready to use for virtualization.

Virtualization Deployment and Administration Guide

116

13.5.2. Creating an iSCSI Storage Pool in virt-manager

This procedure covers creating a storage pool with an iSCSI target in virt-manager.

Procedure 13.6. Adding an iSCSI device to virt-manager

1. Open the host machine's storage details

a. In virt-manager, click the Edit and select Connection Details from the drop-down
menu.

b. click the Storage tab.

Figure 13.15. Storage menu

2. Add a new pool (Step 1 of 2)
Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

CHAPTER 13. STORAGE POOLS

117

Figure 13.16. Add an iSCSI storage pool name and type

Choose a name for the storage pool, change the Type to iSCSI, and press Forward to continue.

3. Add a new pool (Step 2 of 2)
You will need the information you used in Section 13.5, “iSCSI-based Storage Pools” to
complete the fields in this menu.

a. Enter the iSCSI source and target. The Format option is not available as formatting is
handled by the guest virtual machines. It is not advised to edit the Target Path. The
default target path value, /dev/disk/by-path/, adds the drive path to that directory. The
target path should be the same on all host physical machines for migration.

b. Enter the host name or IP address of the iSCSI target. This example uses
host1.example.com.

c. In the Source IQN field, enter the iSCSI target IQN. If you look in Section 13.5, “iSCSI-
based Storage Pools”, this is the information you added in the
/etc/target/targets.conf file. This example uses iqn.2010-
05.com.test_example.server1:iscsirhel7guest.

d. (Optional) Check the Initiator IQN check box to enter the IQN for the initiator. This
example uses iqn.2010-05.com.example.host1:iscsirhel7.

e. Click Finish to create the new storage pool.

Virtualization Deployment and Administration Guide

118

Figure 13.17. Create an iSCSI storage pool

13.5.3. Deleting a Storage Pool Using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want

to stop and click .

CHAPTER 13. STORAGE POOLS

119

Figure 13.18. Deleting a storage pool

2. Delete the storage pool by clicking . This icon is only enabled if you stop the storage pool
first.

13.5.4. Creating an iSCSI-based Storage Pool with virsh

1. Optional: Secure the storage pool
If desired, set up authentication with the steps in Section 13.5.5, “Securing an iSCSI Storage
Pool”.

2. Define the storage pool
Storage pool definitions can be created with the virsh command-line tool. Creating storage
pools with virsh is useful for system administrators using scripts to create multiple storage
pools.

The virsh pool-define-as command has several parameters which are accepted in the
following format:

virsh pool-define-as name type source-host source-path source-dev
source-name target

The parameters are explained as follows:

type

defines this pool as a particular type, iSCSI for example

name

sets the name for the storage pool; must be unique

Virtualization Deployment and Administration Guide

120

source-host and source-path

the host name and iSCSI IQN, respectively

source-dev and source-name

these parameters are not required for iSCSI-based pools; use a - character to leave the field
blank.

target

defines the location for mounting the iSCSI device on the host machine

The example below creates the same iSCSI-based storage pool as the virsh pool-define-
as example above:

virsh pool-define-as --name iscsirhel7pool --type iscsi \
 --source-host server1.example.com \
 --source-dev iqn.2010-05.com.example.server1:iscsirhel7guest \
 --target /dev/disk/by-path
Pool iscsirhel7pool defined

3. Verify the storage pool is listed
Verify the storage pool object is created correctly and the state is inactive.

virsh pool-list --all
Name State Autostart

default active yes
iscsirhel7pool inactive no

4. Optional: Establish a direct connection to the iSCSI storage pool
This step is optional, but it allows you to establish a direct connection to the iSCSI storage pool.
By default this is enabled, but if the connection is to the host machine (and not direct to the
network) you can change it back by editing the domain XML for the virtual machine to reflect this
example:

Figure 13.19. Disk type element XML example

 ...
 <disk type='volume' device='disk'>
 <driver name='qemu'/>
 <source pool='iscsi' volume='unit:0:0:1' mode='direct'/>
 <target dev='vda' bus='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06'
function='0x0'/>
 </disk>
 ...

CHAPTER 13. STORAGE POOLS

121

NOTE

The same iSCSI storage pool can be used for a LUN or a disk, by specifying the
disk device as either a disk or lun. For XML configuration examples of
adding SCSI LUN-based storage to a guest, see Section 14.5.3, “Adding SCSI
LUN-based Storage to a Guest”.

Additionally, the source mode can be specified as mode='host' for a
connection to the host machine.

If you have configured authentication on the iSCSI server as detailed in Procedure 13.4,
“Creating an iSCSI target”, then the following XML used as a <disk> sub-element will provide
the authentication credentials for the disk. Section 13.5.5, “Securing an iSCSI Storage Pool”
describes how to configure the libvirt secret.

<auth type='chap' username='redhat'>
 <secret usage='iscsirhel7secret'/>
</auth>

5. Start the storage pool
Use the virsh pool-start to enable a directory storage pool. This allows the storage pool to
be used for volumes and guest virtual machines.

virsh pool-start iscsirhel7pool
Pool iscsirhel7pool started
virsh pool-list --all
Name State Autostart

default active yes
iscsirhel7pool active no

6. Turn on autostart
Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the
storage pool when the service starts.

virsh pool-autostart iscsirhel7pool
Pool iscsirhel7pool marked as autostarted

Verify that the iscsirhel7pool pool has autostart enabled:

virsh pool-list --all
Name State Autostart

default active yes
iscsirhel7pool active yes

7. Verify the storage pool configuration
Verify the storage pool was created correctly, the sizes report correctly, and the state reports as
running.

virsh pool-info iscsirhel7pool
Name: iscsirhel7pool
UUID: afcc5367-6770-e151-bcb3-847bc36c5e28

Virtualization Deployment and Administration Guide

122

State: running
Persistent: unknown
Autostart: yes
Capacity: 100.31 GB
Allocation: 0.00
Available: 100.31 GB

An iSCSI-based storage pool called iscsirhel7pool is now available.

13.5.5. Securing an iSCSI Storage Pool

User name and password parameters can be configured with virsh to secure an iSCSI storage pool.
This can be configured before or after the pool is defined, but the pool must be started for the
authentication settings to take effect.

Procedure 13.7. Configuring authentication for a storage pool with virsh

1. Create a libvirt secret file
Create a libvirt secret XML file called secret.xml, using the following example:

cat secret.xml
<secret ephemeral='no' private='yes'>
 <description>Passphrase for the iSCSI example.com
server</description>
 <auth type='chap' username='redhat'/>
 <usage type='iscsi'>
 <target>iscsirhel7secret</target>
 </usage>
</secret>

2. Define the secret file
Define the secret.xml file with virsh:

virsh secret-define secret.xml

3. Verify the secret file's UUID
Verify the UUID in secret.xml:

virsh secret-list

 UUID Usage
--

 2d7891af-20be-4e5e-af83-190e8a922360 iscsi iscsirhel7secret

4. Assign a secret to the UUID
Assign a secret to that UUID, using the following command syntax as an example:

MYSECRET=`printf %s "password123" | base64`
virsh secret-set-value 2d7891af-20be-4e5e-af83-190e8a922360
$MYSECRET

This ensures the CHAP username and password are set in a libvirt-controlled secret list.

CHAPTER 13. STORAGE POOLS

123

5. Add an authentication entry to the storage pool
Modify the <source> entry in the storage pool's XML file using virsh edit and add an
<auth> element, specifying authentication type, username, and secret usage.

The following shows an example of a storage pool XML definition with authentication configured:

cat iscsirhel7pool.xml
 <pool type='iscsi'>
 <name>iscsirhel7pool</name>
 <source>
 <host name='192.168.122.1'/>
 <device path='iqn.2010-
05.com.example.server1:iscsirhel7guest'/>
 <auth type='chap' username='redhat'>
 <secret usage='iscsirhel7secret'/>
 </auth>
 </source>
 <target>
 <path>/dev/disk/by-path</path>
 </target>
 </pool>

NOTE

The <auth> sub-element exists in different locations within the guest XML's
<pool> and <disk> elements. For a <pool>, <auth> is specified within the
<source> element, as this describes where to find the pool sources, since
authentication is a property of some pool sources (iSCSI and RBD). For a
<disk>, which is a sub-element of a domain, the authentication to the iSCSI or
RBD disk is a property of the disk. For an example of <disk> configured in the
guest XML, see Section 13.5.4, “Creating an iSCSI-based Storage Pool with
virsh”.

6. Activate the changes in the storage pool
The storage pool must be started to activate these changes.

If the storage pool has not yet been started, follow the steps in Section 13.5.4, “Creating an
iSCSI-based Storage Pool with virsh” to define and start the storage pool.

If the pool has already been started, enter the following commands to stop and restart the
storage pool:

virsh pool-destroy iscsirhel7pool
virsh pool-start iscsirhel7pool

13.5.6. Deleting a Storage Pool Using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy iscsirhel7pool

Virtualization Deployment and Administration Guide

124

2. Remove the storage pool's definition

virsh pool-undefine iscsirhel7pool

13.6. NFS-BASED STORAGE POOLS

This section provides information about creating and deleting storage pools with an NFS mount point. It
assumes that an NFS is already mounted on the host machine. For more information about creating and
adding an NFS mount point, see the Red Hat Enterprise Linux Storage Administration Guide.

13.6.1. Creating an NFS-based Storage Pool with virt-manager

1. Open the host physical machine's storage tab
Open the Storage tab in the Connection Details window.

a. Open virt-manager.

b. Select a host physical machine from the main virt-manager window. Click Edit menu
and select Connection Details.

c. Click the Storage tab.

Figure 13.20. Storage tab

2. Create a new pool (part 1)
Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

CHAPTER 13. STORAGE POOLS

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/nfs-clientconfig

Figure 13.21. Add an NFS name and type

Choose a name for the storage pool and press Forward to continue.

3. Create a new pool (part 2)
Enter the target path for the device, the host name and the NFS share path. Set the Format
option to NFS or auto (to detect the type). The target path must be identical on all host physical
machines for migration.

Enter the host name or IP address of the NFS server. This example uses
server1.example.com.

Enter the NFS path. This example uses /nfstrial.

Virtualization Deployment and Administration Guide

126

Figure 13.22. Create an NFS storage pool

Press Finish to create the new storage pool.

13.6.2. Deleting a Storage Pool Using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guests using the same pool, it is best to stop the storage pool
and release any resources in use by it. To do this, select the storage pool you want to stop and

click .

CHAPTER 13. STORAGE POOLS

127

Figure 13.23. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

13.6.3. Creating an NFS-based Storage Pool with virsh

Procedure 13.8. Creating an NFS-based storage pool

1. Create the storage pool definition
Use the virsh pool-define-as command to define a new persistent storage pool. Use the
virsh pool-create-as command to define a new non-persistent storage pool.

A persistent storage pool is accessible even when the guest virtual machine is not running and
continues to exist after the host reboots. A non-persistant storage pool is only available when the
guest virtual machine is running and only exists until the host reboots.

This example uses a persistent storage pool.

virsh pool-define-as nfspool netfs --sourcehost localhost --
source-path /home/path/to/mountpoint/directory --target
/tmp/nfspool-client
Pool nfspool defined

The following options are required for creating NFS-based storage pools:

The name of the storage pool.

This example uses the name nfspool. All further virsh commands used in this example
use this name.

Virtualization Deployment and Administration Guide

128

The type of the storage pool. For an NFS-based storage pool, the type is netfs.

The hostname of the NFS server where the mount point created in step 1 is located. This
can be a hostname or IP address. In this example, localhost is used as the host.

The source path is the location on the NFS server of the files to be served.

This example uses the /home/path/to/mountpoint/directory directory.

The target where the NFS client stores reference copies of the file.

This example uses /tmp/nfspool-client as the target.

To view the resultant XML without defining the pool, add the --print-xml option to the
command. The following shows the command above with the --print-xml option added:

2. Verify that the storage pool is listed
Verify that the storage pool object is created correctly and the state reports it as inactive.

virsh pool-list --all
Name State Autostart

default active yes
nfspool inactive no

You can also run the virsh pool-dumpxml command to view the output.

virsh pool-define-as nfspool netfs --sourcehost localhost --
source-path /home/path/to/mountpoint/directory --target
/tmp/nfspool-client --print-xml
<pool type='netfs'>
 <name>nfspool</name>
 <source>
 <host name='localhost'/>
 <dir path='/home/path/to/mountpoint/directory'/>
 </source>
 <target>
 <path>/tmp/nfspool-client</path>
 </target>
</pool>

virsh pool-dumpxml nfspool
<pool type='netfs'>
<name>nfspool</name>
<uuid>ad9bca0f-977f-4fe1-90c6-cb44f676f1ce</uuid>
<capacity unit='bytes'>0</capacity>
<allocation unit='bytes'>0</allocation>
<available unit='bytes'>0</available>
<source>
 <host name='localhost'/>
 <dir path='/home/vm-storage/nfspool'/>
 <format type='auto'/>
</source>
<target>

CHAPTER 13. STORAGE POOLS

129

3. Create the local directory
Use the virsh pool-build command to build the directory-based storage pool for a specified
directory, in this example nfspool:

virsh pool-build guest_images
Pool guest_images built
ls -la /nfspool
total 8
drwx------. 2 root root 4096 May 30 02:44 .
dr-xr-xr-x. 26 root root 4096 May 30 02:44 ..
virsh pool-list --all
Name State Autostart

default active yes
nfspool inactive no

4. Start the storage pool
Use the virsh pool-start command to enable a directory storage pool. This enables the
volumes of the pool to be used as guest disk images.

virsh pool-start nfspool
Pool nfspool started
virsh pool-list --all
Name State Autostart

default active yes
nfspool active no

NOTE

You can build and start a storage pool in one step:

virsh-pool start nfspool --build

5. Turn on autostart
Turn on autostart for the storage pool.

NOTE

This step is optional.

Autostart configures the libvirtd service to start the storage pool when the libvirtd service
starts.

virsh pool-autostart nfspool
Pool nfspool marked as autostarted
virsh pool-list --all

 <path>/tmp/nfspool-client</path>
</target>
</pool>

Virtualization Deployment and Administration Guide

130

Name State Autostart

default active yes
nfspool active yes

6. Verify the storage pool configuration
Verify the storage pool was created correctly, the size is reported correctly, and the state is
reported as running. If you want the pool to be persistent, make sure that Persistent is
reported as yes. If you want the pool to start automatically when the service starts, make sure
that Autostart is reported as yes.

virsh pool-info nfspool
Name: nfspool
UUID: ad9bca0f-977f-4fe1-90c6-cb44f676f1ce
State: running
Persistent: yes
Autostart: yes
Capacity: 123.63 GiB
Allocation: 10.87 GiB
Available: 112.76 GiB

ls -la /tmp/nfspool-client
total 8
total 4
drwxr-xr-x. 2 root root 4096 Aug 28 15:59 .
drwxrwxrwt. 26 root root 640 Aug 28 16:07 ..
#

The NFS-based storage pool is now available.

13.6.4. Deleting a Storage Pool Using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy nfspool

2. Optionally, remove the directory where the storage pool resides:

virsh pool-delete nfspool

3. Remove the storage pool's definition

virsh pool-undefine nfspool
Pool nfspool has been undefined

13.7. USING AN NPIV VIRTUAL ADAPTER (VHBA) WITH SCSI DEVICES

NPIV (N_Port ID Virtualization) is a software technology that allows sharing of a single physical Fibre
Channel host bus adapter (HBA).

CHAPTER 13. STORAGE POOLS

131

This allows multiple guests to see the same storage from multiple physical hosts, and thus allows for
easier migration paths for the storage. As a result, there is no need for the migration to create or copy
storage, as long as the correct storage path is specified.

In virtualization, the virtual host bus adapter (vHBA), controls the LUNs for virtual machines. For a host to
share one Fibre Channel device path between multiple KVM guests, a vHBA must be created for each
virtual machine. A single vHBA must not be used by multiple KVM guests.

Each vHBA for NPIV is identified by its parent HBA and its own World Wide Node Name (WWNN) and
World Wide Port Name (WWPN). The path to the storage is determined by the WWNN and WWPN
values. The parent HBA can be defined as scsi_host# or as a WWNN/WWPN pair.

NOTE

If a parent HBA is defined as scsi_host# and hardware is added to the host machine,
the scsi_host# assignment may change. Therefore, it is recommended that you define
a parent HBA using a WWNN/WWPN pair.

This section provides instructions for configuring a vHBA persistently on a virtual machine.

NOTE

Before creating a vHBA, it is recommended to configure storage array (SAN)-side zoning
in the host LUN to provide isolation between guests and prevent the possibility of data
corruption.

13.7.1. Creating a vHBA

The following procedure creates a virtal host bus adapter (vHBA) on your host system. Note that if
created without an associated storage pool, the vHBA is not persistent and is removed upon host restart.
To create such a storage pool, see Section 13.7.2, “Creating a Storage Pool Using the vHBA”

Procedure 13.9. Creating a vHBA

1. Locate HBAs on the host system
To locate the HBAs on your host system, use the virsh nodedev-list --cap vports
command.

For example, the following output shows a host that has two HBAs that support vHBA:

virsh nodedev-list --cap vports
scsi_host3
scsi_host4

2. Check the HBA's details
Use the virsh nodedev-dumpxml HBA_device command to see the HBA's details.

The XML output from the virsh nodedev-dumpxml command will list the fields <name>,
<wwnn>, and <wwpn>, which are used to create a vHBA. The <max_vports> value shows the
maximum number of supported vHBAs.

 # virsh nodedev-dumpxml scsi_host3
<device>

Virtualization Deployment and Administration Guide

132

In this example, the <max_vports> value shows there are a total 127 virtual ports available for
use in the HBA configuration. The <vports> value shows the number of virtual ports currently
being used. These values update after creating a vHBA.

3. Create a vHBA host device
Create an XML file similar to one of the following for the vHBA host. In this examples, the file is
named vhba_host3.xml.

This example uses scsi_host# to describe the parent vHBA.

This example uses a WWNN/WWPN pair to describe the parent vHBA.

NOTE

The WWNN and WWPN values must match those in the HBA details seen in
Step 2.

 <name>scsi_host3</name>

<path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3</path>
 <parent>pci_0000_10_00_0</parent>
 <capability type='scsi_host'>
 <host>3</host>
 <unique_id>0</unique_id>
 <capability type='fc_host'>
 <wwnn>20000000c9848140</wwnn>
 <wwpn>10000000c9848140</wwpn>
 <fabric_wwn>2002000573de9a81</fabric_wwn>
 </capability>
 <capability type='vport_ops'>
 <max_vports>127</max_vports>
 <vports>0</vports>
 </capability>
 </capability>
</device>

cat vhba_host3.xml
 <device>
 <parent>scsi_host3</parent>
 <capability type='scsi_host'>
 <capability type='fc_host'>
 </capability>
 </capability>
 </device>

cat vhba_host3.xml
 <device>
 <name>vhba</name>
 <parent wwnn='20000000c9848140' wwpn='10000000c9848140'/>
 <capability type='scsi_host'>
 <capability type='fc_host'>
 </capability>
 </capability>
 </device>

CHAPTER 13. STORAGE POOLS

133

The <parent> field specifies the HBA device to associate with this vHBA device. The details in
the <device> tag are used in the next step to create a new vHBA device for the host. For more
information on the nodedev XML format, see the libvirt upstream pages.

4. Create a new vHBA on the vHBA host device
To create a vHBA on vhba_host3, use the virsh nodedev-create command:

virsh nodedev-create vhba_host3.xml
Node device scsi_host5 created from vhba_host3.xml

5. Verify the vHBA
Verify the new vHBA's details (scsi_host5) with the virsh nodedev-dumpxml command:

13.7.2. Creating a Storage Pool Using the vHBA

It is recommended to define a libvirt storage pool based on the vHBA in order to preserve the vHBA
configuration.

Using a storage pool has two primary advantages:

the libvirt code can easily find the LUN's path via virsh command output, and

virtual machine migration requires only defining and starting a storage pool with the same vHBA
name on the target machine. To do this, the vHBA LUN, libvirt storage pool and volume name
must be specified in the virtual machine's XML configuration. Refer to Section 13.7.3,
“Configuring the Virtual Machine to Use a vHBA LUN” for an example.

1. Create a SCSI storage pool
To create a persistent vHBA configuration, first create a libvirt 'scsi' storage pool XML file
using the format below. When creating a single vHBA that uses a storage pool on the same
physical HBA, it is recommended to use a stable location for the <path> value, such as one of
the /dev/disk/by-{path|id|uuid|label} locations on your system.

When creating multiple vHBAs that use storage pools on the same physical HBA, the value of
the <path> field must be only /dev/, otherwise storage pool volumes are visible only to one of
the vHBAs, and devices from the host cannot be exposed to multiple guests with the NPIV

virsh nodedev-dumpxml scsi_host5
<device>
 <name>scsi_host5</name>

<path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3/vport-
3:0-0/host5</path>
 <parent>scsi_host3</parent>
 <capability type='scsi_host'>
 <host>5</host>
 <unique_id>2</unique_id>
 <capability type='fc_host'>
 <wwnn>5001a4a93526d0a1</wwnn>
 <wwpn>5001a4ace3ee047d</wwpn>
 <fabric_wwn>2002000573de9a81</fabric_wwn>
 </capability>
 </capability>
</device>

Virtualization Deployment and Administration Guide

134

http://libvirt.org/formatnode.html

configuration.

More information on <path> and the elements within <target> can be found at
http://libvirt.org/formatstorage.html.

Example 13.3. Sample SCSI storage pool SML syntax

In the following example, the 'scsi' storage pool is named vhbapool_host3.xml:

Alternatively, the following syntax is used when vhbapool_host3.xml is one of more vHBA
storage pools on a single HBA:

IMPORTANT

In both cases, the pool must be type='scsi' and the source adapter type must
be 'fc_host'. For a persistent configuration across host reboots, the wwnn and
wwpn attributes must be the values assigned to the vHBA (scsi_host5 in this
example) by libvirt.

 <pool type='scsi'>
 <name>vhbapool_host3</name>
 <source>
 <adapter type='fc_host' wwnn='5001a4a93526d0a1'
wwpn='5001a4ace3ee047d'/>
 </source>
 <target>
 <path>/dev/disk/by-path</path>
 <permissions>
 <mode>0700</mode>
 <owner>0</owner>
 <group>0</group>
 </permissions>
 </target>
 </pool>

 <pool type='scsi'>
 <name>vhbapool_host3</name>
 <source>
 <adapter type='fc_host' wwnn='5001a4a93526d0a1'
wwpn='5001a4ace3ee047d'/>
 </source>
 <target>
 <path>/dev/</path>
 <permissions>
 <mode>0700</mode>
 <owner>0</owner>
 <group>0</group>
 </permissions>
 </target>
 </pool>

CHAPTER 13. STORAGE POOLS

135

http://libvirt.org/formatstorage.html

Optionally, the 'parent' attribute can be used in the <adapter> field to identify the parent
scsi_host device as the vHBA. Note, the value is not the scsi_host of the vHBA created by
virsh nodedev-create, but it is the parent of that vHBA.

Providing the 'parent' attribute is also useful for duplicate pool definition checks. This is more
important in environments where both the 'fc_host' and 'scsi_host' source adapter pools
are being used, to ensure a new definition does not duplicate using the same scsi_host of
another existing storage pool.

The following example shows the optional 'parent' attribute used in the <adapter> field in a
storage pool configuration:

<adapter type='fc_host' parent='scsi_host3' wwnn='5001a4a93526d0a1'
wwpn='5001a4ace3ee047d'/>

If a WWNN/WWPN pair is used to describe the parent vHBA, the pool XML configuration should
look similar to the following:

2. Define the pool
To define the storage pool (named vhbapool_host3 in this example) persistently, use the virsh
pool-define command:

virsh pool-define vhbapool_host3.xml
Pool vhbapool_host3 defined from vhbapool_host3.xml

3. Start the pool
Start the storage pool with the following command:

virsh pool-start vhbapool_host3
Pool vhbapool_host3 started

<pool type='scsi'>
 <name>vhbapool_a</name>
 <source>
 <adapter type='fc_host'
parent_wwnn='20000000c9848140' parent_wwpn='10000000c9848140'
wwnn='20000000c9831b4b' wwpn='10000000c9831b4b'/>
 </source>
 <target>
 <path>/dev/</path>
 <permissions>
 <mode>0700</mode>
 <owner>0</owner>
 <group>0</group>
 </permissions>
 </target>
</pool>

Virtualization Deployment and Administration Guide

136

NOTE

When starting the pool, libvirt will check if a vHBA with the same wwpn:wwnn
identifier already exists. If it does not yet exist, a new vHBA with the provided
wwpn:wwnn will be created. Correspondingly, when destroying the pool, libvirt will
destroy the vHBA that uses the same wwpn:wwnn values as well.

4. Enable autostart
Finally, to ensure that subsequent host reboots will automatically define vHBAs for use in virtual
machines, set the storage pool autostart feature (in this example, for a pool named
vhbapool_host3):

virsh pool-autostart vhbapool_host3

13.7.3. Configuring the Virtual Machine to Use a vHBA LUN

After a storage pool is created for a vHBA, add the vHBA LUN to the virtual machine configuration by
creating a disk volume on the virtual machine in the virtual machine's XML. Specify the storage pool and
the volume in the <source> parameter, using the following as an example:

To specify a lun device instead of a disk, refer to the following example:

For XML configuration examples of adding SCSI LUN-based storage to a guest, see Section 14.5.3,
“Adding SCSI LUN-based Storage to a Guest”.

Note that to ensure successful reconnection to a LUN in case of a hardware failure, it is recommended to
edit the fast_io_fail_tmo and dev_loss_tmo options. For more information, see Reconnecting to
an exposed LUN after a hardware failure.

13.7.4. Destroying the vHBA Storage Pool

A vHBA created by the storage pool can be destroyed by the virsh pool-destroy command:

virsh pool-destroy vhbapool_host3

Note that executing the virsh pool-destroy command will also remove the vHBA that was created
in Section 13.7.1, “Creating a vHBA”.

To verify the pool and vHBA have been destroyed, run:

 <disk type='volume' device='disk'>
 <driver name='qemu' type='raw'/>
 <source pool='vhbapool_host3' volume='unit:0:4:0'/>
 <target dev='hda' bus='ide'/>
 </disk>

 <disk type='volume' device='lun' sgio='unfiltered'>
 <driver name='qemu' type='raw'/>
 <source pool='vhbapool_host3' volume='unit:0:4:0' mode='host'/>
 <target dev='sda' bus='scsi'/>
 <shareable />
 </disk>

CHAPTER 13. STORAGE POOLS

137

virsh nodedev-list --cap scsi_host

scsi_host5 will no longer appear in the list of results.

13.8. GLUSTERFS STORAGE POOLS

This section covers enabling a GlusterFS-based storage pool. Red Hat Enterprise Linux 6.5 includes
native support for creating virtual machines with GlusterFS. GlusterFS is a user-space file system that
uses FUSE. When enabled in a guest virtual machine it enables a KVM host physical machine to boot
guest virtual machine images from one or more GlusterFS storage volumes, and to use images from a
GlusterFS storage volume as data disks for guest virtual machines.

13.8.1. Creating a GlusterFS Storage Pool Using virsh

This section will demonstrate how to prepare a Gluster server and an active Gluster volume.

Procedure 13.10. Preparing a Gluster server and an active Gluster volume

1. Obtain the IP address of the Gluster server by listing its status with the following command:

gluster volume status
Status of volume: gluster-vol1
Gluster process Port Online Pid
--

Brick 222.111.222.111:/gluster-vol1 49155 Y 18634

Task Status of Volume gluster-vol1
--

There are no active volume tasks

2. If you have not already done so, install glusterfs-fuse and enable the virt_use_fusefs
boolean. Then prepare one host which will connect to the Gluster server:

setsebool virt_use_fusefs on
getsebool virt_use_fusefs
virt_use_fusefs --> on

3. Create a new XML file to configure a Gluster storage pool (named glusterfs-pool.xml in this
example) specifying pool type as gluster, and add the following data:

Virtualization Deployment and Administration Guide

138

Figure 13.24. GlusterFS XML file contents

4. Define and start the Gluster pool, using the following commands:

virsh pool-define glusterfs-pool.xml
Pool gluster-pool defined from glusterfs-pool.xml

virsh pool-list --all
Name State Autostart

gluster-pool inactive no

virsh pool-start gluster-pool
Pool gluster-pool started

virsh pool-list --all
Name State Autostart

gluster-pool active no

virsh vol-list gluster-pool
Name Path

qcow2.img gluster://111.222.111.222/gluster-
vol1/qcow2.img
raw.img gluster://111.222.111.222/gluster-vol1/raw.img

13.8.2. Deleting a GlusterFS Storage Pool Using virsh

This section details how to delete a storage pool using virsh.

Procedure 13.11. Deleting a GlusterFS storage pool

1. Set the status of the storage pool to inactive, using the following command:

virsh pool-destroy gluster-pool
Pool gluster-pool destroyed

2. Confirm the pool is inactive, using the following command

virsh pool-list --all
Name State Autostart

<pool type='gluster'>
 <name>glusterfs-pool</name>
 <source>
 <host name='111.222.111.222'/>
 <dir path='/'/>
 <name>gluster-vol1</name>
 </source>
</pool>

CHAPTER 13. STORAGE POOLS

139

gluster-pool inactive no

3. Undefine the GlusterFS storage pool using the following command:

virsh pool-undefine gluster-pool
Pool gluster-pool has been undefined

4. Confirm the pool is undefined, using the following command:

virsh pool-list --all
Name State Autostart

Virtualization Deployment and Administration Guide

140

CHAPTER 14. STORAGE VOLUMES

14.1. INTRODUCTION

Storage pools are divided into storage volumes. Storage volumes are an abstraction of physical
partitions, LVM logical volumes, file-based disk images and other storage types handled by libvirt.
Storage volumes are presented to guest virtual machines as local storage devices regardless of the
underlying hardware. Note the sections below do not contain all of the possible commands and
arguments that virsh allows, refer to Section 21.30, “Storage Volume Commands” for more information.

14.1.1. Referencing Volumes

For more additional parameters and arguments, refer to Section 21.34, “Listing Volume Information”.

To reference a specific volume, three approaches are possible:

The name of the volume and the storage pool

A volume may be referred to by name, along with an identifier for the storage pool it belongs in. On
the virsh command line, this takes the form --pool storage_pool volume_name.

For example, a volume named firstimage in the guest_images pool.

virsh vol-info --pool guest_images firstimage
Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

virsh #

The full path to the storage on the host physical machine system

A volume may also be referred to by its full path on the file system. When using this approach, a pool
identifier does not need to be included.

For example, a volume named secondimage.img, visible to the host physical machine system as
/images/secondimage.img. The image can be referred to as /images/secondimage.img.

virsh vol-info /images/secondimage.img
Name: secondimage.img
Type: file
Capacity: 20.00 GB
Allocation: 136.00 kB

The unique volume key

When a volume is first created in the virtualization system, a unique identifier is generated and
assigned to it. The unique identifier is termed the volume key. The format of this volume key varies
upon the storage used.

When used with block-based storage such as LVM, the volume key may follow this format:

c3pKz4-qPVc-Xf7M-7WNM-WJc8-qSiz-mtvpGn

CHAPTER 14. STORAGE VOLUMES

141

When used with file-based storage, the volume key may instead be a copy of the full path to the
volume storage.

/images/secondimage.img

For example, a volume with the volume key of Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr:

virsh vol-info Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

virsh provides commands for converting between a volume name, volume path, or volume key:

vol-name

Returns the volume name when provided with a volume path or volume key.

virsh vol-name /dev/guest_images/firstimage
firstimage
virsh vol-name Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr

vol-path

Returns the volume path when provided with a volume key, or a storage pool identifier and volume
name.

virsh vol-path Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
/dev/guest_images/firstimage
virsh vol-path --pool guest_images firstimage
/dev/guest_images/firstimage

The vol-key command

Returns the volume key when provided with a volume path, or a storage pool identifier and volume
name.

virsh vol-key /dev/guest_images/firstimage
Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
virsh vol-key --pool guest_images firstimage
Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr

For more information, refer to Section 21.34, “Listing Volume Information”.

14.2. CREATING VOLUMES

This section shows how to create disk volumes inside a block-based storage pool. In the example below,
the virsh vol-create-as command will create a storage volume with a specific size in GB within the
guest_images_disk storage pool. As this command is repeated per volume needed, three volumes are
created as shown in the example. For additional parameters and arguments refer to Section 21.30.1,
“Creating Storage Volumes”

Virtualization Deployment and Administration Guide

142

virsh vol-create-as guest_images_disk volume1 8G
Vol volume1 created

virsh vol-create-as guest_images_disk volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_disk volume3 8G
Vol volume3 created

virsh vol-list guest_images_disk
Name Path

volume1 /dev/sdb1
volume2 /dev/sdb2
volume3 /dev/sdb3

parted -s /dev/sdb print
Model: ATA ST3500418AS (scsi)
Disk /dev/sdb: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
2 17.4kB 8590MB 8590MB primary
3 8590MB 17.2GB 8590MB primary
1 21.5GB 30.1GB 8590MB primary

14.3. CLONING VOLUMES

The new volume will be allocated from storage in the same storage pool as the volume being cloned.
The virsh vol-clone must have the --pool argument which dictates the name of the storage pool
that contains the volume to be cloned. The rest of the command names the volume to be cloned
(volume3) and the name of the new volume that was cloned (clone1). The virsh vol-list command
lists the volumes that are present in the storage pool (guest_images_disk). For additional commands
and arguments refer to Section 21.30.4, “Cloning a Storage Volume”

virsh vol-clone --pool guest_images_disk volume3 clone1
Vol clone1 cloned from volume3

virsh vol-list guest_images_disk
Name Path

volume1 /dev/sdb1
volume2 /dev/sdb2
volume3 /dev/sdb3
clone1 /dev/sdb4

parted -s /dev/sdb print
Model: ATA ST3500418AS (scsi)
Disk /dev/sdb: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

CHAPTER 14. STORAGE VOLUMES

143

Number Start End Size File system Name Flags
1 4211MB 12.8GB 8595MB primary
2 12.8GB 21.4GB 8595MB primary
3 21.4GB 30.0GB 8595MB primary
4 30.0GB 38.6GB 8595MB primary

14.4. DELETING AND REMOVING VOLUMES

For the virsh commands you need to delete and remove a volume, refer to Section 21.31, “Deleting
Storage Volumes”.

14.5. ADDING STORAGE DEVICES TO GUESTS

This section covers adding storage devices to a guest. Additional storage can only be added as needed.
The following types of storage is discussed in this section:

File-based storage. Refer to Section 14.5.1, “Adding File-based Storage to a Guest”.

Block devices - including CD-ROM, DVD and floppy devices. Refer to Section 14.5.2, “Adding
Hard Drives and Other Block Devices to a Guest”.

SCSI controllers and devices. If your host physical machine can accommodate it, up to 100
SCSI controllers can be added to any guest virtual machine. Refer to Section 14.5.4, “Managing
Storage Controllers in a Guest Virtual Machine”.

14.5.1. Adding File-based Storage to a Guest

File-based storage is a collection of files that are stored on the host physical machines file system that
act as virtualized hard drives for guests. To add file-based storage, perform the following steps:

Procedure 14.1. Adding file-based storage

1. Create a storage file or use an existing file (such as an IMG file). Note that both of the following
commands create a 4GB file which can be used as additional storage for a guest:

Pre-allocated files are recommended for file-based storage images. Create a pre-allocated
file using the following dd command as shown:

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G
count=4

Alternatively, create a sparse file instead of a pre-allocated file. Sparse files are created
much faster and can be used for testing, but are not recommended for production
environments due to data integrity and performance issues.

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G
seek=4096 count=4

2. Create the additional storage by writing a <disk> element in a new file. In this example, this file
will be known as NewStorage.xml.

A <disk> element describes the source of the disk, and a device name for the virtual block

Virtualization Deployment and Administration Guide

144

device. The device name should be unique across all devices in the guest, and identifies the bus
on which the guest will find the virtual block device. The following example defines a virtio block
device whose source is a file-based storage container named FileName.img:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source file='/var/lib/libvirt/images/FileName.img'/>
 <target dev='vdb'/>
</disk>

Device names can also start with "hd" or "sd", identifying respectively an IDE and a SCSI disk.
The configuration file can also contain an <address> sub-element that specifies the position on
the bus for the new device. In the case of virtio block devices, this should be a PCI address.
Omitting the <address> sub-element lets libvirt locate and assign the next available PCI slot.

3. Attach the CD-ROM as follows:

<disk type='file' device='cdrom'>
 <driver name='qemu' type='raw' cache='none'/>
 <source file='/var/lib/libvirt/images/FileName.img'/>
 <readonly/>
 <target dev='hdc'/>
</disk >

4. Add the device defined in NewStorage.xml with your guest (Guest1):

virsh attach-device --config Guest1 ~/NewStorage.xml

NOTE

This change will only apply after the guest has been destroyed and restarted. In
addition, persistent devices can only be added to a persistent domain, that is a
domain whose configuration has been saved with virsh define command.

If the guest is running, and you want the new device to be added temporarily until the guest is
destroyed, omit the --config option:

virsh attach-device Guest1 ~/NewStorage.xml

NOTE

The virsh command allows for an attach-disk command that can set a
limited number of parameters with a simpler syntax and without the need to
create an XML file. The attach-disk command is used in a similar manner to
the attach-device command mentioned previously, as shown:

virsh attach-disk Guest1
/var/lib/libvirt/images/FileName.img vdb --cache none

Note that the virsh attach-disk command also accepts the --config
option.

CHAPTER 14. STORAGE VOLUMES

145

5. Start the guest machine (if it is currently not running):

virsh start Guest1

NOTE

The following steps are Linux guest specific. Other operating systems handle new
storage devices in different ways. For other systems, refer to that operating
system's documentation.

6. Partitioning the disk drive
The guest now has a hard disk device called /dev/vdb. If required, partition this disk drive and
format the partitions. If you do not see the device that you added, then it indicates that there is
an issue with the disk hot plug in your guest's operating system.

a. Start fdisk for the new device:

fdisk /dev/vdb
Command (m for help):

b. Type n for a new partition.

c. The following appears:

Command action
e extended
p primary partition (1-4)

Type p for a primary partition.

d. Choose an available partition number. In this example, the first partition is chosen by
entering 1.

Partition number (1-4): 1

e. Enter the default first cylinder by pressing Enter.

First cylinder (1-400, default 1):

f. Select the size of the partition. In this example the entire disk is allocated by pressing
Enter.

Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):

g. Enter t to configure the partition type.

Command (m for help): t

h. Select the partition you created in the previous steps. In this example, the partition number
is 1 as there was only one partition created and fdisk automatically selected partition 1.

Virtualization Deployment and Administration Guide

146

Partition number (1-4): 1

i. Enter 83 for a Linux partition.

Hex code (type L to list codes): 83

j. Enter w to write changes and quit.

Command (m for help): w

k. Format the new partition with the ext3 file system.

mke2fs -j /dev/vdb1

7. Create a mount directory, and mount the disk on the guest. In this example, the directory is
located in myfiles.

mkdir /myfiles
mount /dev/vdb1 /myfiles

The guest now has an additional virtualized file-based storage device. Note, however, that this
storage will not mount persistently across reboot unless defined in the guest's /etc/fstab file:

/dev/vdb1 /myfiles ext3 defaults 0 0

14.5.2. Adding Hard Drives and Other Block Devices to a Guest

System administrators have the option to use additional hard drives to provide increased storage space
for a guest, or to separate system data from user data.

Procedure 14.2. Adding physical block devices to guests

1. This procedure describes how to add a hard drive on the host physical machine to a guest. It
applies to all physical block devices, including CD-ROM, DVD and floppy devices.

Physically attach the hard disk device to the host physical machine. Configure the host physical
machine if the drive is not accessible by default.

2. Do one of the following:

a. Create the additional storage by writing a disk element in a new file. In this example, this
file will be known as NewStorage.xml. The following example is a configuration file section
which contains an additional device-based storage container for the host physical machine
partition /dev/sr0:

<disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source dev='/dev/sr0'/>
 <target dev='vdc' bus='virtio'/>
</disk>

CHAPTER 14. STORAGE VOLUMES

147

b. Follow the instruction in the previous section to attach the device to the guest virtual
machine. Alternatively, you can use the virsh attach-disk command, as shown:

virsh attach-disk Guest1 /dev/sr0 vdc

Note that the following options are available:

The virsh attach-disk command also accepts the --config, --type, and --
mode options, as shown:

virsh attach-disk Guest1 /dev/sr0 vdc --config --type cdrom
--mode readonly

Additionally, --type also accepts --type disk in cases where the device is a hard
drive.

3. The guest virtual machine now has a new hard disk device called /dev/vdc on Linux (or
something similar, depending on what the guest virtual machine OS chooses) . You can now
initialize the disk from the guest virtual machine, following the standard procedures for the guest
virtual machine's operating system. Refer to Procedure 14.1, “Adding file-based storage” for an
example.

WARNING

When adding block devices to a guest, make sure to follow the related security
considerations found in the Red Hat Enterprise Linux 7 Virtualization Security Guide.

14.5.3. Adding SCSI LUN-based Storage to a Guest

A host SCSI LUN device can be exposed entirely to the guest using three mechanisms, depending on
your host configuration. Exposing the SCSI LUN device in this way allows for SCSI commands to be
executed directly to the LUN on the guest. This is useful as a means to share a LUN between guests, as
well as to share Fibre Channel storage between hosts.

IMPORTANT

The optional sgio attribute controls whether unprivileged SCSI Generical I/O (SG_IO)
commands are filtered for a device='lun' disk. The sgio attribute can be specified as
'filtered' or 'unfiltered', but must be set to 'unfiltered' to allow SG_IO
ioctl commands to be passed through on the guest in a persistent reservation.

In addition to setting sgio='unfiltered', the <shareable> element must be set to
share a LUN between guests. The sgio attribute defaults to 'filtered' if not specified.

The <disk> XML attribute device='lun' is valid for the following guest disk configurations:

type='block' for <source dev='/dev/disk/by-{path|id|uuid|label}'/>



Virtualization Deployment and Administration Guide

148

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html

NOTE

The backslashes prior to the colons in the <source> device name are required.

type='network' for <source protocol='iscsi'... />

type='volume' when using an iSCSI or a NPIV/vHBA source pool as the SCSI source pool.

The following example XML shows a guest using an iSCSI source pool (named iscsi-net-pool)
as the SCSI source pool:

NOTE

The mode= option within the <source> tag is optional, but if used, it must be set
to 'host' and not 'direct'. When set to 'host', libvirt will find the path to
the device on the local host. When set to 'direct', libvirt will generate the path
to the device using the source pool's source host data.

The iSCSI pool (iscsi-net-pool) in the example above will have a similar configuration to the
following:

 <disk type='block' device='lun' sgio='unfiltered'>
 ​ <driver name='qemu' type='raw'/>
 ​ <source dev='/dev/disk/by-path/pci-0000\:04\:00.1-fc-
0x203400a0b85ad1d7-lun-0'/>
 ​ <target dev='sda' bus='scsi'/>
 <shareable />
 ​</disk>

 <disk type='network' device='disk' sgio='unfiltered'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-
net-pool/1'>
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='iscsi' usage='libvirtiscsi'/>
 </auth>
 <target dev='sda' bus='scsi'/>
 <shareable />
 </disk>

 <disk type='volume' device='lun' sgio='unfiltered'>
 <driver name='qemu' type='raw'/>
 <source pool='iscsi-net-pool' volume='unit:0:0:1'
mode='host'/>
 <target dev='sda' bus='scsi'/>
 <shareable />
 </disk>

virsh pool-dumpxml iscsi-net-pool
<pool type='iscsi'>

CHAPTER 14. STORAGE VOLUMES

149

To verify the details of the available LUNs in the iSCSI source pool, enter the following
command:

type='volume' when using a NPIV/vHBA source pool as the SCSI source pool.

The following example XML shows a guest using a NPIV/vHBA source pool (named
vhbapool_host3) as the SCSI source pool:

The NPIV/vHBA pool (vhbapool_host3) in the example above will have a similar configuration
to:

 <name>iscsi-net-pool</name>
 <capacity unit='bytes'>11274289152</capacity>
 <allocation unit='bytes'>11274289152</allocation>
 <available unit='bytes'>0</available>
 <source>
 <host name='192.168.122.1' port='3260'/>
 <device path='iqn.2013-12.com.example:iscsi-chap-netpool'/>
 <auth type='chap' username='redhat'>
 <secret usage='libvirtiscsi'/>
 </auth>
 </source>
 <target>
 <path>/dev/disk/by-path</path>
 <permissions>
 <mode>0755</mode>
 </permissions>
 </target>
</pool>

virsh vol-list iscsi-net-pool
 Name Path
--

 unit:0:0:1 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-
iqn.2013-12.com.example:iscsi-chap-netpool-lun-1
 unit:0:0:2 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-
iqn.2013-12.com.example:iscsi-chap-netpool-lun-2

<disk type='volume' device='lun' sgio='unfiltered'>
 <driver name='qemu' type='raw'/>
 <source pool='vhbapool_host3' volume='unit:0:1:0'/>
 <target dev='sda' bus='scsi'/>
 <shareable />
</disk>

virsh pool-dumpxml vhbapool_host3
<pool type='scsi'>
 <name>vhbapool_host3</name>
 <capacity unit='bytes'>0</capacity>
 <allocation unit='bytes'>0</allocation>
 <available unit='bytes'>0</available>
 <source>
 <adapter type='fc_host' parent='scsi_host3' managed='yes'
wwnn='5001a4a93526d0a1' wwpn='5001a4ace3ee045d'/>

Virtualization Deployment and Administration Guide

150

To verify the details of the available LUNs on the vHBA, enter the following command:

For more information on using a NPIV vHBA with SCSI devices, see Section 13.7.3, “Configuring
the Virtual Machine to Use a vHBA LUN”.

The following procedure shows an example of adding a SCSI LUN-based storage device to a guest. Any
of the above <disk device='lun'> guest disk configurations can be attached with this method.
Substitute configurations according to your environment.

Procedure 14.3. Attaching SCSI LUN-based storage to a guest

1. Create the device file by writing a <disk> element in a new file, and save this file with an XML
extension (in this example, sda.xml):

2. Associate the device created in sda.xml with your guest virtual machine (Guest1, for example):

virsh attach-device --config Guest1 ~/sda.xml

NOTE

Running the virsh attach-device command with the --config option
requires a guest reboot to add the device permanently to the guest. Alternatively,
the --persistent option can be used instead of --config, which can also be
used to hot plug the device to a guest.

 </source>
 <target>
 <path>/dev/disk/by-path</path>
 <permissions>
 <mode>0700</mode>
 <owner>0</owner>
 <group>0</group>
 </permissions>
 </target>
</pool>

virsh vol-list vhbapool_host3
 Name Path
--

 unit:0:0:0 /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016044602198-lun-0
 unit:0:1:0 /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016844602198-lun-0

cat sda.xml
<disk type='volume' device='lun' sgio='unfiltered'>
 <driver name='qemu' type='raw'/>
 <source pool='vhbapool_host3' volume='unit:0:1:0'/>
 <target dev='sda' bus='scsi'/>
 <shareable />
</disk>

CHAPTER 14. STORAGE VOLUMES

151

Alternatively, the SCSI LUN-based storage can be attached or configured on the guest using virt-
manager. To configure this using virt-manager, click the Add Hardware button and add a virtual disk
with the intended parameters, or change the settings of an existing SCSI LUN device from this window.
In Red Hat Enterprise Linux 7.2 and above, the SGIO value can also be configured in virt-manager:

Figure 14.1. Configuring SCSI LUN storage with virt-manager

Reconnecting to an exposed LUN after a hardware failure
If the connection to an exposed Fiber Channel (FC) LUN is lost due to a failure of hardware (such as the
host bus adapter), the exposed LUNs on the guest may continue to appear as failed even after the
hardware failure is fixed. To prevent this, edit the dev_loss_tmo and fast_io_fail_tmo kernel
options:

dev_loss_tmo controls how long the SCSI layer waits after a SCSI device fails before marking
it as failed. To prevent a timeout, it is recommended to set the option to the maximum value,
which is 2147483647.

fast_io_fail_tmo controls how long the SCSI layer waits after a SCSI device fails before
failing back to the I/O. To ensure that dev_loss_tmo is not ignored by the kernel, set this
option's value to any number lower than the value of dev_loss_tmo.

To modify the value of dev_loss_tmo and fast_io_fail, do one of the following:

Edit the /etc/multipath.conf file, and set the values in the defaults section:

Virtualization Deployment and Administration Guide

152

Set dev_loss_tmo and fast_io_fail on the level of the FC host or remote port, for example
as follows:

echo 20 >
/sys/devices/pci0000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0/fast_io_fail_tmo
echo 2147483647 >
/sys/devices/pci0000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0/dev_loss_tmo

To verify that the new values of dev_loss_tmo and fast_io_fail are active, use the following
command:

find /sys -name dev_loss_tmo -print -exec cat {} \;

If the parameters have been set correctly, the output will look similar to this, with the appropriate device
or devices instead of pci0000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0:

find /sys -name dev_loss_tmo -print -exec cat {} \;
...
/sys/devices/pci0000:00/0000:00:06.0/0000:13:00.0/host1/rport-1:0-
0/fc_remote_ports/rport-1:0-0/dev_loss_tmo
2147483647
...

14.5.4. Managing Storage Controllers in a Guest Virtual Machine

Unlike virtio disks, SCSI devices require the presence of a controller in the guest virtual machine. This
section details the necessary steps to create a virtual SCSI controller (also known as "Host Bus
Adapter", or HBA), and to add SCSI storage to the guest virtual machine.

Procedure 14.4. Creating a virtual SCSI controller

1. Display the configuration of the guest virtual machine (Guest1) and look for a pre-existing SCSI
controller:

virsh dumpxml Guest1 | grep controller.*scsi

If a device controller is present, the command will output one or more lines similar to the
following:

<controller type='scsi' model='virtio-scsi' index='0'/>

2. If the previous step did not show a device controller, create the description for one in a new file
and add it to the virtual machine, using the following steps:

defaults {
...
fast_io_fail_tmo 20
dev_loss_tmo infinity
}

CHAPTER 14. STORAGE VOLUMES

153

a. Create the device controller by writing a <controller> element in a new file and save this
file with an XML extension. virtio-scsi-controller.xml, for example.

<controller type='scsi' model='virtio-scsi'/>

b. Associate the device controller you just created in virtio-scsi-controller.xml with
your guest virtual machine (Guest1, for example):

virsh attach-device --config Guest1 ~/virtio-scsi-
controller.xml

In this example the --config option behaves the same as it does for disks. Refer to
Procedure 14.2, “Adding physical block devices to guests” for more information.

3. Add a new SCSI disk or CD-ROM. The new disk can be added using the methods in sections
Section 14.5.1, “Adding File-based Storage to a Guest” and Section 14.5.2, “Adding Hard Drives
and Other Block Devices to a Guest”. In order to create a SCSI disk, specify a target device
name that starts with sd. The supported limit for each controller is 1024 virtio-scsi disks, but it is
possible that other available resources in the host (such as file descriptors) are exhausted with
fewer disks.

virsh attach-disk Guest1 /var/lib/libvirt/images/FileName.img sdb
--cache none

Depending on the version of the driver in the guest virtual machine, the new disk may not be
detected immediately by a running guest virtual machine. Follow the steps in the Red Hat
Enterprise Linux Storage Administration Guide.

Virtualization Deployment and Administration Guide

154

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/index.html

CHAPTER 15. USING QEMU-IMG
The qemu-img command-line tool is used for formatting, modifying, and verifying various file systems
used by KVM. qemu-img options and usages are highlighted in the sections that follow.

WARNING

Never use qemu-img to modify images in use by a running virtual machine or any
other process. This may destroy the image. Also, be aware that querying an image
that is being modified by another process may encounter inconsistent state.

15.1. CHECKING THE DISK IMAGE

To perform a consistency check on a disk image with the file name imgname.

qemu-img check [-f format] imgname

NOTE

Only a selected group of formats support consistency checks. These include qcow2, vdi,
vhdx, vmdk, and qed.

15.2. COMMITTING CHANGES TO AN IMAGE

Commit any changes recorded in the specified image file (imgname) to the file's base image with the
qemu-img commit command. Optionally, specify the file's format type (fmt).

 # qemu-img commit [-f fmt] [-t cache] imgname

15.3. COMPARING IMAGES

Compare the contents of two specified image files (imgname1 and imgname2) with the qemu-img
compare command. Optionally, specify the files' format types (fmt). The images can have different
formats and settings.

By default, images with different sizes are considered identical if the larger image contains only
unallocated or zeroed sectors in the area after the end of the other image. In addition, if any sector is not
allocated in one image and contains only zero bytes in the other one, it is evaluated as equal. If you
specify the -s option, the images are not considered identical if the image sizes differ or a sector is
allocated in one image and is not allocated in the second one.

 # qemu-img compare [-f fmt] [-F fmt] [-p] [-s] [-q] imgname1 imgname2

The qemu-img compare command exits with one of the following exit codes:

0 - The images are identical



CHAPTER 15. USING QEMU-IMG

155

1 - The images are different

2 - There was an error opening one of the images

3 - There was an error checking a sector allocation

4 - There was an error reading the data

15.4. MAPPING AN IMAGE

Using the qemu-img map command, your can dump the metadata of the specified image file (imgname)
and its backing file chain. The dump shows the allocation state of every sector in the (imgname) with the
topmost file that allocates it in the backing file chain. Optionally, specify the file's format type (fmt).

 # qemu-img map [-f fmt] [--output=fmt] imgname

There are two output formats, the human format and the json format:

15.4.1. The human Format

The default format (human) only dumps non-zero, allocated parts of the file. The output identifies a file
from where data can be read and the offset in the file. Each line includes four fields. The following shows
an example of an output:

Offset Length Mapped to File
0 0x20000 0x50000 /tmp/overlay.qcow2
0x100000 0x10000 0x95380000 /tmp/backing.qcow2

The first line means that 0x20000 (131072) bytes starting at offset 0 in the image are available in
tmp/overlay.qcow2 (opened in raw format) starting at offset 0x50000 (327680). Data that is
compressed, encrypted, or otherwise not available in raw format causes an error if human format is
specified.

NOTE

File names can include newline characters. Therefore, it is not safe to parse output in
human format in scripts.

15.4.2. The json Format

If the json option is specified, the output returns an array of dictionaries in JSON format. In addition to
the information provided in the human option, the output includes the following information:

data - A Boolean field that shows whether or not the sectors contain data

zero - A Boolean field that shows whether or not the data is known to read as zero

depth - The depth of the backing file of filename

NOTE

When the json option is specified, the offset field is optional.

Virtualization Deployment and Administration Guide

156

For more information about the qemu-img map command and additional options, see the relevant man
page.

15.5. AMENDING AN IMAGE

Amend the image format-specific options for the image file. Optionally, specify the file's format type (fmt).

qemu-img amend [-p] [-f fmt] [-t cache] -o options filename

NOTE

This operation is only supported for the qcow2 file format.

15.6. CONVERTING AN EXISTING IMAGE TO ANOTHER FORMAT

The convert option is used to convert one recognized image format to another image format. For a list
of accepted formats, refer to Section 15.12, “Supported qemu-img Formats”.

qemu-img convert [-c] [-p] [-f fmt] [-t cache] [-O output_fmt] [-o
options] [-S sparse_size] filename output_filename

The -p parameter shows the progress of the command (optional and not for every command) and -S
flag allows for the creation of a sparse file, which is included within the disk image. Sparse files in all
purposes function like a standard file, except that the physical blocks that only contain zeros (that is,
nothing). When the Operating System sees this file, it treats it as it exists and takes up actual disk space,
even though in reality it does not take any. This is particularly helpful when creating a disk for a guest
virtual machine as this gives the appearance that the disk has taken much more disk space than it has.
For example, if you set -S to 50Gb on a disk image that is 10Gb, then your 10Gb of disk space will
appear to be 60Gb in size even though only 10Gb is actually being used.

Convert the disk image filename to disk image output_filename using format output_format.
The disk image can be optionally compressed with the -c option, or encrypted with the -o option by
setting -o encryption. Note that the options available with the -o parameter differ with the selected
format.

Only the qcow2 and qcow2 format supports encryption or compression. qcow2 encryption uses the AES
format with secure 128-bit keys. qcow2 compression is read-only, so if a compressed sector is
converted from qcow2 format, it is written to the new format as uncompressed data.

Image conversion is also useful to get a smaller image when using a format which can grow, such as
qcow or cow. The empty sectors are detected and suppressed from the destination image.

15.7. CREATING AND FORMATTING NEW IMAGES OR DEVICES

Create the new disk image filename of size size and format format.

qemu-img create [-f format] [-o options] filename [size]

If a base image is specified with -o backing_file=filename, the image will only record differences
between itself and the base image. The backing file will not be modified unless you use the commit
command. No size needs to be specified in this case.

CHAPTER 15. USING QEMU-IMG

157

15.8. DISPLAYING IMAGE INFORMATION

The info parameter displays information about a disk image filename. The format for the info option is
as follows:

qemu-img info [-f format] filename

This command is often used to discover the size reserved on disk which can be different from the
displayed size. If snapshots are stored in the disk image, they are displayed also. This command will
show for example, how much space is being taken by a qcow2 image on a block device. This is done by
running the qemu-img. You can check that the image in use is the one that matches the output of the
qemu-img info command with the qemu-img check command.

qemu-img info /dev/vg-90.100-sluo/lv-90-100-sluo
image: /dev/vg-90.100-sluo/lv-90-100-sluo
file format: qcow2
virtual size: 20G (21474836480 bytes)
disk size: 0
cluster_size: 65536

15.9. REBASING A BACKING FILE OF AN IMAGE

The qemu-img rebase changes the backing file of an image.

qemu-img rebase [-f fmt] [-t cache] [-p] [-u] -b backing_file [-F
backing_fmt] filename

The backing file is changed to backing_file and (if the format of filename supports the feature), the
backing file format is changed to backing_format.

NOTE

Only the qcow2 format supports changing the backing file (rebase).

There are two different modes in which rebase can operate: safe and unsafe.

safe mode is used by default and performs a real rebase operation. The new backing file may differ
from the old one and the qemu-img rebase command will take care of keeping the guest virtual
machine-visible content of filename unchanged. In order to achieve this, any clusters that differ between
backing_file and old backing file of filename are merged into filename before making any changes to the
backing file.

Note that safe mode is an expensive operation, comparable to converting an image. The old backing file
is required for it to complete successfully.

unsafe mode is used if the -u option is passed to qemu-img rebase. In this mode, only the backing
file name and format of filename is changed, without any checks taking place on the file contents. Make
sure the new backing file is specified correctly or the guest-visible content of the image will be corrupted.

This mode is useful for renaming or moving the backing file. It can be used without an accessible old
backing file. For instance, it can be used to fix an image whose backing file has already been moved or
renamed.

Virtualization Deployment and Administration Guide

158

15.10. RE-SIZING THE DISK IMAGE

Change the disk image filename as if it had been created with size size. Only images in raw format can
be resized in both directions, whereas qcow2 version 2 or qcow2 version 3 images can be grown but
cannot be shrunk.

Use the following to set the size of the disk image filename to size bytes:

qemu-img resize filename size

You can also resize relative to the current size of the disk image. To give a size relative to the current
size, prefix the number of bytes with + to grow, or - to reduce the size of the disk image by that number
of bytes. Adding a unit suffix allows you to set the image size in kilobytes (K), megabytes (M), gigabytes
(G) or terabytes (T).

qemu-img resize filename [+|-]size[K|M|G|T]

WARNING

Before using this command to shrink a disk image, you must use file system and
partitioning tools inside the VM itself to reduce allocated file systems and partition
sizes accordingly. Failure to do so will result in data loss.

After using this command to grow a disk image, you must use file system and
partitioning tools inside the VM to actually begin using the new space on the device.

15.11. LISTING, CREATING, APPLYING, AND DELETING A SNAPSHOT

Using different parameters from the qemu-img snapshot command you can list, apply, create, or
delete an existing snapshot (snapshot) of specified image (filename).

qemu-img snapshot [-l | -a snapshot | -c snapshot | -d snapshot]
filename

The accepted arguments are as follows:

-l lists all snapshots associated with the specified disk image.

The apply option, -a, reverts the disk image (filename) to the state of a previously saved
snapshot.

-c creates a snapshot (snapshot) of an image (filename).

-d deletes the specified snapshot.

15.12. SUPPORTED QEMU-IMG FORMATS

When a format is specified in any of the qemu-img commands, the following format types may be used:



CHAPTER 15. USING QEMU-IMG

159

raw - Raw disk image format (default). This can be the fastest file-based format. If your file
system supports holes (for example in ext2 or ext3), then only the written sectors will reserve
space. Use qemu-img info to obtain the real size used by the image or ls -ls on
Unix/Linux. Although Raw images give optimal performance, only very basic features are
available with a Raw image. For example, no snapshots are available.

qcow2 - QEMU image format, the most versatile format with the best feature set. Use it to have
optional AES encryption, zlib-based compression, support of multiple VM snapshots, and smaller
images, which are useful on file systems that do not support holes . Note that this expansive
feature set comes at the cost of performance.

Although only the formats above can be used to run on a guest virtual machine or host physical
machine, qemu-img also recognizes and supports the following formats in order to convert from
them into either raw , or qcow2 format. The format of an image is usually detected
automatically. In addition to converting these formats into raw or qcow2 , they can be converted
back from raw or qcow2 to the original format. Note that the qcow2 version supplied with
Red Hat Enterprise Linux 7 is 1.1. The format that is supplied with previous versions of Red Hat
Enterprise Linux will be 0.10. You can revert image files to previous versions of qcow2. To know
which version you are using, run qemu-img info qcow2 [imagefilename.img]
command. To change the qcow version refer to Section 24.20.2, “Setting Target Elements”.

bochs - Bochs disk image format.

cloop - Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM
images present for example in the Knoppix CD-ROMs.

cow - User Mode Linux Copy On Write image format. The cow format is included only for
compatibility with previous versions.

dmg - Mac disk image format.

nbd - Network block device.

parallels - Parallels virtualization disk image format.

qcow - Old QEMU image format. Only included for compatibility with older versions.

qed - Old QEMU image format. Only included for compatibility with older versions.

vdi - Oracle VM VirtualBox hard disk image format.

vhdx - Microsoft Hyper-V virtual hard disk-X disk image format.

vmdk - VMware 3 and 4 compatible image format.

vvfat - Virtual VFAT disk image format.

Virtualization Deployment and Administration Guide

160

CHAPTER 16. KVM MIGRATION
This chapter covers the migration guest virtual machines from one host physical machine that runs the
KVM hypervisor to another. Migrating guests is possible because virtual machines run in a virtualized
environment instead of directly on the hardware.

16.1. MIGRATION DEFINITION AND BENEFITS

Migration works by sending the state of the guest virtual machine's memory and any virtualized devices
to a destination host physical machine. It is recommended to use shared, networked storage to store the
guest's images to be migrated. It is also recommended to use libvirt-managed storage pools for shared
storage when migrating virtual machines.

Migrations can be performed both with live (running) and non-live (shut-down) guests.

In a live migration, the guest virtual machine continues to run on the source host machine, while the
guest's memory pages are transferred to the destination host machine. During migration, KVM monitors
the source for any changes in pages it has already transferred, and begins to transfer these changes
when all of the initial pages have been transferred. KVM also estimates transfer speed during migration,
so when the remaining amount of data to transfer will reaches a certain configurable period of time
(10ms by default), KVM suspends the original guest virtual machine, transfers the remaining data, and
resumes the same guest virtual machine on the destination host physical machine.

In contrast, a non-live migration (offline migration) suspends the guest virtual machine and then copies
the guest's memory to the destination host machine. The guest is then resumed on the destination host
machine and the memory the guest used on the source host machine is freed. The time it takes to
complete such a migration only depends on network bandwidth and latency. If the network is
experiencing heavy use or low bandwidth, the migration will take much longer. Note that if the original
guest virtual machine modifies pages faster than KVM can transfer them to the destination host physical
machine, offline migration must be used, as live migration would never complete.

Migration is useful for:

Load balancing

Guest virtual machines can be moved to host physical machines with lower usage if their host
machine becomes overloaded, or if another host machine is under-utilized.

Hardware independence

When you need to upgrade, add, or remove hardware devices on the host physical machine, you can
safely relocate guest virtual machines to other host physical machines. This means that guest virtual
machines do not experience any downtime for hardware improvements.

Energy saving

Virtual machines can be redistributed to other host physical machines, and the unloaded host
systems can thus be powered off to save energy and cut costs in low usage periods.

Geographic migration

Virtual machines can be moved to another location for lower latency or when required by other
reasons.

16.2. MIGRATION REQUIREMENTS AND LIMITATIONS

CHAPTER 16. KVM MIGRATION

161

Before using KVM migration, make sure that your system fulfills the migration's requirements, and that
you are aware of its limitations.

Migration requirements

A guest virtual machine installed on shared storage using one of the following protocols:

Fibre Channel-based LUNs

iSCSI

NFS

GFS2

SCSI RDMA protocols (SCSI RCP): the block export protocol used in Infiniband and 10GbE
iWARP adapters

Make sure that the libvirtd service is enabled and running.

systemctl enable libvirtd.service
systemctl restart libvirtd.service

The ability to migrate effectively is dependant on the parameter setting in the
/etc/libvirt/libvirtd.conf file. To edit this file, use the following procedure:

Procedure 16.1. Configuring libvirtd.conf

1. Opening the libvirtd.conf requires running the command as root:

vim /etc/libvirt/libvirtd.conf

2. Change the parameters as needed and save the file.

3. Restart the libvirtd service:

systemctl restart libvirtd

The migration platforms and versions should be checked against Table 16.1, “Live Migration
Compatibility”

Use a separate system exporting the shared storage medium. Storage should not reside on
either of the two host physical machines used for the migration.

Shared storage must mount at the same location on source and destination systems. The
mounted directory names must be identical. Although it is possible to keep the images using
different paths, it is not recommended. Note that, if you intend to use virt-manager to perform the
migration, the path names must be identical. If you intend to use virsh to perform the migration,
different network configurations and mount directories can be used with the help of --xml
option or pre-hooks . For more information on pre-hooks, refer to the libvirt upstream
documentation, and for more information on the XML option, refer to Chapter 24, Manipulating
the Domain XML.

Virtualization Deployment and Administration Guide

162

http://www.libvirt.org/hooks.html

When migration is attempted on an existing guest virtual machine in a public bridge+tap
network, the source and destination host machines must be located on the same network.
Otherwise, the guest virtual machine network will not operate after migration.

Migration Limitations

Guest virtual machine migration has the following limitations when used on Red Hat Enterprise
Linux with virtualization technology based on KVM:

Point to point migration – must be done manually to designate destination hypervisor from
originating hypervisor

No validation or roll-back is available

Determination of target may only be done manually

Storage migration cannot be performed live on Red Hat Enterprise Linux 7, but you can
migrate storage while the guest virtual machine is powered down. Live storage migration is
available on Red Hat Virtualization. Call your service representative for details.

NOTE

If you are migrating a guest machine that has virtio devices on it, make sure to set the
number of vectors on any virtio device on either platform to 32 or fewer. For detailed
information, see Section 24.18, “Devices”.

16.3. LIVE MIGRATION AND RED HAT ENTERPRISE LINUX VERSION
COMPATIBILITY

Live Migration is supported as shown in Table 16.1, “Live Migration Compatibility”:

Table 16.1. Live Migration Compatibility

Migration Method Release Type Example Live Migration
Support

Notes

Forward Major release 6.5+ → 7.x Fully supported Any issues should
be reported

Backward Major release 7.x → 6.y Not supported

Forward Minor release 7.x → 7.y (7.0 →
7.1)

Fully supported Any issues should
be reported

Backward Minor release 7.y → 7.x (7.1 →
7.0)

Fully supported Any issues should
be reported

Troubleshooting problems with migration

Issues with the migration protocol — If backward migration ends with "unknown section
error", repeating the migration process can repair the issue as it may be a transient error. If not,
report the problem.

CHAPTER 16. KVM MIGRATION

163

Issues with audio devices — When migrating from Red Hat Enterprise Linux 6.x to Red Hat
Enterprise Linux 7.y, note that the es1370 audio card is no longer supported. Use the ac97 audio
card instead.

Issues with network cards — When migrating from Red Hat Enterprise Linux 6.x to Red Hat
Enterprise Linux 7.y, note that the pcnet and ne2k_pci network cards are no longer supported.
Use the virtio-net network device instead.

Configuring Network Storage

Configure shared storage and install a guest virtual machine on the shared storage.

Alternatively, use the NFS example in Section 16.4, “Shared Storage Example: NFS for a Simple
Migration”

16.4. SHARED STORAGE EXAMPLE: NFS FOR A SIMPLE MIGRATION

IMPORTANT

This example uses NFS to share guest virtual machine images with other KVM host
physical machines. Although not practical for large installations, it is presented to
demonstrate migration techniques only. Do not use this example for migrating or running
more than a few guest virtual machines. In addition, it is required that the synch
parameter is enabled. This is required for proper export of the NFS storage.

iSCSI storage is a better choice for large deployments. For configuration details, refer to
Section 13.5, “iSCSI-based Storage Pools”.

For detailed information on configuring NFS, opening IP tables, and configuring the firewall, refer to Red
Hat Linux Storage Administration Guide.

Make sure that NFS file locking is not used as it is not supported in KVM.

1. Export your libvirt image directory
Migration requires storage to reside on a system that is separate to the migration target systems.
On this separate system, export the storage by adding the default image directory to the
/etc/exports file:

/var/lib/libvirt/images *.example.com(rw,no_root_squash,sync)

Change the hostname parameter as required for your environment.

2. Start NFS

a. Install the NFS packages if they are not yet installed:

yum install nfs-utils

b. Make sure that the ports for NFS in iptables (2049, for example) are opened and add
NFS to the /etc/hosts.allow file.

c. Start the NFS service:

systemctl start nfs-server

Virtualization Deployment and Administration Guide

164

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html

3. Mount the shared storage on the source and the destination
On the migration source and the destination systems, mount the /var/lib/libvirt/images
directory:

mount storage_host:/var/lib/libvirt/images /var/lib/libvirt/images

WARNING

Whichever directory is chosen for the source host physical machine must be
exactly the same as that on the destination host physical machine. This
applies to all types of shared storage. The directory must be the same or the
migration with virt-manager will fail.

16.5. LIVE KVM MIGRATION WITH VIRSH

A guest virtual machine can be migrated to another host physical machine with the virsh command.
The migrate command accepts parameters in the following format:

virsh migrate --live GuestName DestinationURL

Note that the --live option may be eliminated when live migration is not required. Additional options are
listed in Section 16.5.2, “Additional Options for the virsh migrate Command”.

The GuestName parameter represents the name of the guest virtual machine which you want to migrate.

The DestinationURL parameter is the connection URL of the destination host physical machine. The
destination system must run the same version of Red Hat Enterprise Linux, be using the same hypervisor
and have libvirt running.

NOTE

The DestinationURL parameter for normal migration and peer2peer migration has
different semantics:

normal migration: the DestinationURL is the URL of the target host physical
machine as seen from the source guest virtual machine.

peer2peer migration: DestinationURL is the URL of the target host physical
machine as seen from the source host physical machine.

Once the command is entered, you will be prompted for the root password of the destination system.

IMPORTANT

Name resolution must be working on both sides (source and destination) in order for
migration to succeed. Each side must be able to find the other. Make sure that you can
ping one side to the other to check that the name resolution is working.



CHAPTER 16. KVM MIGRATION

165

Example: live migration with virsh

This example migrates from host1.example.com to host2.example.com. Change the host physical
machine names for your environment. This example migrates a virtual machine named guest1-
rhel6-64.

This example assumes you have fully configured shared storage and meet all the prerequisites (listed
here: Migration requirements).

1. Verify the guest virtual machine is running
From the source system, host1.example.com, verify guest1-rhel6-64 is running:

[root@host1 ~]# virsh list
Id Name State

 10 guest1-rhel6-64 running

2. Migrate the guest virtual machine
Execute the following command to live migrate the guest virtual machine to the destination,
host2.example.com. Append /system to the end of the destination URL to tell libvirt that you
need full access.

virsh migrate --live guest1-rhel7-64
qemu+ssh://host2.example.com/system

Once the command is entered you will be prompted for the root password of the destination
system.

3. Wait
The migration may take some time depending on load and the size of the guest virtual machine.
virsh only reports errors. The guest virtual machine continues to run on the source host
physical machine until fully migrated.

4. Verify the guest virtual machine has arrived at the destination host
From the destination system, host2.example.com, verify guest1-rhel7-64 is running:

[root@host2 ~]# virsh list
Id Name State

 10 guest1-rhel7-64 running

The live migration is now complete.

NOTE

libvirt supports a variety of networking methods including TLS/SSL, UNIX sockets, SSH,
and unencrypted TCP. For more information on using other methods, refer to Chapter 19,
Remote Management of Guests.

Virtualization Deployment and Administration Guide

166

NOTE

Non-running guest virtual machines can be migrated using the following command:

virsh migrate --offline --persistent

16.5.1. Additional Tips for Migration with virsh

It is possible to perform multiple, concurrent live migrations where each migration runs in a separate
command shell. However, this should be done with caution and should involve careful calculations as
each migration instance uses one MAX_CLIENT from each side (source and target). As the default
setting is 20, there is enough to run 10 instances without changing the settings. Should you need to
change the settings, refer to the procedure Procedure 16.1, “Configuring libvirtd.conf”.

1. Open the libvirtd.conf file as described in Procedure 16.1, “Configuring libvirtd.conf”.

2. Look for the Processing controls section.

###
#
Processing controls
#

The maximum number of concurrent client connections to allow
over all sockets combined.
#max_clients = 5000

The maximum length of queue of connections waiting to be
accepted by the daemon. Note, that some protocols supporting
retransmission may obey this so that a later reattempt at
connection succeeds.
#max_queued_clients = 1000

The minimum limit sets the number of workers to start up
initially. If the number of active clients exceeds this,
then more threads are spawned, upto max_workers limit.
Typically you'd want max_workers to equal maximum number
of clients allowed
#min_workers = 5
#max_workers = 20

The number of priority workers. If all workers from above
pool will stuck, some calls marked as high priority
(notably domainDestroy) can be executed in this pool.
#prio_workers = 5

Total global limit on concurrent RPC calls. Should be
at least as large as max_workers. Beyond this, RPC requests
will be read into memory and queued. This directly impact
memory usage, currently each request requires 256 KB of
memory. So by default upto 5 MB of memory is used
#
XXX this isn't actually enforced yet, only the per-client
limit is used so far

CHAPTER 16. KVM MIGRATION

167

#max_requests = 20

Limit on concurrent requests from a single client
connection. To avoid one client monopolizing the server
this should be a small fraction of the global max_requests
and max_workers parameter
#max_client_requests = 5

###

3. Change the max_clients and max_workers parameters settings. It is recommended that the
number be the same in both parameters. The max_clients will use 2 clients per migration
(one per side) and max_workers will use 1 worker on the source and 0 workers on the
destination during the perform phase and 1 worker on the destination during the finish phase.

IMPORTANT

The max_clients and max_workers parameters settings are affected by all
guest virtual machine connections to the libvirtd service. This means that any
user that is using the same guest virtual machine and is performing a migration at
the same time will also beholden to the limits set in the max_clients and
max_workers parameters settings. This is why the maximum value needs to be
considered carefully before performing a concurrent live migration.

IMPORTANT

The max_clients parameter controls how many clients are allowed to connect
to libvirt. When a large number of containers are started at once, this limit can be
easily reached and exceeded. The value of the max_clients parameter could
be increased to avoid this, but doing so can leave the system more vulnerable to
denial of service (DoS) attacks against instances. To alleviate this problem, a new
max_anonymous_clients setting has been introduced in Red Hat Enterprise
Linux 7.0 that specifies a limit of connections which are accepted but not yet
authenticated. You can implement a combination of max_clients and
max_anonymous_clients to suit your workload.

4. Save the file and restart the service.

NOTE

There may be cases where a migration connection drops because there are too
many ssh sessions that have been started, but not yet authenticated. By default,
sshd allows only 10 sessions to be in a "pre-authenticated state" at any time.
This setting is controlled by the MaxStartups parameter in the sshd
configuration file (located here: /etc/ssh/sshd_config), which may require
some adjustment. Adjusting this parameter should be done with caution as the
limitation is put in place to prevent DoS attacks (and over-use of resources in
general). Setting this value too high will negate its purpose. To change this
parameter, edit the file /etc/ssh/sshd_config, remove the # from the
beginning of the MaxStartups line, and change the 10 (default value) to a
higher number. Remember to save the file and restart the sshd service. For more
information, refer to the sshd_config man page.

Virtualization Deployment and Administration Guide

168

16.5.2. Additional Options for the virsh migrate Command

In addition to --live, virsh migrate accepts the following options:

--direct - used for direct migration

--p2p - used for peer-to-peer migration

--tunneled - used for tunneled migration

--offline - migrates domain definition without starting the domain on destination and without
stopping it on source host. Offline migration may be used with inactive domains and it must be
used with the --persistent option.

--persistent - leaves the domain persistent on destination host physical machine

--undefinesource - undefines the domain on the source host physical machine

--suspend - leaves the domain paused on the destination host physical machine

--change-protection - enforces that no incompatible configuration changes will be made to
the domain while the migration is underway; this flag is implicitly enabled when supported by the
hypervisor, but can be explicitly used to reject the migration if the hypervisor lacks change
protection support.

--unsafe - forces the migration to occur, ignoring all safety procedures.

--verbose - displays the progress of migration as it is occurring

--compressed - activates compression of memory pages that have to be transferred
repeatedly during live migration.

--abort-on-error - cancels the migration if a soft error (for example I/O error) happens
during the migration.

--domain [name] - sets the domain name, id or uuid.

--desturi [URI] - connection URI of the destination host as seen from the client (normal
migration) or source (p2p migration).

--migrateuri [URI] - the migration URI, which can usually be omitted.

--graphicsuri [URI] - graphics URI to be used for seamless graphics migration.

--listen-address [address] - sets the listen address that the hypervisor on the
destination side should bind to for incoming migration.

--timeout [seconds] - forces a guest virtual machine to suspend when the live migration
counter exceeds N seconds. It can only be used with a live migration. Once the timeout is
initiated, the migration continues on the suspended guest virtual machine.

--dname [newname] - is used for renaming the domain during migration, which also usually
can be omitted

--xml [filename] - the filename indicated can be used to supply an alternative XML file for
use on the destination to supply a larger set of changes to any host-specific portions of the

CHAPTER 16. KVM MIGRATION

169

domain XML, such as accounting for naming differences between source and destination in
accessing underlying storage. This option is usually omitted.

--migrate-disks [disk_identifiers] - this option can be used to select which disks
are copied during the migration. This allows for more efficient live migration when copying
certain disks is undesirable, such as when they already exist on the destination, or when they
are no longer useful. [disk_identifiers] should be replaced by a comma-separated list of disks to
be migrated, identified by their arguments found in the <target dev= /> line of the Domain
XML file.

In addition, the following commands may help as well:

virsh migrate-setmaxdowntime [domain] [downtime] - will set a maximum tolerable
downtime for a domain which is being live-migrated to another host. The specified downtime is in
milliseconds. The domain specified must be the same domain that is being migrated.

virsh migrate-compcache [domain] --size - will set and or get the size of the cache in
bytes which is used for compressing repeatedly transferred memory pages during a live
migration. When the --size is not used the command displays the current size of the
compression cache. When --size is used, and specified in bytes, the hypervisor is asked to
change compression to match the indicated size, following which the current size is displayed.
The --size argument is supposed to be used while the domain is being live migrated as a
reaction to the migration progress and increasing number of compression cache misses obtained
from the domjobinfo.

virsh migrate-setspeed [domain] [bandwidth] - sets the migration bandwidth in
Mib/sec for the specified domain which is being migrated to another host.

virsh migrate-getspeed [domain] - gets the maximum migration bandwidth that is
available in Mib/sec for the specified domain.

For more information, refer to Migration Limitations or the virsh man page.

16.6. MIGRATING WITH VIRT-MANAGER

This section covers migrating a KVM guest virtual machine with virt-manager from one host physical
machine to another.

1. Connect to the target host physical machine
In the virt-manager interface, connect to the target host physical machine by selecting the File
menu, then click Add Connection.

2. Add connection
The Add Connection window appears.

Virtualization Deployment and Administration Guide

170

Figure 16.1. Adding a connection to the target host physical machine

Enter the following details:

Hypervisor: Select QEMU/KVM.

Method: Select the connection method.

Username: Enter the user name for the remote host physical machine.

Hostname: Enter the host name for the remote host physical machine.

NOTE

For more information on the connection options, see Section 20.5, “Adding a
Remote Connection”.

Click Connect. An SSH connection is used in this example, so the specified user's password
must be entered in the next step.

CHAPTER 16. KVM MIGRATION

171

Figure 16.2. Enter password

3. Configure shared storage
Ensure that both the source and the target host are sharing storage, for example using NFS.

4. Migrate guest virtual machines
Right-click the guest that is to be migrated, and click Migrate.

In the New Host field, use the drop-down list to select the host physical machine you wish to
migrate the guest virtual machine to and click Migrate.

Virtualization Deployment and Administration Guide

172

Figure 16.3. Choosing the destination host physical machine and starting the migration
process

A progress window appears.

Figure 16.4. Progress window

If the migration finishes without any problems, virt-manager displays the newly migrated guest
virtual machine running in the destination host.

CHAPTER 16. KVM MIGRATION

173

Figure 16.5. Migrated guest virtual machine running in the destination host physical
machine

Virtualization Deployment and Administration Guide

174

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE
CONFIGURATION
Red Hat Enterprise Linux 7 supports three classes of devices for guest virtual machines:

Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified
guest operating systems to work with them using their standard in-box drivers.

Virtio devices (also known as paravirtualized) are purely virtual devices designed to work
optimally in a virtual machine. Virtio devices are similar to emulated devices, but non-Linux
virtual machines do not include the drivers they require by default. Virtualization management
software like the Virtual Machine Manager (virt-manager) and the Red Hat Virtualization
Hypervisor install these drivers automatically for supported non-Linux guest operating systems.
Red Hat Enterprise Linux 7 supports up to 216 virtio devices. For more information, see
Chapter 5, KVM Paravirtualized (virtio) Drivers.

Assigned devices are physical devices that are exposed to the virtual machine. This method is
also known as passthrough. Device assignment allows virtual machines exclusive access to PCI
devices for a range of tasks, and allows PCI devices to appear and behave as if they were
physically attached to the guest operating system. Red Hat Enterprise Linux 7 supports up to 32
assigned devices per virtual machine.

Device assignment is supported on PCIe devices, including select graphics devices. Parallel PCI
devices may be supported as assigned devices, but they have severe limitations due to security
and system configuration conflicts.

Red Hat Enterprise Linux 7 supports PCI hot plug of devices exposed as single-function slots to the
virtual machine. Single-function host devices and individual functions of multi-function host devices may
be configured to enable this. Configurations exposing devices as multi-function PCI slots to the virtual
machine are recommended only for non-hotplug applications.

For more information on specific devices and related limitations, refer to Section 24.18, “Devices”.

NOTE

Platform support for interrupt remapping is required to fully isolate a guest with assigned
devices from the host. Without such support, the host may be vulnerable to interrupt
injection attacks from a malicious guest. In an environment where guests are trusted, the
admin may opt-in to still allow PCI device assignment using the
allow_unsafe_interrupts option to the vfio_iommu_type1 module. This may
either be done persistently by adding a .conf file (for example local.conf) to
/etc/modprobe.d containing the following:

options vfio_iommu_type1 allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

echo 1 >
/sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts

17.1. PCI DEVICES

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

175

PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD
IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in the host BIOS for PCI
device assignment to function.

Procedure 17.1. Preparing an Intel system for PCI device assignment

1. Enable the Intel VT-d specifications
The Intel VT-d specifications provide hardware support for directly assigning a physical device to
a virtual machine. These specifications are required to use PCI device assignment with Red Hat
Enterprise Linux.

The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable
these specifications by default. The terms used to refer to these specifications can differ
between manufacturers; consult your system manufacturer's documentation for the appropriate
terms.

2. Activate Intel VT-d in the kernel
Activate Intel VT-d in the kernel by adding the intel_iommu=on and iommu=pt parameters to
the end of the GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/sysconfig/grub
file.

The example below is a modified grub file with Intel VT-d activated.

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVol01
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/
rhcrashkernel-param || :) rhgb quiet intel_iommu=on iommu=pt"

3. Regenerate config file
Regenerate /etc/grub2.cfg by running:

grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

4. Ready to use
Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

Procedure 17.2. Preparing an AMD system for PCI device assignment

1. Enable the AMD IOMMU specifications
The AMD IOMMU specifications are required to use PCI device assignment in Red Hat
Enterprise Linux. These specifications must be enabled in the BIOS. Some system
manufacturers disable these specifications by default.

2. Enable IOMMU kernel support
Append amd_iommu=pt to the end of the GRUB_CMDLINX_LINUX line, within the quotes, in
/etc/sysconfig/grub so that AMD IOMMU specifications are enabled at boot.

3. Regenerate config file
Regenerate /etc/grub2.cfg by running:

Virtualization Deployment and Administration Guide

176

grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

4. Ready to use
Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

NOTE

For further information on IOMMU, see Appendix E, Working with IOMMU Groups.

17.1.1. Assigning a PCI Device with virsh

These steps cover assigning a PCI device to a virtual machine on a KVM hypervisor.

This example uses a PCIe network controller with the PCI identifier code, pci_0000_01_00_0, and a
fully virtualized guest machine named guest1-rhel7-64.

Procedure 17.3. Assigning a PCI device to a guest virtual machine with virsh

1. Identify the device
First, identify the PCI device designated for device assignment to the virtual machine. Use the
lspci command to list the available PCI devices. You can refine the output of lspci with
grep.

This example uses the Ethernet controller highlighted in the following output:

lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full
identifier used by virsh in order to assign this PCI device to a virtual machine.

To do so, use the virsh nodedev-list command to list all devices of a particular type (pci)
that are attached to the host machine. Then look at the output for the string that maps to the
short identifier of the device you wish to use.

This example shows the string that maps to the Ethernet controller with the short identifier
00:19.0. Note that the : and . characters are replaced with underscores in the full identifier.

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

177

pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number that maps to the device you want to use; this is required in other
steps.

2. Review device information
Information on the domain, bus, and function are available from output of the virsh nodedev-
dumpxml command:

Virtualization Deployment and Administration Guide

178

Figure 17.1. Dump contents

NOTE

An IOMMU group is determined based on the visibility and isolation of devices
from the perspective of the IOMMU. Each IOMMU group may contain one or more
devices. When multiple devices are present, all endpoints within the IOMMU
group must be claimed for any device within the group to be assigned to a guest.
This can be accomplished either by also assigning the extra endpoints to the
guest or by detaching them from the host driver using virsh nodedev-
detach. Devices contained within a single group may not be split between
multiple guests or split between host and guest. Non-endpoint devices such as
PCIe root ports, switch ports, and bridges should not be detached from the host
drivers and will not interfere with assignment of endpoints.

Devices within an IOMMU group can be determined using the iommuGroup
section of the virsh nodedev-dumpxml output. Each member of the group is
provided via a separate "address" field. This information may also be found in
sysfs using the following:

$ ls
/sys/bus/pci/devices/0000:01:00.0/iommu_group/devices/

An example of the output from this would be:

0000:01:00.0 0000:01:00.1

To assign only 0000.01.00.0 to the guest, the unused endpoint should be
detached from the host before starting the guest:

$ virsh nodedev-detach pci_0000_01_00_1

virsh nodedev-dumpxml pci_0000_00_19_0
<device>
 <name>pci_0000_00_19_0</name>
 <parent>computer</parent>
 <driver>
 <name>e1000e</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>0</bus>
 <slot>25</slot>
 <function>0</function>
 <product id='0x1502'>82579LM Gigabit Network
Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <iommuGroup number='7'>
 <address domain='0x0000' bus='0x00' slot='0x19'
function='0x0'/>
 </iommuGroup>
 </capability>
</device>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

179

3. Determine required configuration details
Refer to the output from the virsh nodedev-dumpxml pci_0000_00_19_0 command for
the values required for the configuration file.

The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal
configuration uses those three values:

bus='0'
slot='25'
function='0'

4. Add configuration details
Run virsh edit, specifying the virtual machine name, and add a device entry in the
<source> section to assign the PCI device to the guest virtual machine.

virsh edit guest1-rhel7-64

Figure 17.2. Add PCI device

Alternately, run virsh attach-device, specifying the virtual machine name and the guest's
XML file:

virsh attach-device guest1-rhel7-64 file.xml

5. Start the virtual machine

virsh start guest1-rhel7-64

The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest
operating system.

17.1.2. Assigning a PCI Device with virt-manager

PCI devices can be added to guest virtual machines using the graphical virt-manager tool. The
following procedure adds a Gigabit Ethernet controller to a guest virtual machine.

Procedure 17.4. Assigning a PCI device to a guest virtual machine using virt-manager

1. Open the hardware settings
Open the guest virtual machine and click the Add Hardware button to add a new device to the
virtual machine.

<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0' bus='0' slot='25' function='0'/>
 </source>
</hostdev>

Virtualization Deployment and Administration Guide

180

Figure 17.3. The virtual machine hardware information window

2. Select a PCI device
Select PCI Host Device from the Hardware list on the left.

Select an unused PCI device. Note that selecting PCI devices presently in use by another guest
causes errors. In this example, a spare audio controller is used. Click Finish to complete
setup.

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

181

Figure 17.4. The Add new virtual hardware wizard

3. Add the new device
The setup is complete and the guest virtual machine now has direct access to the PCI device.

Virtualization Deployment and Administration Guide

182

Figure 17.5. The virtual machine hardware information window

NOTE

If device assignment fails, there may be other endpoints in the same IOMMU group that
are still attached to the host. There is no way to retrieve group information using virt-
manager, but virsh commands can be used to analyze the bounds of the IOMMU group
and if necessary sequester devices.

Refer to the Note in Section 17.1.1, “Assigning a PCI Device with virsh” for more
information on IOMMU groups and how to detach endpoint devices using virsh.

17.1.3. PCI Device Assignment with virt-install

It is possible to assign a PCI device when installing a guest using the virt-install command. To do this,
use the --host-device parameter.

Procedure 17.5. Assigning a PCI device to a virtual machine with virt-install

1. Identify the device
Identify the PCI device designated for device assignment to the guest virtual machine.

lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

183

The virsh nodedev-list command lists all devices attached to the system, and identifies
each PCI device with a string. To limit output to only PCI devices, enter the following command:

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number; the number is needed in other steps.

Information on the domain, bus and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_0000_01_00_0

Virtualization Deployment and Administration Guide

184

Figure 17.6. PCI device file contents

NOTE

If there are multiple endpoints in the IOMMU group and not all of them are
assigned to the guest, you will need to manually detach the other endpoint(s) from
the host by running the following command before you start the guest:

$ virsh nodedev-detach pci_0000_00_19_1

Refer to the Note in Section 17.1.1, “Assigning a PCI Device with virsh” for more
information on IOMMU groups.

2. Add the device
Use the PCI identifier output from the virsh nodedev command as the value for the --host-
device parameter.

virt-install \
--name=guest1-rhel7-64 \
--disk path=/var/lib/libvirt/images/guest1-rhel7-64.img,size=8 \
--vcpus=2 --ram=2048 \
--location=http://example1.com/installation_tree/RHEL7.0-Server-
x86_64/os \
--nonetworks \
--os-type=linux \
--os-variant=rhel7
--host-device=pci_0000_01_00_0

3. Complete the installation
Complete the guest installation. The PCI device should be attached to the guest.

17.1.4. Detaching an Assigned PCI Device

<device>
 <name>pci_0000_01_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>1</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <iommuGroup number='7'>
 <address domain='0x0000' bus='0x00' slot='0x19'
function='0x0'/>
 </iommuGroup>
 </capability>
</device>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

185

When a host PCI device has been assigned to a guest machine, the host can no longer use the device.
If the PCI device is in managed mode (configured using the managed='yes' parameter in the domain
XML file), it attaches to the guest machine and detaches from the guest machine and re-attaches to the
host machine as necessary. If the PCI device is not in managed mode, you can detach the PCI device
from the guest machine and re-attach it using virsh or virt-manager.

Procedure 17.6. Detaching a PCI device from a guest with virsh

1. Detach the device
Use the following command to detach the PCI device from the guest by removing it in the guest's
XML file:

virsh detach-device name_of_guest file.xml

2. Re-attach the device to the host (optional)
If the device is in managed mode, skip this step. The device will be returned to the host
automatically.

If the device is not using managed mode, use the following command to re-attach the PCI device
to the host machine:

virsh nodedev-reattach device

For example, to re-attach the pci_0000_01_00_0 device to the host:

virsh nodedev-reattach pci_0000_01_00_0

The device is now available for host use.

Procedure 17.7. Detaching a PCI Device from a guest with virt-manager

1. Open the virtual hardware details screen
In virt-manager, double-click the virtual machine that contains the device. Select the Show
virtual hardware details button to display a list of virtual hardware.

Figure 17.7. The virtual hardware details button

2. Select and remove the device
Select the PCI device to be detached from the list of virtual devices in the left panel.

Virtualization Deployment and Administration Guide

186

Figure 17.8. Selecting the PCI device to be detached

Click the Remove button to confirm. The device is now available for host use.

17.1.5. Creating PCI Bridges

Peripheral Component Interconnects (PCI) bridges are used to attach to devices such as network cards,
modems and sound cards. Just like their physical counterparts, virtual devices can also be attached to a
PCI Bridge. In the past, only 31 PCI devices could be added to any guest virtual machine. Now, when a
31st PCI device is added, a PCI bridge is automatically placed in the 31st slot moving the additional PCI
device to the PCI bridge. Each PCI bridge has 31 slots for 31 additional devices, all of which can be
bridges. In this manner, over 900 devices can be available for guest virtual machines. Note that this
action cannot be performed when the guest virtual machine is running. You must add the PCI device on
a guest virtual machine that is shutdown.

17.1.5.1. PCI Bridge hot plug/hot unplug Support

PCI Bridge hot plug/hot unplug is supported on the following device types:

virtio-net-pci

virtio-scsi-pci

e1000

rtl8139

virtio-serial-pci

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

187

virtio-balloon-pci

17.1.6. PCI Device Assignment Restrictions

PCI device assignment (attaching PCI devices to virtual machines) requires host systems to have AMD
IOMMU or Intel VT-d support to enable device assignment of PCIe devices.

Red Hat Enterprise Linux 7 has limited PCI configuration space access by guest device drivers. This
limitation could cause drivers that are dependent on device capabilities or features present in the
extended PCI configuration space, to fail configuration.

There is a limit of 32 total assigned devices per Red Hat Enterprise Linux 7 virtual machine. This
translates to 32 total PCI functions, regardless of the number of PCI bridges present in the virtual
machine or how those functions are combined to create multi-function slots.

Platform support for interrupt remapping is required to fully isolate a guest with assigned devices from
the host. Without such support, the host may be vulnerable to interrupt injection attacks from a malicious
guest. In an environment where guests are trusted, the administrator may opt-in to still allow PCI device
assignment using the allow_unsafe_interrupts option to the vfio_iommu_type1 module. This
may either be done persistently by adding a .conf file (for example local.conf) to /etc/modprobe.d
containing the following:

options vfio_iommu_type1 allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

echo 1 > /sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts

17.2. PCI DEVICE ASSIGNMENT WITH SR-IOV DEVICES

A PCI network device (specified in the domain XML by the <source> element) can be directly
connected to the guest using direct device assignment (sometimes referred to as passthrough). Due to
limitations in standard single-port PCI ethernet card driver design, only Single Root I/O Virtualization
(SR-IOV) virtual function (VF) devices can be assigned in this manner; to assign a standard single-port
PCI or PCIe Ethernet card to a guest, use the traditional <hostdev> device definition.

Figure 17.9. XML example for PCI device assignment

 <devices>
 <interface type='hostdev'>
 <driver name='vfio'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x07'
function='0x0'/>
 </source>
 <mac address='52:54:00:6d:90:02'>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 </devices>

Virtualization Deployment and Administration Guide

188

Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-IOV)
specification is a standard for a type of PCI device assignment that can share a single device to multiple
virtual machines. SR-IOV improves device performance for virtual machines.

Figure 17.10. How SR-IOV works

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear in
the PCI configuration space as multiple functions. Each device has its own configuration space complete
with Base Address Registers (BARs).

SR-IOV uses two PCI functions:

Physical Functions (PFs) are full PCIe devices that include the SR-IOV capabilities. Physical
Functions are discovered, managed, and configured as normal PCI devices. Physical Functions
configure and manage the SR-IOV functionality by assigning Virtual Functions.

Virtual Functions (VFs) are simple PCIe functions that only process I/O. Each Virtual Function is
derived from a Physical Function. The number of Virtual Functions a device may have is limited
by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual
Functions that can be shared to virtual machines.

The hypervisor can assign one or more Virtual Functions to a virtual machine. The Virtual Function's
configuration space is then assigned to the configuration space presented to the guest.

Each Virtual Function can only be assigned to a single guest at a time, as Virtual Functions require real
hardware resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears
as a network card in the same way as a normal network card would appear to an operating system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual Function
(VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as PCI devices
which are backed on the physical PCI device by resources such as queues and register sets.

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

189

17.2.1. Advantages of SR-IOV

SR-IOV devices can share a single physical port with multiple virtual machines.

When an SR-IOV VF is assigned to a virtual machine, it can be configured to (transparently to the virtual
machine) place all network traffic leaving the VF onto a particular VLAN. The virtual machine cannot
detect that its traffic is being tagged for a VLAN, and will be unable to change or eliminate this tagging.

Virtual Functions have near-native performance and provide better performance than paravirtualized
drivers and emulated access. Virtual Functions provide data protection between virtual machines on the
same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtual machine density on hosts within a data center.

SR-IOV is better able to utilize the bandwidth of devices with multiple guests.

17.2.2. Using SR-IOV

This section covers the use of PCI passthrough to assign a Virtual Function of an SR-IOV capable
multiport network card to a virtual machine as a network device.

SR-IOV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in
<hostdev> with the virsh edit or virsh attach-device command. However, this can be
problematic because unlike a regular network device, an SR-IOV VF network device does not have a
permanent unique MAC address, and is assigned a new MAC address each time the host is rebooted.
Because of this, even if the guest is assigned the same VF after a reboot, when the host is rebooted the
guest determines its network adapter to have a new MAC address. As a result, the guest believes there
is new hardware connected each time, and will usually require re-configuration of the guest's network
settings.

libvirt contains the <interface type='hostdev'> interface device. Using this interface device,
libvirt will first perform any network-specific hardware/switch initialization indicated (such as setting the
MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the PCI device assignment
to the guest.

Using the <interface type='hostdev'> interface device requires:

an SR-IOV-capable network card,

host hardware that supports either the Intel VT-d or the AMD IOMMU extensions

the PCI address of the VF to be assigned.

IMPORTANT

Assignment of an SR-IOV device to a virtual machine requires that the host hardware
supports the Intel VT-d or the AMD IOMMU specification.

To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:

Procedure 17.8. Attach an SR-IOV network device on an Intel or AMD system

1. Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel

Virtualization Deployment and Administration Guide

190

On an Intel system, enable Intel VT-d in the BIOS if it is not enabled already. Refer to
Procedure 17.1, “Preparing an Intel system for PCI device assignment” for procedural help on
enabling Intel VT-d in the BIOS and kernel.

Skip this step if Intel VT-d is already enabled and working.

On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled
already. Refer to Procedure 17.2, “Preparing an AMD system for PCI device assignment” for
procedural help on enabling IOMMU in the BIOS.

2. Verify support
Verify if the PCI device with SR-IOV capabilities is detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the lspci command to verify whether the
device was detected.

lspci
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)

Note that the output has been modified to remove all other devices.

3. Activate Virtual Functions
Run the following command:

echo ${num_vfs} > /sys/class/net/enp14s0f0/device/sriov_numvfs

4. Make the Virtual Functions persistent
To make the Virtual Functions persistent across reboots, use the editor of your choice to create
an udev rule similar to the following, where you specify the intended number of VFs (in this
example, 2), up to the limit supported by the network interface card. In the following example,
replace enp14s0f0 with the PF network device name(s) and adjust the value of
ENV{ID_NET_DRIVER} to match the driver in use:

vim /etc/udev/rules.d/enp14s0f0.rules

ACTION=="add", SUBSYSTEM=="net", ENV{ID_NET_DRIVER}=="ixgbe",
ATTR{device/sriov_numvfs}="2"

This will ensure the feature is enabled at boot-time.

5. Inspect the new Virtual Functions
Using the lspci command, list the newly added Virtual Functions attached to the Intel 82576
network device. (Alternatively, use grep to search for Virtual Function, to search for
devices that support Virtual Functions.)

lspci | grep 82576
0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

191

0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
0b:11.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

The identifier for the PCI device is found with the -n parameter of the lspci command. The
Physical Functions correspond to 0b:00.0 and 0b:00.1. All Virtual Functions have Virtual
Function in the description.

6. Verify devices exist with virsh
The libvirt service must recognize the device before adding a device to a virtual machine.
libvirt uses a similar notation to the lspci output. All punctuation characters, : and ., in
lspci output are changed to underscores (_).

Use the virsh nodedev-list command and the grep command to filter the Intel 82576
network device from the list of available host devices. 0b is the filter for the Intel 82576 network
devices in this example. This may vary for your system and may result in additional devices.

virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_0b_11_7
pci_0000_0b_11_1
pci_0000_0b_11_2

Virtualization Deployment and Administration Guide

192

pci_0000_0b_11_3
pci_0000_0b_11_4
pci_0000_0b_11_5

The PCI addresses for the Virtual Functions and Physical Functions should be in the list.

7. Get device details with virsh
The pci_0000_0b_00_0 is one of the Physical Functions and pci_0000_0b_10_0 is the first
corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml
command to get device details for both devices.

virsh nodedev-dumpxml pci_0000_03_00_0
<device>
 <name>pci_0000_03_00_0</name>
 <path>/sys/devices/pci0000:00/0000:00:01.0/0000:03:00.0</path>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>3</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='virt_functions'>
 <address domain='0x0000' bus='0x03' slot='0x10'
function='0x0'/>
 <address domain='0x0000' bus='0x03' slot='0x10'
function='0x2'/>
 <address domain='0x0000' bus='0x03' slot='0x10'
function='0x4'/>
 <address domain='0x0000' bus='0x03' slot='0x10'
function='0x6'/>
 <address domain='0x0000' bus='0x03' slot='0x11'
function='0x0'/>
 <address domain='0x0000' bus='0x03' slot='0x11'
function='0x2'/>
 <address domain='0x0000' bus='0x03' slot='0x11'
function='0x4'/>
 </capability>
 <iommuGroup number='14'>
 <address domain='0x0000' bus='0x03' slot='0x00'
function='0x0'/>
 <address domain='0x0000' bus='0x03' slot='0x00'
function='0x1'/>
 </iommuGroup>
 </capability>
</device>

virsh nodedev-dumpxml pci_0000_03_11_5
<device>
 <name>pci_0000_03_11_5</name>
 <path>/sys/devices/pci0000:00/0000:00:01.0/0000:03:11.5</path>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

193

 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igbvf</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>3</bus>
 <slot>17</slot>
 <function>5</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='phys_function'>
 <address domain='0x0000' bus='0x03' slot='0x00'
function='0x1'/>
 </capability>
 <iommuGroup number='35'>
 <address domain='0x0000' bus='0x03' slot='0x11'
function='0x5'/>
 </iommuGroup>
 </capability>
</device>

This example adds the Virtual Function pci_0000_03_10_2 to the virtual machine in Step 8.
Note the bus, slot and function parameters of the Virtual Function: these are required for
adding the device.

Copy these parameters into a temporary XML file, such as /tmp/new-interface.xml for
example.

 <interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0x0000' bus='0x03' slot='0x10'
function='0x2'/>
 </source>
 </interface>

Virtualization Deployment and Administration Guide

194

NOTE

When the virtual machine starts, it should see a network device of the type
provided by the physical adapter, with the configured MAC address. This MAC
address will remain unchanged across host and guest reboots.

The following <interface> example shows the syntax for the optional <mac
address>, <virtualport>, and <vlan> elements. In practice, use either the
<vlan> or <virtualport> element, not both simultaneously as shown in the
example:

If you do not specify a MAC address, one will be automatically generated. The
<virtualport> element is only used when connecting to an 802.11Qbh
hardware switch. The <vlan> element will transparently put the guest's device
on the VLAN tagged 42.

8. Add the Virtual Function to the virtual machine
Add the Virtual Function to the virtual machine using the following command with the temporary
file created in the previous step. This attaches the new device immediately and saves it for
subsequent guest restarts.

virsh attach-device MyGuest /tmp/new-interface.xml --live --config

Specifying the --live option with virsh attach-device attaches the new device to the
running guest. Using the --config option ensures the new device is available after future
guest restarts.

NOTE

The --live option is only accepted when the guest is running. virsh will return
an error if the --live option is used on a non-running guest.

The virtual machine detects a new network interface card. This new card is the Virtual Function of the
SR-IOV device.

...
 <devices>
 ...
 <interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0' bus='11' slot='16'
function='0'/>
 </source>
 <mac address='52:54:00:6d:90:02'>
 <vlan>
 <tag id='42'/>
 </vlan>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 ...
 </devices>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

195

17.2.3. Configuring PCI Assignment with SR-IOV Devices

SR-IOV network cards provide multiple VFs that can each be individually assigned to a guest virtual
machines using PCI device assignment. Once assigned, each behaves as a full physical network device.
This permits many guest virtual machines to gain the performance advantage of direct PCI device
assignment, while only using a single slot on the host physical machine.

These VFs can be assigned to guest virtual machines in the traditional manner using the <hostdev>
element. However, SR-IOV VF network devices do not have permanent unique MAC addresses, which
causes problems where the guest virtual machine's network settings need to be re-configured each time
the host physical machine is rebooted. To fix this, you need to set the MAC address prior to assigning the
VF to the host physical machine after every boot of the guest virtual machine. In order to assign this
MAC address, as well as other options, refer to the following procedure:

Procedure 17.9. Configuring MAC addresses, vLAN, and virtual ports for assigning PCI devices
on SR-IOV

The <hostdev> element cannot be used for function-specific items like MAC address assignment, vLAN
tag ID assignment, or virtual port assignment, because the <mac>, <vlan>, and <virtualport>
elements are not valid children for <hostdev>. Instead, these elements can be used with the hostdev
interface type: <interface type='hostdev'>. This device type behaves as a hybrid of an
<interface> and <hostdev>. Thus, before assigning the PCI device to the guest virtual machine,
libvirt initializes the network-specific hardware/switch that is indicated (such as setting the MAC address,
setting a vLAN tag, or associating with an 802.1Qbh switch) in the guest virtual machine's XML
configuration file. For information on setting the vLAN tag, refer to Section 18.16, “Setting vLAN Tags”.

1. Gather information
In order to use <interface type='hostdev'>, you must have an SR-IOV-capable network
card, host physical machine hardware that supports either the Intel VT-d or AMD IOMMU
extensions, and you must know the PCI address of the VF that you wish to assign.

2. Shut down the guest virtual machine
Using virsh shutdown command, shut down the guest virtual machine (here named
guestVM).

virsh shutdown guestVM

3. Open the XML file for editing
Run the virsh save-image-edit command to open the XML file for editing (refer to
Section 21.7.5, “Editing the Guest Virtual Machine Configuration” for more information) with the
--running option. The name of the configuration file in this example is guestVM.xml.

 # virsh save-image-edit guestVM.xml --running

The guestVM.xml opens in your default editor.

4. Edit the XML file
Update the configuration file (guestVM.xml) to have a <devices> entry similar to the following:

Virtualization Deployment and Administration Guide

196

Figure 17.11. Sample domain XML for hostdev interface type

Note that if you do not provide a MAC address, one will be automatically generated, just as with
any other type of interface device. In addition, the <virtualport> element is only used if you
are connecting to an 802.11Qgh hardware switch. 802.11Qbg (also known as "VEPA") switches
are currently not supported.

5. Restart the guest virtual machine
Run the virsh start command to restart the guest virtual machine you shut down in step 2.
Refer to Section 21.6, “Starting, Resuming, and Restoring a Virtual Machine” for more
information.

 # virsh start guestVM

When the guest virtual machine starts, it sees the network device provided to it by the physical
host machine's adapter, with the configured MAC address. This MAC address remains
unchanged across guest virtual machine and host physical machine reboots.

17.2.4. Setting PCI device assignment from a pool of SR-IOV virtual functions

Hard coding the PCI addresses of particular Virtual Functions (VFs) into a guest's configuration has two
serious limitations:

The specified VF must be available any time the guest virtual machine is started. Therefore, the
administrator must permanently assign each VF to a single guest virtual machine (or modify the
configuration file for every guest virtual machine to specify a currently unused VF's PCI address
each time every guest virtual machine is started).

If the guest virtual machine is moved to another host physical machine, that host physical
machine must have exactly the same hardware in the same location on the PCI bus (or the
guest virtual machine configuration must be modified prior to start).

 <devices>
 ...
 <interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0x0' bus='0x00' slot='0x07'
function='0x0'/> <!--these values can be decimal as well-->
 </source>
 <mac address='52:54:00:6d:90:02'/>
<!--sets the mac address-->
 <virtualport type='802.1Qbh'>
<!--sets the virtual port for the 802.1Qbh switch-->
 <parameters profileid='finance'/>
 </virtualport>
 <vlan>
<!--sets the vlan tag-->
 <tag id='42'/>
 </vlan>
 </interface>
 ...
 </devices>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

197

It is possible to avoid both of these problems by creating a libvirt network with a device pool containing
all the VFs of an SR-IOV device. Once that is done, configure the guest virtual machine to reference this
network. Each time the guest is started, a single VF will be allocated from the pool and assigned to the
guest virtual machine. When the guest virtual machine is stopped, the VF will be returned to the pool for
use by another guest virtual machine.

Procedure 17.10. Creating a device pool

1. Shut down the guest virtual machine
Using virsh shutdown command, shut down the guest virtual machine, here named guestVM.

virsh shutdown guestVM

2. Create a configuration file
Using your editor of choice, create an XML file (named passthrough.xml, for example) in the
/tmp directory. Make sure to replace pf dev='eth3' with the netdev name of your own SR-
IOV device's Physical Function (PF).

The following is an example network definition that will make available a pool of all VFs for the
SR-IOV adapter with its PF at "eth3' on the host physical machine:

Figure 17.12. Sample network definition domain XML

3. Load the new XML file
Enter the following command, replacing /tmp/passthrough.xml with the name and location of
your XML file you created in the previous step:

virsh net-define /tmp/passthrough.xml

4. Restarting the guest
Run the following, replacing passthrough.xml with the name of your XML file you created in the
previous step:

 # virsh net-autostart passthrough # virsh net-start passthrough

5. Re-start the guest virtual machine
Run the virsh start command to restart the guest virtual machine you shutdown in the first
step (example uses guestVM as the guest virtual machine's domain name). Refer to
Section 21.6, “Starting, Resuming, and Restoring a Virtual Machine” for more information.

 # virsh start guestVM

<network>
 <name>passthrough</name> <!-- This is the name of the file you
created -->
 <forward mode='hostdev' managed='yes'>
 <pf dev='myNetDevName'/> <!-- Use the netdev name of your SR-
IOV devices PF here -->
 </forward>
</network>

Virtualization Deployment and Administration Guide

198

6. Initiating passthrough for devices
Although only a single device is shown, libvirt will automatically derive the list of all VFs
associated with that PF the first time a guest virtual machine is started with an interface
definition in its domain XML like the following:

Figure 17.13. Sample domain XML for interface network definition

7. Verification
You can verify this by running virsh net-dumpxml passthrough command after starting
the first guest that uses the network; you will get output similar to the following:

Figure 17.14. XML dump file passthrough contents

17.2.5. SR-IOV Restrictions

SR-IOV is only thoroughly tested with the following devices:

Intel® 82576NS Gigabit Ethernet Controller (igb driver)

Intel® 82576EB Gigabit Ethernet Controller (igb driver)

Intel® 82599ES 10 Gigabit Ethernet Controller (ixgbe driver)

<interface type='network'>
 <source network='passthrough'>
</interface>

<network connections='1'>
 <name>passthrough</name>
 <uuid>a6b49429-d353-d7ad-3185-4451cc786437</uuid>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10'
function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10'
function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10'
function='0x5'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10'
function='0x7'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11'
function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11'
function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11'
function='0x5'/>
 </forward>
</network>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

199

Intel® 82599EB 10 Gigabit Ethernet Controller (ixgbe driver)

Other SR-IOV devices may work but have not been tested at the time of release

17.3. USB DEVICES

This section gives the commands required for handling USB devices.

17.3.1. Assigning USB Devices to Guest Virtual Machines

Most devices such as web cameras, card readers, disk drives, keyboards, mice are connected to a
computer using a USB port and cable. There are two ways to pass such devices to a guest virtual
machine:

Using USB passthrough - this requires the device to be physically connected to the host physical
machine that is hosting the guest virtual machine. SPICE is not needed in this case. USB
devices on the host can be passed to the guest via the command line or virt-manager. Refer to
Section 20.3.2, “Attaching USB Devices to a Guest Virtual Machine” for virt manager directions.
Note that the virt-manager directions are not suitable for hot plugging or hot unplugging
devices. If you want to hot plug/or hot unplug a USB device, refer to Procedure 21.4, “Hot
plugging USB devices for use by the guest virtual machine”.

Using USB re-direction - USB re-direction is best used in cases where there is a host physical
machine that is running in a data center. The user connects to his/her guest virtual machine from
a local machine or thin client. On this local machine there is a SPICE client. The user can attach
any USB device to the thin client and the SPICE client will redirect the device to the host
physical machine on the data center so it can be used by the guest virtual machine that is
running on the thin client. For instructions via the virt-manager refer to Section 20.3.3, “USB
Redirection”.

17.3.2. Setting a Limit on USB Device Redirection

To filter out certain devices from redirection, pass the filter property to -device usb-redir. The filter
property takes a string consisting of filter rules, the format for a rule is:

<class>:<vendor>:<product>:<version>:<allow>

Use the value -1 to designate it to accept any value for a particular field. You may use multiple rules
on the same command line using | as a separator. Note that if a device matches none of the passed in
rules, redirecting it will not be allowed!

Example 17.1. An example of limiting redirection with a guest virtual machine

1. Prepare a guest virtual machine.

2. Add the following code excerpt to the guest virtual machine's' domain XML file:

 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir0'/>
 <address type='usb' bus='0' port='3'/>
 </redirdev>
 <redirfilter>
 <usbdev class='0x08' vendor='0x1234' product='0xBEEF'
version='2.0' allow='yes'/>

Virtualization Deployment and Administration Guide

200

 <usbdev class='-1' vendor='-1' product='-1' version='-1'
allow='no'/>
 </redirfilter>

3. Start the guest virtual machine and confirm the setting changes by running the following:

#ps -ef | grep $guest_name

-device usb-redir,chardev=charredir0,id=redir0,/
filter=0x08:0x1234:0xBEEF:0x0200:1|-1:-1:-1:-1:0,bus=usb.0,port=3

4. Plug a USB device into a host physical machine, and use virt-manager to connect to the
guest virtual machine.

5. Click USB device selection in the menu, which will produce the following message: "Some
USB devices are blocked by host policy". Click OK to confirm and continue.

The filter takes effect.

6. To make sure that the filter captures properly check the USB device vendor and product,
then make the following changes in the host physical machine's domain XML to allow for
USB redirection.

 <redirfilter>
 <usbdev class='0x08' vendor='0x0951' product='0x1625'
version='2.0' allow='yes'/>
 <usbdev allow='no'/>
 </redirfilter>

7. Restart the guest virtual machine, then use virt-viewer to connect to the guest virtual
machine. The USB device will now redirect traffic to the guest virtual machine.

17.4. CONFIGURING DEVICE CONTROLLERS

Depending on the guest virtual machine architecture, some device buses can appear more than once,
with a group of virtual devices tied to a virtual controller. Normally, libvirt can automatically infer such
controllers without requiring explicit XML markup, but in some cases it is better to explicitly set a virtual
controller element.

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

201

Figure 17.15. Domain XML example for virtual controllers

Each controller has a mandatory attribute <controller type>, which must be one of:

ide

fdc

scsi

sata

usb

ccid

virtio-serial

pci

The <controller> element has a mandatory attribute <controller index> which is the decimal
integer describing in which order the bus controller is encountered (for use in controller attributes of
<address> elements). When <controller type ='virtio-serial'> there are two additional
optional attributes (named ports and vectors), which control how many devices can be connected
through the controller.

When <controller type ='scsi'>, there is an optional attribute model model, which can have the
following values:

auto

buslogic

ibmvscsi

lsilogic

lsisas1068

lsisas1078

virtio-scsi

vmpvscsi

 ...
 <devices>
 <controller type='ide' index='0'/>
 <controller type='virtio-serial' index='0' ports='16' vectors='4'/>
 <controller type='virtio-serial' index='1'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0a'
function='0x0'/>
 </controller>
 ...
 </devices>
 ...

Virtualization Deployment and Administration Guide

202

When <controller type ='usb'>, there is an optional attribute model model, which can have the
following values:

piix3-uhci

piix4-uhci

ehci

ich9-ehci1

ich9-uhci1

ich9-uhci2

ich9-uhci3

vt82c686b-uhci

pci-ohci

nec-xhci

Note that if the USB bus needs to be explicitly disabled for the guest virtual machine, <model='none'>
may be used. .

For controllers that are themselves devices on a PCI or USB bus, an optional sub-element <address>
can specify the exact relationship of the controller to its master bus, with semantics as shown in
Section 17.5, “Setting Addresses for Devices”.

An optional sub-element <driver> can specify the driver-specific options. Currently, it only supports
attribute queues, which specifies the number of queues for the controller. For best performance, it is
recommended to specify a value matching the number of vCPUs.

USB companion controllers have an optional sub-element <master> to specify the exact relationship of
the companion to its master controller. A companion controller is on the same bus as its master, so the
companion index value should be equal.

An example XML which can be used is as follows:

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

203

Figure 17.16. Domain XML example for USB controllers

PCI controllers have an optional model attribute with the following possible values:

pci-root

pcie-root

pci-bridge

dmi-to-pci-bridge

For machine types which provide an implicit PCI bus, the pci-root controller with index='0' is auto-
added and required to use PCI devices. pci-root has no address. PCI bridges are auto-added if there are
too many devices to fit on the one bus provided by model='pci-root', or a PCI bus number greater
than zero was specified. PCI bridges can also be specified manually, but their addresses should only
refer to PCI buses provided by already specified PCI controllers. Leaving gaps in the PCI controller
indexes might lead to an invalid configuration. The following XML example can be added to the
<devices> section:

Figure 17.17. Domain XML example for PCI bridge

For machine types which provide an implicit PCI Express (PCIe) bus (for example, the machine types
based on the Q35 chipset), the pcie-root controller with index='0' is auto-added to the domain's
configuration. pcie-root has also no address, but provides 31 slots (numbered 1-31) and can only be
used to attach PCIe devices. In order to connect standard PCI devices on a system which has a pcie-
root controller, a pci controller with model='dmi-to-pci-bridge' is automatically added. A dmi-to-

 ...
 <devices>
 <controller type='usb' index='0' model='ich9-ehci1'>
 <address type='pci' domain='0' bus='0' slot='4' function='7'/>
 </controller>
 <controller type='usb' index='0' model='ich9-uhci1'>
 <master startport='0'/>
 <address type='pci' domain='0' bus='0' slot='4' function='0'
multifunction='on'/>
 </controller>
 ...
 </devices>
 ...

 ...
 <devices>
 <controller type='pci' index='0' model='pci-root'/>
 <controller type='pci' index='1' model='pci-bridge'>
 <address type='pci' domain='0' bus='0' slot='5' function='0'
multifunction='off'/>
 </controller>
 </devices>
 ...

Virtualization Deployment and Administration Guide

204

pci-bridge controller plugs into a PCIe slot (as provided by pcie-root), and itself provides 31 standard PCI
slots (which are not hot-pluggable). In order to have hot-pluggable PCI slots in the guest system, a pci-
bridge controller will also be automatically created and connected to one of the slots of the auto-created
dmi-to-pci-bridge controller; all guest devices with PCI addresses that are auto-determined by libvirt will
be placed on this pci-bridge device.

Figure 17.18. Domain XML example for PCIe (PCI express)

The following XML configuration is used for USB 3.0 / xHCI emulation:

Figure 17.19. Domain XML example for USB3/xHCI devices

17.5. SETTING ADDRESSES FOR DEVICES

Many devices have an optional <address> sub-element which is used to describe where the device is
placed on the virtual bus presented to the guest virtual machine. If an address (or any optional attribute
within an address) is omitted on input, libvirt will generate an appropriate address; but an explicit address
is required if more control over layout is required. For domain XML device examples that include an
<address> element, see Figure 17.9, “XML example for PCI device assignment”.

Every address has a mandatory attribute type that describes which bus the device is on. The choice of
which address to use for a given device is constrained in part by the device and the architecture of the
guest virtual machine. For example, a <disk> device uses type='drive', while a <console> device
would use type='pci' on i686 or x86_64 guest virtual machine architectures. Each address type has
further optional attributes that control where on the bus the device will be placed as described in the
table:

Table 17.1. Supported device address types

 ...
 <devices>
 <controller type='pci' index='0' model='pcie-root'/>
 <controller type='pci' index='1' model='dmi-to-pci-bridge'>
 <address type='pci' domain='0' bus='0' slot='0xe' function='0'/>
 </controller>
 <controller type='pci' index='2' model='pci-bridge'>
 <address type='pci' domain='0' bus='1' slot='1' function='0'/>
 </controller>
 </devices>
 ...

 ...
 <devices>
 <controller type='usb' index='3' model='nec-xhci'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0f'
function='0x0'/>
 </controller>
 </devices>
 ...

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

205

Address type Description

type='pci' PCI addresses have the following additional
attributes:

domain (a 2-byte hex integer, not currently
used by qemu)

bus (a hex value between 0 and 0xff,
inclusive)

slot (a hex value between 0x0 and 0x1f,
inclusive)

function (a value between 0 and 7, inclusive)

multifunction controls turning on the
multifunction bit for a particular slot/function
in the PCI control register By default it is set
to 'off', but should be set to 'on' for function 0
of a slot that will have multiple functions
used.

type='drive' Drive addresses have the following additional
attributes:

controller (a 2-digit controller number)

bus (a 2-digit bus number

target (a 2-digit bus number)

unit (a 2-digit unit number on the bus)

type='virtio-serial' Each virtio-serial address has the following additional
attributes:

controller (a 2-digit controller number)

bus (a 2-digit bus number)

slot (a 2-digit slot within the bus)

type='ccid' A CCID address, for smart-cards, has the following
additional attributes:

bus (a 2-digit bus number)

slot attribute (a 2-digit slot within the bus)

Virtualization Deployment and Administration Guide

206

type='usb' USB addresses have the following additional
attributes:

bus (a hex value between 0 and 0xfff,
inclusive)

port (a dotted notation of up to four octets,
such as 1.2 or 2.1.3.1)

type='isa' ISA addresses have the following additional
attributes:

iobase

irq

Address type Description

17.6. RANDOM NUMBER GENERATOR DEVICE

Random number generators are very important for operating system security. For securing virtual
operating systems, Red Hat Enterprise Linux 7 includes virtio-rng, a virtual hardware random
number generator device that can provide the guest with fresh entropy on request.

On the host physical machine, the hardware RNG interface creates a chardev at /dev/hwrng, which
can be opened and then read to fetch entropy from the host physical machine. In co-operation with the
rngd daemon, the entropy from the host physical machine can be routed to the guest virtual machine's
/dev/random, which is the primary source of randomness.

Using a random number generator is particularly useful when a device such as a keyboard, mouse, and
other inputs are not enough to generate sufficient entropy on the guest virtual machine. The virtual
random number generator device allows the host physical machine to pass through entropy to guest
virtual machine operating systems. This procedure can be performed using either the command line or
the virt-manager interface. For more information about virtio-rng, see Red Hat Enterprise Linux
Virtual Machines: Access to Random Numbers Made Easy.

Procedure 17.11. Implementing virtio-rng using the Virtual Machine Manager

1. Shut down the guest virtual machine.

2. Select the guest virtual machine and from the Edit menu, select Virtual Machine Details, to
open the Details window for the specified guest virtual machine.

3. Click the Add Hardware button.

4. In the Add New Virtual Hardware window, select RNG to open the Random Number
Generator window.

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

207

http://rhelblog.redhat.com/2015/03/09/red-hat-enterprise-linux-virtual-machines-access-to-random-numbers-made-easy/

Figure 17.20. Random Number Generator window

Enter the intended parameters and click Finish when done. The parameters are explained in
virtio-rng elements.

Procedure 17.12. Implementing virtio-rng using command-line tools

1. Shut down the guest virtual machine.

2. Using the virsh edit domain-name command, open the XML file for the intended guest
virtual machine.

3. Edit the <devices> element to include the following:

Virtualization Deployment and Administration Guide

208

Figure 17.21. Random number generator device

The random number generator device allows the following XML attributes and elements:

virtio-rng elements

<model> - The required model attribute specifies what type of RNG device is provided.

<backend model> - The <backend> element specifies the source of entropy to be used
for the guest. The source model is configured using the model attribute. Supported source
models include 'random' and 'egd' .

<backend model='random'> - This <backend> type expects a non-blocking
character device as input. Examples of such devices are /dev/random and
/dev/urandom. The file name is specified as contents of the <backend> element.
When no file name is specified the hypervisor default is used.

<backend model='egd'> - This back end connects to a source using the EGD
protocol. The source is specified as a character device. Refer to character device host
physical machine interface for more information.

17.7. ASSIGNING GPU DEVICES

To assign a GPU to a guest, use one of the following method:

GPU PCI Device Assignment - Using this method, it is possible to remove a GPU device from
the host and assign it to a single guest.

NVIDIA vGPU Assignment - This method makes it possible to create multiple mediated devices
from a physical GPU, and assign these devices as virtual GPUs to multiple guests. This is only
supported on selected NVIDIA GPUs, and only one mediated device can be assigned to a single
guest.

17.7.1. GPU PCI Device Assignment

Red Hat Enterprise Linux 7 supports PCI device assignment of the following GPU devices as non-VGA
graphics devices:

NVIDIA Quadro K-Series, M-Series, and P-Series (models 2000 series or higher)

 ...
 <devices>
 <rng model='virtio'>
 <rate period='2000' bytes='1234'/>
 <backend model='random'>/dev/random</backend>
 <!-- OR -->
 <backend model='egd' type='udp'>
 <source mode='bind' service='1234'/>
 <source mode='connect' host='1.2.3.4' service='1234'/>
 </backend>
 </rng>
 </devices>
 ...

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

209

NVIDIA GRID K-Series

NVIDIA Tesla K-Series and M-Series

Currently, up to two GPUs may be attached to the virtual machine, in addition to one of the standard
emulated VGA interfaces. The emulated VGA is used for pre-boot and installation and the NVIDIA GPU
takes over when the NVIDIA graphics drivers are loaded.

To assign a GPU to a guest virtual machine, you must enable the I/O Memory Management Unit
(IOMMU) on the host machine, identify the GPU device by using the lspci command, detach the device
from host, attach it to the guest, and configure Xorg on the guest - as described in the following
procedures:

Procedure 17.13. Enable IOMMU support in the host machine kernel

1. Edit the kernel command line
For an Intel VT-d system, IOMMU is activated by adding the intel_iommu=on and iommu=pt
parameters to the kernel command line. For an AMD-Vi system, the option needed is
amd_iommu=pt. To enable this option, edit or add the GRUB_CMDLINX_LINUX line to the
/etc/sysconfig/grub configuration file as follows:

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVol01
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/rhcrashkernel-param || :) rhgb quiet intel_iommu=on
iommu=pt"

NOTE

For further information on IOMMU, see Appendix E, Working with IOMMU
Groups.

2. Regenerate the boot loader configuration
For the changes to the kernel command line to apply, regenerate the boot loader configuration
using the grub2-mkconfig command:

grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

3. Reboot the host
For the changes to take effect, reboot the host machine:

reboot

Procedure 17.14. Excluding the GPU device from binding to the host physical machine driver

For GPU assignment, it is recommended to exclude the device from binding to host drivers, as these
drivers often do not support dynamic unbinding of the device.

1. Identify the PCI bus address
To identify the PCI bus address and IDs of the device, run the following lspci command. In this
example, a VGA controller such as an NVIDIA Quadro or GRID card is used:

Virtualization Deployment and Administration Guide

210

lspci -Dnn | grep VGA
0000:02:00.0 VGA compatible controller [0300]: NVIDIA Corporation
GK106GL [Quadro K4000] [10de:11fa] (rev a1)

The resulting search reveals that the PCI bus address of this device is 0000:02:00.0 and the PCI
IDs for the device are 10de:11fa.

2. Prevent the native host machine driver from using the GPU device
To prevent the native host machine driver from using the GPU device, you can use a PCI ID
with the pci-stub driver. To do this, append the pci-stub.ids option, with the PCI IDs as its
value, to the GRUB_CMDLINX_LINUX line located in the /etc/sysconfig/grub configuration
file, for example as follows:

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVol01
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/rhcrashkernel-param || :) rhgb quiet intel_iommu=on
iommu=pt pci-stub.ids=10de:11fa"

To add additional PCI IDs for pci-stub, separate them with a comma.

3. Regenerate the boot loader configuration
Regenerate the boot loader configuration using the grub2-mkconfig to include this option:

grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.

4. Reboot the host machine
In order for the changes to take effect, reboot the host machine:

reboot

Procedure 17.15. Optional: Editing the GPU IOMMU configuration

Prior to attaching the GPU device, editing its IOMMU configuration may be needed for the GPU to work
properly on the guest.

1. Display the XML information of the GPU
To display the settings of the GPU in XML form, you first need to convert its PCI bus address to
libvirt-compatible format by appending pci_ and converting delimiters to underscores. In this
example, the GPU PCI device identified with the 0000:02:00.0 bus address (as obtained in the
previous procedure) becomes pci_0000_02_00_0. Use the libvirt address of the device with
the virsh nodedev-dumpxml to display its XML configuration:

virsh nodedev-dumpxml pci_0000_02_00_0

<device>
 <name>pci_0000_02_00_0</name>
 <path>/sys/devices/pci0000:00/0000:00:03.0/0000:02:00.0</path>
 <parent>pci_0000_00_03_0</parent>
 <driver>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

211

Note the <iommuGroup> element of the XML. The iommuGroup indicates a set of devices that
are considered isolated from other devices due to IOMMU capabilities and PCI bus topologies.
All of the endpoint devices within the iommuGroup (meaning devices that are not PCIe root
ports, bridges, or switch ports) need to be unbound from the native host drivers in order to be
assigned to a guest. In the example above, the group is composed of the GPU device
(0000:02:00.0) as well as the companion audio device (0000:02:00.1). For more information,
refer to Appendix E, Working with IOMMU Groups.

2. Adjust IOMMU settings
In this example, assignment of NVIDIA audio functions is not supported due to hardware issues
with legacy interrupt support. In addition, the GPU audio function is generally not useful without
the GPU itself. Therefore, in order to assign the GPU to a guest, the audio function must first be
detached from native host drivers. This can be done using one of the following:

Detect the PCI ID for the device and append it to the pci-stub.ids option in the
/etc/sysconfig/grub file, as detailed in Procedure 17.14, “Excluding the GPU device
from binding to the host physical machine driver”

Use the virsh nodedev-detach command, for example as follows:

virsh nodedev-detach pci_0000_02_00_1
Device pci_0000_02_00_1 detached

Procedure 17.16. Attaching the GPU

The GPU can be attached to the guest using any of the following methods:

1. Using the Virtual Machine Manager interface. For details, see Section 17.1.2, “Assigning a PCI
Device with virt-manager”.

2. Creating an XML configuration fragment for the GPU and attaching it with the virsh attach-
device:

1. Create an XML for the device, similar to the following:

 <name>pci-stub</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>2</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x11fa'>GK106GL [Quadro K4000]</product>
 <vendor id='0x10de'>NVIDIA Corporation</vendor>
 <!-- pay attention to the following lines -->
 <iommuGroup number='13'>
 <address domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
 <address domain='0x0000' bus='0x02' slot='0x00' function='0x1'/>
 </iommuGroup>
 <pci-express>
 <link validity='cap' port='0' speed='8' width='16'/>
 <link validity='sta' speed='2.5' width='16'/>
 </pci-express>
 </capability>
</device>

Virtualization Deployment and Administration Guide

212

2. Save this to a file and run virsh attach-device [domain] [file] --persistent
to include the XML in the guest configuration. Note that the assigned GPU is added in
addition to the existing emulated graphics device in the guest machine. The assigned GPU
is handled as a secondary graphics device in the virtual machine. Assignment as a primary
graphics device is not supported and emulated graphics devices in the guest's XML should
not be removed.

3. Editing the guest XML configuration using the virsh edit command and adding the
appropriate XML segment manually.

Procedure 17.17. Ḿodifying the Xorg configuration on the guest

The GPU's PCI bus address on the guest will be different than on the host. To enable the host to use the
GPU properly, configure the guest's Xorg display server to use the assigned GPU address:

1. In the guest, use the lspci command to determine the PCI bus adress of the GPU:

lspci | grep VGA
00:02.0 VGA compatible controller: Device 1234:111
00:09.0 VGA compatible controller: NVIDIA Corporation GK106GL
[Quadro K4000] (rev a1)

In this example, the bus address is 00:09.0.

2. In the /etc/X11/xorg.conf file on the guest, add a BusID option with the detected address
adjusted as follows:

 Section "Device"
 Identifier "Device0"
 Driver "nvidia"
 VendorName "NVIDIA Corporation"
 BusID "PCI:0:9:0"
 EndSection

IMPORTANT

If the bus address detected in Step 1 is hexadecimal, you need to convert the
values between delimiters to the decimal system. For example, 00:0a.0 should be
converted into PCI:0:10:0.

<hostdev mode='subsystem' type='pci' managed='yes'>
 <driver name='vfio'/>
 <source>
 <address domain='0x0000' bus='0x02' slot='0x00'
function='0x0'/>
 </source>
</hostdev>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

213

NOTE

When using an assigned NVIDIA GPU in the guest, only the NVIDIA drivers are
supported. Other drivers may not work and may generate errors. For a Red Hat
Enterprise Linux 7 guest, the nouveau driver can be blacklisted using the option
modprobe.blacklist=nouveau on the kernel command line during install. For
information on other guest virtual machines, refer to the operating system's specific
documentation.

Depending on the guest operating system, with the NVIDIA drivers loaded, the guest may
support using both the emulated graphics and assigned graphics simultaneously or may
disable the emulated graphics. Note that access to the assigned graphics framebuffer is
not provided by applications such as virt-manager. If the assigned GPU is not connected
to a physical display, guest-based remoting solutions may be necessary to access the
GPU desktop. As with all PCI device assignment, migration of a guest with an assigned
GPU is not supported and each GPU is owned exclusively by a single guest. Depending
on the guest operating system, hot plug support of GPUs may be available.

17.7.2. NVIDIA vGPU Assignment

The NVIDIA vGPU feature makes it possible to divide a physical GPU device into multiple virtual devices
referred to as mediated devices. These mediated devices can then be assigned to multiple guests as
virtual GPUs. As a result, these guests share the performance of a single physical GPU.

This feature is only available on a limited set of NVIDIA GPUs:

NVIDIA Tesla M6, M10, and M60

NVIDIA Tesla P4, P6, P40, and P100

NVIDIA vGPU Setup
To set up the vGPU feature, you first need to obtain NVIDIA vGPU drivers for your GPU device, then
create mediated devices, and assign them to the intended guest machines:

1. Obtain the NVIDIA vGPU drivers and install them on your system. For instructions, see the
NVIDIA documentation.

2. If the NVIDIA software installer did not create the /etc/modprobe.d/nvidia-installer-
disable-nouveau.conf file, create a .conf file (of any name) in the /etc/modprobe.d/
directory. Add the following lines in the file:

3. Regenerate initramfs for the current kernel to load the new settings:

dracut --force --verbose

4. Check that the nvidia_vgpu_vfio module has been loaded by the kernel and that the
nvidia-vgpu-mgr.service service is running.

lsmod | grep nvidia_vgpu_vfio
nvidia_vgpu_vfio 45011 0
nvidia 14333621 10 nvidia_vgpu_vfio
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio

#blacklist nouveau options
nouveau modeset=0

Virtualization Deployment and Administration Guide

214

http://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#getting-your-nvidia-grid-software

vfio 32695 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1
systemctl status nvidia-vgpu-mgr.service
nvidia-vgpu-mgr.service - NVIDIA vGPU Manager Daemon
 Loaded: loaded (/usr/lib/systemd/system/nvidia-vgpu-mgr.service;
enabled; vendor preset: disabled)
 Active: active (running) since Fri 2018-03-16 10:17:36 CET; 5h
8min ago
 Main PID: 1553 (nvidia-vgpu-mgr)
 [...]

5. If using an NVIDIA Tesla M60 or M6 GPU, make sure that the GPU is in graphics mode and that
Error-Correcting Code (ECC) memory is disabled.

6. Restart the nvidia-vgpud service.

systemctl restart nvidia-vgpud

7. Write a device UUID to
/sys/class/mdev_bus/pci_dev/mdev_supported_types/type-id/create, where
pci_dev is the PCI address of the host GPU, and type-id is an ID of the host GPU type.

The following example shows how to create a mediated device of nvidia-63 vGPU type on an
NVIDIA Tesla P4 card:

uuidgen
30820a6f-b1a5-4503-91ca-0c10ba58692a
echo "30820a6f-b1a5-4503-91ca-0c10ba58692a" >
/sys/class/mdev_bus/0000:01:00.0/mdev_supported_types/nvidia-
63/create

For type-id values for specific devices, see section 1.3.1. Virtual GPU Types in Virtual GPU
software documentation. Note that only Q-series NVIDIA vGPUs, such as GRID P4-2Q, are
supported as mediated device GPU types on KVM guests.

8. Add the following lines to the <devices/> section of guests that you want to share the vGPU
resources. Use the UUID value generated by the uuidgen command in the previous step.

Removing NVIDIA vGPU Devices
To remove a mediated vGPU device, use the following command when the device is inactive:

echo 1 > /sys/bus/mdev/devices/remove

Note that attempting to remove a vGPU device that is currently in use by a guest triggers the following
error:

echo: write error: Device or resource busy

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-pci'>
 <source>
 <address uuid='30820a6f-b1a5-4503-91ca-0c10ba58692a'/>
 </source>
</hostdev>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

215

http://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#gpumodeswitch
http://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#disabling-ecc-memory
http://docs.nvidia.com/grid/5.0/pdf/grid-vgpu-user-guide.pdf

Querying NVIDIA vGPU Capabilities
To obtain additional information about the mediated devices on your system, such as how many
mediated devices of a given type can be created, use the virsh nodedev-list --cap
mdev_types and virsh nodedev-dumpxml commands. For example, the following displays available
vGPU types on a Tesla P4 card:

$ virsh nodedev-list --cap mdev_types
pci_0000_01_00_0
$ virsh nodedev-dumpxml pci_0000_01_00_0
<...>
 <capability type='mdev_types'>
 <type id='nvidia-70'>
 <name>GRID P4-8A</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>1</availableInstances>
 </type>
 <type id='nvidia-69'>
 <name>GRID P4-4A</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>2</availableInstances>
 </type>
 <type id='nvidia-67'>
 <name>GRID P4-1A</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>8</availableInstances>
 </type>
 <type id='nvidia-65'>
 <name>GRID P4-4Q</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>2</availableInstances>
 </type>
 <type id='nvidia-63'>
 <name>GRID P4-1Q</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>8</availableInstances>
 </type>
 <type id='nvidia-71'>
 <name>GRID P4-1B</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>8</availableInstances>
 </type>
 <type id='nvidia-68'>
 <name>GRID P4-2A</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>4</availableInstances>
 </type>
 <type id='nvidia-66'>
 <name>GRID P4-8Q</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>1</availableInstances>
 </type>
 <type id='nvidia-64'>
 <name>GRID P4-2Q</name>
 <deviceAPI>vfio-pci</deviceAPI>
 <availableInstances>4</availableInstances>

Virtualization Deployment and Administration Guide

216

Remote Desktop Streaming Services for NVIDIA vGPU
The following remote desktop streaming services have been successfully tested for use with the NVIDIA
vGPU feature on Red Hat Enterprise Linux 7:

HP-RGS

Mechdyne TGX - It is currently not possible to use Mechdyne TGX with Windows Server 2016
guests.

NICE DCV - When using this streaming service, Red Hat recommends using fixed resolution
settings, as using dynamic resolution in some cases results in a black screen.

 </type>
 </capability>
</...>

CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION

217

CHAPTER 18. VIRTUAL NETWORKING
This chapter introduces the concepts needed to create, start, stop, remove, and modify virtual networks
with libvirt.

Additional information can be found in the libvirt reference chapter

18.1. VIRTUAL NETWORK SWITCHES

Libvirt virtual networking uses the concept of a virtual network switch. A virtual network switch is a
software construct that operates on a host physical machine server, to which virtual machines (guests)
connect. The network traffic for a guest is directed through this switch:

Figure 18.1. Virtual network switch with two guests

Linux host physical machine servers represent a virtual network switch as a network interface. When the
libvirtd daemon (libvirtd) is first installed and started, the default network interface representing the
virtual network switch is virbr0.

This virbr0 interface can be viewed with the ip command like any other interface:

 $ ip addr show virbr0
 3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN
 link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0

18.2. BRIDGED MODE

When using Bridged mode, all of the guest virtual machines appear within the same subnet as the host
physical machine. All other physical machines on the same physical network are aware of the virtual
machines, and can access the virtual machines. Bridging operates on Layer 2 of the OSI networking
model.

Virtualization Deployment and Administration Guide

218

Figure 18.2. Virtual network switch in bridged mode

It is possible to use multiple physical interfaces on the hypervisor by joining them together with a bond.
The bond is then added to a bridge and then guest virtual machines are added onto the bridge as well.
However, the bonding driver has several modes of operation, and only a few of these modes work with a
bridge where virtual guest machines are in use.

WARNING

When using bridged mode, the only bonding modes that should be used with a
guest virtual machine are Mode 1, Mode 2, and Mode 4. Using modes 0, 3, 5, or 6 is
likely to cause the connection to fail. Also note that Media-Independent Interface
(MII) monitoring should be used to monitor bonding modes, as Address Resolution
Protocol (ARP) monitoring does not work.

For more information on bonding modes, refer to related Knowledgebase article, or
the Red Hat Enterprise Linux 7 Networking Guide.

For a detailed explanation of bridge_opts parameters, used to configure bridged networking mode, see
the Red Hat Virtualization Administration Guide.

18.3. NETWORK ADDRESS TRANSLATION

By default, virtual network switches operate in NAT mode. They use IP masquerading rather than
Source-NAT (SNAT) or Destination-NAT (DNAT). IP masquerading enables connected guests to use the
host physical machine IP address for communication to any external network. By default, computers that
are placed externally to the host physical machine cannot communicate to the guests inside when the
virtual network switch is operating in NAT mode, as shown in the following diagram:



CHAPTER 18. VIRTUAL NETWORKING

219

https://access.redhat.com/solutions/67546
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bonding.html
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/administration_guide/appe-custom_network_properties#Explanation_of_bridge_opts_Parameters

Figure 18.3. Virtual network switch using NAT with two guests

WARNING

Virtual network switches use NAT configured by iptables rules. Editing these rules
while the switch is running is not recommended, as incorrect rules may result in the
switch being unable to communicate.

If the switch is not running, you can set th public IP range for forward mode NAT in order to create a port
masquerading range by running:

iptables -j SNAT --to-source [start]-[end]

18.4. DNS AND DHCP

IP information can be assigned to guests via DHCP. A pool of addresses can be assigned to a virtual
network switch for this purpose. Libvirt uses the dnsmasq program for this. An instance of dnsmasq is
automatically configured and started by libvirt for each virtual network switch that needs it.



Virtualization Deployment and Administration Guide

220

Figure 18.4. Virtual network switch running dnsmasq

18.5. ROUTED MODE

When using Routed mode, the virtual switch connects to the physical LAN connected to the host physical
machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic
and use the information contained within the network packets to make routing decisions. When using this
mode, all of the virtual machines are in their own subnet, routed through a virtual switch. This situation is
not always ideal as no other host physical machines on the physical network are aware of the virtual
machines without manual physical router configuration, and cannot access the virtual machines. Routed
mode operates at Layer 3 of the OSI networking model.

Figure 18.5. Virtual network switch in routed mode

18.6. ISOLATED MODE

When using Isolated mode, guests connected to the virtual switch can communicate with each other, and
with the host physical machine, but their traffic will not pass outside of the host physical machine, and
they cannot receive traffic from outside the host physical machine. Using dnsmasq in this mode is

CHAPTER 18. VIRTUAL NETWORKING

221

required for basic functionality such as DHCP. However, even if this network is isolated from any
physical network, DNS names are still resolved. Therefore, a situation can arise when DNS names
resolve but ICMP echo request (ping) commands fail.

Figure 18.6. Virtual network switch in isolated mode

18.7. THE DEFAULT CONFIGURATION

When the libvirtd daemon (libvirtd) is first installed, it contains an initial virtual network switch
configuration in NAT mode. This configuration is used so that installed guests can communicate to the
external network, through the host physical machine. The following image demonstrates this default
configuration for libvirtd:

Figure 18.7. Default libvirt network configuration

Virtualization Deployment and Administration Guide

222

NOTE

A virtual network can be restricted to a specific physical interface. This may be useful on a
physical system that has several interfaces (for example, eth0, eth1 and eth2). This is
only useful in routed and NAT modes, and can be defined in the dev=<interface>
option, or in virt-manager when creating a new virtual network.

18.8. EXAMPLES OF COMMON SCENARIOS

This section demonstrates different virtual networking modes and provides some example scenarios.

18.8.1. Bridged Mode

Bridged mode operates on Layer 2 of the OSI model. When used, all of the guest virtual machines will
appear on the same subnet as the host physical machine. The most common use cases for bridged
mode include:

Deploying guest virtual machines in an existing network alongside host physical machines
making the difference between virtual and physical machines transparent to the end user.

Deploying guest virtual machines without making any changes to existing physical network
configuration settings.

Deploying guest virtual machines which must be easily accessible to an existing physical
network. Placing guest virtual machines on a physical network where they must access services
within an existing broadcast domain, such as DHCP.

Connecting guest virtual machines to an exsting network where VLANs are used.

18.8.2. Routed Mode

DMZ

Consider a network where one or more nodes are placed in a controlled sub-network for security
reasons. The deployment of a special sub-network such as this is a common practice, and the sub-
network is known as a DMZ. Refer to the following diagram for more details on this layout:

Figure 18.8. Sample DMZ configuration

CHAPTER 18. VIRTUAL NETWORKING

223

Host physical machines in a DMZ typically provide services to WAN (external) host physical machines
as well as LAN (internal) host physical machines. As this requires them to be accessible from multiple
locations, and considering that these locations are controlled and operated in different ways based on
their security and trust level, routed mode is the best configuration for this environment.

Virtual Server Hosting

Consider a virtual server hosting company that has several host physical machines, each with two
physical network connections. One interface is used for management and accounting, the other is for the
virtual machines to connect through. Each guest has its own public IP address, but the host physical
machines use private IP address as management of the guests can only be performed by internal
administrators. Refer to the following diagram to understand this scenario:

Figure 18.9. Virtual server hosting sample configuration

18.8.3. NAT Mode

NAT (Network Address Translation) mode is the default mode. It can be used for testing when there is no
need for direct network visibility.

18.8.4. Isolated Mode

Isolated mode allows virtual machines to communicate with each other only. They are unable to interact
with the physical network.

18.9. MANAGING A VIRTUAL NETWORK

To configure a virtual network on your system:

1. From the Edit menu, select Connection Details.

2. This will open the Connection Details menu. Click the Virtual Networks tab.

Virtualization Deployment and Administration Guide

224

Figure 18.10. Virtual network configuration

3. All available virtual networks are listed on the left of the menu. You can edit the configuration of
a virtual network by selecting it from this box and editing as you see fit.

18.10. CREATING A VIRTUAL NETWORK

To create a virtual network on your system using the Virtual Machine Manager (virt-manager):

1. Open the Virtual Networks tab from within the Connection Details menu. Click the Add
Network button, identified by a plus sign (+) icon. For more information, refer to Section 18.9,
“Managing a Virtual Network”.

CHAPTER 18. VIRTUAL NETWORKING

225

Figure 18.11. Virtual network configuration

This will open the Create a new virtual network window. Click Forward to continue.

Virtualization Deployment and Administration Guide

226

Figure 18.12. Naming your new virtual network

2. Enter an appropriate name for your virtual network and click Forward.

CHAPTER 18. VIRTUAL NETWORKING

227

Figure 18.13. Choosing an IPv4 address space

3. Check the Enable IPv4 network address space definition check box.

Enter an IPv4 address space for your virtual network in the Network field.

Check the Enable DHCPv4 check box.

Define the DHCP range for your virtual network by specifying a Start and End range of IP
addresses.

Virtualization Deployment and Administration Guide

228

Figure 18.14. Choosing an IPv4 address space

Click Forward to continue.

4. If you want to enable IPv6, check the Enable IPv6 network address space
definition.

CHAPTER 18. VIRTUAL NETWORKING

229

Figure 18.15. Enabling IPv6

Additional fields appear in the Create a new virtual network window.

Virtualization Deployment and Administration Guide

230

Figure 18.16. Configuring IPv6

Enter an IPv6 address in the Network field.

5. If you want to enable DHCPv6, check the Enable DHCPv6 check box.

Additional fields appear in the Create a new virtual network window.

CHAPTER 18. VIRTUAL NETWORKING

231

Figure 18.17. Configuring DHCPv6

(Optional) Edit the start and end of the DHCPv6 range.

6. If you want to enable static route definitions, check the Enable Static Route Definition
check box.

Additional fields appear in the Create a new virtual network window.

Virtualization Deployment and Administration Guide

232

Figure 18.18. Defining static routes

Enter a network address and the gateway that will be used for the route to the network in the
appropriate fields.

Click Forward.

7. Select how the virtual network should connect to the physical network.

CHAPTER 18. VIRTUAL NETWORKING

233

Figure 18.19. Connecting to the physical network

If you want the virtual network to be isolated, ensure that the Isolated virtual network
radio button is selected.

If you want the virtual network to connect to a physical network, select Forwarding to
physical network, and choose whether the Destination should be Any physical
device or a specific physical device. Also select whether the Mode should be NAT or Routed.

If you want to enable IPv6 routing within the virtual network, check the Enable IPv6
internal routing/networking check box.

Virtualization Deployment and Administration Guide

234

Enter a DNS domain name for the virtual network.

Click Finish to create the virtual network.

8. The new virtual network is now available in the Virtual Networks tab of the Connection
Details window.

18.11. ATTACHING A VIRTUAL NETWORK TO A GUEST

To attach a virtual network to a guest:

1. In the Virtual Machine Manager window, highlight the guest that will have the network
assigned.

Figure 18.20. Selecting a virtual machine to display

2. From the Virtual Machine Manager Edit menu, select Virtual Machine Details.

3. Click the Add Hardware button on the Virtual Machine Details window.

4. In the Add new virtual hardware window, select Network from the left pane, and select
your network name (network1 in this example) from the Network source menu. Modify the
MAC address, if necessary, and select a Device model. Click Finish.

CHAPTER 18. VIRTUAL NETWORKING

235

Figure 18.21. Select your network from the Add new virtual hardware window

5. The new network is now displayed as a virtual network interface that will be presented to the
guest upon launch.

Virtualization Deployment and Administration Guide

236

Figure 18.22. New network shown in guest hardware list

18.12. ATTACHING A VIRTUAL NIC DIRECTLY TO A PHYSICAL
INTERFACE

As an alternative to the default NAT connection, you can use the macvtap driver to attach the guest's
NIC directly to a specified physical interface of the host machine. This is not to be confused with device
assignment (also known as passthrough). Macvtap connection has the following modes, each with
different benefits and usecases:

Physical interface delivery modes

VEPA

In virtual ethernet port aggregator (VEPA) mode, all packets from the guests are sent to the external
switch. This enables the user to force guest traffic through the switch. For VEPA mode to work
correctly, the external switch must also support hairpin mode, which ensures that packets whose
destination is a guest on the same host machine as their source guest are sent back to the host by
the external switch.

CHAPTER 18. VIRTUAL NETWORKING

237

Figure 18.23. VEPA mode

bridge

Packets whose destination is on the same host machine as their source guest are directly delivered
to the target macvtap device. Both the source device and the destination device need to be in bridge
mode for direct delivery to succeed. If either one of the devices is in VEPA mode, a hairpin-capable
external switch is required.

Figure 18.24. Bridge mode

private

All packets are sent to the external switch and will only be delivered to a target guest on the same
host machine if they are sent through an external router or gateway and these send them back to the
host. Private mode can be used to prevent the individual guests on the single host from
communicating with each other. This procedure is followed if either the source or destination device
is in private mode.

Virtualization Deployment and Administration Guide

238

Figure 18.25. Private mode

passthrough

This feature attaches a physical interface device or a SR-IOV Virtual Function (VF) directly to a guest
without losing the migration capability. All packets are sent directly to the designated network device.
Note that a single network device can only be passed through to a single guest, as a network device
cannot be shared between guests in passthrough mode.

Figure 18.26. Passthrough mode

Macvtap can be configured by changing the domain XML file or by using the virt-manager interface.

18.12.1. Configuring macvtap using domain XML

Open the domain XML file of the guest and modify the <devices> element as follows:

<devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='vepa'/>
 </interface>
</devices>

The network access of direct attached guest virtual machines can be managed by the hardware switch
to which the physical interface of the host physical machine is connected.

CHAPTER 18. VIRTUAL NETWORKING

239

The interface can have additional parameters as shown below, if the switch is conforming to the IEEE
802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the
IEEE 802.1Qbg standard. The values are network specific and should be provided by the network
administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a
virtual machine. Also note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID.

Virtual Station Interface types

managerid

The VSI Manager ID identifies the database containing the VSI type and instance definitions. This is
an integer value and the value 0 is reserved.

typeid

The VSI Type ID identifies a VSI type characterizing the network access. VSI types are typically
managed by network administrator. This is an integer value.

typeidversion

The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.

instanceid

The VSI Instance ID is generated when a VSI instance (a virtual interface of a virtual machine) is
created. This is a globally unique identifier.

profileid

The profile ID contains the name of the port profile that is to be applied onto this interface. This name
is resolved by the port profile database into the network parameters from the port profile, and those
network parameters will be applied to this interface.

Each of the four types is configured by changing the domain XML file. Once this file is opened, change
the mode setting as shown:

<devices>
 ...
 <interface type='direct'>
 <source dev='eth0.2' mode='vepa'/>
 <virtualport type="802.1Qbg">
 <parameters managerid="11" typeid="1193047" typeidversion="2"
instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/>
 </virtualport>
 </interface>
</devices>

The profile ID is shown here:

<devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='private'/>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>

Virtualization Deployment and Administration Guide

240

</devices>
...

18.12.2. Configuring macvtap using virt-manager

Open the virtual hardware details window ⇒ select NIC in the menu ⇒ for Network source, select host
device name: macvtap ⇒ select the intended Source mode.

The virtual station interface types can then be set up in the Virtual port submenu.

Figure 18.27. Configuring macvtap in virt-manager

18.13. DYNAMICALLY CHANGING A HOST PHYSICAL MACHINE OR A
NETWORK BRIDGE THAT IS ATTACHED TO A VIRTUAL NIC

This section demonstrates how to move the vNIC of a guest virtual machine from one bridge to another
while the guest virtual machine is running without compromising the guest virtual machine

1. Prepare guest virtual machine with a configuration similar to the following:

<interface type='bridge'>
 <mac address='52:54:00:4a:c9:5e'/>
 <source bridge='virbr0'/>

CHAPTER 18. VIRTUAL NETWORKING

241

 <model type='virtio'/>
</interface>

2. Prepare an XML file for interface update:

cat br1.xml

<interface type='bridge'>
 <mac address='52:54:00:4a:c9:5e'/>
 <source bridge='virbr1'/>
 <model type='virtio'/>
</interface>

3. Start the guest virtual machine, confirm the guest virtual machine's network functionality, and
check that the guest virtual machine's vnetX is connected to the bridge you indicated.

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.5254007da9f2 yes
virbr0-nic

vnet0
virbr1 8000.525400682996 yes
virbr1-nic

4. Update the guest virtual machine's network with the new interface parameters with the following
command:

virsh update-device test1 br1.xml

Device updated successfully

5. On the guest virtual machine, run service network restart. The guest virtual machine
gets a new IP address for virbr1. Check the guest virtual machine's vnet0 is connected to the
new bridge(virbr1)

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.5254007da9f2 yes virbr0-nic
virbr1 8000.525400682996 yes virbr1-nic
vnet0

18.14. APPLYING NETWORK FILTERING

This section provides an introduction to libvirt's network filters, their goals, concepts and XML format.

18.14.1. Introduction

The goal of the network filtering, is to enable administrators of a virtualized system to configure and
enforce network traffic filtering rules on virtual machines and manage the parameters of network traffic
that virtual machines are allowed to send or receive. The network traffic filtering rules are applied on the

Virtualization Deployment and Administration Guide

242

host physical machine when a virtual machine is started. Since the filtering rules cannot be circumvented
from within the virtual machine, it makes them mandatory from the point of view of a virtual machine user.

From the point of view of the guest virtual machine, the network filtering system allows each virtual
machine's network traffic filtering rules to be configured individually on a per interface basis. These rules
are applied on the host physical machine when the virtual machine is started and can be modified while
the virtual machine is running. The latter can be achieved by modifying the XML description of a network
filter.

Multiple virtual machines can make use of the same generic network filter. When such a filter is
modified, the network traffic filtering rules of all running virtual machines that reference this filter are
updated. The machines that are not running will update on start.

As previously mentioned, applying network traffic filtering rules can be done on individual network
interfaces that are configured for certain types of network configurations. Supported network types
include:

network

ethernet -- must be used in bridging mode

bridge

Example 18.1. An example of network filtering

The interface XML is used to reference a top-level filter. In the following example, the interface
description references the filter clean-traffic.

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'/>
 </interface>
 </devices>

Network filters are written in XML and may either contain: references to other filters, rules for traffic
filtering, or hold a combination of both. The above referenced filter clean-traffic is a filter that only
contains references to other filters and no actual filtering rules. Since references to other filters can be
used, a tree of filters can be built. The clean-traffic filter can be viewed using the command: # virsh
nwfilter-dumpxml clean-traffic.

As previously mentioned, a single network filter can be referenced by multiple virtual machines. Since
interfaces will typically have individual parameters associated with their respective traffic filtering
rules, the rules described in a filter's XML can be generalized using variables. In this case, the
variable name is used in the filter XML and the name and value are provided at the place where the
filter is referenced.

Example 18.2. Description extended

In the following example, the interface description has been extended with the parameter IP and a
dotted IP address as a value.

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>

CHAPTER 18. VIRTUAL NETWORKING

243

 <filterref filter='clean-traffic'>
 <parameter name='IP' value='10.0.0.1'/>
 </filterref>
 </interface>
 </devices>

In this particular example, the clean-traffic network traffic filter will be represented with the IP address
parameter 10.0.0.1 and as per the rule dictates that all traffic from this interface will always be using
10.0.0.1 as the source IP address, which is one of the purpose of this particular filter.

18.14.2. Filtering Chains

Filtering rules are organized in filter chains. These chains can be thought of as having a tree structure
with packet filtering rules as entries in individual chains (branches).

Packets start their filter evaluation in the root chain and can then continue their evaluation in other
chains, return from those chains back into the root chain or be dropped or accepted by a filtering rule in
one of the traversed chains.

Libvirt's network filtering system automatically creates individual root chains for every virtual machine's
network interface on which the user chooses to activate traffic filtering. The user may write filtering rules
that are either directly instantiated in the root chain or may create protocol-specific filtering chains for
efficient evaluation of protocol-specific rules.

The following chains exist:

root

mac

stp (spanning tree protocol)

vlan

arp and rarp

ipv4

ipv6

Multiple chains evaluating the mac, stp, vlan, arp, rarp, ipv4, or ipv6 protocol can be created using the
protocol name only as a prefix in the chain's name.

Example 18.3. ARP traffic filtering

This example allows chains with names arp-xyz or arp-test to be specified and have their ARP
protocol packets evaluated in those chains.

The following filter XML shows an example of filtering ARP traffic in the arp chain.

<filter name='no-arp-spoofing' chain='arp' priority='-500'>
 <uuid>f88f1932-debf-4aa1-9fbe-f10d3aa4bc95</uuid>
 <rule action='drop' direction='out' priority='300'>
 <mac match='no' srcmacaddr='$MAC'/>
 </rule>

Virtualization Deployment and Administration Guide

244

 <rule action='drop' direction='out' priority='350'>
 <arp match='no' arpsrcmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='out' priority='400'>
 <arp match='no' arpsrcipaddr='$IP'/>
 </rule>
 <rule action='drop' direction='in' priority='450'>
 <arp opcode='Reply'/>
 <arp match='no' arpdstmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='in' priority='500'>
 <arp match='no' arpdstipaddr='$IP'/>
 </rule>
 <rule action='accept' direction='inout' priority='600'>
 <arp opcode='Request'/>
 </rule>
 <rule action='accept' direction='inout' priority='650'>
 <arp opcode='Reply'/>
 </rule>
 <rule action='drop' direction='inout' priority='1000'/>
</filter>

The consequence of putting ARP-specific rules in the arp chain, rather than for example in the root
chain, is that packets protocols other than ARP do not need to be evaluated by ARP protocol-specific
rules. This improves the efficiency of the traffic filtering. However, one must then pay attention to only
putting filtering rules for the given protocol into the chain since other rules will not be evaluated. For
example, an IPv4 rule will not be evaluated in the ARP chain since IPv4 protocol packets will not
traverse the ARP chain.

18.14.3. Filtering Chain Priorities

As previously mentioned, when creating a filtering rule, all chains are connected to the root chain. The
order in which those chains are accessed is influenced by the priority of the chain. The following table
shows the chains that can be assigned a priority and their default priorities.

Table 18.1. Filtering chain default priorities values

Chain (prefix) Default priority

stp -810

mac -800

vlan -750

ipv4 -700

ipv6 -600

arp -500

CHAPTER 18. VIRTUAL NETWORKING

245

rarp -400

Chain (prefix) Default priority

NOTE

A chain with a lower priority value is accessed before one with a higher value.

The chains listed in Table 18.1, “Filtering chain default priorities values” can be also be
assigned custom priorities by writing a value in the range [-1000 to 1000] into the priority
(XML) attribute in the filter node. Section 18.14.2, “Filtering Chains”filter shows the default
priority of -500 for arp chains, for example.

18.14.4. Usage of Variables in Filters

There are two variables that have been reserved for usage by the network traffic filtering subsystem:
MAC and IP.

MAC is designated for the MAC address of the network interface. A filtering rule that references this
variable will automatically be replaced with the MAC address of the interface. This works without the user
having to explicitly provide the MAC parameter. Even though it is possible to specify the MAC parameter
similar to the IP parameter above, it is discouraged since libvirt knows what MAC address an interface
will be using.

The parameter IP represents the IP address that the operating system inside the virtual machine is
expected to use on the given interface. The IP parameter is special in so far as the libvirt daemon will try
to determine the IP address (and thus the IP parameter's value) that is being used on an interface if the
parameter is not explicitly provided but referenced. For current limitations on IP address detection,
consult the section on limitations Section 18.14.12, “Limitations” on how to use this feature and what to
expect when using it. The XML file shown in Section 18.14.2, “Filtering Chains” contains the filter no-
arp-spoofing, which is an example of using a network filter XML to reference the MAC and IP
variables.

Note that referenced variables are always prefixed with the character $. The format of the value of a
variable must be of the type expected by the filter attribute identified in the XML. In the above example,
the IP parameter must hold a legal IP address in standard format. Failure to provide the correct structure
will result in the filter variable not being replaced with a value and will prevent a virtual machine from
starting or will prevent an interface from attaching when hot plugging is being used. Some of the types
that are expected for each XML attribute are shown in the example Example 18.4, “Sample variable
types”.

Example 18.4. Sample variable types

As variables can contain lists of elements, (the variable IP can contain multiple IP addresses that are
valid on a particular interface, for example), the notation for providing multiple elements for the IP
variable is:

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'>
 <parameter name='IP' value='10.0.0.1'/>
 <parameter name='IP' value='10.0.0.2'/>

Virtualization Deployment and Administration Guide

246

 <parameter name='IP' value='10.0.0.3'/>
 </filterref>
 </interface>
 </devices>

This XML file creates filters to enable multiple IP addresses per interface. Each of the IP addresses
will result in a separate filtering rule. Therefore, using the XML above and the following rule, three
individual filtering rules (one for each IP address) will be created:

 <rule action='accept' direction='in' priority='500'>
 <tcp srpipaddr='$IP'/>
 </rule>

As it is possible to access individual elements of a variable holding a list of elements, a filtering rule
like the following accesses the 2nd element of the variable DSTPORTS.

 <rule action='accept' direction='in' priority='500'>
 <udp dstportstart='$DSTPORTS[1]'/>
 </rule>

Example 18.5. Using a variety of variables

As it is possible to create filtering rules that represent all of the permissible rules from different lists
using the notation $VARIABLE[@<iterator id="x">]. The following rule allows a virtual machine
to receive traffic on a set of ports, which are specified in DSTPORTS, from the set of source IP
address specified in SRCIPADDRESSES. The rule generates all combinations of elements of the
variable DSTPORTS with those of SRCIPADDRESSES by using two independent iterators to access
their elements.

 <rule action='accept' direction='in' priority='500'>
 <ip srcipaddr='$SRCIPADDRESSES[@1]' dstportstart='$DSTPORTS[@2]'/>
 </rule>

Assign concrete values to SRCIPADDRESSES and DSTPORTS as shown:

 SRCIPADDRESSES = [10.0.0.1, 11.1.2.3]
 DSTPORTS = [80, 8080]

Assigning values to the variables using $SRCIPADDRESSES[@1] and $DSTPORTS[@2] would then
result in all variants of addresses and ports being created as shown:

10.0.0.1, 80

10.0.0.1, 8080

11.1.2.3, 80

11.1.2.3, 8080

Accessing the same variables using a single iterator, for example by using the notation
$SRCIPADDRESSES[@1] and $DSTPORTS[@1], would result in parallel access to both lists and
result in the following combination:

CHAPTER 18. VIRTUAL NETWORKING

247

10.0.0.1, 80

11.1.2.3, 8080

NOTE

$VARIABLE is short-hand for $VARIABLE[@0]. The former notation always assumes the
role of iterator with iterator id="0" added as shown in the opening paragraph at the
top of this section.

18.14.5. Automatic IP Address Detection and DHCP Snooping

This section provides information about automatic IP address detection and DHCP snooping.

18.14.5.1. Introduction

The detection of IP addresses used on a virtual machine's interface is automatically activated if the
variable IP is referenced but no value has been assigned to it. The variable CTRL_IP_LEARNING can be
used to specify the IP address learning method to use. Valid values include: any, dhcp, or none.

The value any instructs libvirt to use any packet to determine the address in use by a virtual machine,
which is the default setting if the variable CTRL_IP_LEARNING is not set. This method will only detect a
single IP address per interface. Once a guest virtual machine's IP address has been detected, its IP
network traffic will be locked to that address, if for example, IP address spoofing is prevented by one of
its filters. In that case, the user of the VM will not be able to change the IP address on the interface inside
the guest virtual machine, which would be considered IP address spoofing. When a guest virtual
machine is migrated to another host physical machine or resumed after a suspend operation, the first
packet sent by the guest virtual machine will again determine the IP address that the guest virtual
machine can use on a particular interface.

The value of dhcp instructs libvirt to only honor DHCP server-assigned addresses with valid leases. This
method supports the detection and usage of multiple IP address per interface. When a guest virtual
machine resumes after a suspend operation, any valid IP address leases are applied to its filters.
Otherwise the guest virtual machine is expected to use DHCP to obtain a new IP addresses. When a
guest virtual machine migrates to another physical host physical machine, the guest virtual machine is
required to re-run the DHCP protocol.

If CTRL_IP_LEARNING is set to none, libvirt does not do IP address learning and referencing IP without
assigning it an explicit value is an error.

18.14.5.2. DHCP Snooping

CTRL_IP_LEARNING=dhcp (DHCP snooping) provides additional anti-spoofing security, especially
when combined with a filter allowing only trusted DHCP servers to assign IP addresses. To enable this,
set the variable DHCPSERVER to the IP address of a valid DHCP server and provide filters that use this
variable to filter incoming DHCP responses.

When DHCP snooping is enabled and the DHCP lease expires, the guest virtual machine will no longer
be able to use the IP address until it acquires a new, valid lease from a DHCP server. If the guest virtual
machine is migrated, it must get a new valid DHCP lease to use an IP address (for example by bringing
the VM interface down and up again).

Virtualization Deployment and Administration Guide

248

NOTE

Automatic DHCP detection listens to the DHCP traffic the guest virtual machine
exchanges with the DHCP server of the infrastructure. To avoid denial-of-service attacks
on libvirt, the evaluation of those packets is rate-limited, meaning that a guest virtual
machine sending an excessive number of DHCP packets per second on an interface will
not have all of those packets evaluated and thus filters may not get adapted. Normal
DHCP client behavior is assumed to send a low number of DHCP packets per second.
Further, it is important to setup appropriate filters on all guest virtual machines in the
infrastructure to avoid them being able to send DHCP packets. Therefore, guest virtual
machines must either be prevented from sending UDP and TCP traffic from port 67 to port
68 or the DHCPSERVER variable should be used on all guest virtual machines to restrict
DHCP server messages to only be allowed to originate from trusted DHCP servers. At the
same time anti-spoofing prevention must be enabled on all guest virtual machines in the
subnet.

Example 18.6. Activating IPs for DHCP snooping

The following XML provides an example for the activation of IP address learning using the DHCP
snooping method:

 <interface type='bridge'>
 <source bridge='virbr0'/>
 <filterref filter='clean-traffic'>
 <parameter name='CTRL_IP_LEARNING' value='dhcp'/>
 </filterref>
 </interface>

18.14.6. Reserved Variables

Table 18.2, “Reserved variables” shows the variables that are considered reserved and are used by
libvirt:

Table 18.2. Reserved variables

Variable Name Definition

MAC The MAC address of the interface

IP The list of IP addresses in use by an interface

IPV6 Not currently implemented: the list of IPV6 addresses
in use by an interface

DHCPSERVER The list of IP addresses of trusted DHCP servers

DHCPSERVERV6 Not currently implemented: The list of IPv6
addresses of trusted DHCP servers

CTRL_IP_LEARNING The choice of the IP address detection mode

CHAPTER 18. VIRTUAL NETWORKING

249

18.14.7. Element and Attribute Overview

The root element required for all network filters is named <filter> with two possible attributes. The
name attribute provides a unique name of the given filter. The chain attribute is optional but allows
certain filters to be better organized for more efficient processing by the firewall subsystem of the
underlying host physical machine. Currently, the system only supports the following chains: root, ipv4,
ipv6, arp and rarp.

18.14.8. References to Other Filters

Any filter may hold references to other filters. Individual filters may be referenced multiple times in a filter
tree but references between filters must not introduce loops.

Example 18.7. An Example of a clean traffic filter

The following shows the XML of the clean-traffic network filter referencing several other filters.

<filter name='clean-traffic'>
 <uuid>6ef53069-ba34-94a0-d33d-17751b9b8cb1</uuid>
 <filterref filter='no-mac-spoofing'/>
 <filterref filter='no-ip-spoofing'/>
 <filterref filter='allow-incoming-ipv4'/>
 <filterref filter='no-arp-spoofing'/>
 <filterref filter='no-other-l2-traffic'/>
 <filterref filter='qemu-announce-self'/>
</filter>

To reference another filter, the XML node <filterref> needs to be provided inside a filter node.
This node must have the attribute filter whose value contains the name of the filter to be referenced.

New network filters can be defined at any time and may contain references to network filters that are not
known to libvirt, yet. However, once a virtual machine is started or a network interface referencing a filter
is to be hot-plugged, all network filters in the filter tree must be available. Otherwise the virtual machine
will not start or the network interface cannot be attached.

18.14.9. Filter Rules

The following XML shows a simple example of a network traffic filter implementing a rule to drop traffic if
the IP address (provided through the value of the variable IP) in an outgoing IP packet is not the
expected one, thus preventing IP address spoofing by the VM.

Example 18.8. Example of network traffic filtering

<filter name='no-ip-spoofing' chain='ipv4'>
 <uuid>fce8ae33-e69e-83bf-262e-30786c1f8072</uuid>
 <rule action='drop' direction='out' priority='500'>
 <ip match='no' srcipaddr='$IP'/>
 </rule>
</filter>

Virtualization Deployment and Administration Guide

250

The traffic filtering rule starts with the rule node. This node may contain up to three of the following
attributes:

action is mandatory can have the following values:

drop (matching the rule silently discards the packet with no further analysis)

reject (matching the rule generates an ICMP reject message with no further analysis)

accept (matching the rule accepts the packet with no further analysis)

return (matching the rule passes this filter, but returns control to the calling filter for further
analysis)

continue (matching the rule goes on to the next rule for further analysis)

direction is mandatory can have the following values:

in for incoming traffic

out for outgoing traffic

inout for incoming and outgoing traffic

priority is optional. The priority of the rule controls the order in which the rule will be instantiated
relative to other rules. Rules with lower values will be instantiated before rules with higher
values. Valid values are in the range of -1000 to 1000. If this attribute is not provided, priority 500
will be assigned by default. Note that filtering rules in the root chain are sorted with filters
connected to the root chain following their priorities. This allows to interleave filtering rules with
access to filter chains. Refer to Section 18.14.3, “Filtering Chain Priorities” for more information.

statematch is optional. Possible values are '0' or 'false' to turn the underlying connection state
matching off. The default setting is 'true' or 1

For more information, see Section 18.14.11, “Advanced Filter Configuration Topics”.

The above example Example 18.7, “An Example of a clean traffic filter” indicates that the traffic of type ip
will be associated with the chain ipv4 and the rule will have priority=500. If for example another filter
is referenced whose traffic of type ip is also associated with the chain ipv4 then that filter's rules will be
ordered relative to the priority=500 of the shown rule.

A rule may contain a single rule for filtering of traffic. The above example shows that traffic of type ip is to
be filtered.

18.14.10. Supported Protocols

The following sections list and give some details about the protocols that are supported by the network
filtering subsystem. This type of traffic rule is provided in the rule node as a nested node. Depending on
the traffic type a rule is filtering, the attributes are different. The above example showed the single
attribute srcipaddr that is valid inside the ip traffic filtering node. The following sections show what
attributes are valid and what type of data they are expecting. The following datatypes are available:

UINT8 : 8 bit integer; range 0-255

UINT16: 16 bit integer; range 0-65535

MAC_ADDR: MAC address in dotted decimal format, for example 00:11:22:33:44:55

CHAPTER 18. VIRTUAL NETWORKING

251

MAC_MASK: MAC address mask in MAC address format, for instance, FF:FF:FF:FC:00:00

IP_ADDR: IP address in dotted decimal format, for example 10.1.2.3

IP_MASK: IP address mask in either dotted decimal format (255.255.248.0) or CIDR mask (0-
32)

IPV6_ADDR: IPv6 address in numbers format, for example FFFF::1

IPV6_MASK: IPv6 mask in numbers format (FFFF:FFFF:FC00::) or CIDR mask (0-128)

STRING: A string

BOOLEAN: 'true', 'yes', '1' or 'false', 'no', '0'

IPSETFLAGS: The source and destination flags of the ipset described by up to 6 'src' or 'dst'
elements selecting features from either the source or destination part of the packet header;
example: src,src,dst. The number of 'selectors' to provide here depends on the type of ipset that
is referenced

Every attribute except for those of type IP_MASK or IPV6_MASK can be negated using the match
attribute with value no. Multiple negated attributes may be grouped together. The following XML
fragment shows such an example using abstract attributes.

[...]
 <rule action='drop' direction='in'>
 <protocol match='no' attribute1='value1' attribute2='value2'/>
 <protocol attribute3='value3'/>
 </rule>
[...]

Rules behave evaluate the rule as well as look at it logically within the boundaries of the given protocol
attributes. Thus, if a single attribute's value does not match the one given in the rule, the whole rule will
be skipped during the evaluation process. Therefore, in the above example incoming traffic will only be
dropped if: the protocol property attribute1 does not match both value1 and the protocol property
attribute2 does not match value2 and the protocol property attribute3 matches value3.

18.14.10.1. MAC (Ethernet)

Protocol ID: mac

Rules of this type should go into the root chain.

Table 18.3. MAC protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

Virtualization Deployment and Administration Guide

252

dstmacmask MAC_MASK Mask applied to MAC address of
destination

protocolid UINT16 (0x600-0xffff), STRING Layer 3 protocol ID. Valid strings
include [arp, rarp, ipv4, ipv6]

comment STRING text string up to 256 characters

Attribute Name Datatype Definition

The filter can be written as such:

[...]
<mac match='no' srcmacaddr='$MAC'/>
[...]

18.14.10.2. VLAN (802.1Q)

Protocol ID: vlan

Rules of this type should go either into the root or vlan chain.

Table 18.4. VLAN protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

vlan-id UINT16 (0x0-0xfff, 0 - 4095) VLAN ID

encap-protocol UINT16 (0x03c-0xfff), String Encapsulated layer 3 protocol ID,
valid strings are arp, ipv4, ipv6

comment STRING text string up to 256 characters

18.14.10.3. STP (Spanning Tree Protocol)

Protocol ID: stp

Rules of this type should go either into the root or stp chain.

CHAPTER 18. VIRTUAL NETWORKING

253

Table 18.5. STP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

type UINT8 Bridge Protocol Data Unit (BPDU)
type

flags UINT8 BPDU flagdstmacmask

root-priority UINT16 Root priority range start

root-priority-hi UINT16 (0x0-0xfff, 0 - 4095) Root priority range end

root-address MAC _ADDRESS root MAC Address

root-address-mask MAC _MASK root MAC Address mask

roor-cost UINT32 Root path cost (range start)

root-cost-hi UINT32 Root path cost range end

sender-priority-hi UINT16 Sender priority range end

sender-address MAC_ADDRESS BPDU sender MAC address

sender-address-mask MAC_MASK BPDU sender MAC address mask

port UINT16 Port identifier (range start)

port_hi UINT16 Port identifier range end

msg-age UINT16 Message age timer (range start)

msg-age-hi UINT16 Message age timer range end

max-age-hi UINT16 Maximum age time range end

hello-time UINT16 Hello time timer (range start)

hello-time-hi UINT16 Hello time timer range end

forward-delay UINT16 Forward delay (range start)

Virtualization Deployment and Administration Guide

254

forward-delay-hi UINT16 Forward delay range end

comment STRING text string up to 256 characters

Attribute Name Datatype Definition

18.14.10.4. ARP/RARP

Protocol ID: arp or rarp

Rules of this type should either go into the root or arp/rarp chain.

Table 18.6. ARP and RARP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

hwtype UINT16 Hardware type

protocoltype UINT16 Protocol type

opcode UINT16, STRING Opcode valid strings are: Request,
Reply, Request_Reverse,
Reply_Reverse,
DRARP_Request, DRARP_Reply,
DRARP_Error, InARP_Request,
ARP_NAK

arpsrcmacaddr MAC_ADDR Source MAC address in
ARP/RARP packet

arpdstmacaddr MAC _ADDR Destination MAC address in
ARP/RARP packet

arpsrcipaddr IP_ADDR Source IP address in ARP/RARP
packet

arpdstipaddr IP_ADDR Destination IP address in
ARP/RARP packet

CHAPTER 18. VIRTUAL NETWORKING

255

gratuitous BOOLEAN Boolean indicating whether to
check for a gratuitous ARP packet

comment STRING text string up to 256 characters

Attribute Name Datatype Definition

18.14.10.5. IPv4

Protocol ID: ip

Rules of this type should either go into the root or ipv4 chain.

Table 18.7. IPv4 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

protocol UINT8, STRING Layer 4 protocol identifier. Valid
strings for protocol are: tcp, udp,
udplite, esp, ah, icmp, igmp, sctp

srcportstart UINT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source ports;
requires protocol

dstportstart UNIT16 Start of range of valid destination
ports; requires protocol

Virtualization Deployment and Administration Guide

256

dstportend UNIT16 End of range of valid destination
ports; requires protocol

comment STRING text string up to 256 characters

Attribute Name Datatype Definition

18.14.10.6. IPv6

Protocol ID: ipv6

Rules of this type should either go into the root or ipv6 chain.

Table 18.8. IPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

protocol UINT8, STRING Layer 4 protocol identifier. Valid
strings for protocol are: tcp, udp,
udplite, esp, ah, icmpv6, sctp

scrportstart UNIT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source ports;
requires protocol

dstportstart UNIT16 Start of range of valid destination
ports; requires protocol

CHAPTER 18. VIRTUAL NETWORKING

257

dstportend UNIT16 End of range of valid destination
ports; requires protocol

comment STRING text string up to 256 characters

Attribute Name Datatype Definition

18.14.10.7. TCP/UDP/SCTP

Protocol ID: tcp, udp, sctp

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 18.9. TCP/UDP/SCTP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

scripto IP_ADDR Start of range of source IP
address

srcipfrom IP_ADDR End of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

scrportstart UNIT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source ports;
requires protocol

dstportstart UNIT16 Start of range of valid destination
ports; requires protocol

Virtualization Deployment and Administration Guide

258

dstportend UNIT16 End of range of valid destination
ports; requires protocol

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

flags STRING TCP-only: format of mask/flags
with mask and flags each being a
comma separated list of
SYN,ACK,URG,PSH,FIN,RST or
NONE or ALL

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

Attribute Name Datatype Definition

18.14.10.8. ICMP

Protocol ID: icmp

Note: The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 18.10. ICMP protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to the MAC address
of the sender

dstmacaddr MAD_ADDR MAC address of the destination

dstmacmask MAC_MASK Mask applied to the MAC address
of the destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

CHAPTER 18. VIRTUAL NETWORKING

259

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

type UNIT16 ICMP type

code UNIT16 ICMP code

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

Attribute Name Datatype Definition

18.14.10.9. IGMP, ESP, AH, UDPLITE, 'ALL'

Protocol ID: igmp, esp, ah, udplite, all

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 18.11. IGMP, ESP, AH, UDPLITE, 'ALL'

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to the MAC address
of the sender

dstmacaddr MAD_ADDR MAC address of the destination

Virtualization Deployment and Administration Guide

260

dstmacmask MAC_MASK Mask applied to the MAC address
of the destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

Attribute Name Datatype Definition

18.14.10.10. TCP/UDP/SCTP over IPV6

Protocol ID: tcp-ipv6, udp-ipv6, sctp-ipv6

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 18.12. TCP, UDP, SCTP over IPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

CHAPTER 18. VIRTUAL NETWORKING

261

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

srcportstart UINT16 Start of range of valid source ports

srcportend UINT16 End of range of valid source ports

dstportstart UINT16 Start of range of valid destination
ports

dstportend UINT16 End of range of valid destination
ports

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

Attribute Name Datatype Definition

18.14.10.11. ICMPv6

Protocol ID: icmpv6

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Virtualization Deployment and Administration Guide

262

Table 18.13. ICMPv6 protocol types

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

type UINT16 ICMPv6 type

code UINT16 ICMPv6 code

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

18.14.10.12. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

Protocol ID: igmp-ipv6, esp-ipv6, ah-ipv6, udplite-ipv6, all-ipv6

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 18.14. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6 protocol types

CHAPTER 18. VIRTUAL NETWORKING

263

Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP address

scripto IP_ADDR end of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

comment STRING text string up to 256 characters

state STRING comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires ipset
attribute

18.14.11. Advanced Filter Configuration Topics

The following sections discuss advanced filter configuration topics.

18.14.11.1. Connection tracking

The network filtering subsystem (on Linux) makes use of the connection tracking support of IP tables.
This helps in enforcing the direction of the network traffic (state match) as well as counting and limiting
the number of simultaneous connections towards a guest virtual machine. As an example, if a guest
virtual machine has TCP port 8080 open as a server, clients may connect to the guest virtual machine on
port 8080. Connection tracking and enforcement of the direction and then prevents the guest virtual
machine from initiating a connection from (TCP client) port 8080 to the host physical machine back to a
remote host physical machine. More importantly, tracking helps to prevent remote attackers from
establishing a connection back to a guest virtual machine. For example, if the user inside the guest

Virtualization Deployment and Administration Guide

264

virtual machine established a connection to port 80 on an attacker site, the attacker will not be able to
initiate a connection from TCP port 80 back towards the guest virtual machine. By default the connection
state match that enables connection tracking and then enforcement of the direction of traffic is turned on.

Example 18.9. XML example for turning off connections to the TCP port

The following shows an example XML fragment where this feature has been turned off for incoming
connections to TCP port 12345.

 [...]
 <rule direction='in' action='accept' statematch='false'>
 <cp dstportstart='12345'/>
 </rule>
 [...]

This now allows incoming traffic to TCP port 12345, but would also enable the initiation from (client)
TCP port 12345 within the VM, which may or may not be desirable.

18.14.11.2. Limiting number of connections

To limit the number of connections a guest virtual machine may establish, a rule must be provided that
sets a limit of connections for a given type of traffic. If for example a VM is supposed to be allowed to
only ping one other IP address at a time and is supposed to have only one active incoming ssh
connection at a time.

Example 18.10. XML sample file that sets limits to connections

The following XML fragment can be used to limit connections

 [...]
 <rule action='drop' direction='in' priority='400'>
 <tcp connlimit-above='1'/>
 </rule>
 <rule action='accept' direction='in' priority='500'>
 <tcp dstportstart='22'/>
 </rule>
 <rule action='drop' direction='out' priority='400'>
 <icmp connlimit-above='1'/>
 </rule>
 <rule action='accept' direction='out' priority='500'>
 <icmp/>
 </rule>
 <rule action='accept' direction='out' priority='500'>
 <udp dstportstart='53'/>
 </rule>
 <rule action='drop' direction='inout' priority='1000'>
 <all/>
 </rule>
 [...]

CHAPTER 18. VIRTUAL NETWORKING

265

NOTE

Limitation rules must be listed in the XML prior to the rules for accepting traffic. According
to the XML file in Example 18.10, “XML sample file that sets limits to connections”, an
additional rule for allowing DNS traffic sent to port 22 go out the guest virtual machine,
has been added to avoid ssh sessions not getting established for reasons related to DNS
lookup failures by the ssh daemon. Leaving this rule out may result in the ssh client
hanging unexpectedly as it tries to connect. Additional caution should be used in regards
to handling timeouts related to tracking of traffic. An ICMP ping that the user may have
terminated inside the guest virtual machine may have a long timeout in the host physical
machine's connection tracking system and will therefore not allow another ICMP ping to
go through.

The best solution is to tune the timeout in the host physical machine's sysfs with the
following command:# echo 3 >
/proc/sys/net/netfilter/nf_conntrack_icmp_timeout. This command sets
the ICMP connection tracking timeout to 3 seconds. The effect of this is that once one
ping is terminated, another one can start after 3 seconds.

If for any reason the guest virtual machine has not properly closed its TCP connection,
the connection to be held open for a longer period of time, especially if the TCP timeout
value was set for a large amount of time on the host physical machine. In addition, any
idle connection may result in a timeout in the connection tracking system which can be re-
activated once packets are exchanged.

However, if the limit is set too low, newly initiated connections may force an idle
connection into TCP backoff. Therefore, the limit of connections should be set rather high
so that fluctuations in new TCP connections do not cause odd traffic behavior in relation
to idle connections.

18.14.11.3. Command-line tools

virsh has been extended with life-cycle support for network filters. All commands related to the network
filtering subsystem start with the prefix nwfilter. The following commands are available:

nwfilter-list : lists UUIDs and names of all network filters

nwfilter-define : defines a new network filter or updates an existing one (must supply a
name)

nwfilter-undefine : deletes a specified network filter (must supply a name). Do not delete a
network filter currently in use.

nwfilter-dumpxml : displays a specified network filter (must supply a name)

nwfilter-edit : edits a specified network filter (must supply a name)

18.14.11.4. Pre-existing network filters

The following is a list of example network filters that are automatically installed with libvirt:

Table 18.15. ICMPv6 protocol types

Virtualization Deployment and Administration Guide

266

Protocol Name Description

allow-arp Accepts all incoming and outgoing Address
Resolution Protocol (ARP) traffic to a guest virtual
machine.

no-arp-spoofing, no-arp-mac-spoofing,
and no-arp-ip-spoofing

These filters prevent a guest virtual machine from
spoofing ARP traffic. In addition, they only allows
ARP request and reply messages, and enforce that
those packets contain:

no-arp-spoofing - the MAC and IP
addresses of the guest

no-arp-mac-spoofing - the MAC address of
the guest

no-arp-ip-spoofing - the IP address of the
guest

low-dhcp Allows a guest virtual machine to request an IP
address via DHCP (from any DHCP server).

low-dhcp-server Allows a guest virtual machine to request an IP
address from a specified DHCP server. The dotted
decimal IP address of the DHCP server must be
provided in a reference to this filter. The name of the
variable must be DHCPSERVER.

low-ipv4 Accepts all incoming and outgoing IPv4 traffic to a
virtual machine.

low-incoming-ipv4 Accepts only incoming IPv4 traffic to a virtual
machine. This filter is a part of the clean-
traffic filter.

no-ip-spoofing Prevents a guest virtual machine from sending IP
packets with a source IP address different from the
one inside the packet. This filter is a part of the
clean-traffic filter.

no-ip-multicast Prevents a guest virtual machine from sending IP
multicast packets.

no-mac-broadcast Prevents outgoing IPv4 traffic to a specified MAC
address. This filter is a part of the clean-traffic
filter.

no-other-l2-traffic Prevents all layer 2 networking traffic except traffic
specified by other filters used by the network. This
filter is a part of the clean-traffic filter.

CHAPTER 18. VIRTUAL NETWORKING

267

no-other-rarp-traffic, qemu-announce-
self, qemu-announce-self-rarp

These filters allow QEMU's self-announce Reverse
Address Resolution Protocol (RARP) packets, but
prevent all other RARP traffic. All of them are also
included in the clean-traffic filter.

clean-traffic Prevents MAC, IP and ARP spoofing. This filter
references several other filters as building blocks.

Protocol Name Description

These filters are only building blocks and require a combination with other filters to provide useful
network traffic filtering. The most used one in the above list is the clean-traffic filter. This filter itself can
for example be combined with the no-ip-multicast filter to prevent virtual machines from sending IP
multicast traffic on top of the prevention of packet spoofing.

18.14.11.5. Writing your own filters

Since libvirt only provides a couple of example networking filters, you may consider writing your own.
When planning on doing so there are a couple of things you may need to know regarding the network
filtering subsystem and how it works internally. Certainly you also have to know and understand the
protocols very well that you want to be filtering on so that no further traffic than what you want can pass
and that in fact the traffic you want to allow does pass.

The network filtering subsystem is currently only available on Linux host physical machines and only
works for QEMU and KVM type of virtual machines. On Linux, it builds upon the support for ebtables,
iptables and ip6tables and makes use of their features. Considering the list found in Section 18.14.10,
“Supported Protocols” the following protocols can be implemented using ebtables:

mac

stp (spanning tree protocol)

vlan (802.1Q)

arp, rarp

ipv4

ipv6

Any protocol that runs over IPv4 is supported using iptables, those over IPv6 are implemented using
ip6tables.

Using a Linux host physical machine, all traffic filtering rules created by libvirt's network filtering
subsystem first passes through the filtering support implemented by ebtables and only afterwards
through iptables or ip6tables filters. If a filter tree has rules with the protocols including: mac, stp, vlan
arp, rarp, ipv4, or ipv6; the ebtable rules and values listed will automatically be used first.

Multiple chains for the same protocol can be created. The name of the chain must have a prefix of one of
the previously enumerated protocols. To create an additional chain for handling of ARP traffic, a chain
with name arp-test, can for example be specified.

As an example, it is possible to filter on UDP traffic by source and destination ports using the ip protocol
filter and specifying attributes for the protocol, source and destination IP addresses and ports of UDP

Virtualization Deployment and Administration Guide

268

packets that are to be accepted. This allows early filtering of UDP traffic with ebtables. However, once an
IP or IPv6 packet, such as a UDP packet, has passed the ebtables layer and there is at least one rule in
a filter tree that instantiates iptables or ip6tables rules, a rule to let the UDP packet pass will also be
necessary to be provided for those filtering layers. This can be achieved with a rule containing an
appropriate udp or udp-ipv6 traffic filtering node.

Example 18.11. Creating a custom filter

Suppose a filter is needed to fulfill the following list of requirements:

prevents a VM's interface from MAC, IP and ARP spoofing

opens only TCP ports 22 and 80 of a VM's interface

allows the VM to send ping traffic from an interface but not let the VM be pinged on the
interface

allows the VM to do DNS lookups (UDP towards port 53)

The requirement to prevent spoofing is fulfilled by the existing clean-traffic network filter, thus
the way to do this is to reference it from a custom filter.

To enable traffic for TCP ports 22 and 80, two rules are added to enable this type of traffic. To allow
the guest virtual machine to send ping traffic a rule is added for ICMP traffic. For simplicity reasons,
general ICMP traffic will be allowed to be initiated from the guest virtual machine, and will not be
specified to ICMP echo request and response messages. All other traffic will be prevented to reach or
be initiated by the guest virtual machine. To do this a rule will be added that drops all other traffic.
Assuming the guest virtual machine is called test and the interface to associate our filter with is
called eth0, a filter is created named test-eth0.

The result of these considerations is the following network filter XML:

<filter name='test-eth0'>
 <!- - This rule references the clean traffic filter to prevent MAC, IP
and ARP spoofing. By not providing an IP address parameter, libvirt will
detect the IP address the guest virtual machine is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule enables TCP ports 22 (ssh) and 80 (http) to be
reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='22'/>
 </rule>

 <rule action='accept' direction='in'>
 <tcp dstportstart='80'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp/>
 </rule>>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>

CHAPTER 18. VIRTUAL NETWORKING

269

 <udp dstportstart='53'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

18.14.11.6. Sample custom filter

Although one of the rules in the above XML contains the IP address of the guest virtual machine as
either a source or a destination address, the filtering of the traffic works correctly. The reason is that
whereas the rule's evaluation occurs internally on a per-interface basis, the rules are additionally
evaluated based on which (tap) interface has sent or will receive the packet, rather than what their
source or destination IP address may be.

Example 18.12. Sample XML for network interface descriptions

An XML fragment for a possible network interface description inside the domain XML of the test guest
virtual machine could then look like this:

 [...]
 <interface type='bridge'>
 <source bridge='mybridge'/>
 <filterref filter='test-eth0'/>
 </interface>
 [...]

To more strictly control the ICMP traffic and enforce that only ICMP echo requests can be sent from
the guest virtual machine and only ICMP echo responses be received by the guest virtual machine,
the above ICMP rule can be replaced with the following two rules:

 <!- - enable outgoing ICMP echo requests- ->
 <rule action='accept' direction='out'>
 <icmp type='8'/>
 </rule>

 <!- - enable incoming ICMP echo replies- ->
 <rule action='accept' direction='in'>
 <icmp type='0'/>
 </rule>

Example 18.13. Second example custom filter

This example demonstrates how to build a similar filter as in the example above, but extends the list
of requirements with an ftp server located inside the guest virtual machine. The requirements for this
filter are:

prevents a guest virtual machine's interface from MAC, IP, and ARP spoofing

Virtualization Deployment and Administration Guide

270

opens only TCP ports 22 and 80 in a guest virtual machine's interface

allows the guest virtual machine to send ping traffic from an interface but does not allow the
guest virtual machine to be pinged on the interface

allows the guest virtual machine to do DNS lookups (UDP towards port 53)

enables the ftp server (in active mode) so it can run inside the guest virtual machine

The additional requirement of allowing an FTP server to be run inside the guest virtual machine maps
into the requirement of allowing port 21 to be reachable for FTP control traffic as well as enabling the
guest virtual machine to establish an outgoing TCP connection originating from the guest virtual
machine's TCP port 20 back to the FTP client (FTP active mode). There are several ways of how this
filter can be written and two possible solutions are included in this example.

The first solution makes use of the state attribute of the TCP protocol that provides a hook into the
connection tracking framework of the Linux host physical machine. For the guest virtual machine-
initiated FTP data connection (FTP active mode) the RELATED state is used to enable detection that
the guest virtual machine-initiated FTP data connection is a consequence of (or 'has a relationship
with') an existing FTP control connection, thereby allowing it to pass packets through the firewall.
The RELATED state, however, is only valid for the very first packet of the outgoing TCP connection
for the FTP data path. Afterwards, the state is ESTABLISHED, which then applies equally to the
incoming and outgoing direction. All this is related to the FTP data traffic originating from TCP port 20
of the guest virtual machine. This then leads to the following solution:

<filter name='test-eth0'>
 <!- - This filter (eth0) references the clean traffic filter to
prevent MAC, IP, and ARP spoofing. By not providing an IP address
parameter, libvirt will detect the IP address the guest virtual machine
is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule enables TCP port 21 (FTP-control) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='21'/>
 </rule>

 <!- - This rule enables TCP port 20 for guest virtual machine-
initiated FTP data connection related to an existing FTP control
connection - ->
 <rule action='accept' direction='out'>
 <tcp srcportstart='20' state='RELATED,ESTABLISHED'/>
 </rule>

 <!- - This rule accepts all packets from a client on the FTP data
connection - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='20' state='ESTABLISHED'/>
 </rule>

 <!- - This rule enables TCP port 22 (SSH) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='22'/>
 </rule>

 <!- -This rule enables TCP port 80 (HTTP) to be reachable - ->

CHAPTER 18. VIRTUAL NETWORKING

271

 <rule action='accept' direction='in'>
 <tcp dstportstart='80'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine, including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp/>
 </rule>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>
 <udp dstportstart='53'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

Before trying out a filter using the RELATED state, you have to make sure that the appropriate
connection tracking module has been loaded into the host physical machine's kernel. Depending on
the version of the kernel, you must run either one of the following two commands before the FTP
connection with the guest virtual machine is established:

modprobe nf_conntrack_ftp - where available OR

modprobe ip_conntrack_ftp if above is not available

If protocols other than FTP are used in conjunction with the RELATED state, their corresponding
module must be loaded. Modules are available for the protocols: ftp, tftp, irc, sip, sctp, and amanda.

The second solution makes use of the state flags of connections more than the previous solution did.
This solution takes advantage of the fact that the NEW state of a connection is valid when the very
first packet of a traffic flow is detected. Subsequently, if the very first packet of a flow is accepted, the
flow becomes a connection and thus enters into the ESTABLISHED state. Therefore, a general rule
can be written for allowing packets of ESTABLISHED connections to reach the guest virtual machine
or be sent by the guest virtual machine. This is done writing specific rules for the very first packets
identified by the NEW state and dictates the ports that the data is acceptable. All packets meant for
ports that are not explicitly accepted are dropped, thus not reaching an ESTABLISHED state. Any
subsequent packets sent from that port are dropped as well.

<filter name='test-eth0'>
 <!- - This filter references the clean traffic filter to prevent MAC,
IP and ARP spoofing. By not providing and IP address parameter, libvirt
will detect the IP address the VM is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule allows the packets of all previously accepted
connections to reach the guest virtual machine - ->
 <rule action='accept' direction='in'>
 <all state='ESTABLISHED'/>
 </rule>

Virtualization Deployment and Administration Guide

272

 <!- - This rule allows the packets of all previously accepted and
related connections be sent from the guest virtual machine - ->
 <rule action='accept' direction='out'>
 <all state='ESTABLISHED,RELATED'/>
 </rule>

 <!- - This rule enables traffic towards port 21 (FTP) and port 22
(SSH)- ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='21' dstportend='22' state='NEW'/>
 </rule>

 <!- - This rule enables traffic towards port 80 (HTTP) - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='80' state='NEW'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the
guest virtual machine, including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp state='NEW'/>
 </rule>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>
 <udp dstportstart='53' state='NEW'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

18.14.12. Limitations

The following is a list of the currently known limitations of the network filtering subsystem.

VM migration is only supported if the whole filter tree that is referenced by a guest virtual
machine's top level filter is also available on the target host physical machine. The network filter
clean-traffic for example should be available on all libvirt installations and thus enable
migration of guest virtual machines that reference this filter. To assure version compatibility is not
a problem make sure you are using the most current version of libvirt by updating the package
regularly.

Migration must occur between libvirt insallations of version 0.8.1 or later in order not to lose the
network traffic filters associated with an interface.

VLAN (802.1Q) packets, if sent by a guest virtual machine, cannot be filtered with rules for
protocol IDs arp, rarp, ipv4 and ipv6. They can only be filtered with protocol IDs, MAC and
VLAN. Therefore, the example filter clean-traffic Example 18.1, “An example of network filtering”
will not work as expected.

CHAPTER 18. VIRTUAL NETWORKING

273

18.15. CREATING TUNNELS

This section will demonstrate how to implement different tunneling scenarios.

18.15.1. Creating Multicast Tunnels

A multicast group is setup to represent a virtual network. Any guest virtual machines whose network
devices are in the same multicast group can talk to each other even across host physical machines. This
mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing
network access. To provide outgoing network access, one of the guest virtual machines should have a
second NIC which is connected to one of the first four network types thus providing appropriate routing.
The multicast protocol is compatible the guest virtual machine user mode. Note that the source address
that you provide must be from the address used for the multicast address block.

To create a multicast tunnel place the following XML details into the <devices> element:

Figure 18.28. Multicast tunnel domain XMl example

18.15.2. Creating TCP Tunnels

A TCP client-server architecture provides a virtual network. In this configuration, one guest virtual
machine provides the server end of the network while all other guest virtual machines are configured as
clients. All network traffic is routed between the guest virtual machine clients via the guest virtual
machine server. This mode is also available for unprivileged users. Note that this mode does not provide
default DNS or DHCP support and it does not provide outgoing network access. To provide outgoing
network access, one of the guest virtual machines should have a second NIC which is connected to one
of the first four network types thus providing appropriate routing.

To create a TCP tunnel place the following XML details into the <devices> element:

 ...
 <devices>
 <interface type='mcast'>
 <mac address='52:54:00:6d:90:01'>
 <source address='230.0.0.1' port='5558'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

274

Figure 18.29. TCP tunnel domain XMl example

18.16. SETTING VLAN TAGS

virtual local area network (vLAN) tags are added using the virsh net-edit command. This tag can
also be used with PCI device assignment with SR-IOV devices. For more information, refer to
Section 17.2.3, “Configuring PCI Assignment with SR-IOV Devices”.

Figure 18.30. vSetting VLAN tag (on supported network types only)

If (and only if) the network type supports vlan tagging transparent to the guest, an optional <vlan>
element can specify one or more vlan tags to apply to the traffic of all guests using this network.
(openvswitch and type='hostdev' SR-IOV networks do support transparent vlan tagging of guest traffic;
everything else, including standard linux bridges and libvirt's own virtual networks, do not support it.
802.1Qbh (vn-link) and 802.1Qbg (VEPA) switches provide their own way (outside of libvirt) to tag guest
traffic onto specific vlans.) As expected, the tag attribute specifies which vlan tag to use. If a network has

 ...
 <devices>
 <interface type='server'>
 <mac address='52:54:00:22:c9:42'>
 <source address='192.168.0.1' port='5558'/>
 </interface>
 ...
 <interface type='client'>
 <mac address='52:54:00:8b:c9:51'>
 <source address='192.168.0.1' port='5558'/>
 </interface>
 </devices>
 ...

<network>
 <name>ovs-net</name>
 <forward mode='bridge'/>
 <bridge name='ovsbr0'/>
 <virtualport type='openvswitch'>
 <parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
 </virtualport>
 <vlan trunk='yes'>
 <tag id='42' nativeMode='untagged'/>
 <tag id='47'/>
 </vlan>
 <portgroup name='dontpanic'>
 <vlan>
 <tag id='42'/>
 </vlan>
 </portgroup>
</network>

CHAPTER 18. VIRTUAL NETWORKING

275

more than one <vlan> element defined, it is assumed that the user wants to do VLAN trunking using all
the specified tags. If vlan trunking with a single tag is desired, the optional attribute trunk='yes' can be
added to the vlan element.

For network connections using openvswitch it is possible to configure the 'native-tagged' and 'native-
untagged' vlan modes. This uses the optional nativeMode attribute on the <tag> element: nativeMode
may be set to 'tagged' or 'untagged'. The id attribute of the element sets the native vlan.

<vlan> elements can also be specified in a <portgroup> element, as well as directly in a domain's
<interface> element. If a vlan tag is specified in multiple locations, the setting in <interface> takes
precedence, followed by the setting in the <portgroup> selected by the interface config. The <vlan>
in <network> will be selected only if none is given in <portgroup> or <interface>.

18.17. APPLYING QOS TO YOUR VIRTUAL NETWORK

Quality of Service (QoS) refers to the resource control systems that guarantees an optimal experience for
all users on a network, making sure that there is no delay, jitter, or packet loss. QoS can be application
specific or user / group specific. Refer to Section 24.18.9.14, “Quality of service (QoS)” for more
information.

Virtualization Deployment and Administration Guide

276

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS
This section explains how to remotely manage your guests.

19.1. TRANSPORT MODES

For remote management, libvirt supports the following transport modes:

Transport Layer Security (TLS)

Transport Layer Security TLS 1.0 (SSL 3.1) authenticated and encrypted TCP/IP socket, usually listening
on a public port number. To use this, you will need to generate client and server certificates. The
standard port is 16514. For detailed instructions, see Section 19.3, “Remote Management over TLS and
SSL”.

SSH

Transported over a Secure Shell protocol (SSH) connection. The libvirt daemon (libvirtd) must be
running on the remote machine. Port 22 must be open for SSH access. You should use some sort of
SSH key management (for example, the ssh-agent utility) or you will be prompted for a password. For
detailed instructions, see Section 19.2, “Remote Management with SSH”.

UNIX Sockets

UNIX domain sockets are only accessible on the local machine. Sockets are not encrypted, and use
UNIX permissions or SELinux for authentication. The standard socket names are
/var/run/libvirt/libvirt-sock and /var/run/libvirt/libvirt-sock-ro (for read-only
connections).

ext

The ext parameter is used for any external program which can make a connection to the remote
machine by means outside the scope of libvirt. This parameter is unsupported.

TCP

Unencrypted TCP/IP socket. Not recommended for production use, this is normally disabled, but an
administrator can enable it for testing or use over a trusted network. The default port is 16509.

The default transport, if no other is specified, is TLS.

Remote URIs

A Uniform Resource Identifier (URI) is used by virsh and libvirt to connect to a remote host. URIs can
also be used with the --connect parameter for the virsh command to execute single commands or
migrations on remote hosts. Remote URIs are formed by taking ordinary local URIs and adding a host
name or a transport name, or both. As a special case, using a URI scheme of 'remote' will tell the remote
libvirtd server to probe for the optimal hypervisor driver. This is equivalent to passing a NULL URI for a
local connection

libvirt URIs take the general form (content in square brackets, "[]", represents optional functions):

driver[+transport]://[username@][hostname][:port]/path[?extraparameters]

Note that if the hypervisor (driver) is QEMU, the path is mandatory.

The following are examples of valid remote URIs:

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS

277

qemu://hostname/

The transport method or the host name must be provided to target an external location. For more
information, refer to the libvirt upstream documentation.

Examples of remote management parameters

Connect to a remote KVM host named host2, using SSH transport and the SSH user name
virtuser. The connect command for each is connect [URI] [--readonly]. For more
information about the virsh connect command, refer to Section 21.4, “Connecting to the
Hypervisor with virsh Connect”

qemu+ssh://virtuser@host2/

Connect to a remote KVM hypervisor on the host named host2 using TLS.

qemu://host2/

Testing examples

Connect to the local KVM hypervisor with a non-standard UNIX socket. The full path to the UNIX
socket is supplied explicitly in this case.

qemu+unix:///system?socket=/opt/libvirt/run/libvirt/libvirt-sock

Connect to the libvirt daemon with an non-encrypted TCP/IP connection to the server with the IP
address 10.1.1.10 on port 5000. This uses the test driver with default settings.

test+tcp://10.1.1.10:5000/default

Extra URI Parameters

Extra parameters can be appended to remote URIs. The table below covers the recognized parameters.
All other parameters are ignored. Note that parameter values must be URI-escaped (that is, a question
mark (?) is appended before the parameter and special characters are converted into the URI format).

Table 19.1. Extra URI parameters

Name Transport mode Description Example usage

Virtualization Deployment and Administration Guide

278

http://libvirt.org/guide/html/Application_Development_Guide-Architecture-Remote_URIs.html

name all modes The name passed to the
remote
virConnectOpen
function. The name is
normally formed by
removing transport,
hostname, port
number, username,
and extra parameters
from the remote URI,
but in certain very
complex cases it may be
better to supply the
name explicitly.

name=qemu:///system

command ssh and ext The external command.
For ext transport this is
required. For ssh the
default is ssh. The PATH
is searched for the
command.

command=/opt/openssh/
bin/ssh

socket unix and ssh The path to the UNIX
domain socket, which
overrides the default.
For ssh transport, this is
passed to the remote
netcat command (see
netcat).

socket=/opt/libvirt/run/lib
virt/libvirt-sock

no_verify tls If set to a non-zero
value, this disables client
checks of the server's
certificate. Note that to
disable server checks of
the client's certificate or
IP address you must
change the libvirtd
configuration.

no_verify=1

no_tty ssh If set to a non-zero
value, this stops ssh
from asking for a
password if it cannot log
in to the remote
machine automatically .
Use this when you do
not have access to a
terminal.

no_tty=1

Name Transport mode Description Example usage

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS

279

19.2. REMOTE MANAGEMENT WITH SSH

The ssh package provides an encrypted network protocol that can securely send management functions
to remote virtualization servers. The method described below uses the libvirt management
connection, securely tunneled over an SSH connection, to manage the remote machines. All the
authentication is done using SSH public key cryptography and passwords or passphrases gathered by
your local SSH agent. In addition, the VNC console for each guest is tunneled over SSH.

When using using SSH for remotely managing your virtual machines, be aware of the following problems:

You require root log in access to the remote machine for managing virtual machines.

The initial connection setup process may be slow.

There is no standard or trivial way to revoke a user's key on all hosts or guests.

SSH does not scale well with larger numbers of remote machines.

NOTE

Red Hat Virtualization enables remote management of large numbers of virtual machines.
For further details, refer to the Red Hat Virtualization documentation.

The following packages are required for SSH access:

openssh

openssh-askpass

openssh-clients

openssh-server

Configuring Password-less or Password-managed SSH Access for virt-manager

The following instructions assume you are starting from scratch and do not already have SSH keys set
up. If you have SSH keys set up and copied to the other systems, you can skip this procedure.

IMPORTANT

SSH keys are user-dependent and may only be used by their owners. A key's owner is
the user who generated it. Keys may not be shared across different users.

virt-manager must be run by the user who owns the keys to connect to the remote
host. That means, if the remote systems are managed by a non-root user, virt-
manager must be run in unprivileged mode. If the remote systems are managed by the
local root user, then the SSH keys must be owned and created by root.

You cannot manage the local host as an unprivileged user with virt-manager.

1. Optional: Changing user
Change user, if required. This example uses the local root user for remotely managing the other
hosts and the local host.

$ su -

Virtualization Deployment and Administration Guide

280

https://access.redhat.com/documentation/en/red-hat-enterprise-virtualization/

2. Generating the SSH key pair
Generate a public key pair on the machine where virt-manager is used. This example uses
the default key location, in the ~/.ssh/ directory.

ssh-keygen -t rsa

3. Copying the keys to the remote hosts
Remote login without a password, or with a pass-phrase, requires an SSH key to be distributed
to the systems being managed. Use the ssh-copy-id command to copy the key to root user at
the system address provided (in the example, root@host2.example.com).

ssh-copy-id -i ~/.ssh/id_rsa.pub root@host2.example.com
root@host2.example.com's password:

Afterwards, try logging into the machine and check the .ssh/authorized_keys file to make
sure unexpected keys have not been added:

ssh root@host2.example.com

Repeat for other systems, as required.

4. Optional: Add the passphrase to the ssh-agent
Add the pass-phrase for the SSH key to the ssh-agent, if required. On the local host, use the
following command to add the pass-phrase (if there was one) to enable password-less login.

ssh-add ~/.ssh/id_rsa

This command will fail to run if the ssh-agent is not running. To avoid errors or conflicts, make
sure that your SSH parameters are set correctly. Refer to the Red Hat Enterprise System
Administration Guide for more information.

The libvirt daemon (libvirtd)

The libvirt daemon provides an interface for managing virtual machines. You must have the
libvirtd daemon installed and running on every remote host that you intend to manage this way.

$ ssh root@somehost
systemctl enable libvirtd.service
systemctl start libvirtd.service

After libvirtd and SSH are configured, you should be able to remotely access and manage your
virtual machines. You should also be able to access your guests with VNC at this point.

Accessing Remote Hosts with virt-manager

Remote hosts can be managed with the virt-manager GUI tool. SSH keys must belong to the user
executing virt-manager for password-less login to work.

1. Start virt-manager.

2. Open the File ⇒ Add Connection menu.

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS

281

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-ssh-configuration.html

Figure 19.1. Add connection menu

3. Use the drop down menu to select hypervisor type, and click the Connect to remote host check
box to open the Connection Method (in this case Remote tunnel over SSH), enter the User
name and Hostname, then click Connect.

19.3. REMOTE MANAGEMENT OVER TLS AND SSL

You can manage virtual machines using the TLS and SSL protocols. TLS and SSL provides greater
scalability but is more complicated than SSH (refer to Section 19.2, “Remote Management with SSH”).
TLS and SSL is the same technology used by web browsers for secure connections. The libvirt
management connection opens a TCP port for incoming connections, which is securely encrypted and
authenticated based on x509 certificates. The following procedures provide instructions on creating and
deploying authentication certificates for TLS and SSL management.

Procedure 19.1. Creating a certificate authority (CA) key for TLS management

1. Before you begin, confirm that gnutls-utils is installed. If not, install it:

yum install gnutls-utils

2. Generate a private key, using the following command:

certtool --generate-privkey > cakey.pem

3. After the key is generated, create a signature file so the key can be self-signed. To do this,
create a file with signature details and name it ca.info. This file should contain the following:

cn = Name of your organization

Virtualization Deployment and Administration Guide

282

ca
cert_signing_key

4. Generate the self-signed key with the following command:

certtool --generate-self-signed --load-privkey cakey.pem --
template ca.info --outfile cacert.pem

After the file is generated, the ca.info file can be deleted using the rm command. The file that
results from the generation process is named cacert.pem. This file is the public key
(certificate). The loaded file cakey.pem is the private key. For security purposes, this file should
be kept private, and not reside in a shared space.

5. Install the cacert.pem CA certificate file on all clients and servers in the
/etc/pki/CA/cacert.pem directory to let them know that the certificate issued by your CA
can be trusted. To view the contents of this file, run:

certtool -i --infile cacert.pem

This is all that is required to set up your CA. Keep the CA's private key safe, as you will need it in
order to issue certificates for your clients and servers.

Procedure 19.2. Issuing a server certificate

This procedure demonstrates how to issue a certificate with the X.509 Common Name (CN) field set to
the host name of the server. The CN must match the host name which clients will be using to connect to
the server. In this example, clients will be connecting to the server using the URI:
qemu://mycommonname/system, so the CN field should be identical, for this example
"mycommoname".

1. Create a private key for the server.

certtool --generate-privkey > serverkey.pem

2. Generate a signature for the CA's private key by first creating a template file called
server.info. Make sure that the CN is set to be the same as the server's host name:

organization = Name of your organization
cn = mycommonname
tls_www_server
encryption_key
signing_key

3. Create the certificate:

certtool --generate-certificate --load-privkey serverkey.pem --
load-ca-certificate cacert.pem --load-ca-privkey cakey.pem \ --
template server.info --outfile servercert.pem

This results in two files being generated:

serverkey.pem - The server's private key

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS

283

servercert.pem - The server's public key

4. Make sure to keep the location of the private key secret. To view the contents of the file, use the
following command:

certtool -i --infile servercert.pem

When opening this file, the CN= parameter should be the same as the CN that you set earlier.
For example, mycommonname.

5. Install the two files in the following locations:

serverkey.pem - the server's private key. Place this file in the following location:
/etc/pki/libvirt/private/serverkey.pem

servercert.pem - the server's certificate. Install it in the following location on the server:
/etc/pki/libvirt/servercert.pem

Procedure 19.3. Issuing a client certificate

1. For every client (that is to say any program linked with libvirt, such as virt-manager), you need
to issue a certificate with the X.509 Distinguished Name (DN) field set to a suitable name. This
needs to be decided on a corporate level.

For example purposes, the following information will be used:

C=USA,ST=North Carolina,L=Raleigh,O=Red Hat,CN=name_of_client

2. Create a private key:

certtool --generate-privkey > clientkey.pem

3. Generate a signature for the CA's private key by first creating a template file called
client.info. The file should contain the following (fields should be customized to reflect your
region/location):

country = USA
state = North Carolina
locality = Raleigh
organization = Red Hat
cn = client1
tls_www_client
encryption_key
signing_key

4. Sign the certificate with the following command:

certtool --generate-certificate --load-privkey clientkey.pem --
load-ca-certificate cacert.pem \ --load-ca-privkey cakey.pem --
template client.info --outfile clientcert.pem

5. Install the certificates on the client machine:

Virtualization Deployment and Administration Guide

284

cp clientkey.pem /etc/pki/libvirt/private/clientkey.pem
cp clientcert.pem /etc/pki/libvirt/clientcert.pem

19.4. CONFIGURING A VNC SERVER

To set up graphical desktop sharing between the host and the guest machine using Virtual Network
Computing (VNC), a VNC server has to be configured on the guest you wish to connect to. To do this,
VNC has to be specified as a graphics type in the devices element of the guest's XML file. For further
information, see Section 24.18.12, “Graphical Framebuffers”.

To connect to a VNC server, use the virt-viewer utility or the virt-manager interface.

19.5. ENHANCING REMOTE MANAGEMENT OF VIRTUAL MACHINES
WITH NSS

In Red Hat Enterprise Linux 7.3 and later, you can use the libvirt Network Security Services (NSS)
module to make it easier to connect to guests with SSH, TLS, SSL, as well as other remote login
services. In addition, the module also benefits utilities that use host name translation, such as ping.

To be able to use this functionality, install the libvirt-nss package:

yum install libvirt-nss

NOTE

If installing libvirt-nss fails, make sure that the Optional repository for Red Hat
Enterprise Linux is enabled. For instructions, see the System Administrator's Guide.

Finally, enable the module by adding libvirt to the hosts line of the /etc/nsswitch.conf file, for
example as follows:

passwd: compat
shadow: compat
group: compat
hosts: files libvirt dns
...

The order in which modules are listed on the hosts line determines the order in which these modules
are consulted to find the specified remote guest. As a result, libvirt's NSS module is added to modules
that translate host domain names to IP addresses. This for example enables connecting to a remote
guest in NAT mode without setting a static IP address and only using the guest's hostname value:

ssh root@guest-hostname
root@guest-hostname's password:
Last login: Thu Aug 10 09:12:31 2017 from 192.168.122.1
[root@guest1-rhel7 ~]#

CHAPTER 19. REMOTE MANAGEMENT OF GUESTS

285

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Setting_repository_Options

NOTE

The guest's hostname may differ from the guest name displayed for example by virsh
list. To display or configure the hostname on the guest, use the hostnamectl
commands.

Virtualization Deployment and Administration Guide

286

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec_Configuring_Host_Names_Using_hostnamectl.html

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL
MACHINE MANAGER (VIRT-MANAGER)
This chapter describes the Virtual Machine Manager (virt-manager) windows, dialog boxes, and
various GUI controls.

virt-manager provides a graphical view of hypervisors and guests on your host system and on remote
host systems. virt-manager can perform virtualization management tasks, including:

defining and creating guests,

assigning memory,

assigning virtual CPUs,

monitoring operational performance,

saving and restoring, pausing and resuming, and shutting down and starting guests,

links to the textual and graphical consoles, and

live and offline migrations.

IMPORTANT

It is important to note which user you are using. If you create a guest virtual machine with
one user, you will not be able to retrieve information about it using another user. This is
especially important when you create a virtual machine in virt-manager. The default user
is root in that case unless otherwise specified. Should you have a case where you cannot
list the virtual machine using the virsh list --all command, it is most likely due to
you running the command using a different user than you used to create the virtual
machine.

20.1. STARTING VIRT-MANAGER

To start virt-manager session open the Applications menu, then the System Tools menu and select
Virtual Machine Manager (virt-manager).

The virt-manager main window appears.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

287

Figure 20.1. Starting virt-manager

Alternatively, virt-manager can be started remotely using ssh as demonstrated in the following
command:

ssh -X host's address
[remotehost]# virt-manager

Using ssh to manage virtual machines and hosts is discussed further in Section 19.2, “Remote
Management with SSH”.

20.2. THE VIRTUAL MACHINE MANAGER MAIN WINDOW

Virtualization Deployment and Administration Guide

288

This main window displays all the running guests and resources used by guests. Select a guest by
double clicking the guest's name.

Figure 20.2. Virtual Machine Manager main window

20.3. THE VIRTUAL HARDWARE DETAILS WINDOW

The virtual hardware details window displays information about the virtual hardware configured for the
guest. Virtual hardware resources can be added, removed and modified in this window. To access the
virtual hardware details window, click the icon in the toolbar.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

289

Figure 20.3. The virtual hardware details icon

Clicking the icon displays the virtual hardware details window.

Figure 20.4. The virtual hardware details window

20.3.1. Applying Boot Options to Guest Virtual Machines

Using virt-manager you can select how the guest virtual machine will act on boot. The boot options will
not take effect until the guest virtual machine reboots. You can either power down the virtual machine
before making any changes, or you can reboot the machine afterwards. If you do not do either of these
options, the changes will happen the next time the guest reboots.

Procedure 20.1. Configuring boot options

Virtualization Deployment and Administration Guide

290

1. From the Virtual Machine Manager Edit menu, select Virtual Machine Details.

2. From the side panel, select Boot Options and then complete any or all of the following optional
steps:

a. To indicate that this guest virtual machine should start each time the host physical machine
boots, select the Autostart check box.

b. To indicate the order in which guest virtual machine should boot, click the Enable boot
menu check box. After this is checked, you can then check the devices you want to boot
from and using the arrow keys change the order that the guest virtual machine will use when
booting.

c. If you want to boot directly from the Linux kernel, expand the Direct kernel boot menu. Fill
in the Kernel path, Initrd path, and the Kernel arguments that you want to use.

3. Click Apply.

Figure 20.5. Configuring boot options

20.3.2. Attaching USB Devices to a Guest Virtual Machine

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

291

NOTE

In order to attach the USB device to the guest virtual machine, you first must attach it to
the host physical machine and confirm that the device is working. If the guest is running,
you need to shut it down before proceeding.

Procedure 20.2. Attaching USB devices using Virt-Manager

1. Open the guest virtual machine's Virtual Machine Details screen.

2. Click Add Hardware

3. In the Add New Virtual Hardware popup, select USB Host Device, select the device you want
to attach from the list and Click Finish.

Figure 20.6. Add USB Device

4. To use the USB device in the guest virtual machine, start the guest virtual machine.

20.3.3. USB Redirection

USB re-direction is best used in cases where there is a host physical machine that is running in a data
center. The user connects to his/her guest virtual machine from a local machine or thin client. On this
local machine there is a SPICE client. The user can attach any USB device to the thin client and the
SPICE client will redirect the device to the host physical machine on the data center so it can be used by
the VM that is running on the thin client.

Virtualization Deployment and Administration Guide

292

Procedure 20.3. Redirecting USB devices

1. Open the guest virtual machine's Virtual Machine Details screen.

2. Click Add Hardware

3. In the Add New Virtual Hardware popup, select USB Redirection. Make sure to select Spice
channel from the Type drop-down menu and click Finish.

Figure 20.7. Add New Virtual Hardware window

4. Open the Virtual Machine menu and select Redirect USB device. A pop-up window opens with
a list of USB devices.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

293

Figure 20.8. Select a USB device

5. Select a USB device for redirection by checking its check box and click OK.

20.4. VIRTUAL MACHINE GRAPHICAL CONSOLE

This window displays a guest's graphical console. Guests can use several different protocols to export
their graphical frame buffers: virt-manager supports VNC and SPICE. If your virtual machine is set to
require authentication, the Virtual Machine graphical console prompts you for a password before the
display appears.

Virtualization Deployment and Administration Guide

294

Figure 20.9. Graphical console window

NOTE

VNC is considered insecure by many security experts, however, several changes have
been made to enable the secure usage of VNC for virtualization on Red Hat enterprise
Linux. The guest machines only listen to the local host's loopback address (127.0.0.1).
This ensures only those with shell privileges on the host can access virt-manager and the
virtual machine through VNC. Although virt-manager is configured to listen to other public
network interfaces and alternative methods can be configured, it is not recommended.

Remote administration can be performed by tunneling over SSH which encrypts the
traffic. Although VNC can be configured to access remotely without tunneling over SSH,
for security reasons, it is not recommended. To remotely administer the guest follow the
instructions in: Chapter 19, Remote Management of Guests. TLS can provide enterprise
level security for managing guest and host systems.

Your local desktop can intercept key combinations (for example, Ctrl+Alt+F1) to prevent them from being
sent to the guest machine. You can use the Send key menu option to send these sequences. From the
guest machine window, click the Send key menu and select the key sequence to send. In addition, from
this menu you can also capture the screen output.

SPICE is an alternative to VNC available for Red Hat Enterprise Linux.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

295

20.5. ADDING A REMOTE CONNECTION

This procedure covers how to set up a connection to a remote system using virt-manager.

1. To create a new connection open the File menu and select the Add Connection menu item.

2. The Add Connection wizard appears. Select the hypervisor. For Red Hat Enterprise Linux 7,
systems select QEMU/KVM. Select Local for the local system or one of the remote connection
options and click Connect. This example uses Remote tunnel over SSH, which works on default
installations. For more information on configuring remote connections, refer to Chapter 19,
Remote Management of Guests

Figure 20.10. Add Connection

3. Enter the root password for the selected host when prompted.

A remote host is now connected and appears in the main virt-manager window.

Virtualization Deployment and Administration Guide

296

Figure 20.11. Remote host in the main virt-manager window

20.6. DISPLAYING GUEST DETAILS

You can use the Virtual Machine Monitor to view activity information for any virtual machines on your
system.

To view a virtual system's details:

1. In the Virtual Machine Manager main window, highlight the virtual machine that you want to view.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

297

Figure 20.12. Selecting a virtual machine to display

2. From the Virtual Machine Manager Edit menu, select Virtual Machine Details.

When the Virtual Machine details window opens, there may be a console displayed. Should this
happen, click View and then select Details. The Overview window opens first by default. To
go back to this window, select Overview from the navigation pane on the left hand side.

The Overview view shows a summary of configuration details for the guest.

Virtualization Deployment and Administration Guide

298

Figure 20.13. Displaying guest details overview

3. Select CPUs from the navigation pane on the left hand side. The CPUs view allows you to view or
change the current processor allocation.

It is also possible to increase the number of virtual CPUs (vCPUs) while the virtual machine is
running, which is referred to as hot plugging.

IMPORTANT

Hot unplugging vCPUs is not currently supported in Red Hat Enterprise Linux 7.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

299

Figure 20.14. Processor allocation panel

4. Select Memory from the navigation pane on the left hand side. The Memory view allows you to
view or change the current memory allocation.

Virtualization Deployment and Administration Guide

300

Figure 20.15. Displaying memory allocation

5. Select Boot Options from the navigation pane on the left hand side. The Boot Options view
allows you to view or change the boot options including whether or not the virtual machine starts
when the host boots and the boot device order for the virtual machine.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

301

Figure 20.16. Displaying boot options

6. Each virtual disk attached to the virtual machine is displayed in the navigation pane. click a
virtual disk to modify or remove it.

Virtualization Deployment and Administration Guide

302

Figure 20.17. Displaying disk configuration

7. Each virtual network interface attached to the virtual machine is displayed in the navigation
pane. click a virtual network interface to modify or remove it.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

303

Figure 20.18. Displaying network configuration

20.7. MANAGING SNAPSHOTS

Using virt-manager, it is possible to create, run, and delete guest snapshots. A snapshot is a saved
image of the guest's hard disk, memory, and device state at a single point in time. After a snapshot is
created, the guest can be returned to the snapshot's configuration at any time.

IMPORTANT

Red Hat recommends the use of external snapshots, as they are more flexible and
reliable when handled by other virtualization tools. However, it is currently not possible to
create external snapshots in virt-manager.

To create external snapshots, use the virsh snapshot-create-as command with the
--diskspec vda,snapshot=external option. For more information, see
Section A.13, “Workaround for Creating External Snapshots with libvirt”.

To manage snapshots in virt-manager, open the snapshot management interface by clicking

 on the guest console.

Virtualization Deployment and Administration Guide

304

To create a new snapshot, click under the snapshot list. In the snapshot creation interface,
input the name of the snapshot and, optionally, a description, and click Finish.

CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

305

To revert the guest to a snapshot's configuration, select the snapshot and click

To remove the selected snapshot, click

Virtualization Deployment and Administration Guide

306

WARNING

Creating and loading snapshots while the virtual machine is running (also referred to
as live snapshots) is only supported with qcow2 disk images.

For more in-depth snapshot management, use the virsh snapshot-create command. See
Section 21.41, “Managing Snapshots” for details about managing snapshots with virsh.



CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)

307

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH
VIRSH
virsh is a command-line interface tool for managing guest virtual machines, and works as the primary
means of controlling virtualization on Red Hat Enterprise Linux 7. The virsh command-line tool is built
on the libvirt management API, and can be used to create, deploy, and manage guest virtual machines.
The virsh utility is ideal for creating virtualization administration scripts, and users without root
privileges can use it in read-only mode. The virsh package is installed with yum as part of the libvirt-
client package.

For installation instructions, refer to Section 2.2.1, “Installing Virtualization Packages Manually”. For a
general introduction of virsh, including a practical demonstration, see the Virtualization Getting Started
Guide The remaining sections of this chapter cover the virsh command set in a logical order based on
usage.

NOTE

Note that when using the help or when reading the man pages, the term 'domain' will be
used instead of the term guest virtual machine. This is the term used by libvirt. In cases
where the screen output is displayed and the word 'domain' is used, it will not be switched
to guest or guest virtual machine. In all examples, the guest virtual machine 'guest1' will
be used. You should replace this with the name of your guest virtual machine in all cases.
When creating a name for a guest virtual machine you should use a short easy to
remember integer (0,1,2...), a text string name, or in all cases you can also use the virtual
machine's full UUID.

IMPORTANT

It is important to note which user you are using. If you create a guest virtual machine
using one user, you will not be able to retrieve information about it using another user.
This is especially important when you create a virtual machine in virt-manager. The
default user is root in that case unless otherwise specified. Should you have a case where
you cannot list the virtual machine using the virsh list --all command, it is most
likely due to you running the command using a different user than you used to create the
virtual machine. Refer to Important for more information.

21.1. GUEST VIRTUAL MACHINE STATES AND TYPES

Several virsh commands are affected by the state of the guest virtual machine:

Transient - A transient guest does not survive reboot.

Persistent - A persistent guest virtual machine survives reboot and lasts until it is deleted.

During the life cycle of a virtual machine, libvirt will classify the guest as any of the following states:

Undefined - This is a guest virtual machine that has not been defined or created. As such, libvirt
is unaware of any guest in this state and will not report about guest virtual machines in this state.

Shut off - This is a guest virtual machine which is defined, but is not running. Only persistent
guests can be considered shut off. As such, when a transient guest virtual machine is put into
this state, it ceases to exist.

Virtualization Deployment and Administration Guide

308

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Getting_Started_Guide/

Running - The guest virtual machine in this state has been defined and is currently working. This
state can be used with both persistent and transient guest virtual machines.

Paused - The guest virtual machine's execution on the hypervisor has been suspended, or its
state has been temporarily stored until it is resumed. Guest virtual machines in this state are not
aware they have been suspended and do not notice that time has passed when they are
resumed.

Saved - This state is similar to the paused state, however the guest virtual machine's
configuration is saved to persistent storage. Any guest virtual machine in this state is not aware
it is paused and does not notice that time has passed once it has been restored.

21.2. DISPLAYING THE VIRSH VERSION

The virsh version command displays the current libvirt version and displays information about the
local virsh client. For example:

$ virsh version
Compiled against library: libvirt 1.2.8
Using library: libvirt 1.2.8
Using API: QEMU 1.2.8
Running hypervisor: QEMU 1.5.3

The virsh version --daemon is useful for getting information about the libvirtd version and
package information, including information about the libvirt daemon that is running on the host.

$ virsh version --daemon
Compiled against library: libvirt 1.2.8
Using library: libvirt 1.2.8
Using API: QEMU 1.2.8
Running hypervisor: QEMU 1.5.3
Running against daemon: 1.2.8

21.3. SENDING COMMANDS WITH ECHO

The virsh echo [--shell][--xml] arguments command displays the specified argument in the
specified format. The formats you can use are --shell and --xml. Each argument queried is
displayed separated by a space. Tthe --shell option generates output that is formatted in single
quotes where needed, so it is suitable for copying and pasting into the bash mode as a command. If the
--xml argument is used, the output is formatted for use in an XML file, which can then be saved or used
for guest's configuration.

21.4. CONNECTING TO THE HYPERVISOR WITH VIRSH CONNECT

The virsh connect [hostname-or-URI] [--readonly] command begins a local hypervisor
session using virsh. After the first time you run this command it will run automatically each time the virsh
shell runs. The hypervisor connection URI specifies how to connect to the hypervisor. The most
commonly used URIs are:

qemu:///system - connects locally as the root user to the daemon supervising guest virtual
machines on the KVM hypervisor.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

309

qemu:///session - connects locally as a user to the user's set of guest local machines using
the KVM hypervisor.

lxc:/// - connects to a local Linux container.

The command can be run as follows, with the target guest being specified either either by its machine
name (hostname) or the URL of the hypervisor (the output of the virsh uri command), as shown:

$ virsh uri
qemu:///session

For example, to establish a session to connect to your set of guest virtual machines, with you as the local
user:

$ virsh connect qemu:///session

To initiate a read-only connection, append the above command with --readonly. For more information
on URIs, refer to Remote URIs. If you are unsure of the URI, the virsh uri command will display it:

21.5. DISPLAYING INFORMATION ABOUT A GUEST VIRTUAL
MACHINE AND THE HYPERVISOR

The virsh list command will list guest virtual machines connected to your hypervisor that fit the
search parameter requested. The output of the command has 3 columns in a table. Each guest virtual
machine is listed with its ID, name, and state.

A wide variety of search parameters is available for virsh list. These options are available on the
man page, by running man virsh or by running the virsh list --help command.

NOTE

Note that this if this command only displays guest virtual machines created by the root
user. If it does not display a virtual machine you know you have created, it is probable
you did not create the virtual machine as root.

Guests created using the virt-manager interface are by default created by root.

Example 21.1. How to list all locally connected virtual machines

The following example lists all the virtual machines your hypervisor is connected to. Note that this
command lists both persistent and transient virtual machines.

virsh list --all

Id Name State
--
8 guest1 running
22 guest2 paused
35 guest3 shut off
38 guest4 shut off

Virtualization Deployment and Administration Guide

310

Example 21.2. How to list the inactive guest virtual machines

The following example lists guests that are currently inactive, or not running. Note that the list only
contains persistent virtual machines.

virsh list --inactive

Id Name State
--
35 guest3 shut off
38 guest4 shut off

In addition, the following commands can also be used to display basic information about the hypervisor:

virsh hostname - displays the hypervisor's host name, for example:

virsh hostname
dhcp-2-157.eus.myhost.com

virsh sysinfo - displays the XML representation of the hypervisor's system information, if
available, for example:

virsh sysinfo
<sysinfo type='smbios'>
 <bios>
 <entry name='vendor'>LENOVO</entry>
 <entry name='version'>GJET71WW (2.21)</entry>
[...]

21.6. STARTING, RESUMING, AND RESTORING A VIRTUAL MACHINE

21.6.1. Starting a Guest Virtual Machine

The virsh start domain; [--console] [--paused] [--autodestroy] [--bypass-
cache] [--force-boot] command starts an inactive virtual machine that was already defined but
whose state is inactive since its last managed save state or a fresh boot. By default, if the domain was
saved by the virsh managedsave command, the domain will be restored to its previous state.
Otherwise, it will be freshly booted. The command can take the following arguments and the name of the
virtual machine is required.

--console - will attach the terminal running virsh to the domain's console device. This is
runlevel 3.

--paused - if this is supported by the driver, it will start the guest virtual machine in a paused
state

--autodestroy - the guest virtual machine is automatically destroyed when virsh disconnects

--bypass-cache - used if the guest virtual machine is in the managedsave

--force-boot - discards any managedsave options and causes a fresh boot to occur

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

311

Example 21.3. How to start a virtual machine

The following example starts the guest1 virtual machine that you already created and is currently in
the inactive state. In addition, the command attaches the guest's console to the terminal running virsh:

virsh start guest1 --console
Domain guest1 started
Connected to domain guest1
Escape character is ^]

21.6.2. Configuring a Virtual Machine to be Started Automatically at Boot

The virsh autostart [--disable] domain command will automatically start the guest virtual
machine when the host machine boots. Adding the --disable argument to this command disables
autostart. The guest in this case will not start automatically when the host physical machine boots.

Example 21.4. How to make a virtual machine start automatically when the host physical
machine starts

The following example sets the guest1 virtual machine which you already created to autostart when
the host boots:

virsh autostart guest1

21.6.3. Rebooting a Guest Virtual Machine

Reboot a guest virtual machine using the virsh reboot domain [--mode modename] command.
Remember that this action will only return once it has executed the reboot, so there may be a time lapse
from that point until the guest virtual machine actually reboots. You can control the behavior of the
rebooting guest virtual machine by modifying the on_reboot element in the guest virtual machine's
XML configuration file. By default, the hypervisor attempts to select a suitable shutdown method
automatically. To specify an alternative method, the --mode argument can specify a comma separated
list which includes initctl, acpi, agent, signal. The order in which drivers will try each mode is
undefined, and not related to the order specified in virsh. For strict control over ordering, use a single
mode at a time and repeat the command.

Example 21.5. How to reboot a guest virtual machine

The following example reboots a guest virtual machine named guest1. In this example, the reboot
uses the initctl method, but you can choose any mode that suits your needs.

virsh reboot guest1 --mode initctl

21.6.4. Restoring a Guest Virtual Machine

The virsh restore <file> [--bypass-cache] [--xml /path/to/file] [--running]
[--paused] command restores a guest virtual machine previously saved with the virsh save
command. Refer to Section 21.7.1, “Saving a Guest Virtual Machine's Configuration” for information on

Virtualization Deployment and Administration Guide

312

the virsh save command. The restore action restarts the saved guest virtual machine, which may take
some time. The guest virtual machine's name and UUID are preserved, but the ID will not necessarily
match the ID that the virtual machine had when it was saved.

The virsh restore command can take the following arguments:

--bypass-cache - causes the restore to avoid the file system cache but note that using this
flag may slow down the restore operation.

--xml - this argument must be used with an XML file name. Although this argument is usually
omitted, it can be used to supply an alternative XML file for use on a restored guest virtual
machine with changes only in the host-specific portions of the domain XML. For example, it can
be used to account for the file naming differences in underlying storage due to disk snapshots
taken after the guest was saved.

--running - overrides the state recorded in the save image to start the guest virtual machine
as running.

--paused - overrides the state recorded in the save image to start the guest virtual machine as
paused.

Example 21.6. How to restore a guest virtual machine

The following example restores the guest virtual machine and its running configuration file guest1-
config.xml:

virsh restore guest1-config.xml --running

21.6.5. Resuming a Guest Virtual Machine

The virsh resume domain command restarts the CPUs of a domain that was suspended. This
operation is immediate. The guest virtual machine resumes execution from the point it was suspended.
Note that this action will not resume a guest virtual machine that has been undefined. This action will not
resume transient virtual machines and will only work on persistent virtual machines.

Example 21.7. How to restore a suspended guest virtual machine

The following example restores the guest1 virtual machine:

virsh resume guest1

21.7. MANAGING A VIRTUAL MACHINE CONFIGURATION

This section provides information about managing a virtual machine configuration.

21.7.1. Saving a Guest Virtual Machine's Configuration

The virsh save [--bypass-cache] domain file [--xml string] [--running] [--
paused] [--verbose] command stops the specified domain, saving the current state of the guest
virtual machine's system memory to a specified file. This may take a considerable amount of time,

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

313

depending on the amount of memory in use by the guest virtual machine. You can restore the state of
the guest virtual machine with the virsh restore (Section 21.6.4, “Restoring a Guest Virtual
Machine”) command.

The difference between the virsh save command and the virsh suspend command, is that the
virsh suspend stops the domain CPUs, but leaves the domain's qemu process running and its
memory image resident in the host system. This memory image will be lost if the host system is
rebooted.

The virsh save command stores the state of the domain on the hard disk of the host system and
terminates the qemu process. This enables restarting the domain from the saved state.

You can monitor the process of virsh save with the virsh domjobinfo command and cancel it
with the virsh domjobabort command.

The virsh save command can take the following arguments:

--bypass-cache - causes the restore to avoid the file system cache but note that using this
flag may slow down the restore operation.

--xml - this argument must be used with an XML file name. Although this argument is usually
omitted, it can be used to supply an alternative XML file for use on a restored guest virtual
machine with changes only in the host-specific portions of the domain XML. For example, it can
be used to account for the file naming differences in underlying storage due to disk snapshots
taken after the guest was saved.

--running - overrides the state recorded in the save image to start the guest virtual machine
as running.

--paused - overrides the state recorded in the save image to start the guest virtual machine as
paused.

--verbose - displays the progress of the save.

Example 21.8. How to save a guest virtual machine running configuration

The following example saves the guest1 virtual machine's running configuration to the guest1-
config.xml file:

virsh save guest1 guest1-config.xml --running

21.7.2. Defining a Guest Virtual Machine with an XML File

The virsh define filename command defines a guest virtual machine from an XML file. The guest
virtual machine definition in this case is registered but not started. If the guest virtual machine is already
running, the changes the changes will take effect once the domain is shut down and started again.

Example 21.9. How to create a guest virtual machine from an XML file

The following example creates a virtual machine from the pre-existing guest1-config.xml XML file,
which contains the configuration for the virtual machine:

virsh define guest1-config.xml

Virtualization Deployment and Administration Guide

314

21.7.3. Updating the XML File That will be Used for Restoring a Guest Virtual
Machine

NOTE

This command should only be used to recover from a situation where the guest virtual
machine does not run properly. It is not meant for general use.

The virsh save-image-define filename [--xml /path/to/file] [--running] [--
paused] command updates the guest virtual machine's XML file that will be used when the virtual
machine is restored used during the virsh restore command. The --xml argument must be an XML
file name containing the alternative XML elements for the guest virtual machine's XML. For example, it
can be used to account for the file naming differences resulting from creating disk snapshots of
underlying storage after the guest was saved. The save image records if the guest virtual machine
should be restored to a running or paused state. Using the arguments --running or --paused
dictates the state that is to be used.

Example 21.10. How to save the guest virtual machine's running configuration

The following example updates the guest1-config.xml configuration file with the state of the
corresponding running guest:

virsh save-image-define guest1-config.xml --running

21.7.4. Extracting the Guest Virtual Machine XML File

NOTE

This command should only be used to recover from a situation where the guest virtual
machine does not run properly. It is not meant for general use.

The virsh save-image-dumpxml file --security-info command will extract the guest virtual
machine XML file that was in effect at the time the saved state file (used in the virsh save command)
was referenced. Using the --security-info argument includes security sensitive information in the
file.

Example 21.11. How to pull the XML configuration from the last save

The following example triggers a dump of the configuration file that was created the last time the
guest virtual machine was saved. In this example, the resulting dump file is named guest1-config-
xml:

virsh save-image-dumpxml guest1-config.xml

21.7.5. Editing the Guest Virtual Machine Configuration

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

315

NOTE

This command should only be used to recover from a situation where the guest virtual
machine does not run properly. It is not meant for general use.

The virsh save-image-edit <file> [--running] [--paused] command edits the XML
configuration file that was created by the virsh save command. Refer to Section 21.7.1, “Saving a
Guest Virtual Machine's Configuration” for information on the virsh save command.

When the guest virtual machine is saved, the resulting image file will indicate if the virtual machine
should be restored to a --running or --paused state. Without using these arguments in the save-
image-edit command, the state is determined by the image file itself. By selecting --running (to
select the running state) or --paused (to select the paused state) you can overwrite the state that
virsh restore should use.

Example 21.12. How to edit a guest virtual machine's configuration and restore the machine to
running state

The following example opens a guest virtual machine's configuration file, named guest1-config.xml,
for editing in your default editor. When the edits are saved, the virtual machine boots with the new
settings:

virsh save-image-edit guest1-config.xml --running

21.8. SHUTTING OFF, SHUTTING DOWN, REBOOTING, AND FORCING
A SHUTDOWN OF A GUEST VIRTUAL MACHINE

21.8.1. Shutting down a Guest Virtual Machine

The virsh shutdown domain [--mode modename] command shuts down a guest virtual machine.
You can control the behavior of how the guest virtual machine reboots by modifying the on_shutdown
parameter in the guest virtual machine's configuration file. Any change to the on_shutdown parameter
will only take effect after the domain has been shutdown and restarted.

The virsh shutdown command command can take the following optional argument:

--mode chooses the shutdown mode. This can be either acpi, agent, initctl, signal, or
paravirt.

Example 21.13. How to shutdown a guest virtual machine

The following example shuts down the guest1 virtual machine using the acpi mode:

virsh shutdown guest1 --mode acpi
Domain guest1 is being shutdown

21.8.2. Suspending a Guest Virtual Machine

The virsh suspend domain command suspends a guest virtual machine.

Virtualization Deployment and Administration Guide

316

When a guest virtual machine is in a suspended state, it consumes system RAM but not processor
resources. Disk and network I/O does not occur while the guest virtual machine is suspended. This
operation is immediate and the guest virtual machine can only be restarted with the virsh resume
command. Running this command on a transient virtual machine will delete it.

Example 21.14. How to suspend a guest virtual machine

The following example suspends the guest1 virtual machine:

virsh suspend guest1

21.8.3. Resetting a Virtual Machine

The virsh reset domain resets the guest virtual machine immediately without any guest shutdown.
A reset emulates the reset button on a machine, where all guest hardware sees the RST line and re-
initializes the internal state. Note that without any guest virtual machine OS shutdown, there are risks for
data loss.

NOTE

Resetting a virtual machine does not apply any pending domain configuration changes.
Changes to the domain's configuration only take effect after a complete shutdown and
restart of the domain.

Example 21.15. How to reset a guest virtual machine

The following example resets the guest1 virtual machines:

virsh reset guest1

21.8.4. Stopping a Running Guest Virtual Machine in Order to Restart It Later

The virsh managedsave domain --bypass-cache --running | --paused | --verbose
command saves and destroys (stops) a running guest virtual machine so that it can be restarted from the
same state at a later time. When used with a virsh start command it is automatically started from
this save point. If it is used with the --bypass-cache argument the save will avoid the filesystem
cache. Note that this option may slow down the save process speed and using the --verbose option
displays the progress of the dump process. Under normal conditions, the managed save will decide
between using the running or paused state as determined by the state the guest virtual machine is in
when the save is done. However, this can be overridden by using the --running option to indicate that
it must be left in a running state or by using --paused option which indicates it is to be left in a paused
state. To remove the managed save state, use the virsh managedsave-remove command which will
force the guest virtual machine to do a full boot the next time it is started. Note that the entire managed
save process can be monitored using the domjobinfo command and can also be canceled using the
domjobabort command.

Example 21.16. How to stop a running guest and save its configuration

The following example stops the guest1 virtual machine and saves its running configuration setting so
that you can restart it:

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

317

virsh managedsave guest1 --running

21.9. REMOVING AND DELETING A VIRTUAL MACHINE

21.9.1. Undefining a Virtual Machine

The virsh undefine domain [--managed-save] [storage] [--remove-all-storage]
[--wipe-storage] [--snapshots-metadata] [--nvram] command undefines a domain. If
domain is inactive, the configuration is removed completely. If the domain is active (running), it is
converted to a transient domain. When the guest virtual machine becomes inactive, the configuration is
removed completely.

This command can take the following arguments:

--managed-save - this argument guarantees that any managed save image is also cleaned
up. Without using this argument, attempts to undefine a guest virtual machine with a managed
save will fail.

--snapshots-metadata - this argument guarantees that any snapshots (as shown with
snapshot-list) are also cleaned up when undefining an inactive guest virtual machine. Note
that any attempts to undefine an inactive guest virtual machine with snapshot metadata will fail.
If this argument is used and the guest virtual machine is active, it is ignored.

--storage - using this argument requires a comma separated list of volume target names or
source paths of storage volumes to be removed along with the undefined domain. This action
will undefine the storage volume before it is removed. Note that this can only be done with
inactive guest virtual machines and that this will only work with storage volumes that are
managed by libvirt.

--remove-all-storage - in addition to undefining the guest virtual machine, all associated
storage volumes are deleted. If you want to delete the virtual machine, choose this option only if
there are no other virtual machines using the same associated storage. An alternative way is
with the virsh vol-delete. Refer to Section 21.31, “Deleting Storage Volumes” for more
information.

--wipe-storage - in addition to deleting the storage volume, the contents are wiped.

Example 21.17. How to delete a guest virtual machine and delete its storage volumes

The following example undefines the guest1 virtual machine and remove all associated storage
volumes. An undefined guest becomes transient and thus is deleted after it shuts down:

virsh undefine guest1 --remove-all-storage

21.9.2. Forcing a Guest Virtual Machine to Stop

NOTE

This command should only be used when you cannot shut down the virtual guest machine
by any other method.

Virtualization Deployment and Administration Guide

318

The virsh destroy command initiates an immediate ungraceful shutdown and stops the specified
guest virtual machine. Using virsh destroy can corrupt guest virtual machine file systems. Use the
virsh destroy command only when the guest virtual machine is unresponsive. The virsh destroy
command with the --graceful option attempts to flush the cache for the disk image file before
powering off the virtual machine.

Example 21.18. How to immediately shutdown a guest virtual machine with a hard shutdown

The following example immediately shuts down the guest1 virtual machine, probably because it is
unresponsive:

virsh destroy guest1

You may want to follow this with the virsh undefine command. Refer to Example 21.17, “How to
delete a guest virtual machine and delete its storage volumes”

21.10. CONNECTING THE SERIAL CONSOLE FOR THE GUEST
VIRTUAL MACHINE

The virsh console domain [--devname devicename] [--force] [--safe] command
connects the virtual serial console for the guest virtual machine. This is very useful for example for
guests that do not provide VNC or SPICE protocols (and thus does not offer video display for GUI tools)
and that do not have network connection (and thus cannot be interacted with using SSH).

The optional --devname parameter refers to the device alias of an alternate console, serial, or parallel
device configured for the guest virtual machine. If this parameter is omitted, the primary console will be
opened. If the --safe option is specified, the connection is only attempted if the driver supports safe
console handling. This option specifies that the server has to ensure exclusive access to console
devices. Optionally, the force option may be specified, which requests to disconnect any existing
sessions, such as in the case of a broken connection.

Example 21.19. How to start a guest virtual machine in console mode

The following example starts a previously created guest1 virtual machine so that it connects to the
serial console using safe console handling:

virsh console guest1 --safe

21.11. INJECTING NON-MASKABLE INTERRUPTS

The virsh inject-nmi domain injects a non-maskable interrupt (NMI) message to the guest virtual
machine. This is used when response time is critical, such as during non-recoverable hardware errors. In
addition, virsh inject-nmi is useful for triggering a crashdump in Windows guests.

Example 21.20. How to inject an NMI to the guest virtual machine

The following example sends an NMI to the guest1 virtual machine:

virsh inject-nmi guest1

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

319

21.12. RETRIEVING INFORMATION ABOUT YOUR VIRTUAL MACHINE

21.12.1. Displaying Device Block Statistics

By default, the virsh domblkstat command displays the block statistics for the first block device
defined for the domain. To view statistics of other block devices, use the virsh domblklist domain
command to list all block devices, and then select a specific block device and display it by specifying
either the Target or Source name from the virsh domblklist command output after the domain
name. Note that not every hypervisor can display every field. To make sure that the output is presented
in its most legible form use the --human argument.

Example 21.21. How to display block statistics for a guest virtual machine

The following example displays the devices that are defined for the guest1 virtual machine, and then
lists the block statistics for that device.

virsh domblklist guest1

Target Source
--
vda /VirtualMachines/guest1.img
hdc -

virsh domblkstat guest1 vda --human
Device: vda
 number of read operations: 174670
 number of bytes read: 3219440128
 number of write operations: 23897
 number of bytes written: 164849664
 number of flush operations: 11577
 total duration of reads (ns): 1005410244506
 total duration of writes (ns): 1085306686457
 total duration of flushes (ns): 340645193294

21.12.2. Retrieving Network Interface Statistics

The virsh domifstat domain interface-device command displays the network interface
statistics for the specified device running on a given guest virtual machine.

To determine which interface devices are defined for the domain, use the virsh domiflist command
and use the output in the Interface column.

Example 21.22. How to display networking statistics for a guest virtual machine

The following example obtains the networking interface defined for the guest1 virtual machine, and
then displays the networking statistics on the obtained interface (macvtap0):

virsh domiflist guest1
Interface Type Source Model MAC

macvtap0 direct em1 rtl8139 12:34:00:0f:8a:4a

Virtualization Deployment and Administration Guide

320

virsh domifstat guest1 macvtap0
macvtap0 rx_bytes 51120
macvtap0 rx_packets 440
macvtap0 rx_errs 0
macvtap0 rx_drop 0
macvtap0 tx_bytes 231666
macvtap0 tx_packets 520
macvtap0 tx_errs 0
macvtap0 tx_drop 0

21.12.3. Modifying the Link State of a Guest Virtual Machine's Virtual Interface

The virsh domif-setlink domain interface-device state command configures the status
of the specified interface device link state as either up or down. To determine which interface devices
are defined for the domain, use the virsh domiflist command and use either the Interface or
MAC column as the interface device option. By default, virsh domif-setlink changes the link state
for the running domain. To modify the domain's persistent configuration use the --config argument.

Example 21.23. How to enable a guest virtual machine interface

The following example shows determining the interface device of the rhel7 domain, then setting the
link as down, and finally as up:

virsh domiflist rhel7
Interface Type Source Model MAC

vnet0 network default virtio 52:54:00:01:1d:d0

virsh domif-setlink rhel7 vnet0 down
Device updated successfully

virsh domif-setlink rhel7 52:54:00:01:1d:d0 up
Device updated successfully

21.12.4. Listing the Link State of a Guest Virtual Machine's Virtual Interface

The virsh domif-getlink domain interface-device command retrieves the specified
interface device link state. To determine which interface devices are defined for the domain, use the
virsh domiflist command and use either the Interface or MAC column as the interface device
option. By default, virsh domif-getlink retrieves the link state for the running domain. To retrieve
the domain's persistent configuration use the --config option.

Example 21.24. How to display the link state of a guest virtual machine's interface

The following example shows determining the interface device of the rhel7 domain, then determining
its state as up, then changing the state to down, and then verifying the change was successful:

virsh domiflist rhel7
Interface Type Source Model MAC

vnet0 network default virtio 52:54:00:01:1d:d0

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

321

virsh domif-getlink rhel7 52:54:00:01:1d:d0
52:54:00:01:1d:d0 up

virsh domif-setlink rhel7 vnet0 down
Device updated successfully

virsh domif-getlink rhel7 vnet0
vnet0 down

21.12.5. Setting Network Interface Bandwidth Parameters

The virsh domiftune domain interface-device command either retrieves or sets the specified
domain's interface bandwidth parameters. To determine which interface devices are defined for the
domain, use the virsh domiflist command and use either the Interface or MAC column as the
interface device option. The following format should be used:

virsh domiftune domain interface [--inbound] [--outbound] [--config] [--
live] [--current]

The --config, --live, and --current options are described in Section 21.45, “Setting Schedule
Parameters”. If the --inbound or the --outbound option is not specified, virsh domiftune queries
the specified network interface and displays the bandwidth settings. By specifying --inbound or --
outbound, or both, and the average, peak, and burst values, virsh domiftune sets the bandwidth
settings. At minimum the average value is required. In order to clear the bandwidth settings, provide 0
(zero). For a description of the average, peak, and burst values, refer to Section 21.27.6.2, “Attaching
interface devices”.

Example 21.25. How to set the guest virtual machine network interface parameters

The following example sets eth0 parameters for the guest virtual machine named guest1:

virsh domiftune guest1 eth0 outbound --live

21.12.6. Retrieving Memory Statistics

The virsh dommemstat domain [<period in seconds>] [--config] [--live] [--
current] command displays the memory statistics for a running guest virtual machine. Using the
optional period switch requires a time period in seconds. Setting this option to a value larger than 0 will
allow the balloon driver to return additional statistics which will be displayed by running subsequent
dommemstat commands. Setting the period option to 0, stops the balloon driver collection but does not
clear the statistics already in the balloon driver. You cannot use the --live, --config, or --current
options without also setting the period option. If the --live option is specified, only the guest's running
statistics will be collected. If the --config option is used, it will collect the statistics for a persistent
guest, but only after the next boot. If the --current option is used, it will collect the current statistics.

Both the --live and --config options may be used but --current is exclusive. If no flag is
specified, the guest's state will dictate the behavior of the statistics collection (running or not).

Example 21.26. How to collect memory statistics for a running guest virtual machine

Virtualization Deployment and Administration Guide

322

The following example shows displaying the memory statistics in the rhel7 domain:

virsh dommemstat rhel7
actual 1048576
swap_in 0
swap_out 0
major_fault 2974
minor_fault 1272454
unused 246020
available 1011248
rss 865172

21.12.7. Displaying Errors on Block Devices

The virsh domblkerror domain command lists all the block devices in the error state and the error
detected on each of them. This command is best used after a virsh domstate command reports that
a guest virtual machine is paused due to an I/O error.

Example 21.27. How to display the block device errors for a virtual machine

The following example displays the block device errors for the guest1 virtual machine:

virsh domblkerror guest1

21.12.8. Displaying the Block Device Size

The virsh domblkinfo domain command lists the capacity, allocation, and physical block sizes for
a specific block device in the virtual machine. Use the virsh domblklist command to list all block devices
and then choose to display a specific block device by specifying either the Target or Source name from
the virsh domblklist output after the domain name.

Example 21.28. How to display the block device size

In this example, you list block devices on the rhel7 virtual machine, and then display the block size for
each of the devices.

virsh domblklist rhel7
Target Source
--
vda /home/vm-images/rhel7-os
vdb /home/vm-images/rhel7-data

virsh domblkinfo rhel7 vda
Capacity: 10737418240
Allocation: 8211980288
Physical: 10737418240

virsh domblkinfo rhel7 /home/vm-images/rhel7-data
Capacity: 104857600
Allocation: 104857600
Physical: 104857600

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

323

21.12.9. Displaying the Block Devices Associated with a Guest Virtual Machine

The virsh domblklist domain [--inactive] [--details] command displays a table of all
block devices that are associated with the specified guest virtual machine.

If --inactive is specified, the result will show the devices that are to be used at the next boot and will
not show those that are currently running in use by the running guest virtual machine. If --details is
specified, the disk type and device value will be included in the table. The information displayed in this
table can be used with other commands that require a block-device to be provided, such as virsh
domblkinfo and virsh snapshot-create. The disk Target or Source contexts can also be used
when generating the xmlfile context information for the virsh snapshot-create command.

Example 21.29. How to display the block devices that are associated with a virtual machine

The following example displays details about block devices associated with the rhel7 virtual machine.

virsh domblklist rhel7 --details
Type Device Target Source
--
file disk vda /home/vm-images/rhel7-os
file disk vdb /home/vm-images/rhel7-data

21.12.10. Displaying Virtual Interfaces Associated with a Guest Virtual Machine

The virsh domblklist domain command displays a table of all the virtual interfaces that are
associated with the specified domain. The virsh domiflist command requires the name of the
virtual machine (or domain), and optionally can take the --inactive argument. The latter retrieves the
inactive rather than the running configuration, which is retrieved with the default setting. If --inactive
is specified, the result shows devices that are to be used at the next boot, and does not show devices
that are currently in use by the running guest. Virsh commands that require a MAC address of a virtual
interface (such as detach-interface, domif-setlink, domif-getlink, domifstat, and
domiftune) accept the output displayed by this command.

Example 21.30. How to display the virtual interfaces associated with a guest virtual machine

The following example displays the virtual interfaces that are associated with the rhel7 virtual
machine, and then displays the network interface statistics for the vnet0 device.

virsh domiflist rhel7
Interface Type Source Model MAC

vnet0 network default virtio 52:54:00:01:1d:d0

virsh domifstat rhel7 vnet0
vnet0 rx_bytes 55308
vnet0 rx_packets 969
vnet0 rx_errs 0
vnet0 rx_drop 0
vnet0 tx_bytes 14341

Virtualization Deployment and Administration Guide

324

vnet0 tx_packets 148
vnet0 tx_errs 0
vnet0 tx_drop 0

21.13. WORKING WITH SNAPSHOTS

21.13.1. Shortening a Backing Chain by Copying the Data

This section demonstrates how to use the virsh blockcommit domain <path> [<bandwidth>]
[<base>] [--shallow] [<top>] [--active] [--delete] [--wait] [--verbose] [--
timeout <number>] [--pivot] [--keep-overlay] [--async] [--keep-relative]
command to shorten a backing chain. The command has many options, which are listed in the help
menu or man page.

The virsh blockcommit command copies data from one part of the chain down into a backing file,
allowing you to pivot the rest of the chain in order to bypass the committed portions. For example,
suppose this is the current state:

 base ← snap1 ← snap2 ← active.

Using virsh blockcommit moves the contents of snap2 into snap1, allowing you to delete snap2
from the chain, making backups much quicker.

Procedure 21.1. How to shorten a backing chain

Enter the following command, replacing guest1 with the name of your guest virtual machine and
disk1 with the name of your disk.

virsh blockcommit guest1 disk1 --base snap1 --top snap2 --wait --
verbose

The contents of snap2 are moved into snap1, resulting in:

base ← snap1 ← active. Snap2 is no longer valid and can be deleted

WARNING

virsh blockcommit will corrupt any file that depends on the --base
argument (other than files that depended on the --top argument, as those
files now point to the base). To prevent this, do not commit changes into
files shared by more than one guest. The --verbose option will allow the
progress to be printed on the screen.

21.13.2. Shortening a Backing Chain by Flattening the Image

virsh blockpull can be used in in the following applications:



CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

325

1. Flattens an image by populating it with data from its backing image chain. This makes the image
file self-contained so that it no longer depends on backing images and looks like this:

Before: base.img ← active

After: base.img is no longer used by the guest and Active contains all of the data.

2. Flattens part of the backing image chain. This can be used to flatten snapshots into the top-level
image and looks like this:

Before: base ← sn1 ←sn2 ← active

After: base.img ← active. Note that active now contains all data from sn1 and sn2, and
neither sn1 nor sn2 are used by the guest.

3. Moves the disk image to a new file system on the host. This is allows image files to be moved
while the guest is running and looks like this:

Before (The original image file): /fs1/base.vm.img

After: /fs2/active.vm.qcow2 is now the new file system and /fs1/base.vm.img is no
longer used.

4. Useful in live migration with post-copy storage migration. The disk image is copied from the
source host to the destination host after live migration completes.

In short this is what happens: Before:/source-host/base.vm.img After:/destination-
host/active.vm.qcow2./source-host/base.vm.img is no longer used.

Procedure 21.2. How to shorten a backing chain by flattening the data

1. It may be helpful to create a snapshot prior to running virsh blockpull. To do so, use the
virsh snapshot-create-as command. In the following example, replace guest1 with the
name of your guest virtual machine, and snap1 with the name of your snapshot.

virsh snapshot-create-as guest1 snap1 --disk-only

2. If the chain looks like this: base ← snap1 ← snap2 ← active, enter the following command,
replacing guest1 with the name of your guest virtual machine and path1 with the source path to
your disk (/home/username/VirtualMachines/*, for example).

virsh blockpull guest1 path1

This command makes snap1 the backing file of active, by pulling data from snap2 into active
resulting in: base ← snap1 ← active.

3. Once the virsh blockpull is complete, the libvirt tracking of the snapshot that created the
extra image in the chain is no longer useful. Delete the tracking on the outdated snapshot with
this command, replacing guest1 with the name of your guest virtual machine and snap1 with the
name of your snapshot.

virsh snapshot-delete guest1 snap1 --metadata

Additional applications of virsh blockpull can be performed as follows:

Virtualization Deployment and Administration Guide

326

Example 21.31. How to flatten a single image and populate it with data from its backing image
chain

The following example flattens the vda virtual disk on guest guest1 and populates the image with data
from its backing image chain, waiting for the populate action to be complete.

virsh blockpull guest1 vda --wait

Example 21.32. How to flatten part of the backing image chain

The following example flattens the vda virtual disk on guest guest1 based on the /path/to/base.img
disk image.

virsh blockpull guest1 vda /path/to/base.img --base --wait

Example 21.33. How to move the disk image to a new file system on the host

To move the disk image to a new file system on the host, run the following two commands. In each
command replace guest1 with the name of your guest virtual machine and disk1 with the name of
your virtual disk. Change as well the XML file name and path to the location and name of the
snapshot:

virsh snapshot-create guest1 --xmlfile /path/to/snap1.xml --disk-only

virsh blockpull guest1 disk1 --wait

Example 21.34. How to use live migration with post-copy storage migration

To use live migration with post-copy storage migration enter the following commands:

On the destination enter the following command replacing the backing file with the name and location
of the backing file on the host.

qemu-img create -f qcow2 -o backing_file=/source-host/vm.img
/destination-host/vm.qcow2

On the source enter the following command, replacing guest1 with the name of your guest virtual
machine:

virsh migrate guest1

On the destination, enter the following command, replacing guest1 with the name of your guest virtual
machine and disk1 with the name of your virtual disk:

virsh blockpull guest1 disk1 --wait

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

327

21.13.3. Changing the Size of a Guest Virtual Machine's Block Device

The virsh blockresize command can be used to resize a block device of a guest virtual machine
while the guest virtual machine is running, using the absolute path of the block device, which also
corresponds to a unique target name (<target dev="name"/>) or source file (<source
file="name"/>). This can be applied to one of the disk devices attached to guest virtual machine (you
can use the command virsh domblklist to print a table showing the brief information of all block
devices associated with a given guest virtual machine).

NOTE

Live image resizing will always resize the image, but may not immediately be picked up by
guests. With recent guest kernels, the size of virtio-blk devices is automatically updated
(older kernels require a guest reboot). With SCSI devices, it is required to manually trigger
a re-scan in the guest with the command, echo >
/sys/class/scsi_device/0:0:0:0/device/rescan. In addition, with IDE it is
required to reboot the guest before it picks up the new size.

Example 21.35. How to resize the guest virtual machine block device

The following example resizes the guest1 virtual machine's block device to 90 bytes:

virsh blockresize guest1 90 B

21.14. DISPLAYING A URI FOR CONNECTION TO A GRAPHICAL
DISPLAY

Running the virsh domdisplay command will output a URI that can then be used to connect to the
graphical display of the guest virtual machine via VNC, SPICE, or RDP. The optional --type can be
used to specify the graphical display type. If the argument --include-password is used, the SPICE
channel password will be included in the URI.

Example 21.36. How to display the URI for SPICE

The following example displays the URI for SPICE, which is the graphical display that the virtual
machine guest1 is using:

virsh domdisplay --type spice guest1
spice://192.0.2.1:5900

For more information about connection URIs, see the libvirt upstream pages.

21.15. DISPLAYING THE IP ADDRESS AND PORT NUMBER FOR THE
VNC DISPLAY

The virsh vncdisplay command returns the IP address and port number of the VNC display for the
specified guest virtual machine. If the information is unavailable for the guest, the exit code 1 is
displayed.

Virtualization Deployment and Administration Guide

328

http://libvirt.org/uri.html

Note that for this command to work, VNC has to be specified as a graphics type in the devices element
of the guest's XML file. For further information, see Section 24.18.12, “Graphical Framebuffers”.

Example 21.37. How to display the IP address and port number for VNC

The following example displays the port number for the VNC display of the guest1 virtual machine:

virsh vncdisplay guest1
127.0.0.1:0

21.16. DISCARDING BLOCKS NOT IN USE

The virsh domfstrim domain [--minimum bytes] [--mountpoint mountPoint]
command invokes the fstrim utility on all mounted file systems within a specified running guest virtual
machine. This discards blocks not in use by the file system. If the argument --minimum is used, an
amount in bytes must be specified. This amount will be sent to the guest kernel as its length of
contiguous free range. Values smaller than this amount may be ignored. Increasing this value will create
competition with file systems with badly fragmented free space. Note that not all blocks in this case are
discarded. The default minimum is zero which means that every free block is discarded. If you increase
this value to greater than zero, the fstrim operation will complete more quickly for file systems with badly
fragmented free space, although not all blocks will be discarded. If a user only wants to trim one specific
mount point, the --mountpoint argument should be used and a mount point should be specified.

Example 21.38. How to discard blocks not in use

The following example trims the file system running on the guest virtual machine named guest1:

virsh domfstrim guest1 --minimum 0

21.17. GUEST VIRTUAL MACHINE RETRIEVAL COMMANDS

21.17.1. Displaying the Host Physical Machine Name

The virsh domhostname domain command displays the specified guest virtual machine's physical
host name provided the hypervisor can publish it.

Example 21.39. How to display the host physical machine name

The following example displays the host physical machine name for the guest1 virtual machine, if the
hypervisor makes it available:

virsh domhostname guest1

21.17.2. Displaying General Information about a Virtual Machine

The virsh dominfo domain command displays basic information about a specified guest virtual
machine. This command may also be used with the option [--domain] guestname.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

329

Example 21.40. How to display general information about the guest virtual machine

The following example displays general information about the guest virtual machine named guest1:

virsh dominfo guest1
Id: 8
Name: guest1
UUID: 90e0d63e-d5c1-4735-91f6-20a32ca22c40
OS Type: hvm
State: running
CPU(s): 1
CPU time: 271.9s
Max memory: 1048576 KiB
Used memory: 1048576 KiB
Persistent: yes
Autostart: disable
Managed save: no
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:c422,c469 (enforcing)

21.17.3. Displaying a Virtual Machine's ID Number

Although virsh list includes the ID in its output, the virsh domid domain>|<ID displays the ID
for the guest virtual machine, provided it is running. An ID will change each time you run the virtual
machine. If guest virtual machine is shut off, the machine name will be displayed as a series of dashes ('-
----'). This command may also be used with the [--domain guestname] option.

Example 21.41. How to display a virtual machine's ID number

In order to run this command and receive any usable output, the virtual machine should be running.
The following example produces the ID number of the guest1 virtual machine:

virsh domid guest1
8

21.17.4. Aborting Running Jobs on a Guest Virtual Machine

The virsh domjobabort domain command aborts the currently running job on the specified guest
virtual machine. This command may also be used with the [--domain guestname] option.

Example 21.42. How to abort a running job on a guest virtual machine

In this example, there is a job running on the guest1 virtual machine that you want to abort. When
running the command, change guest1 to the name of your virtual machine:

virsh domjobabort guest1

21.17.5. Displaying Information about Jobs Running on the Guest Virtual Machine

Virtualization Deployment and Administration Guide

330

The virsh domjobinfo domain command displays information about jobs running on the specified
guest virtual machine, including migration statistics. This command may also be used with the [--
domain guestname] option, or with the --completed option to return information on the statistics of
a recently completed job.

Example 21.43. How to display statistical feedback

The following example lists statistical information about the guest1 virtual machine:

virsh domjobinfo guest1
Job type: Unbounded
Time elapsed: 1603 ms
Data processed: 47.004 MiB
Data remaining: 658.633 MiB
Data total: 1.125 GiB
Memory processed: 47.004 MiB
Memory remaining: 658.633 MiB
Memory total: 1.125 GiB
Constant pages: 114382
Normal pages: 12005
Normal data: 46.895 MiB
Expected downtime: 0 ms
Compression cache: 64.000 MiB
Compressed data: 0.000 B
Compressed pages: 0
Compression cache misses: 12005
Compression overflows: 0

21.17.6. Displaying the Guest Virtual Machine's Name

The virsh domname domainID command displays the name guest virtual machine name, given its ID
or UUID. Although the virsh list --all command will also display the guest virtual machine's
name, this command only lists the guest's name.

Example 21.44. How to display the name of the guest virtual machine

The following example displays the name of the guest virtual machine with domain ID 8:

virsh domname 8
guest1

21.17.7. Displaying the Virtual Machine's State

The virsh domstate domain command displays the state of the given guest virtual machine. Using
the --reason argument will also display the reason for the displayed state. This command may also be
used with the [--domain guestname] option, as well as the --reason option, which displays the
reason for the state. If the command reveals an error, you should run the command virsh
domblkerror. Refer to Section 21.12.7, “Displaying Errors on Block Devices” for more details.

Example 21.45. How to display the guest virtual machine's current state

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

331

The following example displays the current state of the guest1 virtual machine:

virsh domstate guest1
running

21.17.8. Displaying the Connection State to the Virtual Machine

virsh domcontrol domain displays the state of an interface to the hypervisor that is used to control
a specified guest virtual machine. For states that are not OK or Error, it will also print the number of
seconds that have elapsed since the control interface entered the displayed state.

Example 21.46. How to display the guest virtual machine's interface state

The following example displays the current state of the guest1 virtual machine's interface.

virsh domcontrol guest1
ok

21.18. CONVERTING QEMU ARGUMENTS TO DOMAIN XML

The virsh domxml-from-native command provides a way to convert an existing set of QEMU
arguments into a Domain XML configuration file that can then be used by libvirt. Note that this command
is intended to be used only to convert existing QEMU guests previously started from the command line,
in order to enable them to be managed through libvirt. Therefore, the method described here should not
be used to create new guests from scratch. New guests should be created using either virsh, virt-install,
or virt-manager. Additional information can be found on the libvirt upstream website.

Procedure 21.3. How to convert a QEMU guest to libvirt

1. Start with a QEMU guest with a arguments file (file type *.args), named demo.args in this
example:

$ cat demo.args
LC_ALL=C
PATH=/bin
HOME=/home/test
USER=test
LOGNAME=test /usr/bin/qemu -S -M pc -m 214 -smp 1 -nographic -
monitor pty -no-acpi -boot c -hda /dev/HostVG/QEMUGuest1 -net none -
serial none -parallel none -usb

2. To convert this file into a domain XML file so that the guest can be managed by libvirt, enter the
following command. Remember to replace qemu-guest1 with the name of your guest virtual
machine and demo.args with the filename of your QEMU args file.

virsh domxml-from-native qemu-guest1 demo.args

This command turns the demo.args file into the following domain XML file:

Virtualization Deployment and Administration Guide

332

http://libvirt.org/drvqemu.html#xmlimport

Figure 21.1. Guest virtual machine new configuration file

21.19. CREATING A DUMP FILE OF A GUEST VIRTUAL MACHINE'S
CORE USING VIRSH DUMP

One of the methods of troubleshooting guest virtual machines (in addition to kdump and pvpanic) is
using the virsh dump domain corefilepath [--bypass-cache] {--live | --crash | -
-reset} [--verbose] [--memory-only] [--format=format] command. This creates a
dump file containing the core of the guest virtual machine so that it can be analyzed, for example by the
crash utility.

Specifically, running virsh dump command dumps the guest virtual machine core to a file specified by
the core file path that you supply. Note that some hypervisors may give restrictions on this action and
may require the user to manually ensure proper permissions on the file and path specified in the
corefilepath parameter. This command is supported with SR-IOV devices as well as other passthrough
devices. The following arguments are supported and have the following effect:

--bypass-cache - The file saved will not bypass the host's file system cache. It has no effect
on the content of the file. Note that selecting this option may slow down the dump operation.

--live will save the file as the guest virtual machine continues to run and will not pause or stop
the guest virtual machine.

--crash puts the guest virtual machine in a crashed status rather than leaving it in a paused
state while the dump file is saved. The guest virtual machine will be listed as "Shut off", with the
reason as "Crashed".

--reset - When the dump file is successfully saved, the guest virtual machine will reset.

--verbose displays the progress of the dump process

<domain type='qemu'>
 <uuid>00000000-0000-0000-0000-000000000000</uuid>
 <memory>219136</memory>
 <currentMemory>219136</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='i686' machine='pc'>hvm</type>
 <boot dev='hd'/>
 </os>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/bin/qemu</emulator>
 <disk type='block' device='disk'>
 <source dev='/dev/HostVG/QEMUGuest1'/>
 <target dev='hda' bus='ide'/>
 </disk>
 </devices>
</domain>

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

333

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/chap-introduction-to-kdump.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/kernel_crash_dump_guide/chap-analyzing-a-core-dump

--memory-only - Running a dump using this option will create a dump file where the contents
of the dump file will only contain the guest virtual machine's memory and CPU common register
file. This option should be used in cases where running a full dump will fail. This may happen
when a guest virtual machine cannot be live migrated (due to a passthrough PCI device).

You can save the memory-only dump using the --format=format option. The following
formats are available:

elf - the default, uncompressed format

kdump-zlib - kdump-compressed format with zlib compression

kdump-lzo - kdump-compressed format with LZO compression

kdump-snappy - kdump-compressed format with Snappy compression

IMPORTANT

The crash utility no longer supports the default core dump file format of the
virsh dump command. If you use crash to analyze to core dump file created
by virsh dump, you must use the --memory-only option.

Note that the entire process can be monitored using the virsh domjobinfo command and can be
canceled using the virsh domjobabort command.

Example 21.47. How to create a dump file with virsh

The following example creates a dump file of the guest1 virtual machine's core, saves it into the
core/file/path.file file, and then resets the guest. The most common scenario for using this
command is if your guest virtual machine is not behaving properly:

virsh dump guest1 core/file/path.file --reset

21.20. CREATING A VIRTUAL MACHINE XML DUMP (CONFIGURATION
FILE)

The virsh dumpxml command will return the guest virtual machine's XML configuration file which you
can then use, save, or change as needed.

The XML file (guest.xml) can then be used to recreate the guest virtual machine (refer to
Section 21.22, “Editing a Guest Virtual Machine's XML Configuration Settings”. You can edit this XML
configuration file to configure additional devices or to deploy additional guest virtual machines.

Example 21.48. How to retrieve the XML file for a guest virtual machine

The following example retrieves the XML configuration of the guest1 virtual machine, and pipes it int
othe guest1.xml file.

virsh dumpxml guest1 | guest1.xml
<domain type='kvm'>
 <name>guest1-rhel6-64</name>

Virtualization Deployment and Administration Guide

334

 <uuid>b8d7388a-bbf2-db3a-e962-b97ca6e514bd</uuid>
 <memory>2097152</memory>
 <currentMemory>2097152</currentMemory>
 <vcpu>2</vcpu>
 <os>
 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='hd'/>
 </os>
[...]

21.21. CREATING A GUEST VIRTUAL MACHINE FROM A
CONFIGURATION FILE

Guest virtual machines can be created from XML configuration files. You can copy existing XML from
previously created guest virtual machines or use the virsh dumpxml command.

Example 21.49. How to create a guest virtual machine from an XML file

The following example creates a new virtual machine from the existing guest1.xml configuration file.
You need to have this file before beginning. You can retrieve the file using the virsh dumpxml
command. Refer to Example 21.48, “How to retrieve the XML file for a guest virtual machine” for
instructions.

virsh create guest1.xml

21.22. EDITING A GUEST VIRTUAL MACHINE'S XML CONFIGURATION
SETTINGS

The virsh edit command enables the user to edit the domain XML configuration file of a specified
guest. Running this command opens the XML file in a text editor, specified by the $EDITOR shell
parameter (set to vi by default).

Example 21.50. How to edit a guest virtual machine's XML configuration settings

The following example opens the XML configuration file associated with the guest1 virtual machine in
your default text editor:

virsh edit guest1

21.23. ADDING MULTIFUNCTION PCI DEVICES TO KVM GUEST
VIRTUAL MACHINES

To add a multi-function PCI device to a KVM guest virtual machine:

1. Run the virsh edit guestname command to edit the XML configuration file for the guest
virtual machine.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

335

2. In the <address> element, add a multifunction='on' attribute. This enables the use of
other functions for the particular multifunction PCI device.

<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-1.img'/>
<target dev='vda' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05'
function='0x0' multifunction='on'/>
</disk>

For a PCI device with two functions, amend the XML configuration file to include a second
device with the same slot number as the first device and a different function number, such as
function='0x1'. For Example:

<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-1.img'/>
<target dev='vda' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05'
function='0x0' multifunction='on'/>
</disk>
<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-2.img'/>
<target dev='vdb' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05'
function='0x1'/>
</disk>

3. Run the lspci command. The output from the KVM guest virtual machine shows the virtio block
device:

$ lspci

00:05.0 SCSI storage controller: Red Hat, Inc Virtio block device
00:05.1 SCSI storage controller: Red Hat, Inc Virtio block device

Virtualization Deployment and Administration Guide

336

NOTE

The SeaBIOS application runs in real mode for compatibility with BIOS interfaces.
This limits the amount of memory available. As a consequence, SeaBIOS is only
able to handle a limited number of disks. Currently, the supported number of disks
is:

virtio-scsi — 64

virtio-blk — 4

ahci/sata — 24 (4 controllers with all 6 ports connected)

usb-storage — 4

As a workaround for this problem, when attaching a large number of disks to your
virtual machine, make sure that your system disk has a small pci slot number, so
SeaBIOS sees it first when scanning the pci bus. It is also recommended to use
the virtio-scsi device instead of virtio-blk as the per-disk memory overhead is
smaller.

21.24. DISPLAYING CPU STATISTICS FOR A SPECIFIED GUEST
VIRTUAL MACHINE

The virsh cpu-stats domain --total start count command provides the CPU statistical
information on the specified guest virtual machine. By default, it shows the statistics for all CPUs, as well
as a total. The --total option will only display the total statistics. The --count option will only display
statistics for count CPUs.

Example 21.51. How to generate CPU statistics for the guest virtual machine

The following example generates CPU statistics for the guest virtual machine named guest1.

virsh cpu-stats guest1

CPU0:
 cpu_time 242.054322158 seconds
 vcpu_time 110.969228362 seconds
CPU1:
 cpu_time 170.450478364 seconds
 vcpu_time 106.889510980 seconds
CPU2:
 cpu_time 332.899774780 seconds
 vcpu_time 192.059921774 seconds
CPU3:
 cpu_time 163.451025019 seconds
 vcpu_time 88.008556137 seconds
Total:
 cpu_time 908.855600321 seconds
 user_time 22.110000000 seconds
 system_time 35.830000000 seconds

21.25. TAKING A SCREENSHOT OF THE GUEST CONSOLE

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

337

The virsh screenshot guestname [imagefilepath] command takes a screenshot of a current
guest virtual machine console and stores it into a file. If no file path is provided, the screenshot is saved
to the current directory. If the hypervisor supports multiple displays for a guest virtual machine, use the -
-screen screenID option to specify the screen to be captured.

Example 21.52. How to take a screenshot of a guest machine's console

The following example takes a screenshot of the guest1 machine's console and saves it as
/home/username/pics/guest1-screen.png:

virsh screenshot guest1 /home/username/pics/guest1-screen.ppm
Screenshot saved to /home/username/pics/guest1-screen.ppm, with type of
image/x-portable-pixmap

21.26. SENDING A KEYSTROKE COMBINATION TO A SPECIFIED
GUEST VIRTUAL MACHINE

The virsh send-key domain --codeset --holdtime keycode command allows you to send
a sequence as a keycode to a specific guest virtual machine. Each keycode can either be a numeric
value or a symbolic name from the corresponding codeset below.

If a --holdtime is given, each keystroke will be held for the specified amount in milliseconds. The --
codeset allows you to specify a code set, the default being Linux, but the following options are
permitted:

linux - choosing this option causes the symbolic names to match the corresponding Linux key
constant macro names and the numeric values are those offered by the Linux generic input
event subsystems.

xt - this will send a value that is defined by the XT keyboard controller. No symbolic names are
provided

atset1 - the numeric values are those that are defined by the AT keyboard controller, set1 (XT
compatible set). Extended keycodes from the atset1 may differ from extended keycodes in the
XT codeset. No symbolic names are provided.

atset2 - The numeric values are those defined by the AT keyboard controller, set 2. No
symbolic names are provided.

atset3 - The numeric values are those defined by the AT keyboard controller, set 3 (PS/2
compatible). No symbolic names are provided.

os_x - The numeric values are those defined by the OS-X keyboard input subsystem. The
symbolic names match the corresponding OS-X key constant macro names.

xt_kbd - The numeric values are those defined by the Linux KBD device. These are a variant
on the original XT codeset, but often with different encoding for extended keycodes. No symbolic
names are provided.

win32 - The numeric values are those defined by the Win32 keyboard input subsystem. The
symbolic names match the corresponding Win32 key constant macro names.

Virtualization Deployment and Administration Guide

338

usb - The numeric values are those defined by the USB HID specification for keyboard input. No
symbolic names are provided.

rfb - The numeric values are those defined by the RFB extension for sending raw keycodes.
These are a variant on the XT codeset, but extended keycodes have the low bit of the second
bite set, instead of the high bit of the first byte. No symbolic names are provided.

Example 21.53. How to send a keystroke combination to a guest virtual machine

The following example sends the Left Ctrl, Left Alt, and Delete in the Linux encoding to the
guest1 virtual machine, and holds them for 1 second. These keys are all sent simultaneously, and
may be received by the guest in a random order:

virsh send-key guest1 --codeset Linux --holdtime 1000 KEY_LEFTCTRL
KEY_LEFTALT KEY_DELETE

NOTE

If multiple keycodes are specified, they are all sent simultaneously to the guest virtual
machine and as such may be received in random order. If you need distinct keycodes,
you must run the virsh send-key command multiple times in the order you want the
sequences to be sent.

21.27. HOST MACHINE MANAGEMENT

This section contains the commands needed for managing the host system (referred to as a node by the
commands).

21.27.1. Displaying Host Information

The virsh nodeinfo command displays basic information about the host, including the model
number, number of CPUs, type of CPU, and size of the physical memory. The output corresponds to the
virNodeInfo structure. Specifically, the "CPU socket(s)" field indicates the number of CPU sockets per
NUMA cell.

Example 21.54. How to display information about your host machine

The following example retrieves information about your host:

$ virsh nodeinfo
CPU model: x86_64
CPU(s): 4
CPU frequency: 1199 MHz
CPU socket(s): 1
Core(s) per socket: 2
Thread(s) per core: 2
NUMA cell(s): 1
Memory size: 3715908 KiB

21.27.2. Setting NUMA Parameters

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

339

The virsh numatune command can either set or retrieve the NUMA parameters for a specified guest
virtual machine. Within the guest virtual machine's configuration XML file these parameters are nested
within the <numatune> element. Without using flags, only the current settings are displayed. The
numatune domain command requires a specified guest virtual machine name and can take the
following arguments:

--mode - The mode can be set to either strict, interleave, or preferred. Running
domains cannot have their mode changed while live unless the guest virtual machine was
started within strict mode.

--nodeset contains a list of NUMA nodes that are used by the host physical machine for
running the guest virtual machine. The list contains nodes, each separated by a comma, with a
dash - used for node ranges and a caret ̂ used for excluding a node.

Only one of the three following flags can be used per instance

--config will effect the next boot of a persistent guest virtual machine

--live will set the scheduler information of a running guest virtual machine.

--current will effect the current state of the guest virtual machine.

Example 21.55. How to set the NUMA parameters for the guest virtual machine

The following example sets the NUMA mode to strict for nodes 0, 2, and 3 for the running guest1
virtual machine:

virsh numatune guest1 --mode strict --nodeset 0,2-3 --live

Running this command will change the running configuration for guest1 to the following configuration
in its XML file.

<numatune>
 <memory mode='strict' nodeset='0,2-3'/>
</numatune>

21.27.3. Displaying the Amount of Free Memory in a NUMA Cell

The virsh freecell command displays the available amount of memory on the machine within a
specified NUMA cell. This command can provide one of three different displays of available memory on
the machine depending on the options specified. specified cell.

Example 21.56. How to display memory properties for virtual machines and NUMA cells

The following command displays the total amount of available memory in all cells:

virsh freecell
Total: 684096 KiB

To display also the amount of available memory in individual cells, use the --all option:

virsh freecell --all

Virtualization Deployment and Administration Guide

340

 0: 804676 KiB

Total: 804676 KiB

To display the amount of individual memory in a specific cell, use the --cellno option:

virsh freecell --cellno 0
0: 772496 KiB

21.27.4. Displaying a CPU List

The virsh nodecpumap command displays the number of CPUs that are available to the host
machine, and it also lists how many are currently online.

Example 21.57. How to display number of CPUs that available to the host

The following example displays the number of CPUs available to the host:

virsh nodecpumap
 CPUs present: 4
 CPUs online: 1
 CPU map: y

21.27.5. Displaying CPU Statistics

The virsh nodecpustats [cpu_number] [--percent] command displays statistical information
about the CPUs load status of the host. If a CPU is specified, the statistics are only for the specified CPU.
If the percent option is specified, the command displays the percentage of each type of CPU statistics
that were recorded over an one (1) second interval.

Example 21.58. How to display statistical information about CPU usage

The following example returns general statistics about the host CPUs load:

virsh nodecpustats
user: 1056442260000000
system: 401675280000000
idle: 7549613380000000
iowait: 94593570000000

This example displays the statistics for CPU number 2 as percentages:

virsh nodecpustats 2 --percent
usage: 2.0%
user: 1.0%
system: 1.0%
idle: 98.0%
iowait: 0.0%

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

341

21.27.6. Managing Devices

21.27.6.1. Attaching and updating a device with virsh

For information on attaching storage devices, refer to Section 14.5.1, “Adding File-based Storage to a
Guest”.

Procedure 21.4. Hot plugging USB devices for use by the guest virtual machine

USB devices can be either attached to the virtual machine that is running by hot plugging, or while the
guest is shut off. The device you want to use in the guest must be attached to the host machine.

1. Locate the USB device you want to attach by running the following command:

lsusb -v

idVendor 0x17ef Lenovo
idProduct 0x480f Integrated Webcam [R5U877]

2. Create an XML file and give it a logical name (usb_device.xml, for example). Copy the
vendor and product ID number (a hexidecimal number) exactly as was displayed in your search.
Add this information to the XML file as shown in Figure 21.2, “USB devices XML snippet”.
Remember the name of this file as you will need it in the next step.

Figure 21.2. USB devices XML snippet

3. Attach the device by running the following command. When you run the command, replace
guest1 with the name of your virtual machine and usb_device.xml with the name of your XML file
that contains the vendor and product ID of your device, which you created in the previous step.
For the change take effect at the next reboot, use the --config argument. For the change to
take effect on the current guest virtual machine, use the --current argument. See the virsh
man page for additional arguments.

virsh attach-device guest1 --file usb_device.xml --config

Example 21.59. How to hot unplug devices from a guest virtual machine

The following example detaches the USB device configured with the usb_device1.xml file from the
guest1 virtual machine:

virsh detach-device guest1 --file usb_device.xml

21.27.6.2. Attaching interface devices

<hostdev mode='subsystem' type='usb' managed='yes'>
 <source>
 <vendor id='0x17ef'/>
 <product id='0x480f'/>
 </source>
</hostdev>

Virtualization Deployment and Administration Guide

342

The virsh attach-interface domain type source [<target>] [<mac>] [<script>]
[<model>] [<inbound>] [<outbound>] [--config] [--live] [--current] command
can take the following arguments:

--type - allows you to set the interface type

--source - allows you to set the source of the network interface

--live - gets its value from running guest virtual machine configuration settings

--config - takes effect at next boot

--current - gets its value according to the current configuration settings

--target - indicates the target device in the guest virtual machine.

--mac - use this option to specify the MAC address of the network interface

--script - use this option to specify a path to a script file handling a bridge instead of the
default one.

--model - use this option to specify the model type.

--inbound - controls the inbound bandwidth of the interface. Acceptable values are average,
peak, and burst.

--outbound - controls the outbound bandwidth of the interface. Acceptable values are
average, peak, and burst.

NOTE

Values for average and peak are expressed in kilobytes per second, while burst
is expressed in kilobytes in a single burst at peak speed as described in the
Network XML upstream documentation.

The type can be either network to indicate a physical network device, or bridge to indicate a bridge to
a device. source is the source of the device. To remove the attached device, use the virsh detach-
device command.

Example 21.60. How to attach a device to the guest virtual machine

The following example attaches the networkw network device to the guest1 virtual machine. The
interface model is going to be presented to the guest as virtio:

virsh attach-interface guest1 networkw --model virtio

21.27.6.3. Changing the media of a CDROM

The virsh change-media command changes the media of a CDROM to another source or format.
The command takes the following arguments. More examples and explanation for these arguments can
also be found in the man page.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

343

http://libvirt.org/formatnetwork.html#elementQoS

--path - A string containing a fully-qualified path or target of disk device

--source - A string containing the source of the media

--eject - Ejects the media

--insert - Inserts the media

--update - Updates the media

--current - Can be either or both of --live and --config, which depends on
implementation of hypervisor driver

--live - Alters the live configuration of running guest virtual machine

--config - Alters the persistent configuration, effect observed on next boot

--force - Forces media to change

21.27.7. Suspending the Host

The virsh nodesuspend targetduration command puts the host machine into a system-wide
sleep state similar to that of Suspend-to-RAM (s3), Suspend-to-Disk (s4), or Hybrid-Suspend, and sets
up a Real-Time-Clock to wake up the host after the duration that is set has past. The target variable
can be set to either mem, disk, or hybrid. These options indicate to set the memory, disk, or
combination of the two to suspend. Setting the --duration instructs the node to wake up after the set
duration time has run out. It is set in seconds. It is recommended that the duration time be longer than 60
seconds.

Example 21.61. How to suspend the host machine to disk s4

The following example suspends the host physical machine to disk for 90 seconds:

virsh nodesuspend disk 90

21.27.8. Setting and Displaying the Node Memory Parameters

The virsh node-memory-tune [shm-pages-to-scan] [shm-sleep-milisecs] [shm-
merge-across-nodes] command displays and allows you to set the node memory parameters. The
following parameters may be set with this command:

--shm-pages-to-scan - sets the number of pages to scan before the kernel samepage
merging (KSM) service goes to sleep.

--shm-sleep-milisecs - sets the number of miliseconds that KSM will sleep before the next
scan

--shm-merge-across-nodes - specifies if pages from different NUMA nodes can be merged

Example 21.62. How to merge memory pages across NUMA nodes

The following example merges all of the memory pages from all of the NUMA nodes:

Virtualization Deployment and Administration Guide

344

virsh node-memory-tune --shm-merge-across-nodes 1

21.27.9. Listing Devices on a Host

The virsh nodedev-list --cap --tree command lists all the devices available on the host that
are known to the libvirt service. --cap is used to filter the list by capability types, each separated by a
comma, and cannot be used with --tree. Using the argument --tree, puts the output into a tree
structure.

Example 21.63. How to display the devices available on a host

The following example lists devices that are available on a host in a tree format. Note that the list has
been truncated:

virsh nodedev-list --tree
computer
 |
 +- net_lo_00_00_00_00_00_00
 +- net_macvtap0_52_54_00_12_fe_50
 +- net_tun0
 +- net_virbr0_nic_52_54_00_03_7d_cb
 +- pci_0000_00_00_0
 +- pci_0000_00_02_0
 +- pci_0000_00_16_0
 +- pci_0000_00_19_0
 | |
 | +- net_eth0_f0_de_f1_3a_35_4f
 [...]

This example lists SCSI devices available on a host:

virsh nodedev-list --cap scsi
scsi_0_0_0_0

21.27.10. Creating Devices on Host Machines

The virsh nodedev-create file command allows you to create a device on a host physical
machine and then assign it to a guest virtual machine. Although libvirt automatically detects which host
nodes are available for use, this command allows you to register hardware that libvirt did not detect.
The specified file should contain the XML description for the top level <device> description of the host
device. For an example of such file, see Example 21.66, “How to retrieve the XML file for a device”.

Example 21.64. How to create a device from an XML file

In this example, you have already created an XML file for your PCI device and have saved it as
scsi_host2.xml. The following command enables you to attach this device to your guests:

virsh nodedev-create scsi_host2.xml

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

345

21.27.11. Removing a Device

The virsh nodedev-destroy command removes the device from the host. Note that the virsh node
device driver does not support persistent configurations, so rebooting the host machine makes the
device usable again.

Also note that different assignments expect the device to be bound to different back-end driver (vfio,
kvm). Using the --driver argument allows you to specify the intended back-end driver.

Example 21.65. How to remove a device from a host physical machine

The following example removes a SCSI device named scsi_host2 from the host machine:

virsh nodedev-destroy scsi_host2

21.27.12. Collect Device Configuration Settings

The virsh nodedev-dumpxml device command outputs the XML representation for the specified
host device, including information such as the device name, the bus to which the device is connected,
the vendor, product ID, capabilities, as well as any information usable by libvirt. The argument
device can either be a device name or WWN pair in WWNN, WWPN format (HBA only).

Example 21.66. How to retrieve the XML file for a device

The following example retrieves the XML file for a SCSI device identified as scsi_host2. The name
was obtained by using the virsh nodedev-list command:

virsh nodedev-dumpxml scsi_host2
 <device>
 <name>scsi_host2</name>
 <parent>scsi_host1</parent>
 <capability type='scsi_host'>
 <capability type='fc_host'>
 <wwnn>2001001b32a9da5b</wwnn>
 <wwpn>2101001b32a9da5b</wwpn>
 </capability>
 </capability>
 </device>

21.27.13. Triggering a Reset for a Device

The virsh nodedev-reset device command triggers a device reset for the specified device.
Running this command is useful prior to transferring a node device between guest virtual machine pass
through or the host physical machine. libvirt will do this action automatically, when required, but this
command allows an explicit reset when needed.

Example 21.67. How to reset a device on a guest virtual machine

The following example resets the device on the guest virtual machine named scsi_host2:

virsh nodedev-reset scsi_host2

Virtualization Deployment and Administration Guide

346

21.28. RETRIEVING GUEST VIRTUAL MACHINE INFORMATION

21.28.1. Getting the Domain ID of a Guest Virtual Machine

The virsh domid command returns the guest virtual machine's ID. Note that this changes each time
the guest starts or restarts. This command requires either the name of the virtual machine or the virtual
machine's UUID.

Example 21.68. How to retrieve the domain ID for a guest virtual machine

The following example retrieves the domain ID of a guest virtual machine named guest1:

virsh domid guest1
8

Note, domid returns - for guest virtual machines that are in shut off state. To confirm that the virtual
machine is shutoff, you can run the virsh list --all command.

21.28.2. Getting the Domain Name of a Guest Virtual Machine

The virsh domname command returns the name of the guest virtual machine given its ID or UUID.
Note that the ID changes each time the guest starts.

Example 21.69. How to retrieve a virtual machine's ID

The following example retrieves the name for the guest virtual machine whose ID is 8:

virsh domname 8
guest1

21.28.3. Getting the UUID of a Guest Virtual Machine

The virsh domuuid command returns the UUID or the Universally Unique Identifier for a given guest
virtual machine or ID.

Example 21.70. How to display the UUID for a guest virtual machine

The following example retrieves the UUID for the guest virtual machine named guest1:

virsh domuuid guest1
r5b2-mySQL01 4a4c59a7-ee3f-c781-96e4-288f2862f011

21.28.4. Displaying Guest Virtual Machine Information

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

347

The virsh dominfo command displays information on that guest virtual machine given a virtual
machine's name, ID, or UUID. Note that the ID changes each time the virtual machine starts.

Example 21.71. How to display guest virtual machine general details

The following example displays the general details about the guest virtual machine named guest1:

virsh dominfo guest1
Id: 8
Name: guest1
UUID: 90e0d63e-d5c1-4735-91f6-20a32ca22c48
OS Type: hvm
State: running
CPU(s): 1
CPU time: 32.6s
Max memory: 1048576 KiB
Used memory: 1048576 KiB
Persistent: yes
Autostart: disable
Managed save: no
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:c552,c818 (enforcing)

21.29. STORAGE POOL COMMANDS

Using libvirt, you can manage various storage solutions, including files, raw partitions, and domain-
specific formats, used to provide the storage volumes visible as devices within virtual machines. For
more detailed information, see the libvirt upstream pages. Many of the commands for administering
storage pools are similar to the ones used for guest virtual machines.

21.29.1. Searching for a Storage Pool XML

The virsh find-storage-pool-sources type command displays the XML describing all storage
pools of a given source that could be found. Types include: netfs, disk, dir, fs, iscsi, logical, and gluster.
Note that all of the types correspond to the storage back-end drivers and there are more types available
(see the man page for more details). You can also further restrict the query for pools by providing an
template source XML file using the --srcSpec option.

Example 21.72. How to list the XML setting of available storage pools

The following example outputs the XML setting of all logical storage pools available on the system:

virsh find-storage-pool-sources logical
<sources>
 <source>
 <device path='/dev/mapper/luks-7a6bfc59-e7ed-4666-a2ed-
6dcbff287149'/>
 <name>RHEL_dhcp-2-157</name>
 <format type='lvm2'/>
 </source>
</sources>

Virtualization Deployment and Administration Guide

348

http://libvirt.org/formatstorage.html

21.29.2. Finding a storage Pool

The virsh find-storage-pool-sources-as type command finds potential storage pool
sources, given a specific type. Types include: netfs, disk, dir, fs, iscsi, logical, and gluster. Note that all of
the types correspond to the storage back-end drivers and there are more types available (see the man
page for more details). The command also takes the optional arguments host, port, and initiator. Each of
these options will dictate what gets queried.

Example 21.73. How to find potential storage pool sources

The following example searches for a disk-based storage pool on the specified host machine. If you
are unsure of your host name run the command virsh hostname first:

virsh find-storage-pool-sources-as disk --host myhost.example.com

21.29.3. Listing Storage Pool Information

The virsh pool-info pool command lists the basic information about the specified storage pool
object. This command requires the name or UUID of the storage pool. To retrieve this information, use
the pool-list command.

Example 21.74. How to retrieve information on a storage pool

The following example retrieves information on the storage pool named vdisk:

virsh pool-info vdisk

Name: vdisk
UUID:
State: running
Persistent: yes
Autostart: no
Capacity: 125 GB
Allocation: 0.00
Available: 125 GB

21.29.4. Listing the Available Storage Pools

The virsh pool-list command lists all storage pool objects known to libvirt. By default, only active
pools are listed; but using the --inactive argument lists just the inactive pools, and using the --all
argument lists all of the storage pools. This command takes the following optional arguments, which filter
the search results:

--inactive - lists the inactive storage pools

--all - lists both active and inactive storage pools

--persistent - lists the persistent storage pools

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

349

--transient - lists the transient storage pools

--autostart - lists the storage pools with autostart enabled

--no-autostart - lists the storage pools with autostart disabled

--type type - lists the pools that are only of the specified type

--details - lists the extended details for the storage pools

In addition to the above arguments, there are several sets of filtering flags that can be used to filter the
content of the list. --persistent restricts the list to persistent pools, --transient restricts the list to
transient pools, --autostart restricts the list to autostarting pools and finally --no-autostart
restricts the list to the storage pools that have autostarting disabled.

For all storage pool commands which require a --type , the pool types must be separated by comma. The
valid pool types include: dir, fs, netfs, logical, disk, iscsi, scsi, mpath, rbd, sheepdog, and
gluster.

The --details option instructs virsh to additionally display pool persistence and capacity related
information where available.

NOTE

When this command is used with older servers, it is forced to use a series of API calls
with an inherent race, where a pool might not be listed or might appear more than once if
it changed its state between calls while the list was being collected. Newer servers
however, do not have this problem.

Example 21.75. How to list all storage pools

This example lists storage pools that are both active and inactive:

virsh pool-list --all
Name State Autostart

default active yes
vdisk active no

21.29.5. Refreshing a Storage Pool List

The virsh pool-refresh pool command refreshes the list of storage volumes contained in storage
pool.

Example 21.76. How to refresh the list of the storage volumes in a storage pool

The following example refreshes the list for the storage volume named vdisk:

virsh pool-refresh vdisk

Pool vdisk refreshed

Virtualization Deployment and Administration Guide

350

21.29.6. Creating, Defining, and Starting Storage Pools

21.29.6.1. Building a storage pool

The virsh pool-build pool command builds a storage pool using the name given in the command.
The optional arguments --overwrite and --no-overwrite can only be used for an FS storage pool
or with a disk or logical type based storage pool. Note that if [--overwrite] or [--no-overwrite] are not
provided and the pool used is FS, it is assumed that the type is actually directory-based. In addition to
the pool name, the storage pool UUID may be used as well.

If --no-overwrite is specified, it probes to determine if a file system already exists on the target
device, returning an error if it exists, or using mkfs to format the target device if it does not. If --
overwrite is specified, then the mkfs command is executed and any existing data on the target device
is overwritten.

Example 21.77. How to build a storage pool

The following example creates a disk-based storage pool named vdisk:

virsh pool-build vdisk

Pool vdisk built

21.29.6.2. Defining a storage pool from an XML file

The virsh pool-define file command creates, but does not start, a storage pool object from the
XML file.

Example 21.78. How to define a storage pool from an XML file

This example assumes that you have already created an XML file with the settings for your storage
pool. For example:

<pool type="dir">
 <name>vdisk</name>
 <target>
 <path>/var/lib/libvirt/images</path>
 </target>
</pool>

The following command then builds a directory type storage pool from the XML file (named vdisk.xml
in this example):

virsh pool-define vdisk.xml

Pool vdisk defined

To confirm that the storage pool was defined, run the virsh pool-list --all command as
shown in Example 21.75, “How to list all storage pools”. When you run the command, however, the
status will show as inactive as the pool has not been started. For directions on starting the storage

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

351

pool refer to Example 21.82, “How to start a storage pool”.

21.29.6.3. Creating storage pools

The virsh pool-create file command creates and starts a storage pool from its associated XML
file.

Example 21.79. How to create a storage pool from an XML file

In this example assumes that you have already created an XML file with the settings for your storage
pool. For example:

<pool type="dir">
 <name>vdisk</name>
 <target>
 <path>/var/lib/libvirt/images</path>
 </target>
</pool>

The following example builds a directory-type storage pool based on the XML file (named vdisk.xml
in this example):

virsh pool-create vdisk.xml

Pool vdisk created

To confirm that the storage pool was created, run the virsh pool-list --all command as
shown in Example 21.75, “How to list all storage pools”. When you run the command, however, the
status will show as inactive as the pool has not been started. For directions on starting the storage
pool refer to Example 21.82, “How to start a storage pool”.

21.29.6.4. Creating storage pools

The virsh pool-create-as name command creates and starts a pool object name from the raw
parameters given. This command takes the following options:

--print-xml - displays the contents of the XML file, but does not define or create a storage
pool from it

--type type defines the storage pool type. Refer to Section 21.29.4, “Listing the Available
Storage Pools” for the types you can use.

--source-host hostname - the source host physical machine for underlying storage

--source-path path - the location of the underlying storage

--source-dev path - the device for the underlying storage

--source-name name - the name of the source underlying storage

--source-format format - the format of the source underlying storage

Virtualization Deployment and Administration Guide

352

--target path - the target for the underlying storage

Example 21.80. How to create and start a storage pool

The following example creates and starts a storage pool named vdisk at the /mnt directory:

virsh pool-create-as --name vdisk --type dir --target /mnt

Pool vdisk created

21.29.6.5. Defining a storage pool

The virsh pool-define-as <name> command creates, but does not start, a pool object name from
the raw parameters given. This command accepts the following options:

--print-xml - displays the contents of the XML file, but does not define or create a storage
pool from it

--type type defines the storage pool type. Refer to Section 21.29.4, “Listing the Available
Storage Pools” for the types you can use.

--source-host hostname - source host physical machine for underlying storage

--source-path path - location of the underlying storage

--source-dev devicename - device for the underlying storage

--source-name sourcename - name of the source underlying storage

--source-format format - format of the source underlying storage

--target targetname - target for the underlying storage

If --print-xml is specified, then it prints the XML of the pool object without creating or defining the
pool. Otherwise, the pool requires a specified type to be built. For all storage pool commands which
require a type, the pool types must be separated by comma. The valid pool types include: dir, fs,
netfs, logical, disk, iscsi, scsi, mpath, rbd, sheepdog, and gluster.

Example 21.81. How to define a storage pool

The following example defines a storage pool named vdisk, but does not start it. After this command
runs, use the virsh pool-start command to activate the storage pool:

virsh pool-define-as --name vdisk --type dir --target /mnt

Pool vdisk defined

21.29.6.6. Starting a storage pool

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

353

The virsh pool-start pool command starts the specified storage pool, which was previously
defined but inactive. This command may also use the UUID for the storage pool as well as the pool's
name.

Example 21.82. How to start a storage pool

The following example starts the vdisk storage pool that you built in Example 21.79, “How to create a
storage pool from an XML file”:

virsh pool-start vdisk

Pool vdisk started

To verify the pool has started run the virsh pool-list --all command and confirm that the
status is active, as shown in Example 21.75, “How to list all storage pools”.

21.29.6.7. Auto-starting a storage pool

The virsh pool-autostart pool command enables a storage pool to automatically start at boot.
This command requires the pool name or UUID. To disable the pool-autostart command use the --
disable argument in the command.

Example 21.83. How to autostart a storage pool

The following example autostarts the vdisk storage pool that you built in Example 21.79, “How to
create a storage pool from an XML file”:

virsh pool-autostart vdisk

Pool vdisk autostarted

21.29.7. Stopping and Deleting Storage Pools

The virsh pool-destroy pool command stops a storage pool. Once stopped, libvirt will no longer
manage the pool but the raw data contained in the pool is not changed, and can be later recovered with
the pool-create command.

Example 21.84. How to stop a storage pool

The following example stops the vdisk storage pool that you built in Example 21.79, “How to create a
storage pool from an XML file”:

virsh pool-destroy vdisk

Pool vdisk destroyed

The virsh pool-delete pool command destroys the resources used by the specified storage pool.
It is important to note that this operation is non-recoverable and non-reversible. However, the pool
structure will still exist after this command, ready to accept the creation of new storage volumes.

Virtualization Deployment and Administration Guide

354

Example 21.85. How to delete a storage pool

The following sample deletes the vdisk storage pool that you built in Example 21.79, “How to create a
storage pool from an XML file”.

virsh pool-delete vdisk

Pool vdisk deleted

The virsh pool-undefine pool command undefines the configuration for an inactive pool.

Example 21.86. How to undefine a storage pool

The following examples undefines the vdisk storage pool that you built in Example 21.79, “How to
create a storage pool from an XML file”. This makes your storage pool transient.

virsh pool-undefine vdisk

Pool vdisk undefined

21.29.8. Creating an XML Dump File for a Pool

The virsh pool-dumpxml pool command returns the XML information about the specified storage
pool object. Using the option --inactive dumps the configuration that will be used on next start of the
pool instead of the current pool configuration.

Example 21.87. How to retrieve a storage pool's configuration settings

The following example retrieves the configuration settings for the vdisk storage pool that you built in
Example 21.79, “How to create a storage pool from an XML file”. Once the command runs, the
configuration file opens in the terminal:

virsh pool-dumpxml vdisk
<pool type="dir">
 <name>vdisk</name>
 <target>
 <path>/var/lib/libvirt/images</path>
 </target>
</pool>

21.29.9. Editing the Storage Pool's Configuration File

The pool-edit pool command opens the specified storage pool's XML configuration file for editing.

This method is the only method that should be used to edit an XML configuration file as it does error
checking before applying.

Example 21.88. How to edit a storage pool's configuration settings

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

355

The following example edits the configuration settings for the vdisk storage pool that you built in
Example 21.79, “How to create a storage pool from an XML file”. Once the command runs, the
configuration file opens in your default editor:

virsh pool-edit vdisk
<pool type="dir">
 <name>vdisk</name>
 <target>
 <path>/var/lib/libvirt/images</path>
 </target>
</pool>

21.30. STORAGE VOLUME COMMANDS

This section covers commands for creating, deleting, and managing storage volumes. Creating a
storage volume requires at least one storage pool. For an example on how to create a storage pool refer
to Example 21.79, “How to create a storage pool from an XML file” For information on storage pools
refer to Chapter 13, Storage Pools. For information on storage volumes refer to, Chapter 14, Storage
Volumes .

21.30.1. Creating Storage Volumes

The virsh vol-create-from pool file vol command creates a volume, using another volume
as input. This command requires either a storage pool name or storage pool UUID, and accepts
requires the following parameters and options:

--pool string - required - Contains the name of the storage pool or the storage pool's UUID
which will be attached to the storage volume. This storage pool does not have to be the same
storage pool that is associated with the storage volume you are using to base this new storage
volume on.

--file string - required - Contains the name of the XML file that contains the parameters
for the storage volume.

--vol string - required - Contains the name of the storage volume you are using to base this
new storage volume on.

--inputpool string - optional - Allows you to name the storage pool that is associated with
the storage volume that you are using as input for the new storage volume.

 --prealloc-metadata - optional - preallocates metadata (for qcow2 instead of full
allocation) for the new storage volume.

For examples, refer to Section 14.2, “Creating Volumes”.

21.30.2. Creating a Storage Volume from Parameters

The virsh vol-create-as pool name capacity command creates a volume from a set of
arguments. The pool argument contains the name or UUID of the storage pool to create the volume in.
This command takes the following required parameters and options:

[--pool] string - required - Contains the name of the associated storage pool.

Virtualization Deployment and Administration Guide

356

[--name] string - required - Contains the name of the new storage volume.

[--capacity] string - required - Contains the size of the storage volume, expressed as an
integer. The default is bytes, unless specified. Use the suffixes b, k, M, G, T for byte, kilobyte,
megabyte, gigabyte, and terabyte, respectively.

--allocation string - optional - Contains the initial allocation size, expressed as an
integer. The default is bytes, unless specified.

--format string - optional - Contains the file format type. Acceptable types include: raw,
bochs, qcow, qcow2, qed, host_device, and vmdk. These are, however, only meant for file-
based storage pools. By default the qcow version that is used is version 3. If you want to change
the version, refer to Section 24.20.2, “Setting Target Elements”.

--backing-vol string - optional - Contains the backing volume. This will be used if you
are taking a snapshot.

--backing-vol-format string - optional - Contains the format of the backing volume.
This will be used if you are taking a snapshot.

--prealloc-metadata - optional - Allows you to preallocate metadata (for qcow2 instead of
full allocation).

Example 21.89. How to create a storage volume from a set of parameters

The following example creates a 100MB storage volume named vol-new. It contains the vdiskstorage
pool that you created in Example 21.79, “How to create a storage pool from an XML file”:

virsh vol-create-as vdisk vol-new 100M

vol vol-new created

21.30.3. Creating a Storage Volume from an XML File

The virsh vol-create pool file command creates a new storage volume from an XML file
which contains the storage volume parameters.

Example 21.90. How to create a storage volume from an existing XML file

The following example creates a storage volume-based on the file vol-new.xml, as shown:

<volume>
 <name>vol-new</name>
 <allocation>0</allocation>
 <capacity unit="M">100</capacity>
 <target>
 <path>/var/lib/libvirt/images/vol-new</path>
 <permissions>
 <owner>107</owner>
 <group>107</group>
 <mode>0744</mode>
 <label>virt_image_t</label>

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

357

 </permissions>
 </target>
</volume>

The storage volume is associated with the storage pool vdisk. The path to the image is
/var/lib/libvirt/images/vol-new:

virsh vol-create vdisk vol-new.xml

vol vol-new created

21.30.4. Cloning a Storage Volume

The virsh vol-clone vol-name new-vol-name command clones an existing storage volume.
Although the virsh vol-create-from command may also be used, it is not the recommended way to
clone a storage volume. The command accepts the --pool string option, which allows you to
specify the storage pool that is associated to the new storage volume. The vol argument is the name or
key or path of the source storage volume and the name argument refers to the name of the new storage
volume. For additional information, refer to Section 14.3, “Cloning Volumes”.

Example 21.91. How to clone a storage volume

The following example clones a storage volume named vol-new to a new volume named vol-clone:

virsh vol-clone vol-new vol-clone

vol vol-clone cloned from vol-new

21.31. DELETING STORAGE VOLUMES

The virsh vol-delete vol pool command deletes a given volume. The command requires a the
name or UUID of the storage pool the volume is in as well as the name of the storage volume. In lieu of
the volume name the key or path of the volume to delete may also be used.

Example 21.92. How to delete a storage volume

The following example deletes a storage volume named new-vol, which contains the storage pool
vdisk:

virsh vol-delete new-vol vdisk

vol new-vol deleted

21.32. DELETING A STORAGE VOLUME'S CONTENTS

The virsh vol-wipe vol pool command wipes a volume, to ensure data previously on the volume

Virtualization Deployment and Administration Guide

358

is not accessible to future reads. The command requires a --pool pool which is the name or UUID of
the storage pool the volume is in as well as pool which is the name the name or key or path of the
volume to wipe. Note that it is possible to choose different wiping algorithms instead of re-writing volume
with zeroes, via the argument --algorithm and using one of the following supported algorithm types:

zero - 1-pass all zeroes

nnsa - 4-pass NNSA Policy Letter NAP-14.1-C (XVI-8) for sanitizing removable and non-
removable hard disks: random x2, 0x00, verify.

dod - 4-pass DoD 5220.22-M section 8-306 procedure for sanitizing removable and non-
removable rigid disks: random, 0x00, 0xff, verify.

 bsi - 9-pass method recommended by the German Center of Security in Information
Technologies (http://www.bsi.bund.de): 0xff, 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f.

gutmann - The canonical 35-pass sequence described in Gutmann’s paper.

schneier - 7-pass method described by Bruce Schneier in "Applied Cryptography" (1996):
0x00, 0xff, random x5.

pfitzner7 - Roy Pfitzner’s 7-random-pass method: random x7

pfitzner33 - Roy Pfitzner’s 33-random-pass method: random x33.

random - 1-pass pattern: random.s

NOTE

The availability of algorithms may be limited by the version of the "scrub" binary installed
on the host.

Example 21.93. How to delete a storage volume's contents (How to wipe the storage volume)

The following example wipes the contents of the storage volume new-vol, which has the storage pool
vdisk associated with it:

virsh vol-wipe new-vol vdisk

vol new-vol wiped

21.33. DUMPING STORAGE VOLUME INFORMATION TO AN XML FILE

The virsh vol-dumpxml vol command takes the volume information, creates an XML file with the
contents and outputs it to the settings that are set on the stdout stream. Optionally, you can supply the
name of the associated storage pool using the --pool option.

Example 21.94. How to dump the contents of a storage volume

The following example dumps the contents of the storage volume named vol-new into an XML file:

virsh vol-dumpxml vol-new

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

359

21.34. LISTING VOLUME INFORMATION

The virsh vol-info vol command lists basic information about the given storage volume. You
must supply either the storage volume name, key, or path. The command also accepts the option --
pool, where you can specify the storage pool that is associated with the storage volume. You can either
supply the pool name, or the UUID.

Example 21.95. How to view information about a storage volume

The following example retrieves information about the storage volume named vol-new. When you run
this command you should change the name of the storage volume to the name of your storage
volume:

virsh vol-info vol-new

The virsh vol-list pool command lists all of volumes that are associated to a given storage pool.
This command requires a name or UUID of the storage pool. The --details option instructs virsh to
additionally display volume type and capacity related information where available.

Example 21.96. How to display the storage pools that are associated with a storage volume

The following example lists all storage volumes that are associated with the storage pool vdisk:

virsh vol-list vdisk

21.35. RETRIEVING STORAGE VOLUME INFORMATION

The virsh vol-pool vol command returns the pool name or UUID for a given storage volume. By
default, the storage pool name is returned. If the --uuid option is used, the pool UUID is returned
instead. The command requires the key or path of the storage volume for which to return the requested
information.

Example 21.97. How to display the storage volume's name or UUID

The following examples retrieves the name for the storage volume that is found in the path
/var/lib/libvirt/images/vol-new:

virsh vol-pool /var/lib/libvirt/images/vol-new

vol-new

The vol-path --pool pool-or-uuid vol-name-or-key command returns the path for a given
volume. The command requires --pool pool-or-uuid, which is the name or UUID of the storage
pool the volume is in. It also requires vol-name-or-key which is the name or key of the volume for which
the path has been requested.

Virtualization Deployment and Administration Guide

360

The vol-name vol-key-or-path command returns the name for a given volume, where vol-key-or-
path is the key or path of the volume to return the name for.

The vol-key --pool pool-or-uuid vol-name-or-path command returns the volume key for a
given volume where --pool pool-or-uuid is the name or UUID of the storage pool the volume is in
and vol-name-or-path is the name or path of the volume to return the volume key for.

21.36. UPLOADING AND DOWNLOADING STORAGE VOLUMES

The vol-upload --pool pool-or-uuid --offset bytes --length bytes vol-name-or-
key-or-path local-file command uploads the contents of specified local-file to a storage volume.
The command requires --pool pool-or-uuid, which is the name or UUID of the storage pool the
volume is in. It also requires vol-name-or-key-or-path which is the name or key or path of the volume to
upload. The --offset argument is the position in the storage volume at which to start writing the data.
--length length dictates an upper limit for the amount of data to be uploaded. An error will occur if
the local-file is greater than the specified --length.

The vol-download --pool pool-or-uuid --offset bytes -length bytes vol-name-
or-key-or-path local-file command downloads the contents of local-file from a storage volume.

The command requires a --pool pool-or-uuid option, where pool-or-uuid is the name or UUID of
the storage pool that the volume is in. It also requires vol-name-or-key-or-path, which is the name or key
or path of the volume to download. Using the argument --offset dictates the position in the storage
volume at which to start reading the data. --length length dictates an upper limit for the amount of
data to be downloaded.

21.37. RESIZING STORAGE VOLUMES

The vol-resize --pool pool-or-uuid vol-name-or-path pool-or-uuid capacity --
allocate --delta --shrink command resizes the capacity of the given volume, in bytes.The
command requires --pool pool-or-uuid which is the name or UUID of the storage pool the volume
is in. This command also requires vol-name-or-key-or-path is the name or key or path of the volume to
resize.

The new capacity might be sparse unless --allocate is specified. Normally, capacity is the new size,
but if --delta is present, then it is added to the existing size. Attempts to shrink the volume will fail
unless --shrink is present.

Note that capacity cannot be negative unless --shrink is provided and a negative sign is not
necessary. capacity is a scaled integer which defaults to bytes if there is no suffix. Note too that this
command is only safe for storage volumes not in use by an active guest. Refer to Section 21.13.3,
“Changing the Size of a Guest Virtual Machine's Block Device” for live resizing.

21.38. DISPLAYING PER-GUEST VIRTUAL MACHINE INFORMATION

21.38.1. Displaying the Guest Virtual Machines

To display a list of active guest virtual machines and their current states with virsh:

virsh list

Other options available include:

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

361

--all - Lists all guest virtual machines. For example:

virsh list --all
 Id Name State

 0 Domain-0 running
 1 Domain202 paused
 2 Domain010 shut off
 3 Domain9600 crashed

NOTE

If no results are displayed when running virsh list --all, it is possible that
you did not create the virtual machine as the root user.

The virsh list --all command recognizes the following states:

running - The running state refers to guest virtual machines that are currently active on a
CPU.

idle - The idle state indicates that the guest virtual machine is idle, and may not be running
or able to run. This can occur when the guest virtual machine is waiting on I/O (a traditional
wait state) or has gone to sleep because there was nothing else for it to do.

paused - When a guest virtual machine is paused, it consumes memory and other
resources, but it is not eligible for scheduling CPU resources from the hypervisor. The
paused state occurs after using the paused button in virt-manager or the virsh
suspend command.

in shutdown - The in shutdown state is for guest virtual machines in the process of
shutting down. The guest virtual machine is sent a shutdown signal and should be in the
process of stopping its operations gracefully. This may not work with all guest virtual
machine operating systems; some operating systems do not respond to these signals.

shut off - The shut off state indicates that the guest virtual machine is not running. This
can be caused when a guest virtual machine completely shuts down or has not been started.

crashed - The crashed state indicates that the guest virtual machine has crashed and can
only occur if the guest virtual machine has been configured not to restart on crash.

pmsuspended - The guest has been suspended by guest power management.

--inactive - Lists guest virtual machines that have been defined but are not currently active.
This includes machines that are shut off and crashed.

--managed-save - Guests that have managed save state enabled will be listed as saved.
Note that to filter guests with this option, you also need to use the --all or --inactive
options.

--name - The command lists the names of the guests instead of the default table format. This
option is mutually exclusive with the --uuid option, which only prints a list of guest UUIDs, and
with the --table option, which determines that the table style output should be used.

Virtualization Deployment and Administration Guide

362

--title - Lists also the guest title field, which typically contains a short description of the
guest. This option must be used with the default (--table) output format. For example:

$ virsh list --title

Id Name State
Title
--

0 Domain-0 running
Mailserver1
2 rhelvm paused

--persistent - Only persistent guests are included in a list. Use the --transient argument
to list transient guests.

--with-managed-save - Lists guests that have been configured with a managed save. To list
the guests without one, use the --without-managed-save option.

--state-running - Lists only guests that are running. Similarly, use --state-paused for
paused guests, --state-shutoff for guests that are turned off, and --state-other lists all
states as a fallback.

--autostart - Only auto-starting guests are listed. To list guests with this feature disabled,
use the argument --no-autostart.

--with-snapshot - Lists the guests whose snapshot images can be listed. To filter for guests
without a snapshot, use the --without-snapshot option.

21.38.2. Displaying Virtual CPU Information

To display virtual CPU information from a guest virtual machine with virsh:

virsh vcpuinfo {domain-id, domain-name or domain-uuid}

An example of virsh vcpuinfo output:

virsh vcpuinfo guest1
VCPU: 0
CPU: 2
State: running
CPU time: 7152.4s
CPU Affinity: yyyy

VCPU: 1
CPU: 2
State: running
CPU time: 10889.1s
CPU Affinity: yyyy

21.38.3. Pinning vCPU to a Host Physical Machine's CPU

The virsh vcpupin command assigns a virtual CPU to a physical one.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

363

virsh vcpupin guest1
VCPU: CPU Affinity

 0: 0-3
 1: 0-3

The vcpupin command can take the following arguments:

--vcpu requires the vcpu number

[--cpulist] string lists the host physical machine's CPU number(s) to set, or omit option
to query

--config affects next boot

--live affects the running guest virtual machine

--current affects the current guest virtual machine state

21.38.4. Displaying Information about the Virtual CPU Counts of a Given Domain

The virsh vcpucount command requires a domain name or a domain ID

virsh vcpucount guest1
maximum config 2
maximum live 2
current config 2
current live 2

The vcpucount can take the following arguments:

--maximum get maximum cap on vcpus

--active get number of currently active vcpus

--live get value from running guest virtual machine

--config get value to be used on next boot

--current get value according to current guest virtual machine state

--guest count that is returned is from the perspective of the guest

21.38.5. Configuring Virtual CPU Affinity

To configure the affinity of virtual CPUs with physical CPUs:

virsh vcpupin domain-id vcpu cpulist

The domain-id parameter is the guest virtual machine's ID number or name.

The vcpu parameter denotes the number of virtualized CPUs allocated to the guest virtual machine.The
vcpu parameter must be provided.

Virtualization Deployment and Administration Guide

364

The cpulist parameter is a list of physical CPU identifier numbers separated by commas. The
cpulist parameter determines which physical CPUs the VCPUs can run on.

Additional parameters such as --config effect the next boot, whereas --live effects the running
guest virtual machine and --current affects the current guest virtual machine state.

21.38.6. Configuring Virtual CPU Count

Use this command to change the number of virtual CPUs active in a guest virtual machine. By default,
this command works on active guest virtual machines. To change the inactive settings that will be used
the next time a guest virtual machine is started, use the --config flag.To modify the number of CPUs
assigned to a guest virtual machine with virsh:

virsh setvcpus {domain-name, domain-id or domain-uuid} count [[--config]
[--live] | [--current]] [--maximum] [--guest]

For example:

virsh setvcpus guestVM1 2 --live

will set the number of vCPUs to guestVM1 to two and this action will be performed while the guestVM1 is
running.

IMPORTANT

Hot unplugging of vCPUs is not currently supported on Red Hat Enterprise Linux 7.

The count value may be limited by host, hypervisor, or a limit coming from the original description of the
guest virtual machine.

If the --config flag is specified, the change is made to the stored XML configuration for the guest
virtual machine, and will only take effect when the guest is started.

If --live is specified, the guest virtual machine must be active, and the change takes place
immediately. This option will allow hot plugging of a vCPU. Both the --config and --live flags may
be specified together if supported by the hypervisor.

If --current is specified, the flag affects the current guest virtual machine state.

When no flags are specified, the --live flag is assumed. The command will fail if the guest virtual
machine is not active. In addition, if no flags are specified, it is up to the hypervisor whether the --
config flag is also assumed. This determines whether the XML configuration is adjusted to make the
change persistent.

The --maximum flag controls the maximum number of virtual CPUs that can be hot-plugged the next
time the guest virtual machine is booted. Therefore, it can only be used with the --config flag, not with
the --live flag.

Note that count cannot exceed the number of CPUs assigned to the guest virtual machine.

If --guest is specified, the flag modifies the CPU state in the current guest virtual machine.

21.38.7. Configuring Memory Allocation

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

365

To modify a guest virtual machine's memory allocation with virsh:

virsh setmem {domain-id or domain-name} count

For example:

virsh setmem vr-rhel6u1-x86_64-kvm --kilobytes 1025000

You must specify the count in kilobytes. The new count value cannot exceed the amount you specified
for the guest virtual machine. Values lower than 64 MB are unlikely to work with most guest virtual
machine operating systems. A higher maximum memory value does not affect active guest virtual
machines. If the new value is lower than the available memory, it will shrink possibly causing the guest
virtual machine to crash.

This command has the following options

domain - specified by a domain name, id, or uuid

size - Determines the new memory size, as a scaled integer. The default unit is KiB, but a
different one can be specified:

Valid memory units include:

b or bytes for bytes

KB for kilobytes (103 or blocks of 1,000 bytes)

k or KiB for kibibytes (210 or blocks of 1024 bytes)

MB for megabytes (106 or blocks of 1,000,000 bytes)

M or MiB for mebibytes (220 or blocks of 1,048,576 bytes)

GB for gigabytes (109 or blocks of 1,000,000,000 bytes)

G or GiB for gibibytes (230 or blocks of 1,073,741,824 bytes)

TB for terabytes (1012 or blocks of 1,000,000,000,000 bytes)

T or TiB for tebibytes (240 or blocks of 1,099,511,627,776 bytes)

Note that all values will be rounded up to the nearest kibibyte by libvirt, and may be further
rounded to the granularity supported by the hypervisor. Some hypervisors also enforce a
minimum, such as 4000KiB (or 4000 x 210 or 4,096,000 bytes). The units for this value are
determined by the optional attribute memory unit, which defaults to the kibibytes (KiB) as a

unit of measure where the value given is multiplied by 210 or blocks of 1024 bytes.

--config - the command takes effect on the next boot

--live - the command controls the memory of a running guest virtual machine

--current - the command controls the memory on the current guest virtual machine

Virtualization Deployment and Administration Guide

366

21.38.8. Changing the Memory Allocation for the Domain

The virsh setmaxmem domain size --config --live --current command allows the
setting of the maximum memory allocation for a guest virtual machine as shown:

virsh setmaxmem guest1 1024 --current

The size that can be given for the maximum memory is a scaled integer that by default is expressed in
kibibytes, unless a supported suffix is provided. The following arguments can be used with this
command:

--config - takes affect next boot

--live - controls the memory of the running guest virtual machine, providing the hypervisor
supports this action as not all hypervisors allow live changes of the maximum memory limit.

--current - controls the memory on the current guest virtual machine

21.38.9. Displaying Guest Virtual Machine Block Device Information

Use the virsh domblkstat command to display block device statistics for a running guest virtual
machine. Use the --human to display the statistics in a more user friendly way.

virsh domblkstat GuestName block-device

21.38.10. Displaying Guest Virtual Machine Network Device Information

Use the virsh domifstat command to display network interface statistics for a running guest virtual
machine.

virsh domifstat GuestName interface-device

21.39. MANAGING VIRTUAL NETWORKS

This section covers managing virtual networks with the virsh command. To list virtual networks:

virsh net-list

This command generates output similar to:

virsh net-list
Name State Autostart

default active yes
vnet1 active yes
vnet2 active yes

To view network information for a specific virtual network:

virsh net-dumpxml NetworkName

This displays information about a specified virtual network in XML format:

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

367

virsh net-dumpxml vnet1
<network>
 <name>vnet1</name>
 <uuid>98361b46-1581-acb7-1643-85a412626e70</uuid>
 <forward dev='eth0'/>
 <bridge name='vnet0' stp='on' forwardDelay='0' />
 <ip address='192.168.100.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.100.128' end='192.168.100.254' />
 </dhcp>
 </ip>
</network>

Other virsh commands used in managing virtual networks are:

virsh net-autostart network-name : Marks a network-name to be started automatically
when the libvirt daemon starts. The --disable option un-marks the network-name.

virsh net-create XMLfile : Starts a new (transient) network using an XML definition from
an existing file.

virsh net-define XMLfile : Defines a new network using an XML definition from an
existing file without starting it.

virsh net-destroy network-name : Destroys a network specified as network-name.

virsh net-name networkUUID : Converts a specified networkUUID to a network name.

virsh net-uuid network-name : Converts a specified network-name to a network UUID.

virsh net-start nameOfInactiveNetwork : Starts an inactive network.

virsh net-undefine nameOfInactiveNetwork : Removes the inactive XML definition of
a network. This has no effect on the network state. If the domain is running when this command
is executed, the network continues running. However, the network becomes transient instead of
persistent.

libvirt has the capability to define virtual networks which can then be used by domains and linked to
actual network devices. For more detailed information about this feature see the documentation at libvirt
upstream website . Many of the commands for virtual networks are similar to the ones used for domains,
but the way to name a virtual network is either by its name or UUID.

21.39.1. Autostarting a Virtual Network

The virsh net-autostart command configures a virtual network to be started automatically when
the guest virtual machine boots.

virsh net-autostart network [--disable]

This command accepts the --disable option, which disables the autostart command.

21.39.2. Creating a Virtual Network from an XML File

Virtualization Deployment and Administration Guide

368

http://libvirt.org/formatnetwork.html

The virsh net-create command creates a virtual network from an XML file. To get a description of
the XML network format used by libvirt, refer to the libvirt upstream website. In this command file is the
path to the XML file. To create the virtual network from an XML file, run:

virsh net-create file

21.39.3. Defining a Virtual Network from an XML File

The virsh net-define command defines a virtual network from an XML file, the network is just
defined but not instantiated.

virsh net-define file

21.39.4. Stopping a Virtual Network

The virsh net-destroy command destroys (stops) a given virtual network specified by its name or
UUID. This takes effect immediately. To stop the specified network network is required.

virsh net-destroy network

21.39.5. Creating a Dump File

The virsh net-dumpxml command outputs the virtual network information as an XML dump to stdout
for the specified virtual network. If --inactive is specified, physical functions are not expanded into
their associated virtual functions.

virsh net-dumpxml network [--inactive]

21.39.6. Editing a Virtual Network's XML Configuration File

The following command edits the XML configuration file for a network:

virsh net-edit network

The editor used for editing the XML file can be supplied by the $VISUAL or $EDITOR environment
variables, and defaults to vi.

21.39.7. Getting Information about a Virtual Network

The virsh net-info returns basic information about the network object.

virsh net-info network

21.39.8. Listing Information about a Virtual Network

The virsh net-list command returns the list of active networks. If --all is specified this will also
include defined but inactive networks. If --inactive is specified only the inactive ones will be listed.
You may also want to filter the returned networks by --persistent to list the persistent ones, --
transient to list the transient ones, --autostart to list the ones with autostart enabled, and --no-
autostart to list the ones with autostart disabled.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

369

http://libvirt.org/formatnetwork.html

Note: When talking to older servers, this command is forced to use a series of API calls with an inherent
race, where a pool might not be listed or might appear more than once if it changed state between calls
while the list was being collected. Newer servers do not have this problem.

To list the virtual networks, run:

virsh net-list [--inactive | --all] [--persistent] [<--transient>] [--
autostart] [<--no-autostart>]

21.39.9. Converting a Network UUID to Network Name

The virsh net-name command converts a network UUID to network name.

virsh net-name network-UUID

21.39.10. Converting a Network Name to Network UUID

The virsh net-uuid command converts a network name to network UUID.

virsh net-uuid network-name

21.39.11. Starting a Previously Defined Inactive Network

The virsh net-start command starts a (previously defined) inactive network.

virsh net-start network

21.39.12. Undefining the Configuration for an Inactive Network

The virsh net-undefine command undefines the configuration for an inactive network.

virsh net-undefine network

21.39.13. Updating an Existing Network Definition File

virsh net-update network directive section XML [--parent-index index]
[[--live] [--config] | [--current]]

The virsh net-update command updates a specified section of an existing network definition by
issuing one of the following directives to the section:

add-first

add-last or add (these are synonymous)

delete

modify

The section can be one of the following:

bridge

Virtualization Deployment and Administration Guide

370

bridge

domain

ip

ip-dhcp-host

ip-dhcp-range

forward

forward interface

forward-pf

portgroup

dns-host

dns-txt

dns-srv

Each section is named by a concatenation of the XML element hierarchy leading to the element that is
changed. For example, ip-dhcp-host changes a <host> element that is contained inside a <dhcp>
element inside an <ip> element of the network.

XML is either the text of a complete XML element of the type being changed (for instance, <host
mac="00:11:22:33:44:55’ ip=’1.2.3.4’/>), or the name of a file that contains a complete XML
element. Disambiguation is done by looking at the first character of the provided text - if the first
character is <, it is XML text, if the first character is not >, it is the name of a file that contains the xml
text to be used. The --parent-index option is used to specify which of several parent elements the
requested element is in (0-based).

For example, a dhcp <host> element could be in any one of multiple <ip> elements in the network; if a
parent-index is not provided, the most appropriate <ip> element will be selected (usually the only one
that already has a <dhcp> element), but if --parent-index is given, that particular instance of <ip>
will get the modification. If --live is specified, affect a running network. If --config is specified, affect
the next startup of a persistent network. If --current is specified, affect the current network state. Both
--live and --config flags may be given, but --current is exclusive. Not specifying any flag is the
same as specifying --current.

21.39.14. Migrating Guest Virtual Machines with virsh

Information on migration using virsh is located in the section entitled Live KVM Migration with virsh Refer
to Section 16.5, “Live KVM Migration with virsh”

21.39.15. Setting a Static IP Address for the Guest Virtual Machine

In cases where a guest virtual machine is configured to acquire its IP address from DHCP, but you still
need it to have a predictable static IP address, you can use the following procedure to modify the DHCP
server configuration used by libvirt. This procedure requires that you know the MAC address of the guest

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

371

interface in order to make this change. Therefore, you will need to perform the operation after the guest
has been created, or decide on a MAC address for the guest prior to creating it, and then set this same
address manually when creating the guest virtual machine.

In addition, you should note that this procedure only works for guest interfaces that are connected to a
libvirt virtual network with a forwarding mode of "nat", "route", or no forwarding mode at all. This
procedure will not work if the network has been configured with forward mode="bridge" or
"hostdev" . In those cases, the DCHP server is located elsewhere on the network, and is therefore not
under control of libvirt. In this case the static IP entry would need to be made on the remote DHCP
server. To do that refer to the documentation that is supplied with the server.

Procedure 21.5. Setting a static IP address

This procedure is performed on the host physical machine.

1. Check the guest XML configuration file
Display the guest's network configuration settings by running the virsh domiflist guest1
command. Substitute the name of your virtual machine in place of guest1. A table is displayed.
Look in the Source column. That is the name of your network. In this example the network is
called default. This name will be used for the rest of the procedure as well as the MAC address.

virsh domiflist guest1
Interface Type Source Model MAC

vnet4 network default virtio 52:54:00:48:27:1D

2. Verify the DHCP range
The IP address that you set must be within the dhcp range that is specified for the network. In
addition, it must also not conflict with any other existing static IP addresses on the network. To
check the range of addresses available as well as addresses used, use the following command
on the host machine:

virsh net-dumpxml default | egrep 'range|host\ mac'

<range start='198.51.100.2' end='198.51.100.254'/>
<host mac='52:54:00:48:27:1C:1D' ip='198.51.100.2'/>

The output you see will differ from the example and you may see more lines and multiple host
mac lines. Each guest static IP address will have one line.

3. Set a static IP address
Use the following command on the host machine, and replace default with the name of the
network.

virsh net-update default add ip-dhcp-host '<host
mac='52:54:00:48:27:1D' ip='198.51.100.3"/>'--live --config

The --live option allows this change to immediately take place and the --config option
makes the change persistent. This command will also work for guest virtual machines that you
have not yet created as long as you use a valid IP and MAC address. The MAC address should
be a valid unicast MAC address (6 hexadecimal digit pairs separated by :, with the first digit pair
being an even number); when libvirt creates a new random MAC address, it uses 52:54:00 for
the first three digit pairs, and it is recommended to follow this convention.

Virtualization Deployment and Administration Guide

372

4. Restart the interface (optional)
If the guest virtual machine is currently running, you will need to force the guest virtual machine
to re-request a DHCP address. If the guest is not running, the new IP address will be
implemented the next time you start it. To restart the interface, enter the following commands on
the host machine:

virsh domif-setlink guest1 52:54:00:48:27:1D down
sleep 10
virsh domif-setlink guest1 52:54:00:48:27:1D up

This command makes the guest virtual machine's operating system think that the Ethernet cable
has been unplugged, and then re-plugged after ten seconds. The sleep command is important
because many DHCP clients allow for a short disconnect of the cable without re-requesting the
IP address. Ten seconds is long enough so that the DHCP client forgets the old IP address and
will request a new one once the up command is executed. If for some reason this command
fails, you will have to reset the guest's interface from the guest operating system's management
interface.

21.40. INTERFACE COMMANDS

The following commands manipulate host interfaces and as such should not be run from the guest virtual
machine. These commands should be run from a terminal on the host physical machine.

WARNING

The commands in this section are only supported if the machine has the
NetworkManager service disabled, and is using the network service instead.

Often, these host interfaces can then be used by name within guest virtual machine <interface>
elements (such as a system-created bridge interface), but there is no requirement that host interfaces be
tied to any particular guest configuration XML at all. Many of the commands for host interfaces are
similar to the ones used for guest virtual machines, and the way to name an interface is either by its
name or its MAC address. However, using a MAC address for an iface argument only works when that
address is unique (if an interface and a bridge share the same MAC address, which is often the case,
then using that MAC address results in an error due to ambiguity, and you must resort to a name
instead).

21.40.1. Defining and Starting a Host Physical Machine Interface via an XML File

The virsh iface-define file command define a host interface from an XML file. This command
will only define the interface and will not start it.

virsh iface-define iface.xml

To start an interface which has already been defined, run iface-start interface, where interface
is the interface name.

21.40.2. Editing the XML Configuration File for the Host Interface



CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

373

The command virsh iface-edit interface edits the XML configuration file for a host interface.
This is the only recommended way to edit the XML configuration file. (For more information about these
files, refer to Chapter 24, Manipulating the Domain XML.)

21.40.3. Listing Host Interfaces

The virsh iface-list displays a list of active host interfaces. If --all is specified, this list will also
include interfaces that are defined but are inactive. If --inactive is specified only the inactive
interfaces will be listed.

21.40.4. Converting a MAC Address into an Interface Name

The virsh iface-name interface command converts a host interface MAC address to an interface
name, the provided MAC address is unique among the host’s interfaces. This command requires
interface which is the interface's MAC address.

The virsh iface-mac interface command will convert a host's interface name to MAC address
where in this case interface, is the interface name.

21.40.5. Stopping and Undefining a Specific Host Physical Machine Interface

The virsh iface-destroy interface command destroys (stops) a given host interface, which is
the same as running virsh if-down on the host. This command will disable that interface from active
use and takes effect immediately.

To undefine the interface, use the virsh iface-undefine interface command along with the
interface name.

21.40.6. Displaying the Host Configuration File

THe virsh iface-dumpxml interface --inactive command displays the host interface
information as an XML dump to stdout. If the --inactive argument is specified, then the output reflects
the persistent state of the interface that will be used the next time it is started.

21.40.7. Creating Bridge Devices

The virsh iface-bridge command creates a bridge device named bridge, and attaches the existing
network device interface to the new bridge, which starts working immediately, with STP enabled and a
delay of 0.

virsh iface-bridge interface bridge

Note that these settings can be altered with the --no-stp option, --no-start option, and an number
of seconds for delay. The IP address configuration of the interface will be moved to the new bridge
device. For information on tearing down the bridge, refer to Section 21.40.8, “Tearing Down a Bridge
Device”

21.40.8. Tearing Down a Bridge Device

The virsh iface-unbridge bridge --no-start command tears down a specified bridge device
named bridge, releases its underlying interface back to normal usage, and moves all IP address
configuration from the bridge device to the underlying device. The underlying interface is restarted

Virtualization Deployment and Administration Guide

374

unless --no-start argument is used, but keep in mind not restarting is generally not recommended.
For the command to create a bridge, refer to Section 21.40.7, “Creating Bridge Devices”.

21.40.9. Manipulating Interface Snapshots

The virsh iface-begin command creates a snapshot of current host interface settings, which can
later be committed (with virsh iface-commit) or restored (virsh iface-rollback). This is
useful for situations where something fails when defining and starting a new host interface, and a system
misconfiguration occurs. If a snapshot already exists, then this command will fail until the previous
snapshot has been committed or restored. Undefined behavior will result if any external changes are
made to host interfaces outside of the libvirt API between the time of the creation of a snapshot and its
eventual commit or rollback.

Use the virsh iface-commit command to declare all changes made since the last virsh iface-
begin as working, and then delete the rollback point. If no interface snapshot has already been started
via virsh iface-begin, then this command will fail.

Use the virsh iface-rollback to revert all host interface settings back to the state that recorded the
last time the virsh iface-begin command was executed. If virsh iface-begin command had
not been previously executed, then virsh iface-rollback will fail. Note that if the host physical
machine is rebooted before virsh iface-commit is run, an automatic rollback will be performed
which will restore the host's configuration to the state it was at the time that the virsh iface-begin
was executed. This is useful in cases where an improper change to the network configuration renders
the host unreachable for purposes of undoing the change, but the host is either power-cycled or
otherwise forced to reboot.

Example 21.98. An example of working with snapshots

Define and start a new host interface.

virsh iface-begin
virsh iface-define eth4-if.xml
virsh if-start eth4

If something fails and the network stops running, roll back the changes.

virsh iface-rollback

If everything works properly, commit the changes.

virsh iface-commit

21.41. MANAGING SNAPSHOTS

The sections that follow describe actions that can be done in order to manipulate guest virtual machine
snapshots. Snapshots take the disk, memory, and device state of a guest virtual machine at a specified
point in time, and save it for future use. Snapshots have many uses, from saving a "clean" copy of an OS
image to saving a guest virtual machine’s state before what may be a potentially destructive operation.
Snapshots are identified with a unique name. See the libvirt upstream website for documentation of the
XML format used to represent properties of snapshots.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

375

http://libvirt.org/formatsnapshot.html

IMPORTANT

Red Hat Enterprise Linux 7 only supports creating snapshots while the guest virtual
machine is paused or powered down. Creating snapshots of running guests (also known
as live snapshots) is available on Red Hat Virtualization. For details, call your service
representative.

21.41.1. Creating Snapshots

The virsh snapshot-create command creates a snapshot for guest virtual machine with the
properties specified in the guest virtual machine's XML file (such as <name> and <description>
elements, as well as <disks>). To create a snapshot run:

virsh snapshot-create domain XML file [--redefine [--current] [--no-
metadata] [--halt] [--disk-only] [--reuse-external] [--quiesce] [--atomic]

The guest virtual machine name, id, or uid may be used as the guest virtual machine requirement. The
XML requirement is a string that must in the very least contain the name, description, and disks
elements.

The remaining optional arguments are as follows:

--disk-only - the memory state of the guest virtual machine is not included in the snapshot.

If the XML file string is completely omitted, libvirt will choose a value for all fields. The new
snapshot will become current, as listed by snapshot-current. In addition, the snapshot will only
include the disk state rather than the usual system checkpoint with guest virtual machine state.
Disk snapshots are faster than full system checkpoints, but reverting to a disk snapshot may
require fsck or journal replays, since it is like the disk state at the point when the power cord is
abruptly pulled. Note that mixing --halt and --disk-only loses any data that was not
flushed to disk at the time.

--halt - causes the guest virtual machine to be left in an inactive state after the snapshot is
created. Mixing --halt and --disk-only loses any data that was not flushed to disk at the
time as well as the memory state.

--redefine specifies that if all XML elements produced by virsh snapshot-dumpxml are
valid; it can be used to migrate snapshot hierarchy from one machine to another, to recreate
hierarchy for the case of a transient guest virtual machine that goes away and is later recreated
with the same name and UUID, or to make slight alterations in the snapshot metadata (such as
host-specific aspects of the guest virtual machine XML embedded in the snapshot). When this
flag is supplied, the xmlfile argument is mandatory, and the guest virtual machine’s current
snapshot will not be altered unless the --current flag is also given.

--no-metadata creates the snapshot, but any metadata is immediately discarded (that is,
libvirt does not treat the snapshot as current, and cannot revert to the snapshot unless --
redefine is later used to teach libvirt about the metadata again).

--reuse-external, if used and snapshot XML requests an external snapshot with a
destination of an existing file, the destination must exist, and is reused; otherwise, a snapshot is
refused to avoid losing contents of the existing files.

--quiesce libvirt will try to freeze and unfreeze the guest virtual machine’s mounted file
system(s), using the guest agent. However, if the guest virtual machine does not have a guest
agent, snapshot creation will fail. The snapshot can contain the memory state of the virtual guest

Virtualization Deployment and Administration Guide

376

machine. The snapshot must be external.

--atomic causes libvirt to guarantee that the snapshot either succeeds, or fails with no
changes. Note that not all hypervisors support this. If this flag is not specified, then some
hypervisors may fail after partially performing the action, and virsh dumpxml must be used to
see whether any partial changes occurred.

Existence of snapshot metadata will prevent attempts to undefine a persistent guest virtual machine.
However, for transient guest virtual machines, snapshot metadata is silently lost when the guest virtual
machine quits running (whether by a command such as destroy or by an internal guest action).

21.41.2. Creating a Snapshot for the Current Guest Virtual Machine

The virsh snapshot-create-as command creates a snapshot for guest virtual machine with the
properties specified in the domain XML file (such as name and description elements). If these values
are not included in the XML string, libvirt will choose a value. To create a snapshot run:

snapshot-create-as domain {[--print-xml] | [--no-metadata] [--halt] [--
reuse-external]} [name] [description] [--disk-only [--quiesce]] [--atomic]
[[--memspec memspec]] [--diskspec] diskspec]

The remaining optional arguments are as follows:

--print-xmlcreates appropriate XML for snapshot-create as output, rather than actually
creating a snapshot.

--halt keeps the guest virtual machine in an inactive state after the snapshot is created.

--disk-only creates a snapshot that does not include the guest virtual machine state.

--memspec can be used to control whether a checkpoint is internal or external. The flag is
mandatory, followed by a memspec of the form [file=]name[,snapshot=type], where type
can be none, internal, or external. To include a literal comma in file=name, escape it with a
second comma.

--diskspec option can be used to control how --disk-only and external checkpoints create
external files. This option can occur multiple times, according to the number of <disk>
elements in the domain XML. Each <diskspec> is in the form disk[,snapshot=type]
[,driver=type][,file=name]. If --diskspec is omitted for a specific disk, the default
behavior in the virtual machine configuraition is used. To include a literal comma in disk or in
file=name, escape it with a second comma. A literal --diskspec must precede each
diskspec unless all three of domain, name, and description are also present. For example, a
diskspec of vda,snapshot=external,file=/path/to,,new results in the following XML:

<disk name=’vda’ snapshot=’external’>
 <source file=’/path/to,new’/>
</disk>

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

377

IMPORTANT

Red Hat recommends the use of external snapshots, as they are more flexible
and reliable when handled by other virtualization tools. To create an external
snapshot, use the virsh-create-as command with the --diskspec
vda,snapshot=external option

If this option is not used, virsh creates internal snapshots, which are not
recommended for use due to their lack of stability and optimization. For more
information, see Section A.13, “Workaround for Creating External Snapshots with
libvirt”.

--reuse-external is specified, and the domain XML or diskspec option requests an external
snapshot with a destination of an existing file, then the destination must exist, and is reused;
otherwise, a snapshot is refused to avoid losing contents of the existing files.

--quiesce is specified, libvirt will try to use guest agent to freeze and unfreeze guest virtual
machine’s mounted file systems. However, if domain has no guest agent, snapshot creation will
fail. Currently, this requires --disk-only to be passed as well.

--no-metadata creates snapshot data but any metadata is immediately discarded (that
is,libvirt does not treat the snapshot as current, and cannot revert to the snapshot unless
snapshot-create is later used to teach libvirt about the metadata again). This flag is incompatible
with --print-xml

--atomic will cause libvirt to guarantee that the snapshot either succeeds, or fails with no
changes. Note that not all hypervisors support this. If this flag is not specified, then some
hypervisors may fail after partially performing the action, and virsh dumpxml must be used to
see whether any partial changes occurred.

WARNING

Creating snapshots of KVM guests running on a 64-bit ARM platform host currently
does not work. Note that KVM on 64-bit ARM is provided as a Development
Preview.

21.41.3. Displaying the Snapshot Currently in Use

The virsh snapshot-current command is used to query which snapshot is currently in use.

virsh snapshot-current domain {[--name] | [--security-info] |
[snapshotname]}

If snapshotname is not used, snapshot XML for the guest virtual machine’s current snapshot (if there is
one) will be displayed as output. If --name is specified, just the current snapshot name instead of the full
XML will be sent as output. If --security-info is supplied security sensitive information will be
included in the XML. Using snapshotname, generates a request to make the existing named snapshot
become the current snapshot, without reverting it to the guest virtual machine.



Virtualization Deployment and Administration Guide

378

21.41.4. snapshot-edit

This command is used to edit the snapshot that is currently in use:

virsh snapshot-edit domain [snapshotname] [--current] {[--rename] [--
clone]}

If both snapshotname and --current are specified, it forces the edited snapshot to become the
current snapshot. If snapshotname is omitted, then --current must be supplied, in order to edit the
current snapshot.

This is equivalent to the following command sequence below, but it also includes some error checking:

virsh snapshot-dumpxml dom name > snapshot.xml
vi snapshot.xml [note - this can be any editor]
virsh snapshot-create dom snapshot.xml --redefine [--current]

If the --rename is specified, then the snapshot is renamed. If --clone is specified, then changing the
snapshot name will create a clone of the snapshot metadata. If neither is specified, then the edits will not
change the snapshot name. Note that changing a snapshot name must be done with care, since the
contents of some snapshots, such as internal snapshots within a single qcow2 file, are accessible only
from the original snapshot name.

21.41.5. snapshot-info

The snapshot-info domain command displays information about the snapshots. To use, run:

snapshot-info domain {snapshot | --current}

Outputs basic information about a specified snapshot , or the current snapshot with --current.

21.41.6. snapshot-list

List all of the available snapshots for the given guest virtual machine, defaulting to show columns for the
snapshot name, creation time, and guest virtual machine state. To use, run:

virsh snapshot-list domain [{--parent | --roots | --tree}] [{[--from]
snapshot | --current} [--descendants]] [--metadata] [--no-metadata] [--
leaves] [--no-leaves] [--inactive] [--active] [--disk-only] [--internal]
[--external]

The optional arguments are as follows:

--parent adds a column to the output table giving the name of the parent of each snapshot.
This option may not be used with --roots or --tree.

--roots filters the list to show only the snapshots that have no parents. This option may not be
used with --parent or --tree.

--tree displays output in a tree format, listing just snapshot names. This option may not be
used with --roots or --parent.

--from filters the list to snapshots which are children of the given snapshot or, if --current is

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

379

provided, will cause the list to start at the current snapshot. When used in isolation or with --
parent, the list is limited to direct children unless --descendants is also present. When used
with --tree, the use of --descendants is implied. This option is not compatible with --
roots. Note that the starting point of --from or --current is not included in the list unless
the --tree option is also present.

--leaves is specified, the list will be filtered to just snapshots that have no children. Likewise, if
--no-leaves is specified, the list will be filtered to just snapshots with children. (Note that
omitting both options does no filtering, while providing both options will either produce the same
list or error out depending on whether the server recognizes the flags) Filtering options are not
compatible with --tree.

--metadata is specified, the list will be filtered to just snapshots that involve libvirt metadata,
and thus would prevent the undefining of a persistent guest virtual machine, or be lost on
destroy of a transient guest virtual machine. Likewise, if --no-metadata is specified, the list
will be filtered to just snapshots that exist without the need for libvirt metadata.

--inactive is specified, the list will be filtered to snapshots that were taken when the guest
virtual machine was shut off. If --active is specified, the list will be filtered to snapshots that
were taken when the guest virtual machine was running, and where the snapshot includes the
memory state to revert to that running state. If --disk-only is specified, the list will be filtered
to snapshots that were taken when the guest virtual machine was running, but where the
snapshot includes only disk state.

--internal is specified, the list will be filtered to snapshots that use internal storage of existing
disk images. If --external is specified, the list will be filtered to snapshots that use external files
for disk images or memory state.

21.41.7. snapshot-dumpxml

The virsh snapshot-dumpxml domain snapshot command outputs the snapshot XML for the
guest virtual machine’s snapshot named snapshot. To use, run:

virsh snapshot-dumpxml domain snapshot [--security-info]

The --security-info option will also include security sensitive information. Use virsh snapshot-
current to easily access the XML of the current snapshot.

21.41.8. snapshot-parent

Outputs the name of the parent snapshot, if any, for the given snapshot, or for the current snapshot with
--current. To use, run:

virsh snapshot-parent domain {snapshot | --current}

21.41.9. snapshot-revert

Reverts the given domain to the snapshot specified by snapshot, or to the current snapshot with --
current.

Virtualization Deployment and Administration Guide

380

WARNING

Be aware that this is a destructive action; any changes in the domain since the last
snapshot was taken will be lost. Also note that the state of the domain after
snapshot-revert is complete will be the state of the domain at the time the
original snapshot was taken.

To revert the snapshot, run:

virsh snapshot-revert domain {snapshot | --current} [{--running | --
paused}] [--force]

Normally, reverting to a snapshot leaves the domain in the state it was at the time the snapshot was
created, except that a disk snapshot with no guest virtual machine state leaves the domain in an inactive
state. Passing either the --running or --paused option will perform additional state changes (such
as booting an inactive domain, or pausing a running domain). Since transient domains cannot be
inactive, it is required to use one of these flags when reverting to a disk snapshot of a transient domain.

There are two cases where a snapshot revert involves extra risk, which requires the use of --
force to proceed. One is the case of a snapshot that lacks full domain information for reverting
configuration; since libvirt cannot prove that the current configuration matches what was in use at the
time of the snapshot, supplying --force assures libvirt that the snapshot is compatible with the current
configuration (and if it is not, the domain will likely fail to run). The other is the case of reverting from a
running domain to an active state where a new hypervisor has to be created rather than reusing the
existing hypervisor, because it implies drawbacks such as breaking any existing VNC or Spice
connections; this condition happens with an active snapshot that uses a provably incompatible
configuration, as well as with an inactive snapshot that is combined with the --start or --pause flag.

21.41.10. snapshot-delete

The virsh snapshot-delete domain command deletes the snapshot for the specified domain. To
do this, run:

virsh snapshot-delete domain {snapshot | --current} [--metadata] [{--
children | --children-only}]

This command deletes the snapshot for the domain named snapshot, or the current snapshot with --
current. If this snapshot has child snapshots, changes from this snapshot will be merged into the
children. If the option --children is used, then it will delete this snapshot and any children of this
snapshot. If --children-only is used, then it will delete any children of this snapshot, but leave this
snapshot intact. These two flags are mutually exclusive.

The --metadata is used it will delete the snapshot's metadata maintained by libvirt, while leaving the
snapshot contents intact for access by external tools; otherwise deleting a snapshot also removes its
data contents from that point in time.

21.42. GUEST VIRTUAL MACHINE CPU MODEL CONFIGURATION



CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

381

21.42.1. Introduction

Every hypervisor has its own policy for what a guest virtual machine will see for its CPUs by default.
Whereas some hypervisors decide which CPU host physical machine features will be available for the
guest virtual machine, QEMU/KVM presents the guest virtual machine with a generic model named
qemu32 or qemu64. These hypervisors perform more advanced filtering, classifying all physical CPUs
into a handful of groups and have one baseline CPU model for each group that is presented to the guest
virtual machine. Such behavior enables the safe migration of guest virtual machines between host
physical machines, provided they all have physical CPUs that classify into the same group. libvirt does
not typically enforce policy itself, rather it provides the mechanism on which the higher layers define their
own required policy. Understanding how to obtain CPU model information and define a suitable guest
virtual machine CPU model is critical to ensure guest virtual machine migration is successful between
host physical machines. Note that a hypervisor can only emulate features that it is aware of and features
that were created after the hypervisor was released may not be emulated.

21.42.2. Learning about the Host Physical Machine CPU Model

The virsh capabilities command displays an XML document describing the capabilities of the
hypervisor connection and host physical machine. The XML schema displayed has been extended to
provide information about the host physical machine CPU model. One of the big challenges in describing
a CPU model is that every architecture has a different approach to exposing their capabilities.
QEMU/KVM and libvirt use a scheme which combines a CPU model name string, with a set of named
flags.

It is not practical to have a database listing all known CPU models, so libvirt has a small list of baseline
CPU model names. It chooses the one that shares the greatest number of CPUID bits with the actual
host physical machine CPU and then lists the remaining bits as named features. Notice that libvirt does
not display which features the baseline CPU contains. This might seem like a flaw at first, but as will be
explained in this section, it is not actually necessary to know this information.

21.42.3. Determining Support for VFIO IOMMU Devices

Use the virsh domcapabilities command to determine support for VFIO. See the following
example output:

Figure 21.3. Determining support for VFIO

21.42.4. Determining a Compatible CPU Model to Suit a Pool of Host Physical
Machines

Now that it is possible to find out what CPU capabilities a single host physical machine has, the next step
is to determine what CPU capabilities are best to expose to the guest virtual machine. If it is known that
the guest virtual machine will never need to be migrated to another host physical machine, the host

virsh domcapabilities

[...output truncated...]

<enum name='pciBackend'>
 <value>default</value>
 <value>vfio</value>

[...output truncated...]

Virtualization Deployment and Administration Guide

382

physical machine CPU model can be passed straight through unmodified. A virtualized data center may
have a set of configurations that can guarantee all servers will have 100% identical CPUs. Again the host
physical machine CPU model can be passed straight through unmodified. The more common case,
though, is where there is variation in CPUs between host physical machines. In this mixed CPU
environment, the lowest common denominator CPU must be determined. This is not entirely
straightforward, so libvirt provides an API for exactly this task. If libvirt is provided a list of XML
documents, each describing a CPU model for a host physical machine, libvirt will internally convert these
to CPUID masks, calculate their intersection, and convert the CPUID mask result back into an XML CPU
description.

Here is an example of what libvirt reports as the capabilities on a basic workstation, when the virsh
capabilities is executed:

Figure 21.4. Pulling host physical machine's CPU model information

Now compare that to a different server, with the same virsh capabilities command:

<capabilities>
 <host>
 <cpu>
 <arch>i686</arch>
 <model>pentium3</model>
 <topology sockets='1' cores='2' threads='1'/>
 <feature name='lahf_lm'/>
 <feature name='lm'/>
 <feature name='xtpr'/>
 <feature name='cx16'/>
 <feature name='ssse3'/>
 <feature name='tm2'/>
 <feature name='est'/>
 <feature name='vmx'/>
 <feature name='ds_cpl'/>
 <feature name='monitor'/>
 <feature name='pni'/>
 <feature name='pbe'/>
 <feature name='tm'/>
 <feature name='ht'/>
 <feature name='ss'/>
 <feature name='sse2'/>
 <feature name='acpi'/>
 <feature name='ds'/>
 <feature name='clflush'/>
 <feature name='apic'/>
 </cpu>
 </host>
</capabilities>

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

383

Figure 21.5. Generate CPU description from a random server

To see if this CPU description is compatible with the previous workstation CPU description, use the
virsh cpu-compare command.

The reduced content was stored in a file named virsh-caps-workstation-cpu-only.xml and the
virsh cpu-compare command can be executed on this file:

virsh cpu-compare virsh-caps-workstation-cpu-only.xml
Host physical machine CPU is a superset of CPU described in virsh-caps-
workstation-cpu-only.xml

As seen in this output, libvirt is correctly reporting that the CPUs are not strictly compatible. This is
because there are several features in the server CPU that are missing in the client CPU. To be able to
migrate between the client and the server, it will be necessary to open the XML file and comment out
some features. To determine which features need to be removed, run the virsh cpu-baseline
command, on the both-cpus.xml which contains the CPU information for both machines. Running #
virsh cpu-baseline both-cpus.xml results in:

<capabilities>
 <host>
 <cpu>
 <arch>x86_64</arch>
 <model>phenom</model>
 <topology sockets='2' cores='4' threads='1'/>
 <feature name='osvw'/>
 <feature name='3dnowprefetch'/>
 <feature name='misalignsse'/>
 <feature name='sse4a'/>
 <feature name='abm'/>
 <feature name='cr8legacy'/>
 <feature name='extapic'/>
 <feature name='cmp_legacy'/>
 <feature name='lahf_lm'/>
 <feature name='rdtscp'/>
 <feature name='pdpe1gb'/>
 <feature name='popcnt'/>
 <feature name='cx16'/>
 <feature name='ht'/>
 <feature name='vme'/>
 </cpu>
 ...snip...

Virtualization Deployment and Administration Guide

384

Figure 21.6. Composite CPU baseline

This composite file shows which elements are in common. Everything that is not in common should be
commented out.

21.43. CONFIGURING THE GUEST VIRTUAL MACHINE CPU MODEL

For simple defaults, the guest virtual machine CPU configuration accepts the same basic XML
representation as the host physical machine capabilities XML exposes. In other words, the XML from the
virsh cpu-baseline command can now be copied directly into the guest virtual machine XML at the
top level under the domain element. In the previous XML snippet, there are a few extra attributes
available when describing a CPU in the guest virtual machine XML. These can mostly be ignored, but for
the curious here is a quick description of what they do. The top level <cpu> element has an attribute
called match with possible values of:

match='minimum' - the host physical machine CPU must have at least the CPU features
described in the guest virtual machine XML. If the host physical machine has additional features
beyond the guest virtual machine configuration, these will also be exposed to the guest virtual
machine.

match='exact' - the host physical machine CPU must have at least the CPU features described
in the guest virtual machine XML. If the host physical machine has additional features beyond
the guest virtual machine configuration, these will be masked out from the guest virtual machine.

match='strict' - the host physical machine CPU must have exactly the same CPU features
described in the guest virtual machine XML.

The next enhancement is that the <feature> elements can each have an extra 'policy' attribute with
possible values of:

policy='force' - expose the feature to the guest virtual machine even if the host physical machine
does not have it. This is usually only useful in the case of software emulation.

NOTE

It is possible that even using the force policy, the hypervisor may not be able to
emulate the particular feature.

policy='require' - expose the feature to the guest virtual machine and fail if the host physical
machine does not have it. This is the sensible default.

<cpu match='exact'>
 <model>pentium3</model>
 <feature policy='require' name='lahf_lm'/>
 <feature policy='require' name='lm'/>
 <feature policy='require' name='cx16'/>
 <feature policy='require' name='monitor'/>
 <feature policy='require' name='pni'/>
 <feature policy='require' name='ht'/>
 <feature policy='require' name='sse2'/>
 <feature policy='require' name='clflush'/>
 <feature policy='require' name='apic'/>
</cpu>

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

385

policy='optional' - expose the feature to the guest virtual machine if it happens to support it.

policy='disable' - if the host physical machine has this feature, then hide it from the guest virtual
machine.

policy='forbid' - if the host physical machine has this feature, then fail and refuse to start the
guest virtual machine.

The 'forbid' policy is for a niche scenario where an incorrectly functioning application will try to use a
feature even if it is not in the CPUID mask, and you wish to prevent accidentally running the guest virtual
machine on a host physical machine with that feature. The 'optional' policy has special behavior with
respect to migration. When the guest virtual machine is initially started the flag is optional, but when the
guest virtual machine is live migrated, this policy turns into 'require', since you cannot have features
disappearing across migration.

21.44. MANAGING RESOURCES FOR GUEST VIRTUAL MACHINES

virsh allows the grouping and allocation of resources on a per guest virtual machine basis. This is
managed by the libvirt daemon which creates cgroups and manages them on behalf of the guest virtual
machine. The only thing that is left for the system administrator to do is to either query or set tunables
against specified guest virtual machines. The libvirt service uses the following cgroups for tuning and
monitoring virtual machines:

memory - The memory controller allows for setting limits on RAM and swap usage and querying
cumulative usage of all processes in the group

cpuset - The CPU set controller binds processes within a group to a set of CPUs and controls
migration between CPUs.

cpuacct - The CPU accounting controller provides information about CPU usage for a group of
processes.

cpu -The CPU scheduler controller controls the prioritization of processes in the group. This is
similar to granting nice level privileges.

devices - The devices controller grants access control lists on character and block devices.

freezer - The freezer controller pauses and resumes execution of processes in the group. This
is similar to SIGSTOP for the whole group.

net_cls - The network class controller manages network utilization by associating processes
with a tc network class.

cgroups are set up by systemd in libvirt. The following virsh tuning commands affect the way
cgroups are configured:

schedinfo - described in Section 21.45, “Setting Schedule Parameters”

blkdeviotune - described in Section 21.46, “Disk I/O Throttling”

blkiotune - described in Section 21.47, “Display or Set Block I/O Parameters”

domiftune - described in Section 21.12.5, “Setting Network Interface Bandwidth Parameters”

memtune - described in Section 21.48, “Configuring Memory Tuning”

Virtualization Deployment and Administration Guide

386

For more information about cgroups, see the Red Hat Enterprise Linux 7 Resource Management Guide.

21.45. SETTING SCHEDULE PARAMETERS

The virsh schedinfo command modifies host scheduling parameters of the virtual machine process
on the host machine. The following command format should be used:

virsh schedinfo domain --set --current --config --live

Each parameter is explained below:

domain - the guest virtual machine domain

--set - the string placed here is the controller or action that is to be called. The string uses the
parameter=value format. Additional parameters or values if required should be added as well.

--current - when used with --set, will use the specified set string as the current scheduler
information. When used without will display the current scheduler information.

--config - - when used with --set, will use the specified set string on the next reboot. When
used without will display the scheduler information that is saved in the configuration file.

--live - when used with --set, will use the specified set string on a guest virtual machine
that is currently running. When used without will display the configuration setting currently used
by the running virtual machine

The scheduler can be set with any of the following parameters: cpu_shares, vcpu_period and
vcpu_quota. These parameters are applied to the vCPU threads.

The following shows how the parameters map to cgroup field names:

cpu_shares:cpu.shares

vcpu_period:cpu.cfs_period_us

vcpu_quota:cpu.cfs_quota_us

Example 21.99. schedinfo show

This example shows the shell guest virtual machine's schedule information

virsh schedinfo shell
Scheduler : posix
cpu_shares : 1024
vcpu_period : 100000
vcpu_quota : -1

Example 21.100. schedinfo set

In this example, the cpu_shares is changed to 2046. This effects the current state and not the
configuration file.

virsh schedinfo --set cpu_shares=2046 shell

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

387

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Resource_Management_Guide/index.html

Scheduler : posix
cpu_shares : 2046
vcpu_period : 100000
vcpu_quota : -1

libvirt also supports the emulator_period and emulator_quota parameters that modify the setting
of the emulator process.

21.46. DISK I/O THROTTLING

The virsh blkdeviotune command sets disk I/O throttling for a specified guest virtual machine. This
can prevent a guest virtual machine from over utilizing shared resources and thus impacting the
performance of other guest virtual machines. The following format should be used:

#virsh blkdeviotune domain <device> [[--config] [--live] | [--current]]
[[total-bytes-sec] | [read-bytes-sec] [write-bytes-sec]] [[total-iops-sec]
[read-iops-sec] [write-iops-sec]]

The only required parameter is the domain name of the guest virtual machine. To list the domain name,
run the virsh domblklist command. The --config, --live, and --current arguments function
the same as in Section 21.45, “Setting Schedule Parameters”. If no limit is specified, it will query current
I/O limits setting. Otherwise, alter the limits with the following flags:

--total-bytes-sec - specifies total throughput limit in bytes per second.

--read-bytes-sec - specifies read throughput limit in bytes per second.

--write-bytes-sec - specifies write throughput limit in bytes per second.

--total-iops-sec - specifies total I/O operations limit per second.

--read-iops-sec - specifies read I/O operations limit per second.

--write-iops-sec - specifies write I/O operations limit per second.

For more information, refer to the blkdeviotune section of the virsh man page. For an example domain
XML refer to Figure 24.28, “Devices - Hard drives, floppy disks, CD-ROMs Example”.

21.47. DISPLAY OR SET BLOCK I/O PARAMETERS

The blkiotune command sets or displays the I/O parameters for a specified guest virtual machine. The
following format should be used:

virsh blkiotune domain [--weight weight] [--device-weights device-
weights] [---device-read-iops-sec -device-read-iops-sec] [--device-write-
iops-sec device-write-iops-sec] [--device-read-bytes-sec device-read-
bytes-sec] [--device-write-bytes-sec device-write-bytes-sec] [[--config]
[--live] | [--current]]

More information on this command can be found in the Virtualization Tuning and Optimization Guide

21.48. CONFIGURING MEMORY TUNING

Virtualization Deployment and Administration Guide

388

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

The virsh memtune virtual_machine --parameter size command is covered in the
Virtualization Tuning and Optimization Guide.

CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH

389

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/sect-Virtualization_Tuning_Optimization_Guide-Memory-Tuning.html#sect-Virtualization_Tuning_Optimization_Guide-Memory-Tuning_memtune

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH
OFFLINE TOOLS

22.1. INTRODUCTION

Red Hat Enterprise Linux 7 provides a number of libguestfs utilities that enable accessing, editing,
and creating guest virtual machine disks or other disk images. There are multiple uses for these tools,
including:

Viewing or downloading files located on a guest virtual machine disk.

Editing or uploading files on a guest virtual machine disk.

Reading or writing guest virtual machine configuration.

Preparing new disk images containing files, directories, file systems, partitions, logical volumes
and other options.

Rescuing and repairing guest virtual machines that fail to boot or those that need boot
configuration changes.

Monitoring disk usage of guest virtual machines.

Auditing compliance of guest virtual machines, for example to organizational security standards.

Deploying guest virtual machines by cloning and modifying templates.

Reading CD and DVD ISO images and floppy disk images.

WARNING

You must never use the utilities listed in this chapter to write to a guest virtual
machine or disk image that is attached to a running virtual machine, not even to
open such a disk image in write mode.

Doing so will result in disk corruption of the guest virtual machine. The tools try to
prevent you from doing this, but do not secure all cases. If there is any suspicion
that a guest virtual machine might be running, Red Hat strongly recommends not
using the utilities.

For increased safety, certain utilities can be used in read-only mode (using the --
ro option), which does not save the changes.



Virtualization Deployment and Administration Guide

390

NOTE

The primary source for documentation for libguestfs and the related utilities are the Linux
man pages. The API is documented in guestfs(3), guestfish is documented in
guestfish(1), and the virtualization utilities are documented in their own man pages (such
as virt-df(1)). For troubleshooting information, refer to Section A.17, “libguestfs
Troubleshooting”

22.1.1. Caution about Using Remote Connections

Some virtualization commands in Red Hat Enterprise Linux 7 allow you to specify a remote libvirt
connection. For example:

virt-df -c qemu://remote/system -d Guest

However, libguestfs utilities in Red Hat Enterprise Linux 7 cannot access the disks of remote libvirt
guests, and commands using remote URLs as shown above do not work as expected.

Nevertheless, beginning with Red Hat Enterprise Linux 7, libguestfs can access remote disk sources
over network block device (NBD). You can export a disk image from a remote machine using the qemu-
nbd command, and access it using a nbd:// URL. You may need to open a port on your firewall (port
10809) as shown here:

On the remote system: qemu-nbd -t disk.img

On the local system: virt-df -a nbd://remote

The following libguestfs commands are affected:

guestfish

guestmount

virt-alignment-scan

virt-cat

virt-copy-in

virt-copy-out

virt-df

virt-edit

virt-filesystems

virt-inspector

virt-ls

virt-rescue

virt-sysprep

virt-tar-in

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

391

virt-tar-out

virt-win-reg

22.2. TERMINOLOGY

This section explains the terms used throughout this chapter.

libguestfs (GUEST FileSystem LIBrary) - the underlying C library that provides the basic
functionality for opening disk images, reading and writing files, and so on. You can write C
programs directly to this API.

guestfish (GUEST Filesystem Interactive SHell) is an interactive shell that you can use from
the command line or from shell scripts. It exposes all of the functionality of the libguestfs API.

Various virt tools are built on top of libguestfs, and these provide a way to perform specific single
tasks from the command line. These tools include virt-df, virt-rescue, virt-resize, and virt-edit.

augeas is a library for editing the Linux configuration files. Although this is separate from
libguestfs, much of the value of libguestfs comes from the combination with this tool.

guestmount is an interface between libguestfs and FUSE. It is primarily used to mount file
systems from disk images on your host physical machine. This functionality is not necessary, but
can be useful.

22.3. INSTALLATION

To install libguestfs, guestfish, the libguestfs tools, and guestmount, enter the following command:

yum install libguestfs libguestfs-tools

To install every libguestfs-related package including the language bindings, enter the following
command:

yum install '*guestf*'

22.4. THE GUESTFISH SHELL

guestfish is an interactive shell that you can use from the command line or from shell scripts to access
guest virtual machine file systems. All of the functionality of the libguestfs API is available from the shell.

To begin viewing or editing a virtual machine disk image, enter the following command, substituting the
path to your intended disk image:

$ guestfish --ro -a /path/to/disk/image

--ro means that the disk image is opened read-only. This mode is always safe but does not allow write
access. Only omit this option when you are certain that the guest virtual machine is not running, or the
disk image is not attached to a live guest virtual machine. It is not possible to use libguestfs to edit a
live guest virtual machine, and attempting to will result in irreversible disk corruption.

/path/to/disk/image is the path to the disk. This can be a file, a host physical machine logical volume
(such as /dev/VG/LV), a host physical machine device (/dev/cdrom) or a SAN LUN (/dev/sdf3).

Virtualization Deployment and Administration Guide

392

NOTE

libguestfs and guestfish do not require root privileges. You only need to run them as root if
the disk image being accessed needs root to read or write or both.

When you start guestfish interactively, it will display this prompt:

$ guestfish --ro -a /path/to/disk/image

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

><fs>

At the prompt, type run to initiate the library and attach the disk image. This can take up to 30 seconds
the first time it is done. Subsequent starts will complete much faster.

NOTE

libguestfs will use hardware virtualization acceleration such as KVM (if available) to speed
up this process.

Once the run command has been entered, other commands can be used, as the following section
demonstrates.

22.4.1. Viewing File Systems with guestfish

This section provides information on viewing file systems with guestfish.

22.4.1.1. Manual Listing and Viewing

The list-filesystems command will list file systems found by libguestfs. This output shows a Red
Hat Enterprise Linux 4 disk image:

><fs> run
><fs> list-filesystems
/dev/vda1: ext3
/dev/VolGroup00/LogVol00: ext3
/dev/VolGroup00/LogVol01: swap

Other useful commands are list-devices, list-partitions, lvs, pvs, vfs-type and file. You
can get more information and help on any command by typing help command, as shown in the following
output:

><fs> help vfs-type
 NAME
 vfs-type - get the Linux VFS type corresponding to a mounted device

 SYNOPSIS

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

393

 vfs-type mountable

 DESCRIPTION
 This command gets the filesystem type corresponding to the filesystem
on
 "device".

 For most filesystems, the result is the name of the Linux VFS module
 which would be used to mount this filesystem if you mounted it without
 specifying the filesystem type. For example a string such as "ext3" or
 "ntfs".

To view the actual contents of a file system, it must first be mounted.

You can use guestfish commands such as ls, ll, cat, more, download and tar-out to view and
download files and directories.

NOTE

There is no concept of a current working directory in this shell. Unlike ordinary shells, you
cannot for example use the cd command to change directories. All paths must be fully
qualified starting at the top with a forward slash (/) character. Use the Tab key to
complete paths.

To exit from the guestfish shell, type exit or enter Ctrl+d.

22.4.1.2. Via guestfish inspection

Instead of listing and mounting file systems by hand, it is possible to let guestfish itself inspect the image
and mount the file systems as they would be in the guest virtual machine. To do this, add the -i option on
the command line:

$ guestfish --ro -a /path/to/disk/image -i

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

 Operating system: Red Hat Enterprise Linux AS release 4 (Nahant Update 8)
 /dev/VolGroup00/LogVol00 mounted on /
 /dev/vda1 mounted on /boot

 ><fs> ll /
 total 210
 drwxr-xr-x. 24 root root 4096 Oct 28 09:09 .
 drwxr-xr-x 21 root root 4096 Nov 17 15:10 ..
 drwxr-xr-x. 2 root root 4096 Oct 27 22:37 bin
 drwxr-xr-x. 4 root root 1024 Oct 27 21:52 boot
 drwxr-xr-x. 4 root root 4096 Oct 27 21:21 dev
 drwxr-xr-x. 86 root root 12288 Oct 28 09:09 etc
 ...

Virtualization Deployment and Administration Guide

394

Because guestfish needs to start up the libguestfs back end in order to perform the inspection and
mounting, the run command is not necessary when using the -i option. The -i option works for many
common Linux guest virtual machines.

22.4.1.3. Accessing a guest virtual machine by name

A guest virtual machine can be accessed from the command line when you specify its name as known to
libvirt (in other words, as it appears in virsh list --all). Use the -d option to access a guest
virtual machine by its name, with or without the -i option:

$ guestfish --ro -d GuestName -i

22.4.2. Adding Files with guestfish

To add a file with guestfish you need to have the complete URI. The file can be a local file or a file
located on a network block device (NBD) or a remote block device (RBD).

The format used for the URI should be like any of these examples. For local files, use ///:

guestfish -a disk.img

guestfish -a file:///directory/disk.img

guestfish -a nbd://example.com[:port]

guestfish -a nbd://example.com[:port]/exportname

guestfish -a nbd://?socket=/socket

guestfish -a nbd:///exportname?socket=/socket

guestfish -a rbd:///pool/disk

guestfish -a rbd://example.com[:port]/pool/disk

22.4.3. Modifying Files with guestfish

To modify files, create directories or make other changes to a guest virtual machine, first heed the
warning at the beginning of this section: your guest virtual machine must be shut down. Editing or
changing a running disk with guestfish will result in disk corruption. This section gives an example of
editing the /boot/grub/grub.conf file. When you are sure the guest virtual machine is shut down
you can omit the --ro flag in order to get write access via a command such as:

$ guestfish -d RHEL3 -i

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

 Operating system: Red Hat Enterprise Linux AS release 3 (Taroon Update 9)
 /dev/vda2 mounted on /

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

395

 /dev/vda1 mounted on /boot

><fs> edit /boot/grub/grub.conf

Commands to edit files include edit, vi and emacs. Many commands also exist for creating files and
directories, such as write, mkdir, upload and tar-in.

22.4.4. Other Actions with guestfish

You can also format file systems, create partitions, create and resize LVM logical volumes and much
more, with commands such as mkfs, part-add, lvresize, lvcreate, vgcreate and pvcreate.

22.4.5. Shell Scripting with guestfish

Once you are familiar with using guestfish interactively, according to your needs, writing shell scripts with
it may be useful. The following is a simple shell script to add a new MOTD (message of the day) to a
guest:

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$guestname" -i <<'EOF'
 write /etc/motd "Welcome to Acme Incorporated."
 chmod 0644 /etc/motd
 EOF

22.4.6. Augeas and libguestfs Scripting

Combining libguestfs with Augeas can help when writing scripts to manipulate Linux guest virtual
machine configuration. For example, the following script uses Augeas to parse the keyboard
configuration of a guest virtual machine, and to print out the layout. Note that this example only works
with guest virtual machines running Red Hat Enterprise Linux:

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$1" -i --ro <<'EOF'
 aug-init / 0
 aug-get /files/etc/sysconfig/keyboard/LAYOUT
 EOF

Augeas can also be used to modify configuration files. You can modify the above script to change the
keyboard layout:

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$1" -i <<'EOF'
 aug-init / 0
 aug-set /files/etc/sysconfig/keyboard/LAYOUT '"gb"'
 aug-save

Virtualization Deployment and Administration Guide

396

 EOF

Note the three changes between the two scripts:

1. The --ro option has been removed in the second example, giving the ability to write to the
guest virtual machine.

2. The aug-get command has been changed to aug-set to modify the value instead of fetching
it. The new value will be "gb" (including the quotes).

3. The aug-save command is used here so Augeas will write the changes out to disk.

NOTE

More information about Augeas can be found on the website http://augeas.net.

guestfish can do much more than we can cover in this introductory document. For example, creating disk
images from scratch:

guestfish -N fs

Or copying out whole directories from a disk image:

><fs> copy-out /home /tmp/home

For more information see the man page guestfish(1).

22.5. OTHER COMMANDS

This section describes tools that are simpler equivalents to using guestfish to view and edit guest virtual
machine disk images.

virt-cat is similar to the guestfish download command. It downloads and displays a single
file to the guest virtual machine. For example:

virt-cat RHEL3 /etc/ntp.conf | grep ^server
 server 127.127.1.0 # local clock

virt-edit is similar to the guestfish edit command. It can be used to interactively edit a
single file within a guest virtual machine. For example, you may need to edit the grub.conf file
in a Linux-based guest virtual machine that will not boot:

virt-edit LinuxGuest /boot/grub/grub.conf

virt-edit has another mode where it can be used to make simple non-interactive changes to
a single file. For this, the -e option is used. For example, the following command changes the
root password in a Linux guest virtual machine to having no password:

virt-edit LinuxGuest /etc/passwd -e 's/^root:.*?:/root::/'

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

397

http://augeas.net

virt-ls is similar to the guestfish ls, ll and find commands. It is used to list a directory or
directories (recursively). For example, the following command would recursively list files and
directories under /home in a Linux guest virtual machine:

virt-ls -R LinuxGuest /home/ | less

22.6. VIRT-RESCUE: THE RESCUE SHELL

This section provides information about the rescue shell.

22.6.1. Introduction

This section describes virt-rescue, which can be considered analogous to a rescue CD for virtual
machines. It boots a guest virtual machine into a rescue shell so that maintenance can be performed to
correct errors and the guest virtual machine can be repaired.

There is some overlap between virt-rescue and guestfish. It is important to distinguish their differing
uses. virt-rescue is for making interactive, ad-hoc changes using ordinary Linux file system tools. It is
particularly suited to rescuing a guest virtual machine that has failed . virt-rescue cannot be scripted.

In contrast, guestfish is particularly useful for making scripted, structured changes through a formal set of
commands (the libguestfs API), although it can also be used interactively.

22.6.2. Running virt-rescue

Before you use virt-rescue on a guest virtual machine, make sure the guest virtual machine is not
running, otherwise disk corruption will occur. When you are sure the guest virtual machine is not live,
enter:

$ virt-rescue -d GuestName

(where GuestName is the guest name as known to libvirt), or:

$ virt-rescue -a /path/to/disk/image

(where the path can be any file, any logical volume, LUN, or so on) containing a guest virtual machine
disk.

You will first see output scroll past, as virt-rescue boots the rescue VM. In the end you will see:

Welcome to virt-rescue, the libguestfs rescue shell.

 Note: The contents of / are the rescue appliance.
 You have to mount the guest virtual machine's partitions under /sysroot
 before you can examine them.

 bash: cannot set terminal process group (-1): Inappropriate ioctl for
device
 bash: no job control in this shell
 ><rescue>

The shell prompt here is an ordinary bash shell, and a reduced set of ordinary Red Hat Enterprise Linux
commands is available. For example, you can enter:

Virtualization Deployment and Administration Guide

398

><rescue> fdisk -l /dev/vda

The previous command will list disk partitions. To mount a file system, it is suggested that you mount it
under /sysroot, which is an empty directory in the rescue machine for the user to mount anything you
like. Note that the files under / are files from the rescue VM itself:

><rescue> mount /dev/vda1 /sysroot/
EXT4-fs (vda1): mounted filesystem with ordered data mode. Opts: (null)
><rescue> ls -l /sysroot/grub/
 total 324
 -rw-r--r--. 1 root root 63 Sep 16 18:14 device.map
 -rw-r--r--. 1 root root 13200 Sep 16 18:14 e2fs_stage1_5
 -rw-r--r--. 1 root root 12512 Sep 16 18:14 fat_stage1_5
 -rw-r--r--. 1 root root 11744 Sep 16 18:14 ffs_stage1_5
 -rw-------. 1 root root 1503 Oct 15 11:19 grub.conf
 [...]

When you are finished rescuing the guest virtual machine, exit the shell by entering exit or Ctrl+d.

virt-rescue has many command-line options. The options most often used are:

--ro: Operate in read-only mode on the guest virtual machine. No changes will be saved. You
can use this to experiment with the guest virtual machine. As soon as you exit from the shell, all
of your changes are discarded.

--network: Enable network access from the rescue shell. Use this for example if you need to
download RPM or other files into the guest virtual machine.

22.7. VIRT-DF: MONITORING DISK USAGE

This section provides information about monitoring disk usage.

22.7.1. Introduction

This section describes virt-df, which displays file system usage from a disk image or a guest virtual
machine. It is similar to the Linux df command, but for virtual machines.

22.7.2. Running virt-df

To display file system usage for all file systems found in a disk image, enter the following:

virt-df -a /dev/vg_guests/RHEL7
 Filesystem 1K-blocks Used Available Use%
 RHEL6:/dev/sda1 101086 10233 85634 11%
 RHEL6:/dev/VolGroup00/LogVol00 7127864 2272744 4493036 32%

(Where /dev/vg_guests/RHEL7 is a Red Hat Enterprise Linux 7 guest virtual machine disk image.
The path in this case is the host physical machine logical volume where this disk image is located.)

You can also use virt-df on its own to list information about all of your guest virtual machines known
to libvirt. The virt-df command recognizes some of the same options as the standard df such as -h
(human-readable) and -i (show inodes instead of blocks).

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

399

virt-df -h -d domname
 Filesystem Size Used Available Use%
 F14x64:/dev/sda1 484.2M 66.3M 392.9M 14%
 F14x64:/dev/vg_f14x64/lv_root 7.4G 3.0G 4.4G 41%
 RHEL6brewx64:/dev/sda1 484.2M 52.6M 406.6M 11%
 RHEL6brewx64:/dev/vg_rhel6brewx64/lv_root
 13.3G 3.4G 9.2G 26%

NOTE

You can use virt-df safely on live guest virtual machines, since it only needs read-only
access. However, you should not expect the numbers to be precisely the same as those
from a df command running inside the guest virtual machine. This is because what is on
disk will be slightly out of sync with the state of the live guest virtual machine.
Nevertheless it should be a good enough approximation for analysis and monitoring
purposes.

virt-df is designed to allow you to integrate the statistics into monitoring tools, databases and so on.
This allows system administrators to generate reports on trends in disk usage, and alerts if a guest
virtual machine is about to run out of disk space. To do this you should use the --csv option to generate
machine-readable Comma-Separated-Values (CSV) output. CSV output is readable by most databases,
spreadsheet software and a variety of other tools and programming languages. The raw CSV looks like
the following:

virt-df --csv -d RHEL6Guest
 Virtual Machine,Filesystem,1K-blocks,Used,Available,Use%
 RHEL6brewx64,/dev/sda1,102396,24712,77684,24.1%
 RHEL6brewx64,/dev/sda2,20866940,7786652,13080288,37.3%

22.8. VIRT-RESIZE: RESIZING GUEST VIRTUAL MACHINES OFFLINE

This section provides information about resizing offline guest virtual machines.

22.8.1. Introduction

This section describes virt-resize, a tool for expanding or shrinking guest virtual machines. It only
works for guest virtual machines that are offline (shut down). It works by copying the guest virtual
machine image and leaving the original disk image untouched. This is ideal because you can use the
original image as a backup, however there is a trade-off as you need twice the amount of disk space.

22.8.2. Expanding a Disk Image

This section demonstrates a simple case of expanding a disk image:

1. Locate the disk image to be resized. You can use the command virsh dumpxml GuestName
for a libvirt guest virtual machine.

2. Decide on how you wish to expand the guest virtual machine. Run virt-df -h and virt-
filesystems on the guest virtual machine disk, as shown in the following output:

virt-df -h -a /dev/vg_guests/RHEL6
Filesystem Size Used Available Use%

Virtualization Deployment and Administration Guide

400

RHEL6:/dev/sda1 98.7M 10.0M 83.6M 11%
RHEL6:/dev/VolGroup00/LogVol00 6.8G 2.2G 4.3G 32%

virt-filesystems -a disk.img --all --long -h
/dev/sda1 ext3 101.9M
/dev/sda2 pv 7.9G

The following example demonstrates how to:

Increase the size of the first (boot) partition, from approximately 100MB to 500MB.

Increase the total disk size from 8GB to 16GB.

Expand the second partition to fill the remaining space.

Expand /dev/VolGroup00/LogVol00 to fill the new space in the second partition.

1. Make sure the guest virtual machine is shut down.

2. Rename the original disk as the backup. How you do this depends on the host physical machine
storage environment for the original disk. If it is stored as a file, use the mv command. For logical
volumes (as demonstrated in this example), use lvrename:

lvrename /dev/vg_guests/RHEL6 /dev/vg_guests/RHEL6.backup

3. Create the new disk. The requirements in this example are to expand the total disk size up to
16GB. Since logical volumes are used here, the following command is used:

lvcreate -L 16G -n RHEL6 /dev/vg_guests
Logical volume "RHEL6" created

4. The requirements from step 2 are expressed by this command:

virt-resize \
 /dev/vg_guests/RHEL6.backup /dev/vg_guests/RHEL6 \
 --resize /dev/sda1=500M \
 --expand /dev/sda2 \
 --LV-expand /dev/VolGroup00/LogVol00

The first two arguments are the input disk and output disk. --resize /dev/sda1=500M
resizes the first partition up to 500MB. --expand /dev/sda2 expands the second partition to
fill all remaining space. --LV-expand /dev/VolGroup00/LogVol00 expands the guest
virtual machine logical volume to fill the extra space in the second partition.

virt-resize describes what it is doing in the output:

Summary of changes:
 /dev/sda1: partition will be resized from 101.9M to 500.0M
 /dev/sda1: content will be expanded using the 'resize2fs' method
 /dev/sda2: partition will be resized from 7.9G to 15.5G
 /dev/sda2: content will be expanded using the 'pvresize' method
 /dev/VolGroup00/LogVol00: LV will be expanded to maximum size
 /dev/VolGroup00/LogVol00: content will be expanded using the
'resize2fs' method

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

401

 Copying /dev/sda1 ...
 [###]
 Copying /dev/sda2 ...
 [###]
 Expanding /dev/sda1 using the 'resize2fs' method
 Expanding /dev/sda2 using the 'pvresize' method
 Expanding /dev/VolGroup00/LogVol00 using the 'resize2fs' method

5. Try to boot the virtual machine. If it works (and after testing it thoroughly) you can delete the
backup disk. If it fails, shut down the virtual machine, delete the new disk, and rename the
backup disk back to its original name.

6. Use virt-df or virt-filesystems to show the new size:

virt-df -h -a /dev/vg_pin/RHEL6
 Filesystem Size Used Available
Use%
 RHEL6:/dev/sda1 484.4M 10.8M 448.6M
3%
 RHEL6:/dev/VolGroup00/LogVol00 14.3G 2.2G 11.4G 16%

Resizing guest virtual machines is not an exact science. If virt-resize fails, there are a number of tips
that you can review and attempt in the virt-resize(1) man page. For some older Red Hat Enterprise Linux
guest virtual machines, you may need to pay particular attention to the tip regarding GRUB.

22.9. VIRT-INSPECTOR: INSPECTING GUEST VIRTUAL MACHINES

This section provides information about inspecting guest virtual machines.

22.9.1. Introduction

virt-inspector is a tool for inspecting a disk image to find out what operating system it contains.

22.9.2. Installation

To install virt-inspector and the documentation, enter the following command:

yum install libguestfs-tools

The documentation, including example XML output and a Relax-NG schema for the output, will be
installed in /usr/share/doc/libguestfs-devel-*/ where * is replaced by the version number of
libguestfs.

22.9.3. Running virt-inspector

You can run virt-inspector against any disk image or libvirt guest virtual machine as shown in the
following example:

$ virt-inspector -a disk.img > report.xml

Or as shown here:

Virtualization Deployment and Administration Guide

402

$ virt-inspector -d GuestName > report.xml

The result will be an XML report (report.xml). The main components of the XML file are a top-level
<operatingsytems> element containing usually a single <operatingsystem> element, similar to
the following:

 <operatingsystems>
 <operatingsystem>

 <!-- the type of operating system and Linux distribution -->
 <name>linux</name>
 <distro>rhel</distro>
 <!-- the name, version and architecture -->
 <product_name>Red Hat Enterprise Linux Server release 6.4
</product_name>
 <major_version>6</major_version>
 <minor_version>4</minor_version>
 <package_format>rpm</package_format>
 <package_management>yum</package_management>
 <root>/dev/VolGroup/lv_root</root>
 <!-- how the filesystems would be mounted when live -->
 <mountpoints>
 <mountpoint dev="/dev/VolGroup/lv_root">/</mountpoint>
 <mountpoint dev="/dev/sda1">/boot</mountpoint>
 <mountpoint dev="/dev/VolGroup/lv_swap">swap</mountpoint>
 </mountpoints>

 < !-- filesystems-->
 <filesystem dev="/dev/VolGroup/lv_root">
 <label></label>
 <uuid>b24d9161-5613-4ab8-8649-f27a8a8068d3</uuid>
 <type>ext4</type>
 <content>linux-root</content>
 <spec>/dev/mapper/VolGroup-lv_root</spec>
 </filesystem>
 <filesystem dev="/dev/VolGroup/lv_swap">
 <type>swap</type>
 <spec>/dev/mapper/VolGroup-lv_swap</spec>
 </filesystem>
 <!-- packages installed -->
 <applications>
 <application>
 <name>firefox</name>
 <version>3.5.5</version>
 <release>1.fc12</release>
 </application>
 </applications>

 </operatingsystem>
 </operatingsystems>

Processing these reports is best done using W3C standard XPath queries. Red Hat Enterprise Linux 7
comes with the xpath command-line program, which can be used for simple instances. However, for
long-term and advanced usage, you should consider using an XPath library along with your favorite
programming language.

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

403

As an example, you can list out all file system devices using the following XPath query:

$ virt-inspector GuestName | xpath //filesystem/@dev
 Found 3 nodes:
 -- NODE --
 dev="/dev/sda1"
 -- NODE --
 dev="/dev/vg_f12x64/lv_root"
 -- NODE --
 dev="/dev/vg_f12x64/lv_swap"

Or list the names of all applications installed by entering:

$ virt-inspector GuestName | xpath //application/name
 [...long list...]

22.10. USING THE API FROM PROGRAMMING LANGUAGES

The libguestfs API can be used directly from the following languages in Red Hat Enterprise Linux 7: C,
C++, Perl, Python, Java, Ruby and OCaml.

To install C and C++ bindings, enter the following command:

yum install libguestfs-devel

To install Perl bindings:

yum install 'perl(Sys::Guestfs)'

To install Python bindings:

yum install python-libguestfs

To install Java bindings:

yum install libguestfs-java libguestfs-java-devel libguestfs-
javadoc

To install Ruby bindings:

yum install ruby-libguestfs

To install OCaml bindings:

yum install ocaml-libguestfs ocaml-libguestfs-devel

The binding for each language is essentially the same, but with minor syntactic changes. A C statement:

guestfs_launch (g);

Would appear like the following in Perl:

Virtualization Deployment and Administration Guide

404

$g->launch ()

Or like the following in OCaml:

g#launch ()

Only the API from C is detailed in this section.

In the C and C++ bindings, you must manually check for errors. In the other bindings, errors are
converted into exceptions; the additional error checks shown in the examples below are not necessary
for other languages, but conversely you may wish to add code to catch exceptions. Refer to the following
list for some points of interest regarding the architecture of the libguestfs API:

The libguestfs API is synchronous. Each call blocks until it has completed. If you want to make
calls asynchronously, you have to create a thread.

The libguestfs API is not thread safe: each handle should be used only from a single thread, or if
you want to share a handle between threads you should implement your own mutex to ensure
that two threads cannot execute commands on one handle at the same time.

You should not open multiple handles on the same disk image. It is permissible if all the handles
are read-only, but still not recommended.

You should not add a disk image for writing if anything else could be using that disk image (a
live VM, for example). Doing this will cause disk corruption.

Opening a read-only handle on a disk image that is currently in use (for example by a live VM) is
possible. However, the results may be unpredictable or inconsistent, particularly if the disk image
is being heavily written to at the time you are reading it.

22.10.1. Interaction with the API via a C program

Your C program should start by including the <guestfs.h> header file, and creating a handle:

#include <stdio.h>
#include <stdlib.h>
#include <guestfs.h>

int
main (int argc, char *argv[])
{
 guestfs_h *g;

 g = guestfs_create ();
 if (g == NULL) {
 perror ("failed to create libguestfs handle");
 exit (EXIT_FAILURE);
 }

 /* ... */

 guestfs_close (g);

 exit (EXIT_SUCCESS);
 }

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

405

Save this program to a file (test.c). Compile this program and run it with the following two commands:

gcc -Wall test.c -o test -lguestfs
./test

At this stage it should print no output. The rest of this section demonstrates an example showing how to
extend this program to create a new disk image, partition it, format it with an ext4 file system, and create
some files in the file system. The disk image will be called disk.img and be created in the current
directory.

The outline of the program is:

Create the handle.

Add disk(s) to the handle.

Launch the libguestfs back end.

Create the partition, file system and files.

Close the handle and exit.

Here is the modified program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <guestfs.h>

 int
 main (int argc, char *argv[])
 {
 guestfs_h *g;
 size_t i;

 g = guestfs_create ();
 if (g == NULL) {
 perror ("failed to create libguestfs handle");
 exit (EXIT_FAILURE);
 }

 /* Create a raw-format sparse disk image, 512 MB in size. */
 int fd = open ("disk.img", O_CREAT|O_WRONLY|O_TRUNC|O_NOCTTY, 0666);
 if (fd == -1) {
 perror ("disk.img");
 exit (EXIT_FAILURE);
 }
 if (ftruncate (fd, 512 * 1024 * 1024) == -1) {
 perror ("disk.img: truncate");
 exit (EXIT_FAILURE);
 }
 if (close (fd) == -1) {
 perror ("disk.img: close");
 exit (EXIT_FAILURE);

Virtualization Deployment and Administration Guide

406

 }

 /* Set the trace flag so that we can see each libguestfs call. */
 guestfs_set_trace (g, 1);

 /* Set the autosync flag so that the disk will be synchronized
 * automatically when the libguestfs handle is closed.
 */
 guestfs_set_autosync (g, 1);

 /* Add the disk image to libguestfs. */
 if (guestfs_add_drive_opts (g, "disk.img",
 GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", /* raw format */
 GUESTFS_ADD_DRIVE_OPTS_READONLY, 0, /* for write */
 -1 /* this marks end of optional arguments */)
 == -1)
 exit (EXIT_FAILURE);

 /* Run the libguestfs back-end. */
 if (guestfs_launch (g) == -1)
 exit (EXIT_FAILURE);

 /* Get the list of devices. Because we only added one drive
 * above, we expect that this list should contain a single
 * element.
 */
 char **devices = guestfs_list_devices (g);
 if (devices == NULL)
 exit (EXIT_FAILURE);
 if (devices[0] == NULL || devices[1] != NULL) {
 fprintf (stderr,
 "error: expected a single device from list-devices\n");
 exit (EXIT_FAILURE);
 }

 /* Partition the disk as one single MBR partition. */
 if (guestfs_part_disk (g, devices[0], "mbr") == -1)
 exit (EXIT_FAILURE);

 /* Get the list of partitions. We expect a single element, which
 * is the partition we have just created.
 */
 char **partitions = guestfs_list_partitions (g);
 if (partitions == NULL)
 exit (EXIT_FAILURE);
 if (partitions[0] == NULL || partitions[1] != NULL) {
 fprintf (stderr,
 "error: expected a single partition from list-
partitions\n");
 exit (EXIT_FAILURE);
 }

 /* Create an ext4 filesystem on the partition. */
 if (guestfs_mkfs (g, "ext4", partitions[0]) == -1)
 exit (EXIT_FAILURE);

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

407

 /* Now mount the filesystem so that we can add files. */
 if (guestfs_mount_options (g, "", partitions[0], "/") == -1)
 exit (EXIT_FAILURE);

 /* Create some files and directories. */
 if (guestfs_touch (g, "/empty") == -1)
 exit (EXIT_FAILURE);

 const char *message = "Hello, world\n";
 if (guestfs_write (g, "/hello", message, strlen (message)) == -1)
 exit (EXIT_FAILURE);

 if (guestfs_mkdir (g, "/foo") == -1)
 exit (EXIT_FAILURE);

 /* This uploads the local file /etc/resolv.conf into the disk image. */
 if (guestfs_upload (g, "/etc/resolv.conf", "/foo/resolv.conf") == -1)
 exit (EXIT_FAILURE);

 /* Because 'autosync' was set (above) we can just close the handle
 * and the disk contents will be synchronized. You can also do
 * this manually by calling guestfs_umount_all and guestfs_sync.
 */
 guestfs_close (g);

 /* Free up the lists. */
 for (i = 0; devices[i] != NULL; ++i)
 free (devices[i]);
 free (devices);
 for (i = 0; partitions[i] != NULL; ++i)
 free (partitions[i]);
 free (partitions);

 exit (EXIT_SUCCESS);
 }

Compile and run this program with the following two commands:

gcc -Wall test.c -o test -lguestfs
./test

If the program runs to completion successfully, you should be left with a disk image called disk.img,
which you can examine with guestfish:

guestfish --ro -a disk.img -m /dev/sda1
><fs> ll /
><fs> cat /foo/resolv.conf

By default (for C and C++ bindings only), libguestfs prints errors to stderr. You can change this behavior
by setting an error handler. The guestfs(3) man page discusses this in detail.

22.11. VIRT-SYSPREP: RESETTING VIRTUAL MACHINE SETTINGS

The virt-sysprep command-line tool can be used to reset or unconfigure a guest virtual machine so
that clones can be made from it. This process involves removing SSH host keys, removing persistent

Virtualization Deployment and Administration Guide

408

network MAC configuration, and removing user accounts. Virt-sysprep can also customize a virtual
machine, for instance by adding SSH keys, users or logos. Each step can be enabled or disabled as
required.

To use virt-sysprep, the guest virtual machine must be offline, so you must shut it down before
running the commands. Note that virt-sysprep modifies the guest or disk image in place without
making a copy of it. If you want to preserve the existing contents of the guest virtual machine, you must
snapshot, copy or clone the disk first. For more information on copying and cloning disks, refer to
libguestfs.org.

It is recommended not to use virt-sysprep as root, unless you need root in order to access the disk
image. In such a case, however, it is better to change the permissions on the disk image to be writable
by the non-root user running virt-sysprep.

To install virt-sysprep, enter the following command:

$ sudo yum install /usr/bin/virt-sysprep

The following command options are available to use with virt-sysprep:

Table 22.1. virt-sysprep commands

Command Description Example

--help Displays a brief help entry about a
particular command or about the
virt-sysprep command. For
additional help, see the virt-
sysprep man page.

$ virt-sysprep --help

-a [file] or --add [file] Adds the specified file, which
should be a disk image from a
guest virtual machine. The format
of the disk image is auto-
detected. To override this and
force a particular format, use the
--format option.

$ virt-sysprep --add
/dev/vms/disk.img

-a [URI] or --add [URI] Adds a remote disk. The URI
format is compatible with
guestfish. For more information,
refer to Section 22.4.2, “Adding
Files with guestfish”.

$ virt-sysprep -a
rbd://example.com[:port
]/pool/disk

-c [URI] or --connect [URI] Connects to the given URI, if
using libvirt. If omitted, then it
connects via the KVM hypervisor.
If you specify guest block devices
directly (virt-sysprep -a),
then libvirt is not used at all.

$ virt-sysprep -c
qemu:///system

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

409

http://libguestfs.org/virt-sysprep.1.html#copying-and-cloning

-d [guest] or --domain [guest] Adds all the disks from the
specified guest virtual machine.
Domain UUIDs can be used
instead of domain names.

$ virt-sysprep --domain
90df2f3f-8857-5ba9-
2714-7d95907b1c9e

-n or --dry-run Performs a read-only "dry run"
sysprep operation on the guest
virtual machine. This runs the
sysprep operation, but throws
away any changes to the disk at
the end.

$ virt-sysprep -n

--enable [operations] Enables the specified operations.
To list the possible operations,
use the --list command.

$ virt-sysprep --enable
ssh-hostkeys,udev-
persistent-net

--operation or --operations Chooses which sysprep
operations to perform. To disable
an operation, use the - before the
operation name.

$ virt-sysprep --
operations ssh-
hotkeys,udev-
persistent-net would
enable both operations, while $
virt-sysprep --
operations firewall-
rules,-tmp-files would
enable the firewall-rules operation
and disable the tmp-files
operation. For a list of valid
operations, refer to libguestfs.org.

--format [raw|qcow2|auto] The default for the -a option is to
auto-detect the format of the disk
image. Using this forces the disk
format for -a options that follow on
the command line. Using --format
auto switches back to auto-
detection for subsequent -a
options (see the -a command
above).

$ virt-sysprep --format
raw -a disk.img forces raw
format (no auto-detection) for
disk.img, but virt-sysprep -
-format raw -a disk.img
--format auto -a
another.img forces raw format
(no auto-detection) for
disk.img and reverts to auto-
detection for another.img. If
you have untrusted raw-format
guest disk images, you should use
this option to specify the disk
format. This avoids a possible
security problem with malicious
guests.

Command Description Example

Virtualization Deployment and Administration Guide

410

http://libguestfs.org/virt-sysprep.1.html#operations

--list-operations List the operations supported by
the virt-sysprep program. These
are listed one per line, with one or
more single-space-separated
fields. The first field in the output
is the operation name, which can
be supplied to the --enable
flag. The second field is a *
character if the operation is
enabled by default, or is blank if
not. Additional fields on the same
line include a description of the
operation.

$ virt-sysprep --list-
operations

--mount-options Sets the mount options for each
mount point in the guest virtual
machine. Use a semicolon-
separated list of
mountpoint:options pairs. You
may need to place quotes around
this list to protect it from the shell.

$ virt-sysprep --mount-
options "/:notime" will
mount the root directory with the
notime operation.

-q or --quiet Prevents the printing of log
messages.

$ virt-sysprep -q

-v or --verbose Enables verbose messages for
debugging purposes.

$ virt-sysprep -v

-V or --version Displays the virt-sysprep version
number and exits.

$ virt-sysprep -V

--root-password Sets the root password. Can
either be used to specify the new
password explicitly, or to use the
string from the first line of a
selected file, which is more
secure.

$ virt-sysprep --root-
password password:123456
-a guest.img

or

$ virt-sysprep --root-
password
file:SOURCE_FILE_PATH -a
guest.img

Command Description Example

For more information, refer to the libguestfs documentation.

22.12. VIRT-CUSTOMIZE: CUSTOMIZING VIRTUAL MACHINE SETTINGS

The virt-customize command-line tool can be used to customize a virtual machine. For example, by
installing packages and editing configuration files.

To use virt-customize, the guest virtual machine must be offline, so you must shut it down before
running the commands. Note that virt-customize modifies the guest or disk image in place without

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

411

http://libguestfs.org/virt-sysprep.1.html

making a copy of it. If you want to preserve the existing contents of the guest virtual machine, you must
snapshot, copy or clone the disk first. For more information on copying and cloning disks, refer to
libguestfs.org.

WARNING

Using virt-customize on live virtual machines, or concurrently with other disk
editing tools can cause disk corruption. The virtual machine must be shut down
before using this command. In addition, disk images should not be edited
concurrently.

It is recommended that you do not run virt-customize as root.

To install virt-customize, run one of the following commands:

$ sudo yum install /usr/bin/virt-customize

or

$ sudo yum install libguestfs-tools-c

The following command options are available to use with virt-customize:

Table 22.2. virt-customize options

Command Description Example

--help Displays a brief help entry about a
particular command or about the
virt-customize utility. For
additional help, see the virt-
customize man page.

$ virt-customize --help

-a [file] or --add [file] Adds the specified file, which
should be a disk image from a
guest virtual machine. The format
of the disk image is auto-
detected. To override this and
force a particular format, use the
--format option.

$ virt-customize --add
/dev/vms/disk.img

-a [URI] or --add [URI] Adds a remote disk. The URI
format is compatible with
guestfish. For more information,
refer to Section 22.4.2, “Adding
Files with guestfish”.

$ virt-customize -a
rbd://example.com[:port
]/pool/disk



Virtualization Deployment and Administration Guide

412

http://libguestfs.org/virt-sysprep.1.html#copying-and-cloning

-c [URI] or --connect [URI] Connects to the given URI, if
using libvirt. If omitted, then it
connects via the KVM hypervisor.
If you specify guest block devices
directly (virt-customize -
a), then libvirt is not used at all.

$ virt-customize -c
qemu:///system

-d [guest] or --domain [guest] Adds all the disks from the
specified guest virtual machine.
Domain UUIDs can be used
instead of domain names.

$ virt-customize --
domain 90df2f3f-8857-
5ba9-2714-7d95907b1c9e

-n or --dry-run Performs a read-only "dry run"
customize operation on the guest
virtual machine. This runs the
customize operation, but throws
away any changes to the disk at
the end.

$ virt-customize -n

--format [raw|qcow2|auto] The default for the -a option is to
auto-detect the format of the disk
image. Using this forces the disk
format for -a options that follow on
the command line. Using --
format auto switches back to
auto-detection for subsequent -a
options (see the -a command
above).

$ virt-customize --
format raw -a disk.img
forces raw format (no auto-
detection) for disk.img, but virt-
customize --format raw
-a disk.img --format
auto -a another.img
forces raw format (no auto-
detection) for disk.img and
reverts to auto-detection for
another.img. If you have
untrusted raw-format guest disk
images, you should use this option
to specify the disk format. This
avoids a possible security problem
with malicious guests.

-m [MB] or --memsize [MB] Changes the amount of memory
allocated to --run scripts. If --
run scripts or the --install
option cause out of memory
issues, increase the memory
allocation.

$ virt-customize --
memsize 1024

Command Description Example

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

413

--network or --no-network Enables or disables network
access from the guest during
installation. The default is
enabled. Use --no-network
to disable access. This command
does not affect guest access to
the network after booting. For
more information, refer to
libguestfs documentation.

$ virt-customize -a
http://[user@]example.c
om[:port]/disk.img

-q or --quiet Prevents the printing of log
messages.

$ virt-customize -q

-smp [N] Enables N virtual CPUs that can
be used by --install scripts.
N must be 2 or more.

$ virt-customize -smp 4

-v or --verbose Enables verbose messages for
debugging purposes.

$ virt-customize --
verbose

-V or --version Displays the virt-customize
version number and exits.

$ virt-customize --V

-x Enables tracing of libguestfs API
calls.

$ virt-customize -x

Command Description Example

The virt-customize command uses customization options to configure how the guest is customized.
The following provides information about the --selinux-relabel customization option.

The --selinux-relabel customization option relabels files in the guest so that they have the correct
SELinux label. This option tries to relabel files immediately. If unsuccessful, /.autorelabel is
activated on the image. This schedules the relabel operation for the next time the image boots.

NOTE

This option should only be used for guests that support SELinux.

The following example installs the GIMP and Inkscape packages on the guest and and ensures that the
SELinux labels will be correct the next time the guest boots.

Example 22.1. Using virt-customize to install packages on a guest

virt-customize -a disk.img --install gimp,inkscape --selinux-relabel

For more information, including customization options, refer to libguestfs.org.

Virtualization Deployment and Administration Guide

414

http://libguestfs.org/virt-customize.1.html
http://libguestfs.org/virt-customize.1.html

22.13. VIRT-DIFF: LISTING THE DIFFERENCES BETWEEN VIRTUAL
MACHINE FILES

The virt-diff command-line tool can be used to lists the differences between files in two virtual
machines disk images. The output shows the changes to a virtual machine's disk images after it has
been running. The command can also be used to show the difference between overlays.

NOTE

You can use virt-diff safely on live guest virtual machines, because it only needs
read-only access.

This tool finds the differences in file names, file sizes, checksums, extended attributes, file content and
more between the running virtual machine and the selected image.

NOTE

The virt-diff command does not check the boot loader, unused space between
partitions or within file systems, or "hidden" sectors. Therefore, it is recommended that
you do not use this as a security or forensics tool.

To install virt-diff, run one of the following commands:

yum install /usr/bin/virt-diff

or

yum install libguestfs-tools-c

To specify two guests, you have to use the -a or -d option for the first guest, and the -A or -D option
for the second guest. For example:

$ virt-diff -a old.img -A new.img

You can also use names known to libvirt. For example:

$ virt-diff -d oldguest -D newguest

The following command options are available to use with virt-diff:

Table 22.3. virt-diff options

Command Description Example

--help Displays a brief help entry about a
particular command or about the
virt-diff utility. For additional
help, see the virt-diff man page.

$ virt-diff --help

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

415

-a [file] or --add [file] Adds the specified file, which
should be a disk image from the
first virtual machine. If the virtual
machine has multiple block
devices, you must supply all of
them with separate -a options.

The format of the disk image is
auto-detected. To override this
and force a particular format, use
the --format option.

$ virt-customize --add
/dev/vms/original.img -
A /dev/vms/new.img

-a [URI] or --add [URI] Adds a remote disk. The URI
format is compatible with
guestfish. For more information,
refer to Section 22.4.2, “Adding
Files with guestfish”.

$ virt-diff -a
rbd://example.com[:port
]/pool/newdisk -A
rbd://example.com[:port
]/pool/olddisk

--all Same as --extra-stats --
times --uids --xattrs.

$ virt-diff --all

--atime By default, virt-diff ignores
changes in file access times,
since those are unlikely to be
interesting. Use the --atime
option to show access time
differences.

$ virt-diff --atime

-A [file] Adds the specified file or URI,
which should be a disk image
from the second virtual machine.

$ virt-diff --add
/dev/vms/original.img -
A /dev/vms/new.img

-c [URI] or --connect [URI] Connects to the given URI, if
using libvirt. If omitted, then it
connects to the default libvirt
hypervisor. If you specify guest
block devices directly (virt-
diff -a), then libvirt is not used
at all.

$ virt-diff -c
qemu:///system

--csv Provides the results in a comma-
separated values (CSV) format.
This format can be imported
easily into databases and
spreadsheets. For further
information, see Note.

virt-diff --csv

Command Description Example

Virtualization Deployment and Administration Guide

416

-d [guest] or --domain [guest] Adds all the disks from the
specified guest virtual machine as
the first guest virtual machine.
Domain UUIDs can be used
instead of domain names.

$ virt-diff --domain
90df2f3f-8857-5ba9-
2714-7d95907b1c9e

-D [guest] Adds all the disks from the
specified guest virtual machine as
the second guest virtual machine.
Domain UUIDs can be used
instead of domain names.

$ virt-diff --D
90df2f3f-8857-5ba9-
2714-7d95907b1cd4

--extra-stats Displays extra statistics. $ virt-diff --extra-
stats

--format or --format=[raw|qcow2] The default for the -a/-A option
is to auto-detect the format of the
disk image. Using this forces the
disk format for -a/-A options that
follow on the command line.
Using --format auto
switches back to auto-detection
for subsequent -a options (see the
-a command above).

$ virt-diff --format
raw -a new.img -A
old.img forces raw format (no
auto-detection) for new.img and
old.img, but virt-diff --
format raw -a new.img -
-format auto -a old.img
forces raw format (no auto-
detection) for new.img and
reverts to auto-detection for
old.img. If you have untrusted
raw-format guest disk images, you
should use this option to specify
the disk format. This avoids a
possible security problem with
malicious guests.

-h or --human-readable Displays file sizes in human-
readable format.

$ virt-diff -h

--time-days Displays time fields for changed
files as days before now (negative
if in the future).

Note that 0 in the output means
between 86,399 seconds (23
hours, 59 minutes, and 59
seconds) before now and 86,399
seconds in the future.

$ virt-diff --time-days

-v or --verbose Enables verbose messages for
debugging purposes.

$ virt-diff --verbose

-V or --version Displays the virt-diff version
number and exits.

$ virt-diff -V

Command Description Example

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

417

-x Enables tracing of libguestfs API
calls.

$ virt-diff -x

Command Description Example

NOTE

The comma-separated values (CSV) format can be difficult to parse. Therefore, it is
recommended that for shell scripts, you should use csvtool and for other languages, use a
CSV processing library (such as Text::CSV for Perl or Python's built-in csv library). In
addition, most spreadsheets and databases can import CSV directly.

For more information, including additional options, refer to libguestfs.org.

22.14. VIRT-SPARSIFY: RECLAIMING EMPTY DISK SPACE

The virt-sparsify command-line tool can be used to make a virtual machine disk (or any disk
image) sparse. This is also known as thin-provisioning. Free disk space on the disk image is converted
to free space on the host.

The virt-sparsify command can work with most filesystems, such as ext2, ext3, ext4, btrfs, NTFS. It
also works with LVM physical volumes. virt-sparsify can operate on any disk image, not just virtual
machine disk images.

WARNING

Using virt-sparsify on live virtual machines, or concurrently with other disk
editing tools can cause disk corruption. The virtual machine must be shut down
before using this command. In addition, disk images should not be edited
concurrently.

The command can also be used to convert between some disk formats. For example, virt-sparsify
can convert a raw disk image to a thin-provisioned qcow2 image.

NOTE

If a virtual machine has multiple disks and uses volume management, virt-sparsify
will work, but it will not be very effective.

If the input is raw, then the default output is raw sparse. The size of the output image must be checked
using a tool that understands sparseness.

$ ls -lh test1.img
-rw-rw-r--. 1 rjones rjones 100M Aug 8 08:08 test1.img
$ du -sh test1.img
3.6M test1.img



Virtualization Deployment and Administration Guide

418

http://libguestfs.org/virt-diff.1.html

Note that the ls command shows the image size to be 100M. However, the du command correctly
shows the image size to be 3.6M.

Important limitations
The following is a list of important limitations:

The virtual machine must be shutdown before using virt-sparsify.

In a worst case scenario, virt-sparsify may require up to twice the virtual size of the source
disk image. One for the temporary copy and one for the destination image.

If you use the --in-place option, large amounts of temporary space are not needed.

virt-sparsify cannot be used to resize disk images. To resize disk images, use virt-
resize. For information about virt-resize, refer to Section 22.8, “virt-resize: Resizing Guest
Virtual Machines Offline”.

virt-sparsify does not work with encrypted disks, because encrypted disks cannot be
sparsified.

virt-sparsify cannot sparsify the space between partitions. This space is often used for
critical items like bootloaders, so it is not really unused space.

In copy mode, qcow2 internal snapshots are not copied to the destination image.

Examples
To install virt-sparsify, run one of the following commands:

yum install /usr/bin/virt-sparsify

or

yum install libguestfs-tools-c

To sparsify a disk:

virt-sparsify /dev/sda1 /dev/device

Copies the contents of /dev/sda1 to /dev/device, making the output sparse. If /dev/device
already exists, it is overwritten. The format of /dev/sda1 is detected and used as the format for
/dev/device.

To convert between formats:

virt-sparsify disk.raw --convert qcow2 disk.qcow2

Tries to zero and sparsify free space on every filesystem it can find within the source disk image.

To prevent free space from being overwritten with zeros on certain filesystems:

virt-sparsify --ignore /dev/device /dev/sda1 /dev/device

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

419

Creates sparsified disk images from all filesystems in the disk image, without overwriting free space on
the filesystems with zeros.

To make a disk image sparse without creating a temporary copy:

virt-sparsify --in-place disk.img

Makes the specified disk image sparse, overwriting the image file.

virt-sparsify options
The following command options are available to use with virt-sparsify:

Table 22.4. virt-sparsify options

Command Description Example

--help Displays a brief help entry about a
particular command or about the
virt-sparsify utility. For
additional help, see the virt-
sparsify man page.

$ virt-sparsify --help

--check-tmpdir
ignore|continue|warn|fai
l

Estimates if tmpdir has enough
space to complete the operation.
The specified option determines
the behavior if there is not enough
space to complete the operation.

ignore: The issue is
ignored and the
operation continues.

continue: Reports an
error and the operation
continues.

warn: Reports an error
and waits for the user to
press Enter.

fail: Reports an error
and aborts the operation.

This option cannot be used with
the ‑‑in-place option.

$ virt-sparsify --
check-tmpdir ignore
/dev/sda1 /dev/device

$ virt-sparsify --
check-tmpdir continue
/dev/sda1 /dev/device

$ virt-sparsify --
check-tmpdir warn
/dev/sda1 /dev/device

$ virt-sparsify --
check-tmpdir fail
/dev/sda1 /dev/device

--compress Compresses the output file. This
only works if the output format is
qcow2. This option cannot be
used with the ‑‑in-place
option.

$ virt-sparsify --
compress /dev/sda1
/dev/device

Virtualization Deployment and Administration Guide

420

--convert Creates the sparse image using a
specified format. If no format is
specified, the input format is used.

The following output formats are
supported and known to work:
raw, qcow, vdi

You can use any format
supported by the QEMU emulator.

It is recommended that you use
the --convert option. This
way, virt-sparsify does not
need to guess the input format.

This option cannot be used with
the ‑‑in-place option.

$ virt-sparsify --
convert raw /dev/sda1
/dev/device

$ virt-sparsify --
convert qcow2 /dev/sda1
/dev/device

$ virt-sparsify --
convert other_format
indisk outdisk

--format Specifies the format of the input
disk image. If not specified, the
format is detected from the image.
When working with untrusted raw-
format guest disk images, ensure
to specify the format.

$ virt-sparsify --
format raw /dev/sda1
/dev/device

$ virt-sparsify --
format qcow2 /dev/sda1
/dev/device

--ignore Ignores the specified file system
or volume group.

When a filesystem is specified and
the --in-place option is not
specified, free space on the
filesystem is not zeroed. However,
existing blocks of zeroes are
sparsified. When the ‑‑in-
place option is specified, the
filesystem is completely ignored.

When a volume group is specified,
the volume group is ignored. The
volume group name should be
used without the /dev/ prefix.
For example, ‑‑ignore
vg_foo

The --ignore option can be
included in the command multiple
times.

$ virt-sparsify --
ignore filesystem1
/dev/sda1 /dev/device

$ virt-sparsify --
ignore
volume_group/dev/sda1
/dev/device

Command Description Example

CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS

421

--in-place Makes an image sparse in-place,
instead of making a temporary
copy. Although in-place
sparsification is more efficient
than copying sparsification, it
cannot recover quite as much disk
space as copying sparsification.
In-place sparsification works
using discard (also known as trim
or unmap) support.

To use in-place sparsification,
specify a disk image that will be
sparsified in-place.

When specifying in-place
sparsification, the following
options cannot be used:

--convert and --
compress, because
they require wholesale
disk format changes.

--check-tmpdir,
because large amounts
of temporary space are
not required.

$ virt-sparsify --in-
place disk.img

-x Enables tracing of libguestfs API
calls.

$ virt-sparsify -x
filesystem1 /dev/sda1
/dev/device

Command Description Example

For more information, including additional options, refer to libguestfs.org.

Virtualization Deployment and Administration Guide

422

http://libguestfs.org/virt-sparsify.1.html

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR
GUEST VIRTUAL MACHINE MANAGEMENT
In addition to virt-manager, Red Hat Enterprise Linux 7 provides the following tools that enable you to
access your guest virtual machine's console.

23.1. VIRT-VIEWER

virt-viewer is a minimalistic command-line utility for displaying the graphical console of a guest
virtual machine. The console is accessed using the VNC or SPICE protocol. The guest can be referred to
by its name, ID, or UUID. If the guest is not already running, the viewer can be set to wait until it starts
before attempting to connect to the console. The viewer can connect to remote hosts to get the console
information and then also connect to the remote console using the same network transport.

In comparison with virt-manager, virt-viewer offers a smaller set of features, but is less resource-
demanding. In addition, unlike virt-manager, virt-viewer in most cases does not require read-write
permissions to libvirt. Therefore, it can be used by non-privileged users who should be able to connect to
and display guests, but not to configure them.

To install virt-viewer, run:

sudo yum install virt-viewer

Syntax
The basic virt-viewer command-line syntax is as follows:

virt-viewer [OPTIONS] {guest-name|id|uuid}

To see the full list of options available for use with virt-viewer, see the virt-viewer man page.

Connecting to a guest virtual machine
If used without any options, virt-viewer lists guests that it can connect to on the default hypervisor of the
local system.

To connect to a specified guest virtual machine that uses the default hypervisor:

virt-viewer guest-name

To connect to a guest virtual machine that uses the KVM-QEMU hypervisor:

virt-viewer --connect qemu:///system guest-name

To connect to a remote console using TLS:

virt-viewer --connect qemu://example.org/ guest-name

To connect to a console on a remote host by using SSH, look up the guest configuration and then make
a direct non-tunneled connection to the console:

virt-viewer --direct --connect qemu+ssh://root@example.org/ guest-name

Interface

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

423

By default, the virt-viewer interface provides only the basic tools for interacting with the guest:

Figure 23.1. Sample virt-viewer interface

Setting hotkeys
To create a customized keyboard shortcut (also referred to as a hotkey) for the virt-viewer session, use
the --hotkeys option:

virt-viewer --hotkeys=action1=key-combination1[,action2=key-
combination2] guest-name

The following actions can be assigned to a hotkey:

toggle-fullscreen

release-cursor

smartcard-insert

smartcard-remove

Key-name combination hotkeys are not case-sensitive. Note that the hotkey setting does not carry over to
future virt-viewer sessions.

Example 23.1. Setting a virt-viewer hotkey

Virtualization Deployment and Administration Guide

424

To add a hotkey to change to full screen mode when connecting to a KVM-QEMU guest called
testguest:

virt-viewer --hotkeys=toggle-fullscreen=shift+f11 qemu:///system
testguest

Kiosk mode
In kiosk mode, virt-viewer only allows the user to interact with the connected desktop, and does not
provide any options to interact with the guest settings or the host system unless the guest is shut down.
This can be useful for example when an administrator wants to restrict a user's range of actions to a
specified guest.

To use kiosk mode, connect to a guest with the -k or --kiosk option.

Example 23.2. Using virt-viewer in kiosk mode

To connect to a KVM-QEMU virtual machine in kiosk mode that terminates after the machine is shut
down, use the following command:

virt-viewer --connect qemu:///system guest-name --kiosk --kiosk-quit
on-disconnect

Note, however, that kiosk mode alone cannot ensure that the user does not interact with the host system
or the guest settings after the guest is shut down. This would require further security measures, such as
disabling the window manager on the host.

23.2. REMOTE-VIEWER

The remote-viewer is a simple remote desktop display client that supports SPICE and VNC. It shares
most of the features and limitations with virt-viewer.

However, unlike virt-viewer, remote-viewer does not require libvirt to connect to the remote guest display.
As such, remote-viewer can be used for example to connect to a virtual machine on a remote host that
does not provide permissions to interact with libvirt or to use SSH connections.

To install the remote-viewer utility, run:

sudo yum install virt-viewer

Syntax
The basic remote-viewer command-line syntax is as follows:

remote-viewer [OPTIONS] {guest-name|id|uuid}

To see the full list of options available for use with remote-viewer, see the remote-viewer man page.

Connecting to a guest virtual machine
If used without any options, remote-viewer lists guests that it can connect to on the default URI of the
local system.

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

425

To connect to a specific guest using remote-viewer, use the VNC/SPICE URI. For information about
obtaining the URI, see Section 21.14, “Displaying a URI for Connection to a Graphical Display”.

Example 23.3. Connecting to a guest display using SPICE

Use the following to connect to a SPICE server on a machine called "testguest" that uses port 5900
for SPICE communication:

remote-viewer spice://testguest:5900

Example 23.4. Connecting to a guest display using VNC

Use the following to connect to a VNC server on a machine called testguest2 that uses port 5900
for VNC communication:

remote-viewer vnc://testguest2:5900

Interface
By default, the remote-viewer interface provides only the basic tools for interacting with the guest:

Figure 23.2. Sample remote-viewer interface

Virtualization Deployment and Administration Guide

426

23.3. GNOME BOXES

Boxes is a lightweight graphical desktop virtualization tool used to view and access virtual machines and
remote systems.

Unlike virt-viewer and remote-viewer, Boxes allows viewing guest virtual machines, but also creating and
configuring them, similar to virt-manager. However, in comparison with virt-manager, Boxes offers
fewer management options and features, but is easier to use.

To install Boxes, run:

sudo yum install gnome-boxes

Open Boxes through Applications ⇒ System Tools.

The main screen shows the available guest virtual machines. The right side of the screen has two
buttons:

 the search button, to search for guest virtual machines by name, and

 the selection button.

clicking the selection button allows you to select one or more guest virtual machines in order to perform
operations individually or as a group. The available operations are shown at the bottom of the screen on
the operations bar:

Figure 23.3. The Operations Bar

There are four operations that can be performed:

Favorite: Adds a heart to selected guest virtual machines and moves them to the top of the list
of guests. This becomes increasingly helpful as the number of guests grows.

Pause: The selected guest virtual machines will stop running.

Delete: Removes selected guest virtual machines.

Properties: Shows the properties of the selected guest virtual machine.

Create new guest virtual machines using the New button on the left side of the main screen.

Procedure 23.1. Creating a new guest virtual machine with Boxes

1. Click New
This opens the Introduction screen. Click Continue.

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

427

Figure 23.4. Introduction screen

2. Select source
The Source Selection screen has three options:

Available media: Any immediately available installation media will be shown here. Clicking
any of these will take you directly to the Review screen.

Enter a URL: Type in a URL to specify a local URI or path to an ISO file. This can also be
used to access a remote machine. The address should follow the pattern of
protocol://IPaddress?port;, for example:

spice://192.168.122.1?port=5906;

The protocols can be spice://, qemu://, or vnc://

Select a file: Open a file directory to search for installation media manually.

Virtualization Deployment and Administration Guide

428

Figure 23.5. Source Selection screen

3. Review the details
The Review screen shows the details of the guest virtual machine.

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

429

Figure 23.6. Review screen

These details can be left as is, in which case proceed to the final step, or:

4. Optional: customize the details
clicking Customize allows you to adjust the configuration of the guest virtual machine, such as
the memory and disk size.

Virtualization Deployment and Administration Guide

430

Figure 23.7. Customization screen

5. Create
Click Create. The new guest virtual machine will open.

CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT

431

CHAPTER 24. MANIPULATING THE DOMAIN XML
This chapter explains in detail the components of guest virtual machine XML configuration files, also
known as domain XML. In this chapter, the term domain refers to the root <domain> element required
for all guest virtual machines. The domain XML has two attributes: type and id. type specifies the
hypervisor used for running the domain. The allowed values are driver-specific, but include KVM and
others. id is a unique integer identifier for the running guest virtual machine. Inactive machines have no
id value. The sections in this chapter will describe the components of the domain XML. Additional
chapters in this manual may refer to this chapter when manipulation of the domain XML is required.

IMPORTANT

Use only supported management interfaces (such as virsh and the Virtual Machine
Manager) and commands (such as virt-xml) to edit the components of the domain
XML file. Do not open and edit the domain XML file directly with a text editor. If you
absolutely must edit the domain XML file directly, use the virsh edit command.

24.1. GENERAL INFORMATION AND METADATA

This information is in this part of the domain XML:

Figure 24.1. Domain XML metadata

The components of this section of the domain XML are as follows:

Table 24.1. General metadata elements

Element Description

<name> Assigns a name for the virtual machine. This name
should consist only of alpha-numeric characters and
is required to be unique within the scope of a single
host physical machine. It is often used to form the file
name for storing the persistent configuration files.

<domain type='kvm' id='3'>
 <name>fv0</name>
 <uuid>4dea22b31d52d8f32516782e98ab3fa0</uuid>
 <title>A short description - title - of the domain</title>
 <description>A human readable description</description>
 <metadata>
 <app1:foo xmlns:app1="http://app1.org/app1/">..</app1:foo>
 <app2:bar xmlns:app2="http://app1.org/app2/">..</app2:bar>
 </metadata>
 ...
</domain>

Virtualization Deployment and Administration Guide

432

<uuid> Assigns a globally unique identifier for the virtual
machine. The format must be RFC 4122-compliant,
for example 3e3fce45-4f53-4fa7-bb32-
11f34168b82b. If omitted when defining or
creating a new machine, a random UUID is
generated. It is also possible to provide the UUID via
a sysinfo specification.

<title> Creates space for a short description of the domain.
The title should not contain any new lines.

<description> Different from the title, this data is not used by libvirt.
It can contain any information the user chooses to
display.

<metadata> Can be used by applications to store custom
metadata in the form of XML nodes/trees.
Applications must use custom name spaces on XML
nodes/trees, with only one top-level element per
name space (if the application needs structure, they
should have sub-elements to their name space
element).

Element Description

24.2. OPERATING SYSTEM BOOTING

There are a number of different ways to boot virtual machines, including BIOS boot loader, host physical
machine boot loader, direct kernel boot, and container boot.

24.2.1. BIOS Boot Loader

Booting the BIOS is available for hypervisors supporting full virtualization. In this case, the BIOS has a
boot order priority (floppy, hard disk, CD-ROM, network) determining where to locate the boot image.
The <os> section of the domain XML contains the following information:

Figure 24.2. BIOS boot loader domain XML

 ...
 <os>
 <type>hvm</type>
 <boot dev='fd'/>
 <boot dev='hd'/>
 <boot dev='cdrom'/>
 <boot dev='network'/>
 <bootmenu enable='yes'/>
 <smbios mode='sysinfo'/>
 <bios useserial='yes' rebootTimeout='0'/>
 </os>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

433

The components of this section of the domain XML are as follows:

Table 24.2. BIOS boot loader elements

Element Description

<type> Specifies the type of operating system to be booted
on the guest virtual machine. hvm indicates that the
operating system is designed to run on bare metal
and requires full virtualization. linux refers to an
operating system that supports the KVM hypervisor
guest ABI. There are also two optional attributes:
arch specifies the CPU architecture to virtualization,
and machine refers to the machine type. For more
information, see the libvirt upstream documentation.

<boot> Specifies the next boot device to consider with one of
the following values:fd, hd, cdrom or network.
The boot element can be repeated multiple times to
set up a priority list of boot devices to try in turn.
Multiple devices of the same type are sorted
according to their targets while preserving the order
of buses. After defining the domain, its XML
configuration returned by libvirt lists devices in the
sorted order. Once sorted, the first device is marked
as bootable. For more information, see the libvirt
upstream documentation.

<bootmenu> Determines whether or not to enable an interactive
boot menu prompt on guest virtual machine start up.
The enable attribute can be either yes or no. If
not specified, the hypervisor default is used.

<smbios> determines how SMBIOS information is made visible
in the guest virtual machine. The mode attribute must
be specified, as either emulate (allows the
hypervisor generate all values), host (copies all of
Block 0 and Block 1, except for the UUID, from the
host physical machine's SMBIOS values; the
virConnectGetSysinfo call can be used to see
what values are copied), or sysinfo (uses the
values in the sysinfo element). If not specified, the
hypervisor's default setting is used.

<bios> This element has attribute useserial with possible
values yes or no. The attribute enables or disables
the Serial Graphics Adapter, which enables users to
see BIOS messages on a serial port. Therefore, one
needs to have serial port defined. The
rebootTimeout attribute controls whether and
after how long the guest virtual machine should start
booting again in case the boot fails (according to the
BIOS). The value is set in milliseconds with a
maximum of 65535; setting -1 disables the reboot.

Virtualization Deployment and Administration Guide

434

http://libvirt.org/formatcaps.html
http://libvirt.org/formatdomain.html#elementsOSBIOS

24.2.2. Direct Kernel Boot

When installing a new guest virtual machine operating system, it is often useful to boot directly from a
kernel and initrd stored in the host physical machine operating system, allowing command-line
arguments to be passed directly to the installer. This capability is usually available for both fully
virtualized and paravirtualized guest virtual machines.

Figure 24.3. Direct kernel boot

The components of this section of the domain XML are as follows:

Table 24.3. Direct kernel boot elements

Element Description

<type> Same as described in the BIOS boot section.

<kernel> Specifies the fully-qualified path to the kernel image
in the host physical machine operating system.

<initrd> Specifies the fully-qualified path to the (optional)
ramdisk image in the host physical machine
operating system.

<cmdline> Specifies arguments to be passed to the kernel (or
installer) at boot time. This is often used to specify an
alternate primary console (such as a serial port), or
the installation media source or kickstart file.

24.2.3. Container Boot

When booting a domain using container-based virtualization, instead of a kernel or boot image, a path to
the init binary is required, using the init element. By default this will be launched with no arguments.
To specify the initial argv, use the initarg element, repeated as many times as required. The
cmdline element provides an equivalent to /proc/cmdline but will not affect <initarg>.

 ...
 <os>
 <type>hvm</type>
 <kernel>/root/f8-i386-vmlinuz</kernel>
 <initrd>/root/f8-i386-initrd</initrd>
 <cmdline>console=ttyS0 ks=http://example.com/f8-i386/os/</cmdline>
 <dtb>/root/ppc.dtb</dtb>
 </os>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

435

Figure 24.4. Container boot

24.3. SMBIOS SYSTEM INFORMATION

Some hypervisors allow control over what system information is presented to the guest virtual machine
(for example, SMBIOS fields can be populated by a hypervisor and inspected via the dmidecode
command in the guest virtual machine). The optional sysinfo element covers all such categories of
information.

Figure 24.5. SMBIOS system information

The <sysinfo> element has a mandatory attribute type that determines the layout of sub-elements,
and may be defined as follows:

<smbios> - Sub-elements call out specific SMBIOS values, which will affect the guest virtual
machine if used in conjunction with the smbios sub-element of the <os> element. Each sub-
element of <sysinfo> names a SMBIOS block, and within those elements can be a list of entry
elements that describe a field within the block. The following blocks and entries are recognized:

<bios> - This is block 0 of SMBIOS, with entry names drawn from vendor, version,
date, and release.

<system> - This is block 1 of SMBIOS, with entry names drawn from manufacturer,
product, version, serial, uuid, sku, and family. If a uuid entry is provided
alongside a top-level uuid element, the two values must match.

24.4. CPU ALLOCATION

...
<os>
 <type arch='x86_64'>exe</type>
 <init>/bin/systemd</init>
 <initarg>--unit</initarg>
 <initarg>emergency.service</initarg>
</os>
...

 ...
 <os>
 <smbios mode='sysinfo'/>
 ...
 </os>
 <sysinfo type='smbios'>
 <bios>
 <entry name='vendor'>LENOVO</entry>
 </bios>
 <system>
 <entry name='manufacturer'>Fedora</entry>
 <entry name='vendor'>Virt-Manager</entry>
 </system>
 </sysinfo>
 ...

Virtualization Deployment and Administration Guide

436

Figure 24.6. CPU Allocation

The <vcpu> element defines the maximum number of virtual CPUs allocated for the guest virtual
machine operating system, which must be between 1 and the maximum number supported by the
hypervisor. This element can contain an optional cpuset attribute, which is a comma-separated list of
physical CPU numbers that the domain process and virtual CPUs can be pinned to by default.

Note that the pinning policy of the domain process and virtual CPUs can be specified separately by using
the cputune attribute. If the emulatorpin attribute is specified in <cputune>, cpuset specified by
<vcpu> will be ignored.

Similarly, virtual CPUs that have set a value for vcpupin cause cpuset settings to be ignored. For
virtual CPUs where vcpupin is not specified, it will be pinned to the physical CPUs specified by
cpuset. Each element in the cpuset list is either a single CPU number, a range of CPU numbers, or a
caret (^) followed by a CPU number to be excluded from a previous range. The attribute current can
be used to specify whether fewer than the maximum number of virtual CPUs should be enabled.

The optional attribute placement can be used to indicate the CPU placement mode for domain
process. Its value can be either static or auto, which defaults to placement, or numatune, or
static if cpuset is specified. auto indicates the domain process will be pinned to the advisory
nodeset from querying numad, and the value of attribute cpuset will be ignored if it is specified. If both
cpuset and placement are not specified, or if placement is static, but no cpuset is specified, the
domain process will be pinned to all the available physical CPUs.

24.5. CPU TUNING

Figure 24.7. CPU Tuning

Although all are optional, the components of this section of the domain XML are as follows:

<domain>
 ...
 <vcpu placement='static' cpuset="1-4,^3,6" current="1">2</vcpu>
 ...
</domain>

<domain>
 ...
 <cputune>
 <vcpupin vcpu="0" cpuset="1-4,^2"/>
 <vcpupin vcpu="1" cpuset="0,1"/>
 <vcpupin vcpu="2" cpuset="2,3"/>
 <vcpupin vcpu="3" cpuset="0,4"/>
 <emulatorpin cpuset="1-3"/>
 <shares>2048</shares>
 <period>1000000</period>
 <quota>-1</quota>
 <emulator_period>1000000</emulator_period>
 <emulator_quota>-1</emulator_quota>
 </cputune>
 ...
</domain>

CHAPTER 24. MANIPULATING THE DOMAIN XML

437

Table 24.4. CPU tuning elements

Element Description

<cputune> Provides details regarding the CPU tunable
parameters for the domain. This is optional.

<vcpupin> Specifies which of host physical machine's physical
CPUs the domain vCPU will be pinned to. If this is
omitted, and the cpuset attribute of the <vcpu>
element is not specified, the vCPU is pinned to all
the physical CPUs by default. It contains two required
attributes: the <vcpu> attribute specifies id, and
the cpuset attribute is same as the cpuset
attribute in the <vcpu> element.

<emulatorpin> Specifies which of the host physical machine CPUs
the "emulator" (a subset of a domains not including
<vcpu>) will be pinned to. If this is omitted, and the
cpuset attribute in the <vcpu> element is not
specified, the "emulator" is pinned to all the physical
CPUs by default. It contains one required cpuset
attribute specifying which physical CPUs to pin to.
emulatorpin is not allowed if the placement
attribute in the <vcpu> element is set as auto.

<shares> Specifies the proportional weighted share for the
domain. If this is omitted, it defaults to the operating
system provided defaults. If there is no unit for the
value, it is calculated relative to the setting of the
other guest virtual machine. For example, a guest
virtual machine configured with a <shares> value
of 2048 will get twice as much CPU time as a guest
virtual machine configured with a <shares> value
of 1024.

<period> Specifies the enforcement interval in microseconds.
By using <period>, each of the domain's vCPUs
will not be allowed to consume more than its allotted
quota worth of run time. This value should be within
the following range: 1000-1000000. A <period>
with a value of 0 means no value.

<quota> Specifies the maximum allowed bandwidth in
microseconds. A domain with <quota> as any
negative value indicates that the domain has infinite
bandwidth, which means that it is not bandwidth
controlled. The value should be within the following
range: 1000 - 18446744073709551 or less
than 0. A quota with value of 0 means no value.
You can use this feature to ensure that all vCPUs run
at the same speed.

Virtualization Deployment and Administration Guide

438

<emulator_period> Specifies the enforcement interval in microseconds.
Within an <emulator_period>, emulator
threads (those excluding vCPUs) of the domain will
not be allowed to consume more than the
<emulator_quota> worth of run time. The
<emulator_period> value should be in the
following range: 1000 - 1000000. An
<emulator_period> with value of 0 means no
value.

<emulator_quota> Specifies the maximum allowed bandwidth in
microseconds for the domain's emulator threads
(those excluding vCPUs). A domain with an
<emulator_quota> as a negative value indicates
that the domain has infinite bandwidth for emulator
threads (those excluding vCPUs), which means that it
is not bandwidth controlled. The value should be in
the following range: 1000 -
18446744073709551, or less than 0. An
<emulator_quota> with value 0 means no
value.

Element Description

24.6. MEMORY BACKING

Memory backing allows the hypervisor to properly manage large pages within the guest virtual machine.

Figure 24.8. Memory backing

For detailed information on memoryBacking elements, see the libvirt upstream documentation.

24.7. MEMORY TUNING

<domain>
 ...
 <memoryBacking>
 <hugepages>
 <page size="1" unit="G" nodeset="0-3,5"/>
 <page size="2" unit="M" nodeset="4"/>
 </hugepages>
 <nosharepages/>
 <locked/>
 </memoryBacking>
 ...
</domain>

CHAPTER 24. MANIPULATING THE DOMAIN XML

439

http://libvirt.org/formatdomain.html#elementsMemoryBacking

Figure 24.9. Memory tuning

Although <memtune> is optional, the components of this section of the domain XML are as follows:

Table 24.5. Memory tuning elements

Element Description

<memtune> Provides details regarding the memory tunable
parameters for the domain. If this is omitted, it
defaults to the operating system provided defaults. As
parameters are applied to the process as a whole,
when setting limits, determine values by adding the
guest virtual machine RAM to the guest virtual
machine video RAM, allowing for some memory
overhead. For each tunable, it is possible to
designate which unit the number is in on input, using
the same values as for <memory>. For backwards
compatibility, output is always in kibibytes (KiB).

<hard_limit> The maximum memory the guest virtual machine can
use. This value is expressed in kibibytes (blocks
of 1024 bytes).

<soft_limit> The memory limit to enforce during memory
contention. This value is expressed in kibibytes
(blocks of 1024 bytes).

<swap_hard_limit> The maximum memory plus swap the guest virtual
machine can use. This value is expressed in
kibibytes (blocks of 1024 bytes). This must be more
than <hard_limit> value.

<min_guarantee> The guaranteed minimum memory allocation for the
guest virtual machine. This value is expressed in
kibibytes (blocks of 1024 bytes).

24.8. MEMORY ALLOCATION

In cases where the guest virtual machine crashes, the optional attribute dumpCore can be used to

<domain>
 ...
 <memtune>
 <hard_limit unit='G'>1</hard_limit>
 <soft_limit unit='M'>128</soft_limit>
 <swap_hard_limit unit='G'>2</swap_hard_limit>
 <min_guarantee unit='bytes'>67108864</min_guarantee>
 </memtune>
 ...
</domain>

Virtualization Deployment and Administration Guide

440

control whether the guest virtual machine's memory should be included in the generated core
dump(dumpCore='on') or not included (dumpCore='off'). Note that the default setting is on, so
unless the parameter is set to off, the guest virtual machine memory will be included in the core
dumpfile.

The <maxMemory> element determines maximum run-time memory allocation of the guest. The slots
attribute specifies the number of slots available for adding memory to the guest.

The <memory> element specifies the maximum allocation of memory for the guest at boot time. This can
also be set using the NUMA cell size configuration, and can be increased by hot-plugging of memory to
the limit specified by maxMemory.

The <currentMemory> element determines the actual memory allocation for a guest virtual machine.
This value can be less than the maximum allocation (set by <memory>) to allow for the guest virtual
machine memory to balloon as needed. If omitted, this defaults to the same value as the <memory>
element. The unit attribute behaves the same as for memory.

Figure 24.10. Memory unit

24.9. NUMA NODE TUNING

After NUMA node tuning is done using virsh edit, the following domain XML parameters are affected:

Figure 24.11. NUMA node tuning

Although all are optional, the components of this section of the domain XML are as follows:

Table 24.6. NUMA node tuning elements

Element Description

<domain>
 <maxMemory slots='16' unit='KiB'>1524288</maxMemory>
 <memory unit='KiB' dumpCore='off'>524288</memory>
 <!-- changes the memory unit to KiB and does not allow the guest virtual
machine's memory to be included in the generated core dumpfile -->
 <currentMemory unit='KiB'>524288</currentMemory>
 <!-- makes the current memory unit 524288 KiB -->
 ...
</domain>

<domain>
 ...
 <numatune>
 <memory mode="strict" nodeset="1-4,^3"/>
 </numatune>
 ...
</domain>

CHAPTER 24. MANIPULATING THE DOMAIN XML

441

<numatune> Provides details of how to tune the performance of a
NUMA host physical machine by controlling NUMA
policy for domain processes.

<memory> Specifies how to allocate memory for the domain
processes on a NUMA host physical machine. It
contains several optional attributes. The mode
attribute can be set to interleave, strict, or
preferred. If no value is given it defaults to
strict. The nodeset attribute specifies the
NUMA nodes, using the same syntax as the
cpuset attribute of the <vcpu> element. Attribute
placement can be used to indicate the memory
placement mode for the domain process. Its value
can be either static or auto. If the <nodeset>
attribute is specified it defaults to the
<placement> of <vcpu>, or static. auto
indicates the domain process will only allocate
memory from the advisory nodeset returned from
querying numad and the value of the nodeset
attribute will be ignored if it is specified. If the
<placement> attribute in vcpu is set to auto,
and the <numatune> attribute is not specified, a
default <numatune> with <placement> auto
and strict mode will be added implicitly.

Element Description

24.10. BLOCK I/O TUNING

Figure 24.12. Block I/O tuning

Although all are optional, the components of this section of the domain XML are as follows:

Table 24.7. Block I/O tuning elements

<domain>
 ...
 <blkiotune>
 <weight>800</weight>
 <device>
 <path>/dev/sda</path>
 <weight>1000</weight>
 </device>
 <device>
 <path>/dev/sdb</path>
 <weight>500</weight>
 </device>
 </blkiotune>
 ...
</domain>

Virtualization Deployment and Administration Guide

442

Element Description

<blkiotune> This optional element provides the ability to tune
blkio cgroup tunable parameters for the domain. If
this is omitted, it defaults to the operating system
provided defaults.

<weight> This optional weight element is the overall I/O weight
of the guest virtual machine. The value should be
within the range 100 - 1000.

<device> The domain may have multiple <device> elements
that further tune the weights for each host physical
machine block device in use by the domain. Note that
multiple guest virtual machine disks can share a
single host physical machine block device. In
addition, as they are backed by files within the same
host physical machine file system, this tuning
parameter is at the global domain level, rather than
being associated with each guest virtual machine disk
device (contrast this to the <iotune> element
which can be applied to a single <disk>). Each
device element has two mandatory sub-elements,
<path> describing the absolute path of the device,
and <weight> giving the relative weight of that
device, which has an acceptable range of 100 - 1000.

24.11. RESOURCE PARTITIONING

Hypervisors may allow for virtual machines to be placed into resource partitions, potentially with nesting
of said partitions. The <resource> element groups together configurations related to resource
partitioning. It currently supports a child element partition whose content defines the path of the resource
partition in which to place the domain. If no partition is listed, then the domain will be placed in a default
partition. The partition must be created prior to starting the guest virtual machine. Only the (hypervisor-
specific) default partition can be assumed to exist by default.

Figure 24.13. Resource partitioning

Resource partitions are currently supported by the KVM and LXC drivers, which map partition paths to
cgroups directories in all mounted controllers.

24.12. CPU MODELS AND TOPOLOGY

This section covers the requirements for CPU models. Note that every hypervisor has its own policy for
which CPU features guest will see by default. The set of CPU features presented to the guest by KVM
depends on the CPU model chosen in the guest virtual machine configuration. qemu32 and qemu64 are
basic CPU models, but there are other models (with additional features) available. Each model and its
topology is specified using the following elements from the domain XML:

<resource>
 <partition>/virtualmachines/production</partition>
</resource>

CHAPTER 24. MANIPULATING THE DOMAIN XML

443

Figure 24.14. CPU model and topology example 1

Figure 24.15. CPU model and topology example 2

Figure 24.16. CPU model and topology example 3

In cases where no restrictions are to be put on the CPU model or its features, a simpler <cpu> element
such as the following may be used:

Figure 24.17. CPU model and topology example 4

Figure 24.18. PPC64/PSeries CPU model example

Figure 24.19. aarch64/virt CPU model example

The components of this section of the domain XML are as follows:

Table 24.8. CPU model and topology elements

Element Description

<cpu> This is the main container for describing guest virtual
machine CPU requirements.

<cpu match='exact'>
 <model fallback='allow'>core2duo</model>
 <vendor>Intel</vendor>
 <topology sockets='1' cores='2' threads='1'/>
 <feature policy='disable' name='lahf_lm'/>
</cpu>

<cpu mode='host-model'>
 <model fallback='forbid'/>
 <topology sockets='1' cores='2' threads='1'/>
</cpu>

<cpu mode='host-passthrough'/>

<cpu>
 <topology sockets='1' cores='2' threads='1'/>
</cpu>

<cpu mode='custom'>
 <model>POWER8</model>
</cpu>

<cpu mode='host-passthrough'/>

Virtualization Deployment and Administration Guide

444

<match> Specifies how the virtual CPU is provided to the
guest virtual machine must match these
requirements. The match attribute can be omitted if
topology is the only element within <cpu>. Possible
values for the match attribute are:

minimum - the specified CPU model and
features describes the minimum requested
CPU.

exact - the virtual CPU provided to the
guest virtual machine will exactly match the
specification.

strict - the guest virtual machine will not
be created unless the host physical
machine CPU exactly matches the
specification.

Note that the match attribute can be omitted and will
default to exact.

Element Description

CHAPTER 24. MANIPULATING THE DOMAIN XML

445

<mode> This optional attribute may be used to make it easier
to configure a guest virtual machine CPU to be as
close to the host physical machine CPU as possible.
Possible values for the mode attribute are:

custom - Describes how the CPU is
presented to the guest virtual machine. This
is the default setting when the mode
attribute is not specified. This mode makes
it so that a persistent guest virtual machine
will see the same hardware no matter what
host physical machine the guest virtual
machine is booted on.

host-model - A shortcut to copying host
physical machine CPU definition from the
capabilities XML into the domain XML. As
the CPU definition is copied just before
starting a domain, the same XML can be
used on different host physical machines
while still providing the best guest virtual
machine CPU each host physical machine
supports. The match attribute and any
feature elements cannot be used in this
mode. For more information, see the libvirt
upstream website.

host-passthrough With this mode, the
CPU visible to the guest virtual machine is
exactly the same as the host physical
machine CPU, including elements that
cause errors within libvirt. The obvious the
downside of this mode is that the guest
virtual machine environment cannot be
reproduced on different hardware and
therefore, this mode is recommended with
great caution. The model and feature
elements are not allowed in this mode.

<model> Specifies the CPU model requested by the guest
virtual machine. The list of available CPU models and
their definition can be found in the cpu_map.xml
file installed in libvirt's data directory. If a hypervisor is
unable to use the exact CPU model, libvirt
automatically falls back to a closest model supported
by the hypervisor while maintaining the list of CPU
features. An optional fallback attribute can be
used to forbid this behavior, in which case an attempt
to start a domain requesting an unsupported CPU
model will fail. Supported values for fallback attribute
are: allow (the default), and forbid. The optional
vendor_id attribute can be used to set the vendor
ID seen by the guest virtual machine. It must be
exactly 12 characters long. If not set, the vendor iID
of the host physical machine is used. Typical possible
values are AuthenticAMD and GenuineIntel.

Element Description

Virtualization Deployment and Administration Guide

446

http://libvirt.org/formatdomain.html#elementsCPU

<vendor> Specifies the CPU vendor requested by the guest
virtual machine. If this element is missing, the guest
virtual machine runs on a CPU matching given
features regardless of its vendor. The list of
supported vendors can be found in cpu_map.xml.

<topology> Specifies the requested topology of the virtual CPU
provided to the guest virtual machine. Three non-zero
values must be given for sockets, cores, and threads:
the total number of CPU sockets, number of cores
per socket, and number of threads per core,
respectively.

<feature> Can contain zero or more elements used to fine-tune
features provided by the selected CPU model. The
list of known feature names can be found in the
cpu_map.xml file. The meaning of each feature
element depends on its policy attribute, which has to
be set to one of the following values:

force - forces the virtual to be supported,
regardless of whether it is actually
supported by host physical machine CPU.

require - dictates that guest virtual
machine creation will fail unless the feature
is supported by host physical machine CPU.
This is the default setting,

optional - this feature is supported by
virtual CPU but only if it is supported by host
physical machine CPU.

disable - this is not supported by virtual
CPU.

forbid - guest virtual machine creation
will fail if the feature is supported by host
physical machine CPU.

Element Description

24.12.1. Changing the Feature Set for a Specified CPU

Although CPU models have an inherent feature set, the individual feature components can either be
allowed or forbidden on a feature by feature basis, allowing for a more individualized configuration for the
CPU.

Procedure 24.1. Enabling and disabling CPU features

1. To begin, shut down the guest virtual machine.

2. Open the guest virtual machine's configuration file by running the virsh edit [domain]
command.

CHAPTER 24. MANIPULATING THE DOMAIN XML

447

3. Change the parameters within the <feature> or <model> to include the attribute value
'allow' to force the feature to be allowed, or 'forbid' to deny support for the feature.

Figure 24.20. Example for enabling or disabling CPU features

Figure 24.21. Example 2 for enabling or disabling CPU features

4. When you have completed the changes, save the configuration file and start the guest virtual
machine.

24.12.2. Guest Virtual Machine NUMA Topology

Guest virtual machine NUMA topology can be specified using the <numa> element in the domain XML:

<!-- original feature set -->
<cpu mode='host-model'>
 <model fallback='allow'/>
 <topology sockets='1' cores='2' threads='1'/>
</cpu>

<!--changed feature set-->
<cpu mode='host-model'>
 <model fallback='forbid'/>
 <topology sockets='1' cores='2' threads='1'/>
</cpu>

<!--original feature set-->
<cpu match='exact'>
 <model fallback='allow'>core2duo</model>
 <vendor>Intel</vendor>
 <topology sockets='1' cores='2' threads='1'/>
 <feature policy='disable' name='lahf_lm'/>
</cpu>

<!--changed feature set-->
<cpu match='exact'>
 <model fallback='allow'>core2duo</model>
 <vendor>Intel</vendor>
 <topology sockets='1' cores='2' threads='1'/>
 <feature policy='enable' name='lahf_lm'/>
 </cpu>

Virtualization Deployment and Administration Guide

448

Figure 24.22. Guest virtual machine NUMA topology

Each cell element specifies a NUMA cell or a NUMA node. cpus specifies the CPU or range of CPUs
that are part of the node. memory specifies the node memory in kibibytes (blocks of 1024 bytes). Each
cell or node is assigned a cellid or nodeid in increasing order starting from 0.

24.13. EVENTS CONFIGURATION

Using the following sections of domain XML it is possible to override the default actions for various
events:

Figure 24.23. Events Configuration

The following collections of elements allow the actions to be specified when a guest virtual machine
operating system triggers a life cycle operation. A common use case is to force a reboot to be treated as
a power off when doing the initial operating system installation. This allows the VM to be re-configured
for the first post-install boot up.

The components of this section of the domain XML are as follows:

Table 24.9. Event configuration elements

State Description

 <cpu>
 <numa>
 <cell cpus='0-3' memory='512000'/>
 <cell cpus='4-7' memory='512000'/>
 </numa>
 </cpu>
 ...

 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <on_lockfailure>poweroff</on_lockfailure>

CHAPTER 24. MANIPULATING THE DOMAIN XML

449

<on_poweroff> Specifies the action that is to be executed when the
guest virtual machine requests a power off. Four
arguments are possible:

destroy - This action terminates the
domain completely and releases all
resources.

restart - This action terminates the
domain completely and restarts it with the
same configuration.

preserve - This action terminates the
domain completely but and its resources are
preserved to allow for future analysis.

rename-restart - This action
terminates the domain completely and then
restarts it with a new name.

<on_reboot> Specifies the action to be executed when the guest
virtual machine requests a reboot. Four arguments
are possible:

destroy - This action terminates the
domain completely and releases all
resources.

restart - This action terminates the
domain completely and restarts it with the
same configuration.

preserve - This action terminates the
domain completely but and its resources are
preserved to allow for future analysis.

rename-restart - This action
terminates the domain completely and then
restarts it with a new name.

State Description

Virtualization Deployment and Administration Guide

450

<on_crash> Specifies the action that is to be executed when the
guest virtual machine crashes. In addition, it supports
these additional actions:

coredump-destroy - The crashed
domain's core is dumped, the domain is
terminated completely, and all resources are
released.

coredump-restart - The crashed
domain's core is dumped, and the domain is
restarted with the same configuration
settings.

Four arguments are possible:

destroy - This action terminates the
domain completely and releases all
resources.

restart - This action terminates the
domain completely and restarts it with the
same configuration.

preserve - This action terminates the
domain completely but and its resources are
preserved to allow for future analysis.

rename-restart - This action
terminates the domain completely and then
restarts it with a new name.

<on_lockfailure> Specifies the action to take when a lock manager
loses resource locks. The following actions are
recognized by libvirt, although not all of them need to
be supported by individual lock managers. When no
action is specified, each lock manager will take its
default action. The following arguments are possible:

poweroff - Forcefully powers off the
domain.

restart - Restarts the domain to
reacquire its locks.

pause - Pauses the domain so that it can
be manually resumed when lock issues are
solved.

ignore - Keeps the domain running as if
nothing happened.

State Description

24.14. POWER MANAGEMENT

CHAPTER 24. MANIPULATING THE DOMAIN XML

451

It is possible to forcibly enable or disable BIOS advertisements to the guest virtual machine operating
system using conventional management tools which affects the following section of the domain XML:

Figure 24.24. Power Management

The <pm> element can be enabled using the argument yes or disabled using the argument no. BIOS
support can be implemented for S3 using the suspend-to-disk argument and S4 using the suspend-
to-mem argument for ACPI sleep states. If nothing is specified, the hypervisor will be left with its default
value.

24.15. HYPERVISOR FEATURES

Hypervisors may allow certain CPU or machine features to be enabled (state='on') or disabled
(state='off').

Figure 24.25. Hypervisor features

All features are listed within the <features> element, if a <state> is not specified it is disabled. The
available features can be found by calling the capabilities XML, but a common set for fully
virtualized domains are:

Table 24.10. Hypervisor features elements

State Description

 ...
 <pm>
 <suspend-to-disk enabled='no'/>
 <suspend-to-mem enabled='yes'/>
 </pm>
 ...

 ...
 <features>
 <pae/>
 <acpi/>
 <apic/>
 <hap/>
 <privnet/>
 <hyperv>
 <relaxed state='on'/>
 </hyperv>
 </features>
 ...

Virtualization Deployment and Administration Guide

452

<pae> Physical address extension mode allows 32-bit guest
virtual machines to address more than 4 GB of
memory.

<acpi> Useful for power management. For example, with
KVM guest virtual machines it is required for graceful
shutdown to work.

<apic> Allows the use of programmable IRQ management.
This element has an optional attribute eoi with
values on and off, which sets the availability of EOI
(End of Interrupt) for the guest virtual machine.

<hap> Enables the use of hardware assisted paging if it is
available in the hardware.

State Description

24.16. TIMEKEEPING

The guest virtual machine clock is typically initialized from the host physical machine clock. Most
operating systems expect the hardware clock to be kept in UTC, which is the default setting.

Accurate timekeeping on guest virtual machines is a key challenge for virtualization platforms. Different
hypervisors attempt to handle the problem of timekeeping in a variety of ways. libvirt provides
hypervisor-independent configuration settings for time management, using the <clock> and <timer>
elements in the domain XML. The domain XML can be edited using the virsh edit command. For
details, see Section 21.22, “Editing a Guest Virtual Machine's XML Configuration Settings”.

Figure 24.26. Timekeeping

The components of this section of the domain XML are as follows:

Table 24.11. Timekeeping elements

State Description

 ...
 <clock offset='localtime'>
 <timer name='rtc' tickpolicy='catchup' track='guest'>
 <catchup threshold='123' slew='120' limit='10000'/>
 </timer>
 <timer name='pit' tickpolicy='delay'/>
 </clock>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

453

<clock> The <clock> element is used to determine how the
guest virtual machine clock is synchronized with the
host physical machine clock. The offset attribute
takes four possible values, allowing for fine grained
control over how the guest virtual machine clock is
synchronized to the host physical machine. Note that
hypervisors are not required to support all policies
across all time sources

utc - Synchronizes the clock to UTC when
booted. utc mode can be converted to
variable mode, which can be controlled
by using the adjustment attribute. If the
value is reset, the conversion is not done.
A numeric value forces the conversion to
variable mode using the value as the
initial adjustment. The default adjustment is
hypervisor-specific.

localtime - Synchronizes the guest
virtual machine clock with the host physical
machine's configured timezone when
booted. The adjustment attribute behaves
the same as in utc mode.

timezone - Synchronizes the guest virtual
machine clock to the requested time zone.

variable - Gives the guest virtual
machine clock an arbitrary offset applied
relative to UTC or localtime, depending
on the basis attribute. The delta relative to
UTC (or localtime) is specified in
seconds, using the adjustment attribute.
The guest virtual machine is free to adjust
the RTC over time and expect that it will be
honored at next reboot. This is in contrast to
utc and localtime mode (with the
optional attribute
adjustment='reset'), where the RTC
adjustments are lost at each reboot. In
addition, the basis attribute can be either
utc (default) or localtime. The clock
element may have zero or more <timer>
elements.

<timer> See Note

<present> Specifies whether a particular timer is available to the
guest virtual machine. Can be set to yes or no.

State Description

Virtualization Deployment and Administration Guide

454

NOTE

A <clock> element can have zero or more <timer> elements as children. The
<timer> element specifies a time source used for guest virtual machine clock
synchronization.

In each <timer> element only the name is required, and all other attributes are optional:

name - Selects which timer is being modified. The following values are
acceptable: kvmclock, pit, or rtc.

track - Specifies the timer track. The following values are acceptable: boot,
guest, or wall. track is only valid for name="rtc".

tickpolicy - Determines what happens when the deadline for injecting a tick to
the guest virtual machine is missed. The following values can be assigned:

delay - Continues to deliver ticks at the normal rate. The guest virtual
machine time will be delayed due to the late tick.

catchup - Delivers ticks at a higher rate in order to catch up with the missed
tick. The guest virtual machine time is not displayed once catch up is
complete. In addition, there can be three optional attributes, each a positive
integer: threshold, slew, and limit.

merge - Merges the missed tick(s) into one tick and injects them. The guest
virtual machine time may be delayed, depending on how the merge is done.

discard - Throws away the missed tick(s) and continues with future injection
at its default interval setting. The guest virtual machine time may be delayed,
unless there is an explicit statement for handling lost ticks.

NOTE

The value utc is set as the clock offset in a virtual machine by default. However, if the
guest virtual machine clock is run with the localtime value, the clock offset needs to be
changed to a different value in order to have the guest virtual machine clock synchronized
with the host physical machine clock.

Example 24.1. Always synchronize to UTC

<clock offset="utc" />

Example 24.2. Always synchronize to the host physical machine timezone

<clock offset="localtime" />

Example 24.3. Synchronize to an arbitrary time zone

<clock offset="timezone" timezone="Europe/Paris" />

CHAPTER 24. MANIPULATING THE DOMAIN XML

455

Example 24.4. Synchronize to UTC + arbitrary offset

<clock offset="variable" adjustment="123456" />

24.17. TIMER ELEMENT ATTRIBUTES

The name element contains the name of the time source to be used. It can have any of the following
values:

Table 24.12. Name attribute values

Value Description

pit Programmable Interval Timer - a timer with periodic
interrupts. When using this attribute, the
tickpolicy delay becomes the default setting.

rtc Real Time Clock - a continuously running timer with
periodic interrupts. This attribute supports the
tickpolicy catchup sub-element.

kvmclock KVM clock - the recommended clock source for KVM
guest virtual machines. KVM pvclock, or kvm-clock
allows guest virtual machines to read the host
physical machine’s wall clock time.

The track attribute specifies what is tracked by the timer, and is only valid for a name value of rtc.

Table 24.13. track attribute values

Value Description

boot Corresponds to old host physical machine option, this
is an unsupported tracking option.

guest RTC always tracks the guest virtual machine time.

wall RTC always tracks the host time.

The tickpolicy attribute and the values dictate the policy that is used to pass ticks on to the guest
virtual machine.

Table 24.14. tickpolicy attribute values

Virtualization Deployment and Administration Guide

456

Value Description

delay Continue to deliver at normal rate (ticks are delayed).

catchup Deliver at a higher rate to catch up.

merge Ticks merged into one single tick.

discard All missed ticks are discarded.

The present attribute is used to override the default set of timers visible to the guest virtual machine.
The present attribute can take the following values:

Table 24.15. present attribute values

Value Description

yes Force this timer to be visible to the guest virtual
machine.

no Force this timer to not be visible to the guest virtual
machine.

24.18. DEVICES

This set of XML elements are all used to describe devices provided to the guest virtual machine domain.
All of the devices below are indicated as children of the main <devices> element.

The following virtual devices are supported:

virtio-scsi-pci - PCI bus storage device

virtio-blk-pci - PCI bus storage device

virtio-net-pci - PCI bus network device also known as virtio-net

virtio-serial-pci - PCI bus input device

virtio-balloon-pci - PCI bus memory balloon device

virtio-rng-pci - PCI bus virtual random number generator device

IMPORTANT

If a virtio device is created where the number of vectors is set to a value higher than 32,
the device behaves as if it was set to a zero value on Red Hat Enterprise Linux 6, but not
on Enterprise Linux 7. The resulting vector setting mismatch causes a migration error if
the number of vectors on any virtio device on either platform is set to 33 or higher. It is,
therefore, not recommended to set the vector value to be greater than 32. All virtio devices
with the exception of virtio-balloon-pci and virtio-rng-pci will accept a
vector argument.

CHAPTER 24. MANIPULATING THE DOMAIN XML

457

Figure 24.27. Devices - child elements

The contents of the <emulator> element specify the fully qualified path to the device model emulator
binary. The capabilities XML specifies the recommended default emulator to use for each particular
domain type or architecture combination.

24.18.1. Hard Drives, Floppy Disks, and CD-ROMs

This section of the domain XML specifies any device that looks like a disk, including any floppy disk,
hard disk, CD-ROM, or paravirtualized driver that is specified in the <disk> element.

Figure 24.28. Devices - Hard drives, floppy disks, CD-ROMs Example

Figure 24.29. Devices - Hard drives, floppy disks, CD-ROMs Example 2

 ...
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 </devices>
 ...

 <disk type='network'>
 <driver name="qemu" type="raw" io="threads" ioeventfd="on"
event_idx="off"/>
 <source protocol="sheepdog" name="image_name">
 <host name="hostname" port="7000"/>
 </source>
 <target dev="hdb" bus="ide"/>
 <boot order='1'/>
 <transient/>
 <address type='drive' controller='0' bus='1' unit='0'/>
 </disk>

 <disk type='network'>
 <driver name="qemu" type="raw"/>
 <source protocol="rbd" name="image_name2">
 <host name="hostname" port="7000"/>
 </source>
 <target dev="hdd" bus="ide"/>
 <auth username='myuser'>
 <secret type='ceph' usage='mypassid'/>
 </auth>
 </disk>

Virtualization Deployment and Administration Guide

458

Figure 24.30. Devices - Hard drives, floppy disks, CD-ROMs Example 3

Figure 24.31. Devices - Hard drives, floppy disks, CD-ROMs Example 4

 <disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>
 <disk type='network' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source protocol="http" name="url_path">
 <host name="hostname" port="80"/>
 </source>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>

 <disk type='network' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source protocol="https" name="url_path">
 <host name="hostname" port="443"/>
 </source>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>
 <disk type='network' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source protocol="ftp" name="url_path">
 <host name="hostname" port="21"/>
 </source>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>

CHAPTER 24. MANIPULATING THE DOMAIN XML

459

Figure 24.32. Devices - Hard drives, floppy disks, CD-ROMs Example 5

Figure 24.33. Devices - Hard drives, floppy disks, CD-ROMs Example 6

 <disk type='network' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source protocol="ftps" name="url_path">
 <host name="hostname" port="990"/>
 </source>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>
 <disk type='network' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source protocol="tftp" name="url_path">
 <host name="hostname" port="69"/>
 </source>
 <target dev='hdc' bus='ide' tray='open'/>
 <readonly/>
 </disk>
 <disk type='block' device='lun'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/sda'/>
 <target dev='sda' bus='scsi'/>
 <address type='drive' controller='0' bus='0' target='3' unit='0'/>
 </disk>

 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/sda'/>
 <geometry cyls='16383' heads='16' secs='63' trans='lba'/>
 <blockio logical_block_size='512' physical_block_size='4096'/>
 <target dev='hda' bus='ide'/>
 </disk>
 <disk type='volume' device='disk'>
 <driver name='qemu' type='raw'/>
 <source pool='blk-pool0' volume='blk-pool0-vol0'/>
 <target dev='hda' bus='ide'/>
 </disk>
 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-
nopool/2'>
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='chap' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>

Virtualization Deployment and Administration Guide

460

Figure 24.34. Devices - Hard drives, floppy disks, CD-ROMs Example 7

Figure 24.35. Devices - Hard drives, floppy disks, CD-ROMs Example 8

24.18.1.1. Disk element

 <disk type='network' device='lun'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-
nopool/1'>
 iqn.2013-07.com.example:iscsi-pool
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='chap' usage='libvirtiscsi'/>
 </auth>
 <target dev='sda' bus='scsi'/>
 </disk>
 <disk type='volume' device='disk'>
 <driver name='qemu' type='raw'/>
 <source pool='iscsi-pool' volume='unit:0:0:1' mode='host'/>
 <auth username='myuser'>
 <secret type='chap' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>

 <disk type='volume' device='disk'>
 <driver name='qemu' type='raw'/>
 <source pool='iscsi-pool' volume='unit:0:0:2' mode='direct'/>
 <auth username='myuser'>
 <secret type='chap' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source file='/tmp/test.img' startupPolicy='optional'/>
 <target dev='sdb' bus='scsi'/>
 <readonly/>
 </disk>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw' discard='unmap'/>
 <source file='/var/lib/libvirt/images/discard1.img'/>
 <target dev='vdb' bus='virtio'/>
 <alias name='virtio-disk1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x09'
function='0x0'/>
 </disk>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

461

The <disk> element is the main container for describing disks. The attribute type can be used with the
<disk> element. The following types are allowed:

file

block

dir

network

For more information, see the libvirt upstream pages.

24.18.1.2. Source element

Represents the disk source. The disk source depends on the disk type attribute, as follows:

<file> - The file attribute specifies the fully-qualified path to the file in which the disk is
located.

<block> - The dev attribute specifies the fully-qualified path to the host device that serves as
the disk.

<dir> - The dir attribute specifies the fully-qualified path to the directory used as the disk.

<network> - The protocol attribute specifies the protocol used to access the requested
image. Possible values are: nbd, isci, rbd, sheepdog, and gluster.

If the protocol attribute is rbd, sheepdog, or gluster, an additional attribute, name is
mandatory. This attribute specifies which volume and image will be used.

If the protocol attribute is nbd, the name attribute is optional.

If the protocol attribute is isci, the name attribute may include a logical unit number,
separated from the target's name with a slash. For example: iqn.2013-
07.com.example:iscsi-pool/1. If not specified, the default LUN is zero.

<volume> - The underlying disk source is represented by the pool and volume attributes.

<pool> - The name of the storage pool (managed by libvirt) where the disk source
resides.

<volume> - The name of the storage volume (managed by libvirt) used as the disk
source.

The value for the volume attribute is the output from the Name column of a virsh vol-
list [pool-name]

When the disk type is network, the source may have zero or more host sub-elements used to specify
the host physical machines to connect, including: type='dir' and type='network'. For a file disk
type which represents a CD-ROM or floppy (the device attribute), it is possible to define the policy for
what to do with the disk if the source file is not accessible. This is done by setting the startupPolicy
attribute with one of the following values:

mandatory causes a failure if missing for any reason. This is the default setting.

Virtualization Deployment and Administration Guide

462

http://libvirt.org/formatdomain.html#elementsDisks

requisite causes a failure if missing on boot up, drops if missing on migrate, restore, or
revert.

optional drops if missing at any start attempt.

24.18.1.3. Mirror element

This element is present if the hypervisor has started a BlockCopy operation, where the <mirror>
location in the attribute file will eventually have the same contents as the source, and with the file format
in attribute format (which might differ from the format of the source). If an attribute ready is present, then
it is known the disk is ready to pivot; otherwise, the disk is probably still copying. For now, this element
only valid in output; it is ignored on input.

24.18.1.4. Target element

The <target> element controls the bus or device under which the disk is exposed to the guest virtual
machine operating system. The dev attribute indicates the logical device name. The actual device name
specified is not guaranteed to map to the device name in the guest virtual machine operating system.
The optional bus attribute specifies the type of disk device to emulate; possible values are driver-
specific, with typical values being ide, scsi, virtio, kvm, usb or sata. If omitted, the bus type is
inferred from the style of the device name. For example, a device named 'sda' will typically be
exported using a SCSI bus. The optional attribute tray indicates the tray status of the removable disks
(for example, CD-ROM or Floppy disk), where the value can be either open or closed. The default
setting is closed.

24.18.1.5. iotune element

The optional <iotune> element provides the ability to provide additional per-device I/O tuning, with
values that can vary for each device (contrast this to the blkiotune element, which applies globally to
the domain). This element has the following optional sub-elements (note that any sub-element not
specified or at all or specified with a value of 0 implies no limit):

<total_bytes_sec> - The total throughput limit in bytes per second. This element cannot be
used with <read_bytes_sec> or <write_bytes_sec>.

<read_bytes_sec> - The read throughput limit in bytes per second.

<write_bytes_sec> - The write throughput limit in bytes per second.

<total_iops_sec> - The total I/O operations per second. This element cannot be used with
<read_iops_sec> or <write_iops_sec>.

<read_iops_sec> - The read I/O operations per second.

<write_iops_sec> - The write I/O operations per second.

24.18.1.6. Driver element

The optional <driver> element allows specifying further details related to the hypervisor driver that is
used to provide the disk. The following options may be used:

If the hypervisor supports multiple back-end drivers, the name attribute selects the primary back-
end driver name, while the optional type attribute provides the sub-type.

CHAPTER 24. MANIPULATING THE DOMAIN XML

463

The optional cache attribute controls the cache mechanism. Possible values are: default,
none, writethrough, writeback, directsync (similar to writethrough, but it bypasses
the host physical machine page cache) and unsafe (host physical machine may cache all disk
I/O, and sync requests from guest virtual machines are ignored).

The optional error_policy attribute controls how the hypervisor behaves on a disk read or
write error. Possible values are stop, report, ignore, and enospace. The default setting of
error_policy is report. There is also an optional rerror_policy that controls behavior
for read errors only. If no rerror_policy is given, error_policy is used for both read and
write errors. If rerror_policy is given, it overrides the error_policy for read errors. Also
note that enospace is not a valid policy for read errors, so if error_policy is set to
enospace and no rerror_policy is given, the read error default setting, report will be
used.

The optional io attribute controls specific policies on I/O; kvm guest virtual machines support
threads and native. The optional ioeventfd attribute allows users to set domain I/O
asynchronous handling for virtio disk devices. The default is determined by the hypervisor.
Accepted values are on and off. Enabling this allows the guest virtual machine to be executed
while a separate thread handles I/O. Typically, guest virtual machines experiencing high system
CPU utilization during I/O will benefit from this. On the other hand, an overloaded host physical
machine can increase guest virtual machine I/O latency. However, it is recommended that you
do not change the default setting, and allow the hypervisor to determine the setting.

NOTE

The ioeventfd attribute is included in the <driver> element of the disk XML
section and also of the of the device XML section. In the former case, it
influences the virtIO disk, and in the latter case the SCSI disk.

The optional event_idx attribute controls some aspects of device event processing and can be
set to either on or off. If set to on, it will reduce the number of interrupts and exits for the guest
virtual machine. The default is determined by the hypervisor and the default setting is on. When
this behavior is not required, setting off forces the feature off. However, it is highly
recommended that you not change the default setting, and allow the hypervisor to dictate the
setting.

The optional copy_on_read attribute controls whether to copy the read backing file into the
image file. The accepted values can be either on or <off>. copy-on-read avoids accessing
the same backing file sectors repeatedly, and is useful when the backing file is over a slow
network. By default copy-on-read is off.

The discard='unmap' can be set to enable discard support. The same line can be replaced
with discard='ignore' to disable. discard='ignore' is the default setting.

24.18.1.7. Additional Device Elements

The following attributes may be used within the device element:

<boot> - Specifies that the disk is bootable.

Additional boot values

<order> - Determines the order in which devices will be tried during boot sequence.

Virtualization Deployment and Administration Guide

464

<per-device> Boot elements cannot be used together with general boot elements in the
BIOS boot loader section.

<encryption> - Specifies how the volume is encrypted.

<readonly> - Indicates the device cannot be modified by the guest virtual machine virtual
machine. This setting is the default for disks with attribute <device='cdrom'>.

<shareable> Indicates the device is expected to be shared between domains (as long as
hypervisor and operating system support this). If shareable is used, cache='no' should be
used for that device.

<transient> - Indicates that changes to the device contents should be reverted automatically
when the guest virtual machine exits. With some hypervisors, marking a disk transient
prevents the domain from participating in migration or snapshots.

<serial> - Specifies the serial number of guest virtual machine's hard drive. For example,
<serial>WD-WMAP9A966149</serial>.

<wwn> - Specifies the World Wide Name (WWN) of a virtual hard disk or CD-ROM drive. It must
be composed of 16 hexadecimal digits.

<vendor> - Specifies the vendor of a virtual hard disk or CD-ROM device. It must not be longer
than 8 printable characters.

<product> - Specifies the product of a virtual hard disk or CD-ROM device. It must not be
longer than 16 printable characters

<host> - Supports 4 attributes: viz, name, port, transport and socket, which specify the
host name, the port number, transport type, and path to socket, respectively. The meaning of this
element and the number of the elements depend on the protocol attribute as shown here:

Additional host attributes

nbd - Specifies a server running nbd-server and may only be used for only one host
physical machine.

rbd - Monitors servers of RBD type and may be used for one or more host physical
machines.

sheepdog - Specifies one of the sheepdog servers (default is localhost:7000) and can be
used with one or none of the host physical machines.

gluster - Specifies a server running a glusterd daemon and may be used for only only
one host physical machine. The valid values for transport attribute are tcp, rdma or unix. If
nothing is specified, tcp is assumed. If transport is unix, the socket attribute specifies
path to unix socket.

<address> - Ties the disk to a given slot of a controller. The actual <controller> device can
often be inferred but it can also be explicitly specified. The type attribute is mandatory, and is
typically pci or drive. For a pci controller, additional attributes for bus, slot, and function
must be present, as well as optional domain and multifunction. multifunction defaults
to off. For a drive controller, additional attributes controller, bus, target, and unit are
available, each with a default setting of 0.

CHAPTER 24. MANIPULATING THE DOMAIN XML

465

auth - Provides the authentication credentials needed to access the source. It includes a
mandatory attribute username, which identifies the user name to use during authentication, as
well as a sub-element secret with mandatory attribute type.

geometry - Provides the ability to override geometry settings. This mostly useful for S390
DASD-disks or older DOS-disks. It can have the following parameters:

cyls - Specifies the number of cylinders.

heads - Specifies the number of heads.

secs - Specifies the number of sectors per track.

trans - Specifies the BIOS-Translation-Modes and can have the following values: none,
lba or auto.

blockio - Allows the block device to be overridden with any of the block device properties
listed below:

blockio options

logical_block_size - Reports to the guest virtual machine operating system and
describes the smallest units for disk I/O.

physical_block_size - Reports to the guest virtual machine operating system and
describes the disk's hardware sector size, which can be relevant for the alignment of disk
data.

24.18.2. File Systems

The file systems directory on the host physical machine can be accessed directly from the guest virtual
machine.

Figure 24.36. Devices - file systems

The filesystem attribute has the following possible values:

 [...]
 <devices>
 <filesystem type='template'>
 <source name='my-vm-template'/>
 <target dir='/'/>
 </filesystem>
 <filesystem type='mount' accessmode='passthrough'>
 <driver type='path' wrpolicy='immediate'/>
 <source dir='/export/to/guest'/>
 <target dir='/import/from/host'/>
 <readonly/>
 </filesystem>
 [...]
 </devices>
 [...]

Virtualization Deployment and Administration Guide

466

type='mount' - Specifies the host physical machine directory to mount in the guest virtual
machine. This is the default type if one is not specified. This mode also has an optional sub-
element driver, with an attribute type='path' or type='handle'. The driver block has an
optional attribute wrpolicy that further controls interaction with the host physical machine page
cache; omitting the attribute reverts to the default setting, while specifying a value immediate
means that a host physical machine write back is immediately triggered for all pages touched
during a guest virtual machine file write operation.

type='template' - Specifies the OpenVZ file system template and is only used by OpenVZ
driver.

type='file' - Specifies that a host physical machine file will be treated as an image and
mounted in the guest virtual machine. This file system format will be auto-detected and is only
used by LXC driver.

type='block' - Specifies the host physical machine block device to mount in the guest virtual
machine. The file system format will be auto-detected and is only used by the LXC driver.

type='ram' - Specifies that an in-memory file system, using memory from the host physical
machine operating system will be used. The source element has a single attribute usage, which
gives the memory usage limit in kibibytes and is only used by LXC driver.

type='bind' - Specifies a directory inside the guest virtual machine which will be bound to
another directory inside the guest virtual machine. This element is only used by LXC driver.

accessmode - Specifies the security mode for accessing the source. Currently, this only works
with type='mount' for the KVM driver. The possible values are:

passthrough - Specifies that the source is accessed with the user's permission settings
that are set from inside the guest virtual machine. This is the default accessmode if one is
not specified.

mapped - Specifies that the source is accessed with the permission settings of the
hypervisor.

squash - Similar to 'passthrough', the exception is that failure of privileged operations
like chown are ignored. This makes a passthrough-like mode usable for people who run the
hypervisor as non-root.

source - Specifies that the resource on the host physical machine that is being accessed in the
guest virtual machine. The name attribute must be used with <type='template'>, and the
dir attribute must be used with <type='mount'>. The usage attribute is used with
<type='ram'> to set the memory limit in KB.

target - Dictates where the source drivers can be accessed in the guest virtual machine. For
most drivers, this is an automatic mount point, but for KVM this is merely an arbitrary string tag
that is exported to the guest virtual machine as a hint for where to mount.

readonly - Enables exporting the file system as a read-only mount for a guest virtual machine.
By default read-write access is given.

space_hard_limit - Specifies the maximum space available to this guest virtual machine's
file system.

CHAPTER 24. MANIPULATING THE DOMAIN XML

467

space_soft_limit - Specifies the maximum space available to this guest virtual machine's
file system. The container is permitted to exceed its soft limits for a grace period of time.
Afterwards the hard limit is enforced.

24.18.3. Device Addresses

Many devices have an optional <address> sub-element to describe where the device placed on the
virtual bus is presented to the guest virtual machine. If an address (or any optional attribute within an
address) is omitted on input, libvirt will generate an appropriate address; but an explicit address is
required if more control over layout is required. See below for device examples including an address
element.

Every address has a mandatory attribute type that describes which bus the device is on. The choice of
which address to use for a given device is constrained in part by the device and the architecture of the
guest virtual machine. For example, a disk device uses type='disk', while a console device would
use type='pci' on the 32-bit AMD and Intel, or AMD64 and Intel 64, guest virtual machines, or
type='spapr-vio' on PowerPC64 pseries guest virtual machines. Each address <type> has
additional optional attributes that control where on the bus the device will be placed. The additional
attributes are as follows:

type='pci' - PCI addresses have the following additional attributes:

domain (a 2-byte hex integer, not currently used by KVM)

bus (a hex value between 0 and 0xff, inclusive)

slot (a hex value between 0x0 and 0x1f, inclusive)

function (a value between 0 and 7, inclusive)

Also available is the multi-function attribute, which controls turning on the multi-function
bit for a particular slot or function in the PCI control register. This multi-function attribute
defaults to 'off', but should be set to 'on' for function 0 of a slot that will have multiple
functions used.

type='drive' - drive addresses have the following additional attributes:

controller - (a 2-digit controller number)

bus - (a 2-digit bus number)

target - (a 2-digit bus number)

unit - (a 2-digit unit number on the bus)

type='virtio-serial' - Each virtio-serial address has the following additional
attributes:

controller - (a 2-digit controller number)

bus - (a 2-digit bus number)

slot - (a 2-digit slot within the bus)

type='ccid' - A CCID address, used for smart-cards, has the following additional attributes:

Virtualization Deployment and Administration Guide

468

bus - (a 2-digit bus number)

slot - (a 2-digit slot within the bus)

type='usb' - USB addresses have the following additional attributes:

bus - (a hex value between 0 and 0xfff, inclusive)

port - (a dotted notation of up to four octets, such as 1.2 or 2.1.3.1)

type='spapr-vio' - On PowerPC pseries guest virtual machines, devices can be assigned
to the SPAPR-VIO bus. It has a flat 64-bit address space; by convention, devices are generally
assigned at a non-zero multiple of 0x1000, but other addresses are valid and permitted by
libvirt. The additional reg attribute, which determines the hex value address of the starting
register, can be assigned to this attribute.

24.18.4. Controllers

Depending on the guest virtual machine architecture, it is possible to assign many virtual devices to a
single bus. Under normal circumstances libvirt can automatically infer which controller to use for the bus.
However, it may be necessary to provide an explicit <controller> element in the guest virtual
machine XML:

Figure 24.37. Controller Elements

Each controller has a mandatory attribute type, which must be one of "ide", "fdc", "scsi",
"sata", "usb", "ccid", or "virtio-serial", and a mandatory attribute index which is the
decimal integer describing in which order the bus controller is encountered (for use in controller
attributes of address elements). The "virtio-serial" controller has two additional optional
attributes, ports and vectors, which control how many devices can be connected through the
controller.

A <controller type='scsi'> has an optional attribute model, which is one of "auto",
"buslogic", "ibmvscsi", "lsilogic", "lsias1068", "virtio-scsi or "vmpvscsi".
The <controller type='scsi'> also has an attribute num_queues which enables multi-queue
support for the number of queues specified. In addition, a ioeventfd attribute can be used, which
specifies whether the controller should use asynchronous handling on the SCSI disk. Accepted values
are "on" and "off".

 ...
 <devices>
 <controller type='ide' index='0'/>
 <controller type='virtio-serial' index='0' ports='16' vectors='4'/>
 <controller type='virtio-serial' index='1'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0a'
function='0x0'/>
 <controller type='scsi' index='0' model='virtio-scsi'
num_queues='8'/>
 </controller>
 ...
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

469

A "usb" controller has an optional attribute model, which is one of "piix3-uhci", "piix4-uhci",
"ehci", "ich9-ehci1", "ich9-uhci1", "ich9-uhci2", "ich9-uhci3", "vt82c686b-
uhci", "pci-ohci" or "nec-xhci". Additionally, if the USB bus needs to be explicitly disabled
for the guest virtual machine, model='none' may be used. The PowerPC64 "spapr-vio" addresses do
not have an associated controller.

For controllers that are themselves devices on a PCI or USB bus, an optional sub-element address can
specify the exact relationship of the controller to its master bus, with semantics given above.

USB companion controllers have an optional sub-element master to specify the exact relationship of the
companion to its master controller. A companion controller is on the same bus as its master, so the
companion index value should be equal.

Figure 24.38. Devices - controllers - USB

24.18.5. Device Leases

When using a lock manager, you have the option to record device leases against a guest virtual
machine. The lock manager will ensure that the guest virtual machine does not start unless the leases
can be acquired. When configured using conventional management tools, the following section of the
domain XML is affected:

Figure 24.39. Devices - device leases

 ...
 <devices>
 <controller type='usb' index='0' model='ich9-ehci1'>
 <address type='pci' domain='0' bus='0' slot='4' function='7'/>
 </controller>
 <controller type='usb' index='0' model='ich9-uhci1'>
 <master startport='0'/>
 <address type='pci' domain='0' bus='0' slot='4' function='0'
multifunction='on'/>
 </controller>
 ...
 </devices>
 ...

 ...
 <devices>
 ...
 <lease>
 <lockspace>somearea</lockspace>
 <key>somekey</key>
 <target path='/some/lease/path' offset='1024'/>
 </lease>
 ...
 </devices>
 ...

Virtualization Deployment and Administration Guide

470

The lease section can have the following arguments:

lockspace - An arbitrary string that identifies lockspace within which the key is held. Lock
managers may impose extra restrictions on the format, or length of the lockspace name.

key - An arbitrary string that uniquely identifies the lease to be acquired. Lock managers may
impose extra restrictions on the format, or length of the key.

target - The fully qualified path of the file associated with the lockspace. The offset specifies
where the lease is stored within the file. If the lock manager does not require a offset, set this
value to 0.

24.18.6. Host Physical Machine Device Assignment

24.18.6.1. USB / PCI devices

The host physical machine's USB and PCI devices can be passed through to the guest virtual machine
using the hostdev element, by modifying the host physical machine using a management tool,
configure the following section of the domain XML file:

Figure 24.40. Devices - Host physical machine device assignment

Alternatively, the following can also be done:

Figure 24.41. Devices - Host physical machine device assignment alternative

 ...
 <devices>
 <hostdev mode='subsystem' type='usb'>
 <source startupPolicy='optional'>
 <vendor id='0x1234'/>
 <product id='0xbeef'/>
 </source>
 <boot order='2'/>
 </hostdev>
 </devices>
 ...

 ...
 <devices>
 <hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address bus='0x06' slot='0x02' function='0x0'/>
 </source>
 <boot order='1'/>
 <rom bar='on' file='/etc/fake/boot.bin'/>
 </hostdev>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

471

Alternatively, the following can also be done:

Figure 24.42. Devices - host physical machine scsi device assignment

The components of this section of the domain XML are as follows:

Table 24.16. Host physical machine device assignment elements

Parameter Description

 ...
 <devices>
 <hostdev mode='subsystem' type='scsi'>
 <source>
 <adapter name='scsi_host0'/>
 <address type='scsi' bus='0' target='0' unit='0'/>
 </source>
 <readonly/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </hostdev>
 </devices>
 ..

Virtualization Deployment and Administration Guide

472

hostdev This is the main element for describing host physical
machine devices. It accepts the following options:

mode - the value is always subsystem for
USB and PCI devices.

type - usb for USB devices and pci for
PCI devices.

managed - Toggles the Managed mode of
the device:

When set to yes for a PCI device, it
attaches to the guest machine and
detaches from the guest machine and
re-attaches to the host machine as
necessary. managed='yes' is
recommended for general use of device
assignment.

When set to no or omitted for PCI and
for USB devices, the device stays
attached to the guest. To make the
device available to the host, the user
must use the argument
virNodeDeviceDettach or the
virsh nodedev-dettach
command before starting the guest or
hot plugging the device. In addition,
they must use
virNodeDeviceReAttach or
virsh nodedev-reattach after
hot-unplugging the device or stopping
the guest. managed='no' is mainly
recommended for devices that are
intended to be dedicated to a specific
guest.

Parameter Description

CHAPTER 24. MANIPULATING THE DOMAIN XML

473

source Describes the device as seen from the host physical
machine. The USB device can be addressed by
vendor or product ID using the vendor and
product elements or by the device's address on
the host physical machines using the address
element. PCI devices on the other hand can only be
described by their address. Note that the source
element of USB devices may contain a
startupPolicy attribute which can be used to
define a rule for what to do if the specified host
physical machine USB device is not found. The
attribute accepts the following values:

mandatory - Fails if missing for any
reason (the default).

requisite - Fails if missing on boot up,
drops if missing on migrate/restore/revert.

optional - Drops if missing at any start
attempt.

vendor, product These elements each have an id attribute that
specifies the USB vendor and product ID. The IDs
can be given in decimal, hexadecimal (starting with
0x) or octal (starting with 0) form.

boot Specifies that the device is bootable. The attribute's
order determines the order in which devices will be
tried during boot sequence. The per-device boot
elements cannot be used together with general boot
elements in BIOS boot loader section.

rom Used to change how a PCI device's ROM is
presented to the guest virtual machine. The optional
bar attribute can be set to on or off, and
determines whether or not the device's ROM will be
visible in the guest virtual machine's memory map. (In
PCI documentation, the rom bar setting controls
the presence of the Base Address Register for the
ROM). If no rom bar is specified, the default setting
will be used. The optional file attribute is used to
point to a binary file to be presented to the guest
virtual machine as the device's ROM BIOS. This can
be useful for example to provide a PXE boot ROM for
a virtual function of an SR-IOV capable ethernet
device (which has no boot ROMs for the VFs).

Parameter Description

Virtualization Deployment and Administration Guide

474

address Also has a bus and device attribute to specify the
USB bus and device number the device appears at
on the host physical machine. The values of these
attributes can be given in decimal, hexadecimal
(starting with 0x) or octal (starting with 0) form. For
PCI devices, the element carries 3 attributes allowing
to designate the device as can be found with lspci
or with virsh nodedev-list.

Parameter Description

24.18.6.2. Block / character devices

The host physical machine's block / character devices can be passed through to the guest virtual
machine by using management tools to modify the domain XML hostdev element. Note that this is only
possible with container-based virtualization.

Figure 24.43. Devices - Host physical machine device assignment block character devices

An alternative approach is this:

Figure 24.44. Devices - Host physical machine device assignment block character devices
alternative 1

Another alternative approach is this:

...
<hostdev mode='capabilities' type='storage'>
 <source>
 <block>/dev/sdf1</block>
 </source>
</hostdev>
...

...
<hostdev mode='capabilities' type='misc'>
 <source>
 <char>/dev/input/event3</char>
 </source>
</hostdev>
...

CHAPTER 24. MANIPULATING THE DOMAIN XML

475

Figure 24.45. Devices - Host physical machine device assignment block character devices
alternative 2

The components of this section of the domain XML are as follows:

Table 24.17. Block / character device elements

Parameter Description

hostdev This is the main container for describing host physical
machine devices. For block/character devices,
passthrough mode is always capabilities, and
type is block for a block device and char for a
character device.

source This describes the device as seen from the host
physical machine. For block devices, the path to the
block device in the host physical machine operating
system is provided in the nested block element,
while for character devices, the char element is
used.

24.18.7. Redirected devices

USB device redirection through a character device is configured by modifying the following section of the
domain XML:

...
<hostdev mode='capabilities' type='net'>
 <source>
 <interface>eth0</interface>
 </source>
</hostdev>
...

Virtualization Deployment and Administration Guide

476

Figure 24.46. Devices - redirected devices

The components of this section of the domain XML are as follows:

Table 24.18. Redirected device elements

Parameter Description

redirdev This is the main container for describing redirected
devices. bus must be usb for a USB device. An
additional attribute type is required, matching one of
the supported serial device types, to describe the
host physical machine side of the tunnel:
type='tcp' or type='spicevmc' (which uses
the usbredir channel of a SPICE graphics device) are
typical. The redirdev element has an optional
sub-element, address, which can tie the device to a
particular controller. Further sub-elements, such as
source, may be required according to the given
type, although a target sub-element is not
required (since the consumer of the character device
is the hypervisor itself, rather than a device visible in
the guest virtual machine).

boot Specifies that the device is bootable. The order
attribute determines the order in which devices will
be tried during boot sequence. The per-device boot
elements cannot be used together with general boot
elements in BIOS boot loader section.

redirfilter This is used for creating the filter rule to filter out
certain devices from redirection. It uses sub-element
usbdev to define each filter rule. The class
attribute is the USB Class code.

24.18.8. Smartcard Devices

 ...
 <devices>
 <redirdev bus='usb' type='tcp'>
 <source mode='connect' host='localhost' service='4000'/>
 <boot order='1'/>
 </redirdev>
 <redirfilter>
 <usbdev class='0x08' vendor='0x1234' product='0xbeef'
version='2.00' allow='yes'/>
 <usbdev allow='no'/>
 </redirfilter>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

477

A virtual smartcard device can be supplied to the guest virtual machine via the smartcard element. A
USB smartcard reader device on the host physical machine cannot be used on a guest virtual machine
with device passthrough. This is because it cannot be made available to both the host physical machine
and guest virtual machine, and can lock the host physical machine computer when it is removed from
the guest virtual machine. Therefore, some hypervisors provide a specialized virtual device that can
present a smartcard interface to the guest virtual machine, with several modes for describing how the
credentials are obtained from the host physical machine or even a from a channel created to a third-
party smartcard provider.

Configure USB device redirection through a character device with management tools to modify the
following section of the domain XML:

Figure 24.47. Devices - smartcard devices

The smartcard element has a mandatory attribute mode. In each mode, the guest virtual machine sees
a device on its USB bus that behaves like a physical USB CCID (Chip/Smart Card Interface Device)
card.

The mode attributes are as follows:

Table 24.19. Smartcard mode elements

Parameter Description

mode='host' In this mode, the hypervisor relays all requests from
the guest virtual machine into direct access to the
host physical machine's smartcard via NSS. No other
attributes or sub-elements are required. See below
about the use of an optional address sub-element.

 ...
 <devices>
 <smartcard mode='host'/>
 <smartcard mode='host-certificates'>
 <certificate>cert1</certificate>
 <certificate>cert2</certificate>
 <certificate>cert3</certificate>
 <database>/etc/pki/nssdb/</database>
 </smartcard>
 <smartcard mode='passthrough' type='tcp'>
 <source mode='bind' host='127.0.0.1' service='2001'/>
 <protocol type='raw'/>
 <address type='ccid' controller='0' slot='0'/>
 </smartcard>
 <smartcard mode='passthrough' type='spicevmc'/>
 </devices>
 ...

Virtualization Deployment and Administration Guide

478

mode='host-certificates' This mode allows you to provide three NSS
certificate names residing in a database on the host
physical machine, rather than requiring a smartcard
to be plugged into the host physical machine. These
certificates can be generated via the command
certutil -d /etc/pki/nssdb -x -t
CT,CT,CT -S -s CN=cert1 -n cert1, and
the resulting three certificate names must be supplied
as the content of each of three certificate sub-
elements. An additional sub-element database can
specify the absolute path to an alternate directory
(matching the -d flag of the certutil command
when creating the certificates); if not present, it
defaults to /etc/pki/nssdb.

mode='passthrough' Using this mode allows you to tunnel all requests
through a secondary character device to a third-party
provider (which may in turn be communicating to a
smartcard or using three certificate files, rather than
having the hypervisor directly communicate with the
host physical machine. In this mode of operation, an
additional attribute type is required, matching one of
the supported serial device types, to describe the
host physical machine side of the tunnel;
type='tcp' or type='spicevmc' (which uses
the smartcard channel of a SPICE graphics device)
are typical. Further sub-elements, such as source,
may be required according to the given type,
although a target sub-element is not required
(since the consumer of the character device is the
hypervisor itself, rather than a device visible in the
guest virtual machine).

Parameter Description

Each mode supports an optional sub-element address, which fine-tunes the correlation between the
smartcard and a ccid bus controller. For more information, see Section 24.18.3, “Device Addresses”).

24.18.9. Network Interfaces

Modify the network interface devices using management tools to configure the following part of the
domain XML:

CHAPTER 24. MANIPULATING THE DOMAIN XML

479

Figure 24.48. Devices - network interfaces

There are several possibilities for configuring the network interface for the guest virtual machine. This is
done by setting a value to the interface element's type attribute. The following values may be used:

"direct" - Attaches the guest virtual machine's NIC to the physical NIC on the host physical
machine. For details and an example, refer to Section 24.18.9.6, “Direct attachment to physical
interfaces”.

"network" - This is the recommended configuration for general guest virtual machine
connectivity on host physical machines with dynamic or wireless networking configurations. For
details and an example, refer to Section 24.18.9.1, “Virtual networks”.

"bridge" - This is the recommended configuration setting for guest virtual machine
connectivity on host physical machines with static wired networking configurations. For details
and an example, refer to Section 24.18.9.2, “Bridge to LAN”.

"ethernet" - Provides a means for the administrator to execute an arbitrary script to connect
the guest virtual machine's network to the LAN. For details and an example, refer to
Section 24.18.9.5, “Generic Ethernet connection”.

"hostdev" - Allows a PCI network device to be directly assigned to the guest virtual machine
using generic device passthrough. For details and an example, refer to Section 24.18.9.7, “PCI
passthrough”.

"mcast" - A multicast group can be used to represent a virtual network. For details and an
example, refer to Section 24.18.9.8, “Multicast tunnel” .

"user" - Using the user option sets the user space SLIRP stack parameters provides a virtual
LAN with NAT to the outside world. For details and an example, refer to Section 24.18.9.4, “User
space SLIRP stack”.

"server" - Using the server option creates a TCP client-server architecture in order to provide
a virtual network where one guest virtual machine provides the server end of the network and all
other guest virtual machines are configured as clients. For details and an example, refer to
Section 24.18.9.9, “TCP tunnel” .

Each of these options has a link to give more details. Additionally, each <interface> element can be
defined with an optional <trustGuestRxFilters> attribute which allows host physical machine to
detect and trust reports received from the guest virtual machine. These reports are sent each time the
interface receives changes to the filter. This includes changes to the primary MAC address, the device
address filter, or the vlan configuration. The <trustGuestRxFilters> attribute is disabled by default

 ...
 <devices>
 <interface type='direct' trustGuestRxFilters='yes'>
 <source dev='eth0'/>
 <mac address='52:54:00:5d:c7:9e'/>
 <boot order='1'/>
 <rom bar='off'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

480

for security reasons. It should also be noted that support for this attribute depends on the guest network
device model as well as on the host physical machine's connection type. Currently, it is only supported
for the virtio device models and for macvtap connections on the host physical machine. A simple use
case where it is recommended to set the optional parameter <trustGuestRxFilters> is if you want
to give your guest virtual machines the permission to control host physical machine side filters, as any
filters that are set by the guest will also be mirrored on the host.

In addition to the attributes listed above, each <interface> element can take an optional <address>
sub-element that can tie the interface to a particular PCI slot, with attribute type='pci'. For more
information, refer to Section 24.18.3, “Device Addresses”.

24.18.9.1. Virtual networks

This is the recommended configuration for general guest virtual machine connectivity on host physical
machines with dynamic or wireless networking configurations (or multi-host physical machine
environments where the host physical machine hardware details, which are described separately in a
<network> definition). In addition, it provides a connection with details that are described by the named
network definition. Depending on the virtual network's forward mode configuration, the network may be
totally isolated (no <forward> element given), using NAT to connect to an explicit network device or to
the default route (forward mode='nat'), routed with no NAT (forward mode='route'), or
connected directly to one of the host physical machine's network interfaces (using macvtap) or bridge
devices (forward mode='bridge|private|vepa|passthrough')

For networks with a forward mode of bridge, private, vepa, and passthrough, it is assumed that
the host physical machine has any necessary DNS and DHCP services already set up outside the scope
of libvirt. In the case of isolated, nat, and routed networks, DHCP and DNS are provided on the virtual
network by libvirt, and the IP range can be determined by examining the virtual network configuration
with virsh net-dumpxml [networkname]. The 'default' virtual network, which is set up out of the
box, uses NAT to connect to the default route and has an IP range of 192.168.122.0/255.255.255.0.
Each guest virtual machine will have an associated tun device created with a name of vnetN, which can
also be overridden with the <target> element (refer to Section 24.18.9.11, “Overriding the target
element”).

When the source of an interface is a network, a port group can be specified along with the name of the
network; one network may have multiple portgroups defined, with each portgroup containing slightly
different configuration information for different classes of network connections. Also, similar to
<direct> network connections (described below), a connection of type network may specify a
<virtualport> element, with configuration data to be forwarded to a 802.1Qbg or 802.1Qbh-
compliant Virtual Ethernet Port Aggregator (VEPA)switch, or to an Open vSwitch virtual switch.

Since the type of switch is dependent on the configuration setting in the <network> element on the host
physical machine, it is acceptable to omit the <virtualport type> attribute. You will need to specify
the <virtualport type> either once or many times. When the domain starts up a complete
<virtualport> element is constructed by merging together the type and attributes defined. This
results in a newly-constructed virtual port. Note that the attributes from lower virtual ports cannot make
changes on the attributes defined in higher virtual ports. Interfaces take the highest priority, while port
group is lowest priority.

For example, to create a properly working network with both an 802.1Qbh switch and an Open vSwitch
switch, you may choose to specify no type, but both profileid and an interfaceid must be
supplied. The other attributes to be filled in from the virtual port, such as such as managerid, typeid,
or profileid, are optional.

If you want to limit a guest virtual machine to connecting only to certain types of switches, you can
specify the virtualport type, and only switches with the specified port type will connect. You can also

CHAPTER 24. MANIPULATING THE DOMAIN XML

481

further limit switch connectivity by specifying additional parameters. As a result, if the port was specified
and the host physical machine's network has a different type of virtualport, the connection of the interface
will fail. The virtual network parameters are defined using management tools that modify the following
part of the domain XML:

Figure 24.49. Devices - network interfaces- virtual networks

24.18.9.2. Bridge to LAN

As mentioned in, Section 24.18.9, “Network Interfaces”, this is the recommended configuration setting for
guest virtual machine connectivity on host physical machines with static wired networking configurations.

Bridge to LAN provides a bridge from the guest virtual machine directly onto the LAN. This assumes
there is a bridge device on the host physical machine which has one or more of the host physical
machines physical NICs enslaved. The guest virtual machine will have an associated tun device
created with a name of <vnetN>, which can also be overridden with the <target> element (refer to
Section 24.18.9.11, “Overriding the target element”). The <tun> device will be enslaved to the bridge.
The IP range or network configuration is the same as what is used on the LAN. This provides the guest
virtual machine full incoming and outgoing network access, just like a physical machine.

On Linux systems, the bridge device is normally a standard Linux host physical machine bridge. On host
physical machines that support Open vSwitch, it is also possible to connect to an Open vSwitch bridge
device by adding virtualport type='openvswitch'/ to the interface definition. The Open vSwitch
type virtualport accepts two parameters in its parameters element: an interfaceid which is a
standard UUID used to uniquely identify this particular interface to Open vSwitch (if you do no specify
one, a random interfaceid will be generated when first defining the interface), and an optional
profileid which is sent to Open vSwitch as the interfaces <port-profile>. To set the bridge to
LAN settings, use a management tool that will configure the following part of the domain XML:

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 </interface>
 ...
 <interface type='network'>
 <source network='default' portgroup='engineering'/>
 <target dev='vnet7'/>
 <mac address="00:11:22:33:44:55"/>
 <virtualport>
 <parameters instanceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
 </virtualport>

 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

482

Figure 24.50. Devices - network interfaces- bridge to LAN

24.18.9.3. Setting a port masquerading range

In cases where you want to set the port masquerading range, set the port as follows:

Figure 24.51. Port Masquerading Range

These values should be set using the iptables commands as shown in Section 18.3, “Network
Address Translation”

24.18.9.4. User space SLIRP stack

Setting the user space SLIRP stack parameters provides a virtual LAN with NAT to the outside world.
The virtual network has DHCP and DNS services and will give the guest virtual machine an IP addresses
starting from 10.0.2.15. The default router is 10.0.2.2 and the DNS server is 10.0.2.3. This networking is
the only option for unprivileged users who need their guest virtual machines to have outgoing access.

The user space SLIRP stack parameters are defined in the following part of the domain XML:

 ...
 <devices>
 ...
 <interface type='bridge'>
 <source bridge='br0'/>
 </interface>
 <interface type='bridge'>
 <source bridge='br1'/>
 <target dev='vnet7'/>
 <mac address="00:11:22:33:44:55"/>
 </interface>
 <interface type='bridge'>
 <source bridge='ovsbr'/>
 <virtualport type='openvswitch'>
 <parameters profileid='menial' interfaceid='09b11c53-8b5c-4eeb-
8f00-d84eaa0aaa4f'/>
 </virtualport>
 </interface>
 ...
 </devices>

<forward mode='nat'>
 <address start='1.2.3.4' end='1.2.3.10'/>
</forward> ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

483

Figure 24.52. Devices - network interfaces- User space SLIRP stack

24.18.9.5. Generic Ethernet connection

This provides a means for the administrator to execute an arbitrary script to connect the guest virtual
machine's network to the LAN. The guest virtual machine will have a <tun> device created with a name
of vnetN, which can also be overridden with the <target> element. After creating the tun device a
shell script will be run and complete the required host physical machine network integration. By default,
this script is called /etc/qemu-ifup but can be overridden (refer to Section 24.18.9.11, “Overriding the
target element”).

The generic ethernet connection parameters are defined in the following part of the domain XML:

Figure 24.53. Devices - network interfaces- generic ethernet connection

24.18.9.6. Direct attachment to physical interfaces

This directly attaches the guest virtual machine's NIC to the physical interface of the host physical
machine, if the physical interface is specified.

This requires the Linux macvtap driver to be available. One of the following mode attribute values vepa (
'Virtual Ethernet Port Aggregator'), bridge or private can be chosen for the operation mode of the
macvtap device. vepa is the default mode.

Manipulating direct attachment to physical interfaces involves setting the following parameters in this
section of the domain XML:

 ...
 <devices>
 <interface type='user'/>
 ...
 <interface type='user'>
 <mac address="00:11:22:33:44:55"/>
 </interface>
 </devices>
 ...

 ...
 <devices>
 <interface type='ethernet'/>
 ...
 <interface type='ethernet'>
 <target dev='vnet7'/>
 <script path='/etc/qemu-ifup-mynet'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

484

Figure 24.54. Devices - network interfaces- direct attachment to physical interfaces

The individual modes cause the delivery of packets to behave as shown in Table 24.20, “Direct
attachment to physical interface elements”:

Table 24.20. Direct attachment to physical interface elements

Element Description

vepa All of the guest virtual machines' packets are sent to
the external bridge. Packets whose destination is a
guest virtual machine on the same host physical
machine as where the packet originates from are
sent back to the host physical machine by the VEPA
capable bridge (today's bridges are typically not
VEPA capable).

bridge Packets whose destination is on the same host
physical machine as where they originate from are
directly delivered to the target macvtap device. Both
origin and destination devices need to be in bridge
mode for direct delivery. If either one of them is in
vepa mode, a VEPA capable bridge is required.

private All packets are sent to the external bridge and will
only be delivered to a target virtual machine on the
same host physical machine if they are sent through
an external router or gateway and that device sends
them back to the host physical machine. This
procedure is followed if either the source or
destination device is in private mode.

passthrough This feature attaches a virtual function of a SR-IOV
capable NIC directly to a guest virtual machine
without losing the migration capability. All packets are
sent to the VF/IF of the configured network device.
Depending on the capabilities of the device,
additional prerequisites or limitations may apply; for
example, this requires kernel 2.6.38 or later.

The network access of directly attached virtual machines can be managed by the hardware switch to
which the physical interface of the host physical machine is connected to.

 ...
 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='vepa'/>
 </interface>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

485

The interface can have additional parameters as shown below, if the switch conforms to the IEEE
802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the
IEEE 802.1Qbg standard. The values are network specific and should be provided by the network
administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a
virtual machine.

Note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID.

Additional elements that can be manipulated are described in Table 24.21, “Direct attachment to physical
interface additional elements”:

Table 24.21. Direct attachment to physical interface additional elements

Element Description

managerid The VSI Manager ID identifies the database
containing the VSI type and instance definitions. This
is an integer value and the value 0 is reserved.

typeid The VSI Type ID identifies a VSI type characterizing
the network access. VSI types are typically managed
by network administrator. This is an integer value.

typeidversion The VSI Type Version allows multiple versions of a
VSI Type. This is an integer value.

instanceid The VSI Instance ID Identifier is generated when a
VSI instance (a virtual interface of a virtual machine)
is created. This is a globally unique identifier.

profileid The profile ID contains the name of the port profile
that is to be applied onto this interface. This name is
resolved by the port profile database into the network
parameters from the port profile, and those network
parameters will be applied to this interface.

Additional parameters in the domain XML include:

Virtualization Deployment and Administration Guide

486

Figure 24.55. Devices - network interfaces- direct attachment to physical interfaces additional
parameters

The interface can have additional parameters as shown below if the switch conforms to the IEEE
802.1Qbh standard. The values are network specific and should be provided by the network
administrator.

Additional parameters in the domain XML include:

Figure 24.56. Devices - network interfaces - direct attachment to physical interfaces more
additional parameters

The profileid attribute contains the name of the port profile to be applied to this interface. This name
is resolved by the port profile database into the network parameters from the port profile, and those
network parameters will be applied to this interface.

24.18.9.7. PCI passthrough

A PCI network device (specified by the source element) is directly assigned to the guest virtual
machine using generic device passthrough, after first optionally setting the device's MAC address to the
configured value, and associating the device with an 802.1Qbh capable switch using an optionally
specified virtualport element (see the examples of virtualport given above for type='direct'
network devices). Note that due to limitations in standard single-port PCI ethernet card driver design, only
SR-IOV (Single Root I/O Virtualization) virtual function (VF) devices can be assigned in this manner. To
assign a standard single-port PCI or PCIe ethernet card to a guest virtual machine, use the traditional
hostdev device definition.

 ...
 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0.2' mode='vepa'/>
 <virtualport type="802.1Qbg">
 <parameters managerid="11" typeid="1193047" typeidversion="2"
instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/>
 </virtualport>
 </interface>
 </devices>
 ...

 ...
 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='private'/>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

487

Note that this "intelligent passthrough" of network devices is very similar to the functionality of a standard
hostdev device, the difference being that this method allows specifying a MAC address and
virtualport for the passed-through device. If these capabilities are not required, if you have a
standard single-port PCI, PCIe, or USB network card that does not support SR-IOV (and hence would
anyway lose the configured MAC address during reset after being assigned to the guest virtual machine
domain), or if you are using libvirt version older than 0.9.11, use standard hostdev definition to assign
the device to the guest virtual machine instead of interface type='hostdev'.

Figure 24.57. Devices - network interfaces- PCI passthrough

24.18.9.8. Multicast tunnel

A multicast group can be used to represent a virtual network. Any guest virtual machine with network
devices within the same multicast group will communicate with each other, even if they reside across
multiple physical host physical machines. This mode may be used as an unprivileged user. There is no
default DNS or DHCP support and no outgoing network access. To provide outgoing network access,
one of the guest virtual machines should have a second NIC which is connected to one of the first 4
network types in order to provide appropriate routing. The multicast protocol is compatible with protocols
used by user mode Linux guest virtual machines as well. Note that the source address used must be
from the multicast address block. A multicast tunnel is created by manipulating the interface type
using a management tool and setting it to mcast, and providing a mac address and source
address, for example:

Figure 24.58. Devices - network interfaces- multicast tunnel

 ...
 <devices>
 <interface type='hostdev'>
 <driver name='vfio'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x07'
function='0x0'/>
 </source>
 <mac address='52:54:00:6d:90:02'>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 </devices>
 ...

 ...
 <devices>
 <interface type='mcast'>
 <mac address='52:54:00:6d:90:01'>
 <source address='230.0.0.1' port='5558'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

488

24.18.9.9. TCP tunnel

Creating a TCP client-server architecture is another way to provide a virtual network where one guest
virtual machine provides the server end of the network and all other guest virtual machines are
configured as clients. All network traffic between the guest virtual machines is routed through the guest
virtual machine that is configured as the server. This model is also available for use to unprivileged
users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing
network access, one of the guest virtual machines should have a second NIC which is connected to one
of the first 4 network types thereby providing the appropriate routing. A TCP tunnel is created by
manipulating the interface type using a management tool and setting it to mcast, and providing a
mac address and source address, for example:

Figure 24.59. Devices - network interfaces- TCP tunnel

24.18.9.10. Setting NIC driver-specific options

Some NICs may have tunable driver-specific options. These options are set as attributes of the driver
sub-element of the interface definition. These options are set by using management tools to configure the
following sections of the domain XML:

Figure 24.60. Devices - network interfaces- setting NIC driver-specific options

The following attributes are available for the "virtio" NIC driver:

Table 24.22. virtio NIC driver elements

 ...
 <devices>
 <interface type='server'>
 <mac address='52:54:00:22:c9:42'>
 <source address='192.168.0.1' port='5558'/>
 </interface>
 ...
 <interface type='client'>
 <mac address='52:54:00:8b:c9:51'>
 <source address='192.168.0.1' port='5558'/>
 </interface>
 </devices>
 ...

 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet1'/>
 <model type='virtio'/>
 <driver name='vhost' txmode='iothread' ioeventfd='on'
event_idx='off'/>
 </interface>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

489

Parameter Description

name The optional name attribute forces which type of
back-end driver to use. The value can be either kvm
(a user-space back-end) or vhost (a kernel back-
end, which requires the vhost module to be provided
by the kernel); an attempt to require the vhost driver
without kernel support will be rejected. The default
setting is vhost if the vhost driver is present, but
will silently fall back to kvm if not.

txmode Specifies how to handle transmission of packets
when the transmit buffer is full. The value can be
either iothread or timer. If set to iothread,
packet tx is all done in an iothread in the bottom half
of the driver (this option translates into adding
"tx=bh" to the kvm command-line "-device" virtio-
net-pci option). If set to timer, tx work is done in
KVM, and if there is more tx data than can be sent at
the present time, a timer is set before KVM moves on
to do other things; when the timer fires, another
attempt is made to send more data. It is not
recommended to change this value.

ioeventfd Sets domain I/O asynchronous handling for the
interface device. The default is left to the discretion of
the hypervisor. Accepted values are on and off.
Enabling this option allows KVM to execute a guest
virtual machine while a separate thread handles I/O.
Typically, guest virtual machines experiencing high
system CPU utilization during I/O will benefit from
this. On the other hand, overloading the physical host
machine may also increase guest virtual machine I/O
latency. It is not recommended to change this value.

event_idx The event_idx attribute controls some aspects of
device event processing. The value can be either on
or off. on is the default, which reduces the number
of interrupts and exits for the guest virtual machine. In
situations where this behavior is sub-optimal, this
attribute provides a way to force the feature off. It is
not recommended to change this value.

24.18.9.11. Overriding the target element

To override the target element, use a management tool to make the following changes to the domain
XML:

Virtualization Deployment and Administration Guide

490

Figure 24.61. Devices - network interfaces- overriding the target element

If no target is specified, certain hypervisors will automatically generate a name for the created tun device.
This name can be manually specified, however the name must not start with either vnet or vif, which
are prefixes reserved by libvirt and certain hypervisors. Manually-specified targets using these prefixes
will be ignored.

24.18.9.12. Specifying boot order

To specify the boot order, use a management tool to make the following changes to the domain XML:

Figure 24.62. Specifying boot order

In hypervisors which support it, you can set a specific NIC to be used for the network boot. The order of
attributes determine the order in which devices will be tried during boot sequence. Note that the per-
device boot elements cannot be used together with general boot elements in BIOS boot loader section.

24.18.9.13. Interface ROM BIOS configuration

To specify the ROM BIOS configuration settings, use a management tool to make the following changes
to the domain XML:

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet1'/>
 </interface>
 </devices>
 ...

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet1'/>
 <boot order='1'/>
 </interface>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

491

Figure 24.63. Interface ROM BIOS configuration

For hypervisors that support it, you can change how a PCI Network device's ROM is presented to the
guest virtual machine. The bar attribute can be set to on or off, and determines whether or not the
device's ROM will be visible in the guest virtual machine's memory map. (In PCI documentation, the rom
bar setting controls the presence of the Base Address Register for the ROM). If no rom baris specified,
the KVM default will be used (older versions of KVM used off for the default, while newer KVM
hypervisors default to on). The optional file attribute is used to point to a binary file to be presented to
the guest virtual machine as the device's ROM BIOS. This can be useful to provide an alternative boot
ROM for a network device.

24.18.9.14. Quality of service (QoS)

Incoming and outgoing traffic can be shaped independently to set Quality of Service (QoS). The
bandwidth element can have at most one inbound and one outbound child elements. Leaving any of
these child elements out results in no QoS being applied on that traffic direction. Therefore, to shape
only a domain's incoming traffic, use inbound only, and vice versa.

Each of these elements has one mandatory attribute average (or floor as described below). Average
specifies the average bit rate on the interface being shaped. In addition, there are two optional attributes:

peak - This attribute specifies the maximum rate at which the bridge can send data, in kilobytes
a second. A limitation of this implementation is this attribute in the outbound element is ignored,
as Linux ingress filters do not know it yet.

burst - Specifies the amount of bytes that can be burst at peak speed. Accepted values for
attributes are integer numbers.

The units for average and peak attributes are kilobytes per second, whereas burst is only set in
kilobytes. In addition, inbound traffic can optionally have a floor attribute. This guarantees minimal
throughput for shaped interfaces. Using the floor requires that all traffic goes through one point where
QoS decisions can take place. As such, it may only be used in cases where the interface
type='network'/ with a forward type of route, nat, or no forward at all). Noted that within a virtual
network, all connected interfaces are required to have at least the inbound QoS set (average at least)
but the floor attribute does not require specifying average. However, peak and burst attributes still
require average. At the present time, ingress qdiscs may not have any classes, and therefore, floor
may only be applied only on inbound and not outbound traffic.

To specify the QoS configuration settings, use a management tool to make the following changes to the
domain XML:

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet1'/>
 <rom bar='on' file='/etc/fake/boot.bin'/>
 </interface>
 </devices>
 ...

Virtualization Deployment and Administration Guide

492

Figure 24.64. Quality of service

24.18.9.15. Setting VLAN tag (on supported network types only)

To specify the VLAN tag configuration settings, use a management tool to make the following changes to
the domain XML:

Figure 24.65. Setting VLAN tag (on supported network types only)

If the network connection used by the guest virtual machine supports VLAN tagging transparent to the
guest virtual machine, an optional vlan element can specify one or more VLAN tags to apply to the
guest virtual machine's network traffic. Only OpenvSwitch and type='hostdev' SR-IOV interfaces
support transparent VLAN tagging of guest virtual machine traffic; other interfaces, including standard
Linux bridges and libvirt's own virtual networks, do not support it. 802.1Qbh (vn-link) and 802.1Qbg
(VEPA) switches provide their own methods (outside of libvirt) to tag guest virtual machine traffic onto
specific VLANs. To allow for specification of multiple tags (in the case of VLAN trunking), the tag
subelement specifies which VLAN tag to use (for example, tag id='42'/). If an interface has more
than one vlan element defined, it is assumed that the user wants to do VLAN trunking using all the
specified tags. If VLAN trunking with a single tag is needed, the optional attribute trunk='yes' can be
added to the top-level vlan element.

24.18.9.16. Modifying virtual link state

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet0'/>
 <bandwidth>
 <inbound average='1000' peak='5000' floor='200' burst='1024'/>
 <outbound average='128' peak='256' burst='256'/>
 </bandwidth>
 </interface>
 <devices>
 ...

 ...
 <devices>
 <interface type='bridge'>
 <vlan>
 <tag id='42'/>
 </vlan>
 <source bridge='ovsbr0'/>
 <virtualport type='openvswitch'>
 <parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
 </virtualport>
 </interface>
 <devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

493

This element sets the virtual network link state. Possible values for attribute state are up and down. If
down is specified as the value, the interface behaves as the network cable is disconnected. Default
behavior if this element is unspecified is up.

To specify the virtual link state configuration settings, use a management tool to make the following
changes to the domain XML:

Figure 24.66. Modifying virtual link state

24.18.10. Input Devices

Input devices allow interaction with the graphical framebuffer in the guest virtual machine. When
enabling the framebuffer, an input device is automatically provided. It may be possible to add additional
devices explicitly, for example to provide a graphics tablet for absolute cursor movement.

To specify the input device configuration settings, use a management tool to make the following changes
to the domain XML:

Figure 24.67. Input devices

The <input> element has one mandatory attribute: type, which can be set to mouse or tablet.
tablet provides absolute cursor movement, while mouse uses relative movement. The optional bus
attribute can be used to refine the exact device type and can be set to kvm (paravirtualized), ps2, and
usb.

The input element has an optional sub-element <address>, which can tie the device to a particular PCI
slot, as documented above.

24.18.11. Hub Devices

A hub is a device that expands a single port into several so that there are more ports available to connect
devices to a host physical machine system.

To specify the hub device configuration settings, use a management tool to make the following changes
to the domain XML:

 ...
 <devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet0'/>
 <link state='down'/>
 </interface>
 <devices>
 ...

 ...
 <devices>
 <input type='mouse' bus='usb'/>
 </devices>
 ...

Virtualization Deployment and Administration Guide

494

Figure 24.68. Hub devices

The hub element has one mandatory attribute, type, which can only be set to usb. The hub element
has an optional sub-element, address, with type='usb', which can tie the device to a particular
controller.

24.18.12. Graphical Framebuffers

A graphics device allows for graphical interaction with the guest virtual machine operating system. A
guest virtual machine will typically have either a framebuffer or a text console configured to allow
interaction with the user.

To specify the graphical framebuffer device configuration settings, use a management tool to make the
following changes to the domain XML:

Figure 24.69. Graphical framebuffers

The graphics element has a mandatory type attribute, which takes the value sdl, vnc, rdp,
desktop or spice, as explained in the tables below:

Table 24.23. Graphical framebuffer main elements

Parameter Description

 ...
 <devices>
 <hub type='usb'/>
 </devices>
 ...

 ...
 <devices>
 <graphics type='sdl' display=':0.0'/>
 <graphics type='vnc' port='5904'>
 <listen type='address' address='1.2.3.4'/>
 </graphics>
 <graphics type='rdp' autoport='yes' multiUser='yes' />
 <graphics type='desktop' fullscreen='yes'/>
 <graphics type='spice'>
 <listen type='network' network='rednet'/>
 </graphics>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

495

sdl This displays a window on the host physical machine
desktop. It accepts the following optional arguments:

A display attribute for the display to use

An xauth attribute for the authentication
identifier

An optional fullscreen attribute
accepting values yes or no

vnc Starts a VNC server.

The port attribute specifies the TCP port
number (with -1 as legacy syntax indicating
that it should be auto-allocated).

The autoport attribute is the preferred
syntax for indicating auto-allocation of the
TCP port to use.

The listen attribute is an IP address for
the server to listen on.

The passwd attribute provides a VNC
password in clear text.

The keymap attribute specifies the keymap
to use. It is possible to set a limit on the
validity of the password be giving an
timestamp passwdValidTo='2010-
04-09T15:51:00' assumed to be in
UTC.

The connected attribute allows control of
connected client during password changes.
VNC accepts the keep value only; note that
it may not be supported by all hypervisors.

Rather than using listen/port, KVM supports
a socket attribute for listening on a UNIX
domain socket path.

Parameter Description

Virtualization Deployment and Administration Guide

496

spice Starts a SPICE server.

The port attribute specifies the TCP port
number (with -1 as legacy syntax indicating
that it should be auto-allocated), while
tlsPort gives an alternative secure port
number.

The autoport attribute is the new
preferred syntax for indicating auto-
allocation of both port numbers.

The listen attribute is an IP address for
the server to listen on.

The passwd attribute provides a SPICE
password in clear text.

The keymap attribute specifies the keymap
to use. It is possible to set a limit on the
validity of the password be giving an
timestamp passwdValidTo='2010-
04-09T15:51:00' assumed to be in
UTC.

The connected attribute allows control of
a connected client during password
changes. SPICE accepts keep to keep a
client connected, disconnect to
disconnect the client and fail to fail
changing password. Note that this is not
supported by all hypervisors.

The defaultMode attribute sets the
default channel security policy; valid values
are secure, insecure and the default
any (which is secure if possible, but falls
back to insecure rather than erroring out
if no secure path is available).

Parameter Description

When SPICE has both a normal and a TLS-secured TCP port configured, it may be desirable to restrict
what channels can be run on each port. To do this, add one or more channel elements inside the main
graphics element. Valid channel names include main, display, inputs, cursor, playback,
record, smartcard, and usbredir.

To specify the SPICE configuration settings, use a mangement tool to make the following changes to the
domain XML:

CHAPTER 24. MANIPULATING THE DOMAIN XML

497

Figure 24.70. Sample SPICE configuration

SPICE supports variable compression settings for audio, images and streaming. These settings are
configured using the compression attribute in the following elements:

image to set image compression (accepts auto_glz, auto_lz, quic, glz, lz, off)

jpeg for JPEG compression for images over WAN (accepts auto, never, always)

zlib for configuring WAN image compression (accepts auto, never, always) and playback
for enabling audio stream compression (accepts on or off)

The streaming element sets streaming mode. The mode attribute can be set to filter, all or off.

In addition, copy and paste functionality (through the SPICE agent) is set by the clipboard element. It
is enabled by default, and can be disabled by setting the copypaste property to no.

The mouse element sets mouse mode. The mode attribute can be set to server or client. If no mode
is specified, the KVM default will be used (client mode).

Additional elements include:

Table 24.24. Additional graphical framebuffer elements

Parameter Description

rdp Starts an RDP server.

The port attribute specifies the TCP port
number (with -1 as legacy syntax indicating
that it should be auto-allocated).

The autoport attribute is the preferred
syntax for indicating auto-allocation of the
TCP port to use.

The replaceUser attribute is a boolean
deciding whether multiple simultaneous
connections to the virtual machine are
permitted.

The multiUser attribute decides whether
the existing connection must be dropped
and a new connection must be established
by the VRDP server, when a new client
connects in single connection mode.

 <graphics type='spice' port='-1' tlsPort='-1' autoport='yes'>
 <channel name='main' mode='secure'/>
 <channel name='record' mode='insecure'/>
 <image compression='auto_glz'/>
 <streaming mode='filter'/>
 <clipboard copypaste='no'/>
 <mouse mode='client'/>
 </graphics>

Virtualization Deployment and Administration Guide

498

desktop This value is currently reserved for VirtualBox
domains. It displays a window on the host physical
machine desktop, similarly to sdl, but uses the
VirtualBox viewer. Just like sdl, it accepts the
optional attributes display and fullscreen.

listen Rather than inputting the address information used to
set up the listening socket for graphics types vnc
and spice, the listen attribute, a separate sub-
element of graphics, can be specified (see the
examples above). listen accepts the following
attributes:

type - Set to either address or
network. This tells whether this listen
element is specifying the address to be used
directly, or by naming a network (which will
then be used to determine an appropriate
address for listening).

address - This attribute will contain either
an IP address or host name (which will be
resolved to an IP address via a DNS query)
to listen on. In the "live" XML of a running
domain, this attribute will be set to the IP
address used for listening, even if
type='network'.

network - If type='network', the
network attribute will contain the name of a
network in libvirt's list of configured
networks. The named network configuration
will be examined to determine an
appropriate listen address. For example, if
the network has an IPv4 address in its
configuration (for example, if it has a forward
type of route, NAT, or an isolated type), the
first IPv4 address listed in the network's
configuration will be used. If the network is
describing a host physical machine bridge,
the first IPv4 address associated with that
bridge device will be used. If the network is
describing one of the 'direct' (macvtap)
modes, the first IPv4 address of the first
forward dev will be used.

Parameter Description

24.18.13. Video Devices

To specify the video device configuration settings, use a management tool to make the following
changes to the domain XML:

CHAPTER 24. MANIPULATING THE DOMAIN XML

499

Figure 24.71. Video devices

The graphics element has a mandatory type attribute which takes the value "sdl", "vnc", "rdp" or
"desktop" as explained below:

Table 24.25. Graphical framebuffer elements

Parameter Description

video The video element is the container for describing
video devices. For backwards compatibility, if no
video is set but there is a graphics element in the
domain XML, then libvirt will add a default video
according to the guest virtual machine type. If "ram"
or "vram" are not supplied, a default value is used.

model This has a mandatory type attribute which takes the
value vga, cirrus, vmvga, kvm, vbox, or qxl
depending on the hypervisor features available. You
can also provide the amount of video memory in
kibibytes (blocks of 1024 bytes) using vram and the
number of figure with heads.

acceleration If acceleration is supported it should be enabled
using the accel3d and accel2d attributes in the
acceleration element.

address The optional address sub-element can be used to tie
the video device to a particular PCI slot.

24.18.14. Consoles, Serial, and Channel Devices

A character device provides a way to interact with the virtual machine. Paravirtualized consoles, serial
ports, and channels are all classed as character devices and are represented using the same syntax.

To specify the consoles, channel and other device configuration settings, use a management tool to
make the following changes to the domain XML:

 ...
 <devices>
 <video>
 <model type='vga' vram='8192' heads='1'>
 <acceleration accel3d='yes' accel2d='yes'/>
 </model>
 </video>
 </devices>
 ...

Virtualization Deployment and Administration Guide

500

Figure 24.72. Consoles, serial, and channel devices

In each of these directives, the top-level element name (serial, console, channel) describes how
the device is presented to the guest virtual machine. The guest virtual machine interface is configured by
the target element. The interface presented to the host physical machine is given in the type attribute
of the top-level element. The host physical machine interface is configured by the source element. The
source element may contain an optional seclabel to override the way that labeling is done on the
socket path. If this element is not present, the security label is inherited from the per-domain setting.
Each character device element has an optional sub-element address which can tie the device to a
particular controller or PCI slot.

NOTE

Parallel ports, as well as the isa-parallel device, are no longer supported.

24.18.15. Guest Virtual Machine Interfaces

A character device presents itself to the guest virtual machine as one of the following types.

To set the serial port, use a management tool to make the following change to the domain XML:

Figure 24.73. Guest virtual machine interface serial port

<target> can have a port attribute, which specifies the port number. Ports are numbered starting
from 0. There are usually 0, 1 or 2 serial ports. There is also an optional type attribute, which has two
choices for its value, isa-serial or usb-serial. If type is missing, isa-serial will be used by

 ...
 <devices>
 <serial type='pty'>
 <source path='/dev/pts/3'/>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <source path='/dev/pts/4'/>
 <target port='0'/>
 </console>
 <channel type='unix'>
 <source mode='bind' path='/tmp/guestfwd'/>
 <target type='guestfwd' address='10.0.2.1' port='4600'/>
 </channel>
 </devices>
 ...

 ...
 <devices>
 <serial type='pty'>
 <source path='/dev/pts/3'/>
 <target port='0'/>
 </serial>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

501

default. For usb-serial, an optional sub-element <address> with type='usb' can tie the device to
a particular controller, documented above.

The <console> element is used to represent interactive consoles. Depending on the type of guest
virtual machine in use, the consoles might be paravirtualized devices, or they might be a clone of a serial
device, according to the following rules:

If no targetType attribute is set, then the default device type is according to the hypervisor's
rules. The default type will be added when re-querying the XML fed into libvirt. For fully
virtualized guest virtual machines, the default device type will usually be a serial port.

If the targetType attribute is serial, and if no <serial> element exists, the console
element will be copied to the <serial> element. If a <serial> element does already exist, the
console element will be ignored.

If the targetType attribute is not serial, it will be treated normally.

Only the first <console> element may use a targetType of serial. Secondary consoles
must all be paravirtualized.

On s390, the console element may use a targetType of sclp or sclplm (line mode). SCLP
is the native console type for s390. There is no controller associated to SCLP consoles.

In the example below, a virtio console device is exposed in the guest virtual machine as /dev/hvc[0-
7] (for more information, see the Fedora project's virtio-serial page):

Figure 24.74. Guest virtual machine interface - virtio console device

 ...
 <devices>
 <console type='pty'>
 <source path='/dev/pts/4'/>
 <target port='0'/>
 </console>

 <!-- KVM virtio console -->
 <console type='pty'>
 <source path='/dev/pts/5'/>
 <target type='virtio' port='0'/>
 </console>
 </devices>
 ...

 ...
 <devices>
 <!-- KVM s390 sclp console -->
 <console type='pty'>
 <source path='/dev/pts/1'/>
 <target type='sclp' port='0'/>
 </console>
 </devices>
 ...

Virtualization Deployment and Administration Guide

502

http://fedoraproject.org/wiki/Features/VirtioSerial

If the console is presented as a serial port, the <target> element has the same attributes as for a serial
port. There is usually only one console.

24.18.16. Channel

This represents a private communication channel between the host physical machine and the guest
virtual machine. It is manipulated by making changes to a guest virtual machine using a management
tool to edit following section of the domain XML:

Figure 24.75. Channel

This can be implemented in a variety of ways. The specific type of <channel> is given in the type
attribute of the <target> element. Different channel types have different target attributes as follows:

guestfwd - Dictates that TCP traffic sent by the guest virtual machine to a given IP address and
port is forwarded to the channel device on the host physical machine. The target element
must have address and port attributes.

virtio - paravirtualized virtio channel. <channel> is exposed in the guest virtual machine
under /dev/vport*, and if the optional element name is specified, /dev/virtio-
ports/$name (for more information, see the Fedora project's virtio-serial page). The optional
element address can tie the channel to a particular type='virtio-serial' controller,
documented above. With KVM, if name is "org.kvm.guest_agent.0", then libvirt can interact with
a guest agent installed in the guest virtual machine, for actions such as guest virtual machine
shutdown or file system quiescing.

spicevmc - Paravirtualized SPICE channel. The domain must also have a SPICE server as a
graphics device, at which point the host physical machine piggy-backs messages across the
main channel. The target element must be present, with attribute type='virtio'; an
optional attribute name controls how the guest virtual machine will have access to the channel,
and defaults to name='com.redhat.spice.0'. The optional <address> element can tie the
channel to a particular type='virtio-serial' controller.

 ...
 <devices>
 <channel type='unix'>
 <source mode='bind' path='/tmp/guestfwd'/>
 <target type='guestfwd' address='10.0.2.1' port='4600'/>
 </channel>

 <!-- KVM virtio channel -->
 <channel type='pty'>
 <target type='virtio' name='arbitrary.virtio.serial.port.name'/>
 </channel>
 <channel type='unix'>
 <source mode='bind' path='/var/lib/libvirt/kvm/f16x86_64.agent'/>
 <target type='virtio' name='org.kvm.guest_agent.0'/>
 </channel>
 <channel type='spicevmc'>
 <target type='virtio' name='com.redhat.spice.0'/>
 </channel>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

503

http://fedoraproject.org/wiki/Features/VirtioSerial

24.18.17. Host Physical Machine Interface

A character device presents itself to the host physical machine as one of the following types:

Table 24.26. Character device elements

Parameter Description XML snippet

Domain logfile Disables all input on the character
device, and sends output into the
virtual machine's logfile.

<devices>
 <console
type='stdio'>
 <target
port='1'/>
 </console>
</devices>

Device logfile A file is opened and all data sent
to the character device is written
to the file. Note that the
destination directory must have
the virt_log_t SELinux label
for a guest with this setting to start
successfully.

<devices>
 <serial
type="file">
 <source
path="/var/log/vm/vm
-serial.log"/>
 <target
port="1"/>
 </serial>
</devices>

Virtual console Connects the character device to
the graphical framebuffer in a
virtual console. This is typically
accessed via a special hotkey
sequence such as "ctrl+alt+3".

<devices>
 <serial
type='vc'>
 <target
port="1"/>
 </serial>
</devices>

Null device Connects the character device to
the void. No data is ever provided
to the input. All data written is
discarded.

<devices>
 <serial
type='null'>
 <target
port="1"/>
 </serial>
</devices>

Virtualization Deployment and Administration Guide

504

Pseudo TTY A Pseudo TTY is allocated using
/dev/ptmx. A suitable client
such as virsh console can
connect to interact with the serial
port locally.

<devices>
 <serial
type="pty">
 <source
path="/dev/pts/3"/>
 <target
port="1"/>
 </serial>
</devices>

NB Special case NB special case if <console
type='pty'>, then the TTY
path is also duplicated as an
attribute tty='/dev/pts/3'
on the top level <console> tag.
This provides compat with
existing syntax for <console>
tags.

Host physical machine device
proxy

The character device is passed
through to the underlying physical
character device. The device
types must match, for example
the emulated serial port should
only be connected to a host
physical machine serial port - do
not connect a serial port to a
parallel port.

<devices>
 <serial
type="dev">
 <source
path="/dev/ttyS0"/>
 <target
port="1"/>
 </serial>
</devices>

Named pipe The character device writes output
to a named pipe. See the pipe(7)
man page for more info.

<devices>
 <serial
type="pipe">
 <source
path="/tmp/mypipe"/>
 <target
port="1"/>
 </serial>
</devices>

TCP client-server The character device acts as a
TCP client connecting to a remote
server.

<devices>
 <serial
type="tcp">
 <source
mode="connect"
host="0.0.0.0"
service="2445"/>

Parameter Description XML snippet

CHAPTER 24. MANIPULATING THE DOMAIN XML

505

 <protocol
type="raw"/>
 <target
port="1"/>
 </serial>
</devices>

Or as a TCP server waiting for a
client connection.

<devices>
 <serial
type="tcp">
 <source
mode="bind"
host="127.0.0.1"
service="2445"/>
 <protocol
type="raw"/>
 <target
port="1"/>
 </serial>
</devices>

Alternatively you can use telnet
instead of raw TCP. In addition,
you can also use telnets (secure
telnet) and tls.

<devices>
 <serial
type="tcp">
 <source
mode="connect"
host="0.0.0.0"
service="2445"/>
 <protocol
type="telnet"/>
 <target
port="1"/>
 </serial>
 <serial
type="tcp">
 <source
mode="bind"
host="127.0.0.1"
service="2445"/>
 <protocol
type="telnet"/>
 <target
port="1"/>
 </serial>
</devices>

Parameter Description XML snippet

Virtualization Deployment and Administration Guide

506

UDP network console The character device acts as a
UDP netconsole service, sending
and receiving packets. This is a
lossy service.

<devices>
 <serial
type="udp">
 <source
mode="bind"
host="0.0.0.0"
service="2445"/>
 <source
mode="connect"
host="0.0.0.0"
service="2445"/>
 <target
port="1"/>
 </serial>
</devices>

UNIX domain socket client-server The character device acts as a
UNIX domain socket server,
accepting connections from local
clients.

<devices>
 <serial
type="unix">
 <source
mode="bind"
path="/tmp/foo"/>
 <target
port="1"/>
 </serial>
</devices>

Parameter Description XML snippet

24.18.18. Sound Devices

A virtual sound card can be attached to the host physical machine via the sound element.

Figure 24.76. Virtual sound card

The sound element has one mandatory attribute, model, which specifies what real sound device is
emulated. Valid values are specific to the underlying hypervisor, though typical choices are 'sb16',
'ac97', and 'ich6'. In addition, a sound element with 'ich6' model set can have optional codec
sub-elements to attach various audio codecs to the audio device. If not specified, a default codec will be
attached to allow playback and recording. Valid values are 'duplex' (advertises a line-in and a line-
out) and 'micro' (advertises a speaker and a microphone).

 ...
 <devices>
 <sound model='ac97'/>
 </devices>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

507

Figure 24.77. Sound Devices

Each sound element has an optional sub-element <address> which can tie the device to a particular
PCI slot, documented above.

NOTE

The es1370 sound device is no longer supported in Red Hat Enterprise Linux 7. Use ac97
instead.

24.18.19. Watchdog Device

A virtual hardware watchdog device can be added to the guest virtual machine using the <watchdog>
element. The watchdog device requires an additional driver and management daemon in the guest
virtual machine. Currently there is no support notification when the watchdog fires.

Figure 24.78. Watchdog Device

The following attributes are declared in this XML:

model - The required model attribute specifies what real watchdog device is emulated. Valid
values are specific to the underlying hypervisor.

The model attribute may take the following values:

i6300esb — the recommended device, emulating a PCI Intel 6300ESB

ib700 — emulates an ISA iBase IB700

action - The optional action attribute describes what action to take when the watchdog
expires. Valid values are specific to the underlying hypervisor. The action attribute can have
the following values:

 ...
 <devices>
 <sound model='ich6'>
 <codec type='micro'/>
 <sound/>
 </devices>
 ...

 ...
 <devices>
 <watchdog model='i6300esb'/>
 </devices>
 ...

 ...
 <devices>
 <watchdog model='i6300esb' action='poweroff'/>
 </devices>
...

Virtualization Deployment and Administration Guide

508

reset — default setting, forcefully resets the guest virtual machine

shutdown — gracefully shuts down the guest virtual machine (not recommended)

poweroff — forcefully powers off the guest virtual machine

pause — pauses the guest virtual machine

none — does nothing

dump — automatically dumps the guest virtual machine.

Note that the 'shutdown' action requires that the guest virtual machine is responsive to ACPI signals. In
the sort of situations where the watchdog has expired, guest virtual machines are usually unable to
respond to ACPI signals. Therefore, using 'shutdown' is not recommended. In addition, the directory to
save dump files can be configured by auto_dump_path in file /etc/libvirt/kvm.conf.

24.18.20. Setting a Panic Device

Red Hat Enterprise Linux 7 hypervisor is capable of detecting Linux guest virtual machine kernel panics,
using the pvpanic mechanism. When invoked, pvpanic sends a message to the libvirtd daemon,
which initiates a preconfigured reaction.

To enable the pvpanic device, do the following:

Add or uncomment the following line in the /etc/libvirt/qemu.conf file on the host
machine.

auto_dump_path = "/var/lib/libvirt/qemu/dump"

Run the virsh edit command to edit domain XML file of the specified guest, and add the
panic into the devices parent element.

The <address> element specifies the address of panic. The default ioport is 0x505. In most cases,
specifying an address is not needed.

The way in which libvirtd reacts to the crash is determined by the <on_crash> element of the
domain XML. The possible actions are as follows:

coredump-destroy - Captures the guest virtual machine's core dump and shuts the guest
down.

coredump-restart - Captures the guest virtual machine's core dump and restarts the guest.

preserve - Halts the guest virtual machine to await further action.

<devices>
 <panic>
 <address type='isa' iobase='0x505'/>
 </panic>
</devices>

CHAPTER 24. MANIPULATING THE DOMAIN XML

509

NOTE

If the kdump service is enabled, it takes precedence over the <on_crash> setting, and
the selected <on_crash> action is not performed.

For more information on pvpanic, see the related Knowledgebase article.

24.18.21. Memory Balloon Device

The balloon device can designate a part of a virtual machine's RAM as not being used (a process known
as inflating the balloon), so that the memory can be freed for the host, or for other virtual machines on
that host, to use. When the virtual machine needs the memory again, the balloon can be deflated and the
host can distribute the RAM back to the virtual machine.

The size of the memory balloon is determined by the difference between the <currentMemory> and
<memory> settings. For example, if <memory> is set to 2 GiB and <currentMemory> to 1 GiB, the
balloon contains 1 GiB. If manual configuration is necessary, the <currentMemory> value can be set
by using the virsh setmem command and the <memory> value can be set by using the virsh
setmaxmem command.

WARNING

If modifying the <currentMemory> value, make sure to leave sufficient memory for
the guest OS to work properly. If the set value is too low, the guest may become
unstable.

A virtual memory balloon device is automatically added to all KVM guest virtual machines. In the XML
configuration, this is represented by the <memballoon> element. Memory ballooning is managed by the
libvirt service, and will be automatically added when appropriate. Therefore, it is not necessary to
explicitly add this element in the guest virtual machine XML unless a specific PCI slot needs to be
assigned. Note that if the <memballoon> device needs to be explicitly disabled, model='none' can be
be used for this purpose.

The following example a shows a memballoon device automatically added by libvirt:

Figure 24.79. Memory balloon device

The following example shows a device that has been added manually with static PCI slot 2 requested:



 ...
 <devices>
 <memballoon model='virtio'/>
 </devices>
 ...

Virtualization Deployment and Administration Guide

510

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/chap-introduction-to-kdump.html
https://access.redhat.com/articles/1172953

Figure 24.80. Memory balloon device added manually

The required model attribute specifies what type of balloon device is provided. Valid values are specific
to the virtualization platform; in the KVM hypervisor, 'virtio' is the default setting.

24.19. STORAGE POOLS

Although all storage pool back-ends share the same public APIs and XML format, they have varying
levels of capabilities. Some may allow creation of volumes, others may only allow use of pre-existing
volumes. Some may have constraints on volume size, or placement.

The top level element for a storage pool document is <pool>. It has a single attribute type, which can
take the following values: dir, fs, netfs, disk, iscsi, logical, scsi, mpath, rbd,
sheepdog, or gluster.

24.19.1. Providing Metadata for the Storage Pool

The following XML example, shows the metadata tags that can be added to a storage pool. In this
example, the pool is an iSCSI storage pool.

Figure 24.81. General metadata tags

The elements that are used in this example are explained in the Table 24.27, “virt-sysprep
commands”.

Table 24.27. virt-sysprep commands

Element Description

 ...
 <devices>
 <memballoon model='virtio'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02'
function='0x0'/>
 </memballoon>
 </devices>
...

 <pool type="iscsi">
 <name>virtimages</name>
 <uuid>3e3fce45-4f53-4fa7-bb32-11f34168b82b</uuid>
 <allocation>10000000</allocation>
 <capacity>50000000</capacity>
 <available>40000000</available>
 ...
 </pool>

CHAPTER 24. MANIPULATING THE DOMAIN XML

511

<name> Provides a name for the storage pool which must be
unique to the host physical machine. This is
mandatory when defining a storage pool.

<uuid> Provides an identifier for the storage pool which must
be globally unique. Although supplying the UUID is
optional, if the UUID is not provided at the time the
storage pool is created, a UUID will be automatically
generated.

<allocation> Provides the total storage allocation for the storage
pool. This may be larger than the sum of the total
allocation across all storage volumes due to the
metadata overhead. This value is expressed in bytes.
This element is read-only and the value should not be
changed.

<capacity> Provides the total storage capacity for the pool. Due
to underlying device constraints, it may not be
possible to use the full capacity for storage volumes.
This value is in bytes. This element is read-only and
the value should not be changed.

<available> Provides the free space available for allocating new
storage volumes in the storage pool. Due to
underlying device constraints, it may not be possible
to allocate the all of the free space to a single storage
volume. This value is in bytes. This element is read-
only and the value should not be changed.

Element Description

24.19.2. Source Elements

Within the <pool> element there can be a single <source> element defined (only one). The child
elements of <source> depend on the storage pool type. Some examples of the XML that can be used
are as follows:

Virtualization Deployment and Administration Guide

512

Figure 24.82. Source element option 1

Figure 24.83. Source element option 2

The child elements that are accepted by <source> are explained in Table 24.28, “Source child
elements commands”.

Table 24.28. Source child elements commands

Element Description

<device> Provides the source for storage pools backed by host
physical machine devices (based on <pool
type=> (as shown in Section 24.19, “Storage
Pools”)). May be repeated multiple times depending
on back-end driver. Contains a single attribute path
which is the fully qualified path to the block device
node.

<dir> Provides the source for storage pools backed by
directories (<pool type='dir'>), or optionally
to select a subdirectory within a storage pool that is
based on a filesystem (<pool
type='gluster'>). This element may only occur
once per (<pool>). This element accepts a single
attribute (<path>) which is the full path to the
backing directory.

 ...
 <source>
 <host name="iscsi.example.com"/>
 <device path="demo-target"/>
 <auth type='chap' username='myname'>
 <secret type='iscsi' usage='mycluster_myname'/>
 </auth>
 <vendor name="Acme"/>
 <product name="model"/>
 </source>
 ...

 ...
 <source>
 <adapter type='fc_host' parent='scsi_host5'
wwnn='20000000c9831b4b' wwpn='10000000c9831b4b'/>
 </source>
 ...

CHAPTER 24. MANIPULATING THE DOMAIN XML

513

<adapter> Provides the source for storage pools backed by
SCSI adapters (<pool type='scsi'>). This
element may only occur once per (<pool>).
Attribute name is the SCSI adapter name (ex.
"scsi_host1". Although "host1" is still supported for
backwards compatibility, it is not recommended.
Attribute type specifies the adapter type. Valid
values are 'fc_host'| 'scsi_host'. If
omitted and the name attribute is specified, then it
defaults to type='scsi_host'. To keep
backwards compatibility, the attribute type is
optional for the type='scsi_host' adapter, but
mandatory for the type='fc_host' adapter.
Attributes wwnn (Word Wide Node Name) and wwpn
(Word Wide Port Name) are used by the
type='fc_host' adapter to uniquely identify the
device in the Fibre Channel storage fabric (the
device can be either a HBA or vHBA). Both wwnn
and wwpn should be specified. For instructions on
how to get wwnn/wwpn of a (v)HBA, refer to
Section 21.27.12, “Collect Device Configuration
Settings”. The optional attribute parent specifies
the parent device for the type='fc_host'
adapter.

<host> Provides the source for storage pools backed by
storage from a remote server
(type='netfs'|'iscsi'|'rbd'|'sheepdo
g'|'gluster'). This element should be used in
combination with a <directory> or <device>
element. Contains an attribute name which is the
host name or IP address of the server. May optionally
contain a port attribute for the protocol specific port
number.

Element Description

Virtualization Deployment and Administration Guide

514

<auth> If present, the <auth> element provides the
authentication credentials needed to access the
source by the setting of the type attribute (pool
type='iscsi'|'rbd'). The type must be
either type='chap' or type='ceph'. Use
"ceph" for Ceph RBD (Rados Block Device) network
sources and use "iscsi" for CHAP (Challenge-
Handshake Authentication Protocol) iSCSI targets.
Additionally a mandatory attribute username
identifies the user name to use during authentication
as well as a sub-element secret with a mandatory
attribute type, to tie back to a libvirt secret object that
holds the actual password or other credentials. The
domain XML intentionally does not expose the
password, only the reference to the object that
manages the password. The secret element requires
either a uuid attribute with the UUID of the secret
object or a usage attribute matching the key that was
specified in the secret object.

<name> Provides the source for storage pools backed by a
storage device from a named element <type>
which can take the values:
(type='logical'|'rbd'|'sheepdog','gl
uster').

<format> Provides information about the format of the storage
pool <type> which can take the following values:
type='logical'|'disk'|'fs'|'netfs').
Note that this value is back-end specific. This is
typically used to indicate a filesystem type, or a
network filesystem type, or a partition table type, or
an LVM metadata type. As all drivers are required to
have a default value for this, the element is optional.

<vendor> Provides optional information about the vendor of the
storage device. This contains a single attribute
<name> whose value is back-end specific.

<product> Provides optional information about the product
name of the storage device. This contains a single
attribute <name> whose value is back-end specific.

Element Description

24.19.3. Creating Target Elements

A single <target> element is contained within the top level <pool> element for the following types:
(type='dir'|'fs'|'netfs'|'logical'|'disk'|'iscsi'|'scsi'|'mpath'). This tag is used
to describe the mapping of the storage pool into the host filesystem. It can contain the following child
elements:

CHAPTER 24. MANIPULATING THE DOMAIN XML

515

Figure 24.84. Target elements XML example

The table (Table 24.29, “Target child elements”) explains the child elements that are valid for the parent
<target> element:

Table 24.29. Target child elements

Element Description

<path> Provides the location at which the storage pool will
be mapped into the local filesystem namespace. For
a filesystem or directory-based storage pool it will be
the name of the directory in which storage volumes
will be created. For device-based storage pools it will
be the name of the directory in which the device's
nodes exist. For the latter, /dev/may seem like the
logical choice, however, the device's nodes there are
not guaranteed to be stable across reboots, since
they are allocated on demand. It is preferable to use
a stable location such as one of the
/dev/disk/by-{path,id,uuid,label}
locations.

 <pool>
 ...
 <target>
 <path>/dev/disk/by-path</path>
 <permissions>
 <owner>107</owner>
 <group>107</group>
 <mode>0744</mode>
 <label>virt_image_t</label>
 </permissions>
 <timestamps>
 <atime>1341933637.273190990</atime>
 <mtime>1341930622.047245868</mtime>
 <ctime>1341930622.047245868</ctime>
 </timestamps>
 <encryption type='...'>
 ...
 </encryption>
 </target>
 </pool>

Virtualization Deployment and Administration Guide

516

<permissions> This is currently only useful for directory- or
filesystem-based storage pools, which are mapped as
a directory into the local filesystem namespace. It
provides information about the permissions to use for
the final directory when the storage pool is built. The
<mode> element contains the octal permission set.
The <owner> element contains the numeric user ID.
The <group> element contains the numeric group
ID. The <label> element contains the MAC (for
example, SELinux) label string.

<timestamps> Provides timing information about the storage
volume. Up to four sub-elements are present, where
timestamps='atime'|'btime|'ctime'|'m
time' holds the access, birth, change, and
modification time of the storage volume, where
known. The used time format is
<seconds>.<nanoseconds> since the beginning
of the epoch (1 Jan 1970). If nanosecond resolution
is 0 or otherwise unsupported by the host operating
system or filesystem, then the nanoseconds part is
omitted. This is a read-only attribute and is ignored
when creating a storage volume.

<encryption> If present, specifies how the storage volume is
encrypted. For more information, refer to libvirt
upstream pages.

Element Description

24.19.4. Setting Device Extents

If a storage pool exposes information about its underlying placement or allocation scheme, the
<device> element within the <source> element may contain information about its available extents.
Some storage pools have a constraint that a storage volume must be allocated entirely within a single
constraint (such as disk partition pools). Thus, the extent information allows an application to determine
the maximum possible size for a new storage volume.

For storage pools supporting extent information, within each <device> element there will be zero or
more <freeExtent> elements. Each of these elements contains two attributes, <start> and <end>
which provide the boundaries of the extent on the device, measured in bytes.

24.20. STORAGE VOLUMES

A storage volume will generally be either a file or a device node; since 1.2.0, an optional output-only
attribute type lists the actual type (file, block, dir, network, or netdir),

24.20.1. General Metadata

The top section of the <volume> element contains information known as metadata as shown in this
XML example:

CHAPTER 24. MANIPULATING THE DOMAIN XML

517

http://libvirt.org/formatstorageencryption.html

Figure 24.85. General metadata for storage volumes

The table (Table 24.30, “Volume child elements”) explains the child elements that are valid for the parent
<volume> element:

Table 24.30. Volume child elements

Element Description

<name> Provides a name for the storage volume which is
unique to the storage pool. This is mandatory when
defining a storage volume.

<key> Provides an identifier for the storage volume which
identifies a single storage volume. In some cases it is
possible to have two distinct keys identifying a single
storage volume. This field cannot be set when
creating a storage volume as it is always generated.

<allocation> Provides the total storage allocation for the storage
volume. This may be smaller than the logical capacity
if the storage volume is sparsely allocated. It may
also be larger than the logical capacity if the storage
volume has substantial metadata overhead. This
value is in bytes. If omitted when creating a storage
volume, the storage volume will be fully allocated at
time of creation. If set to a value smaller than the
capacity, the storage pool has the option of deciding
to sparsely allocate a storage volume or not. Different
types of storage pools may treat sparse storage
volumes differently. For example, a logical pool will
not automatically expand a storage volume's
allocation when it gets full; the user is responsible for
configuring it or configuring dmeventd to do so
automatically. By default this is specified in bytes.
Refer to Note

 ...
 <volume type='file'>
 <name>sparse.img</name>
 <key>/var/lib/libvirt/images/sparse.img</key>
 <allocation>0</allocation>
 <capacity unit="T">1</capacity>
 ...
 </volume>

Virtualization Deployment and Administration Guide

518

<capacity> Provides the logical capacity for the storage volume.
This value is in bytes by default, but a <unit>
attribute can be specified with the same semantics as
for <allocation> described in Note. This is
compulsory when creating a storage volume.

<source> Provides information about the underlying storage
allocation of the storage volume. This may not be
available for some storage pool types.

<target> Provides information about the representation of the
storage volume on the local host physical machine.

Element Description

NOTE

When necessary, an optional attribute unit can be specified to adjust the passed value.
This attribute can be used with the elements <allocation> and <capacity>.
Accepted values for the attribute unit include:

B or bytes for bytes

KB for kilobytes

K or KiB for kibibytes

MB for megabytes

M or MiB for mebibytes

GB for gigabytes

G or GiB for gibibytes

TB for terabytes

T or TiB for tebibytes

PB for petabytes

P or PiB for pebibytes

EB for exabytes

E or EiB for exbibytes

24.20.2. Setting Target Elements

The <target> element can be placed in the <volume> top level element. It is used to describe the
mapping that is done on the storage volume into the host physical machine filesystem. This element can
take the following child elements:

CHAPTER 24. MANIPULATING THE DOMAIN XML

519

Figure 24.86. Target child elements

The specific child elements for <target> are explained in Table 24.31, “Target child elements”:

Table 24.31. Target child elements

Element Description

<path> Provides the location at which the storage volume
can be accessed on the local filesystem, as an
absolute path. This is a read-only attribute, and
should not be specified when creating a volume.

<format> Provides information about the pool specific volume
format. For disk-based storage pools, it will provide
the partition type. For filesystem or directory-based
storage pools, it will provide the file format type,
(such as cow, qcow, vmdk, raw). If omitted when
creating a storage volume, the storage pool's default
format will be used. The actual format is specified via
the type attribute. Refer to the sections on the
specific storage pools in Chapter 13, Storage Pools
for the list of valid values.

<permissions> Provides information about the default permissions to
use when creating storage volumes. This is currently
only useful for directory or filesystem-based storage
pools, where the storage volumes allocated are
simple files. For storage pools where the storage
volumes are device nodes, the hot-plug scripts
determine permissions. It contains four child
elements. The <mode> element contains the octal
permission set. The <owner> element contains the
numeric user ID. The <group> element contains
the numeric group ID. The <label> element
contains the MAC (for example, SELinux) label string.

 <target>
 <path>/var/lib/libvirt/images/sparse.img</path>
 <format type='qcow2'/>
 <permissions>
 <owner>107</owner>
 <group>107</group>
 <mode>0744</mode>
 <label>virt_image_t</label>
 </permissions>
 <compat>1.1</compat>
 <features>
 <lazy_refcounts/>
 </features>
 </target>

Virtualization Deployment and Administration Guide

520

<compat> Specify compatibility level. So far, this is only used for
<type='qcow2'> volumes. Valid values are
<compat>0.10</compat> for qcow2 (version 2)
and <compat>1.1</compat> for qcow2 (version
3) so far for specifying the QEMU version the images
should be compatible with. If the <feature>
element is present, <compat>1.1</compat> is
used. If omitted, qemu-img default is used.

<features> Format-specific features. Presently is only used with
<format type='qcow2'/> (version 3). Valid
sub-elements include <lazy_refcounts/>. This
reduces the amount of metadata writes and flushes,
and therefore improves initial write performance. This
improvement is seen especially for writethrough
cache modes, at the cost of having to repair the
image after a crash, and allows delayed reference
counter updates. It is recommended to use this
feature with qcow2 (version 3), as it is faster when
this is implemented.

Element Description

24.20.3. Setting Backing Store Elements

A single <backingStore> element is contained within the top level <volume> element. This tag is
used to describe the optional copy-on-write backing store for the storage volume. It can contain the
following child elements:

Figure 24.87. Backing store child elements

Table 24.32. Backing store child elements

Element Description

 <backingStore>
 <path>/var/lib/libvirt/images/master.img</path>
 <format type='raw'/>
 <permissions>
 <owner>107</owner>
 <group>107</group>
 <mode>0744</mode>
 <label>virt_image_t</label>
 </permissions>
 </backingStore>

CHAPTER 24. MANIPULATING THE DOMAIN XML

521

<path> Provides the location at which the backing store can
be accessed on the local filesystem, as an absolute
path. If omitted, there is no backing store for this
storage volume.

<format> Provides information about the pool specific backing
store format. For disk-based storage pools it will
provide the partition type. For filesystem or directory-
based storage pools it will provide the file format type
(such as cow, qcow, vmdk, raw). The actual format is
specified via the <type> attribute. Consult the pool-
specific docs for the list of valid values. Most file
formats require a backing store of the same format,
however, the qcow2 format allows a different backing
store format.

<permissions> Provides information about the permissions of the
backing file. It contains four child elements. The
<owner> element contains the numeric user ID. The
<group> element contains the numeric group ID.
The <label> element contains the MAC (for
example, SELinux) label string.

Element Description

24.21. SECURITY LABEL

The <seclabel> element allows control over the operation of the security drivers. There are three basic
modes of operation, 'dynamic' where libvirt automatically generates a unique security label,
'static' where the application/administrator chooses the labels, or 'none' where confinement is
disabled. With dynamic label generation, libvirt will always automatically relabel any resources
associated with the virtual machine. With static label assignment, by default, the administrator or
application must ensure labels are set correctly on any resources, however, automatic relabeling can be
enabled if needed.

If more than one security driver is used by libvirt, multiple seclabel tags can be used, one for each driver
and the security driver referenced by each tag can be defined using the attribute model. Valid input XML
configurations for the top-level security label are:

Virtualization Deployment and Administration Guide

522

Figure 24.88. Security label

If no 'type' attribute is provided in the input XML, then the security driver default setting will be used,
which may be either 'none' or 'dynamic'. If a <baselabel> is set but no 'type' is set, then the
type is presumed to be 'dynamic'. When viewing the XML for a running guest virtual machine with
automatic resource relabeling active, an additional XML element, imagelabel, will be included. This is
an output-only element, so will be ignored in user supplied XML documents.

The following elements can be manipulated with the following values:

type - Either static, dynamic or none to determine whether libvirt automatically generates a
unique security label or not.

model - A valid security model name, matching the currently activated security model.

relabel - Either yes or no. This must always be yes if dynamic label assignment is used.
With static label assignment it will default to no.

<label> - If static labeling is used, this must specify the full security label to assign to the virtual
domain. The format of the content depends on the security driver in use:

SELinux: a SELinux context.

AppArmor: an AppArmor profile.

DAC: owner and group separated by colon. They can be defined both as user/group names
or UID/GID. The driver will first try to parse these values as names, but a leading plus sign
can used to force the driver to parse them as UID or GID.

<baselabel> - If dynamic labeling is used, this can optionally be used to specify the base
security label. The format of the content depends on the security driver in use.

<imagelabel> - This is an output only element, which shows the security label used on
resources associated with the virtual domain. The format of the content depends on the security
driver in use. When relabeling is in effect, it is also possible to fine-tune the labeling done for
specific source file names, by either disabling the labeling (useful if the file exists on NFS or
other file system that lacks security labeling) or requesting an alternate label (useful when a

 <seclabel type='dynamic' model='selinux'/>

 <seclabel type='dynamic' model='selinux'>
 <baselabel>system_u:system_r:my_svirt_t:s0</baselabel>
 </seclabel>

 <seclabel type='static' model='selinux' relabel='no'>
 <label>system_u:system_r:svirt_t:s0:c392,c662</label>
 </seclabel>

 <seclabel type='static' model='selinux' relabel='yes'>
 <label>system_u:system_r:svirt_t:s0:c392,c662</label>
 </seclabel>

 <seclabel type='none'/>

CHAPTER 24. MANIPULATING THE DOMAIN XML

523

management application creates a special label to allow sharing of some, but not all, resources
between domains). When a seclabel element is attached to a specific path rather than the top-
level domain assignment, only the attribute relabel or the sub-element label are supported.

24.22. A SAMPLE CONFIGURATION FILE

KVM hardware accelerated guest virtual machine on AMD64 and Intel 64:

Figure 24.89. Example domain XML configuration

<domain type='kvm'>
 <name>demo2</name>
 <uuid>4dea24b3-1d52-d8f3-2516-782e98a23fa0</uuid>
 <memory>131072</memory>
 <vcpu>1</vcpu>
 <os>
 <type arch="x86_64">hvm</type>
 </os>
 <clock sync="localtime"/>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/demo2.img'/>
 <target dev='hda'/>
 </disk>
 <interface type='network'>
 <source network='default'/>
 <mac address='24:42:53:21:52:45'/>
 </interface>
 <graphics type='vnc' port='-1' keymap='de'/>
 </devices>
</domain>

Virtualization Deployment and Administration Guide

524

PART III. APPENDICES

PART III. APPENDICES

525

APPENDIX A. TROUBLESHOOTING
This chapter covers common problems and solutions for Red Hat Enterprise Linux 7 virtualization issues.

Read this chapter to develop an understanding of some of the common problems associated with
virtualization technologies. It is recommended that you experiment and test virtualization on Red Hat
Enterprise Linux 7 to develop your troubleshooting skills.

If you cannot find the answer in this document, there may be an answer online from the virtualization
community. Refer to Section D.1, “Online Resources” for a list of Linux virtualization websites.

A.1. DEBUGGING AND TROUBLESHOOTING TOOLS

This section summarizes the system administrator applications, the networking utilities, and debugging
tools. You can use these standard system administration tools and logs to assist with troubleshooting:

kvm_stat - Retrieves KVM runtime statistics. For more information, see Section A.4,
“kvm_stat”.

ftrace - Traces kernel events. For more information, see the Red Hat Enterprise Linux
Developer Guide.

vmstat - Displays virtual memory statistics. For more information, use the man vmstat
command.

iostat - Provides I/O load statistics. For more information, see the Red Hat Enterprise Linux
Performance Tuning Guide

lsof - Lists open files. For more information, use the man lsof command.

systemtap - A scripting utility for monitoring the operating system. For more information, see
the Red Hat Enterprise Linux Developer Guide.

crash - Analyzes kernel crash dump data or a live system. For more information, see the Red
Hat Enterprise Linux Kernel Crash Dump Guide.

sysrq - A key combination that the kernel responds to even if the console is unresponsive. For
more information, see the Red Hat Knowledge Base.

These networking utilities can assist with troubleshooting virtualization networking problems:

ip addr, ip route, and ip monitor

tcpdump - diagnoses packet traffic on a network. This command is useful for finding network
abnormalities and problems with network authentication. There is a graphical version of
tcpdump, named wireshark.

brctl - A networking utility that inspects and configures the Ethernet bridge configuration in the
Linux kernel. For example:

$ brctl show
bridge-name bridge-id STP enabled interfaces
--

virtbr0 8000.feffffff yes eth0

Virtualization Deployment and Administration Guide

526

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/ftrace.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Performance_Monitoring_Tools-iostat.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/systemtap.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/chap-analyzing-a-core-dump.html
https://access.redhat.com/solutions/2023

$ brctl showmacs virtbr0
port-no mac-addr local? aging
timer
1 fe:ff:ff:ff:ff: yes 0.00
2 fe:ff:ff:fe:ff: yes 0.00
$ brctl showstp virtbr0
virtbr0
bridge-id 8000.fefffffffff
designated-root 8000.fefffffffff
root-port 0 path-cost 0
max-age 20.00 bridge-max-age
20.00
hello-time 2.00 bridge-hello-time
2.00
forward-delay 0.00 bridge-forward-delay
0.00
aging-time 300.01
hello-timer 1.43 tcn-timer
0.00
topology-change-timer 0.00 gc-timer
0.02

Listed below are some other useful commands for troubleshooting virtualization:

strace is a command which traces system calls and events received and used by another
process.

vncviewer connects to a VNC server running on your server or a virtual machine. Install
vncviewer using the yum install tigervnc command.

vncserver starts a remote desktop on your server. Gives you the ability to run graphical user
interfaces such as virt-manager via a remote session. Install vncserver using the yum install
tigervnc-server command.

In addition to all the commands listed above, examining virtualization logs can be helpful. For more
information, see Section A.6, “Virtualization Logs”.

A.2. CREATING DUMP FILES

You can request a dump of the core of a guest virtual machine to a file so that errors in the virtual
machine can be diagnosed, for example by the crash utility.

APPENDIX A. TROUBLESHOOTING

527

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/kernel_crash_dump_guide/chap-analyzing-a-core-dump

WARNING

In Red Hat Enterprise Linux 7.5 and later, the Kernel Address Space Randomization
(KASLR) feature prevents guest dump files from being readable by crash. To fix
this, add the <vmcoreinfo/> element to the <features> section of the XML
configuration files of your guests.

Note, however, that migrating guests with <vmcoreinfo/> fails if the destination
host is using an OS that does not support <vmcoreinfo/>. These include Red Hat
Enterprise Linux 7.4 and earlier, as well as Red Hat Enterprise Linux 6.9 and earlier.

A.2.1. Creating virsh Dump Files

Executing the virsh dump command sends a request to dump the core of a guest virtual machine to a
file so errors in the virtual machine can be diagnosed. Running this command may require you to
manually ensure proper permissions on file and path specified by the argument corefilepath. The
virsh dump command is similar to a core dump(or the crash utility).

For further information, refer to Creating a Dump File of a Guest Virtual Machine's Core.

A.2.2. Saving a Core Dump Using a Python Script

The dump-guest-memory.py python script implements a GNU Debugger (GDB) extension that
extracts and saves a guest virtual machine's memory from the core dump after the qemu-kvm process
crashes on a host. If the host-side QEMU process crash is related to guest actions, investigating the
guest state at the time of the QEMU process crash could be useful.

The python script implements a GDB extension. This is a new command for the GDB. After opening the
core dump file of the original (crashed) QEMU process with GDB, the python script can be loaded into
GDB. The new command can then be executed from the GDB prompt. This extracts a guest memory
dump from the QEMU core dumpto a new local file.

To use the dump-guest-memory.py python script:

1. Install the qemu-kvm-debuginfo package on the system.

2. Launch GDB, opening the core dump file saved for the crashed /usr/libexec/qemu-kvm
binary. The debug symbols load automatically.

3. Load the new command in GDB:

source /usr/share/qemu-kvm/dump-guest-memory.py

NOTE

After loading the python script, the built-in GDB help command can provide
detailed information about the dump-guest-memory extension.

4. Run the command in GDB. For example:



Virtualization Deployment and Administration Guide

528

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_security_guide/sect-virtualization_security_guide-guest_security-KASLR

dump-guest-memory /home/user/extracted-vmcore X86_64

5. Open /home/user/extracted-vmcore with the crash utility for guest kernel analysis.

For more information about extracting guest virtual machine cores from QEMU core files for use with the
crash utility, refer to How to extract ELF cores from 'gcore' generated qemu core files for use with the
'crash' utility.

A.3. CAPTURING TRACE DATA ON A CONSTANT BASIS USING THE
SYSTEMTAP FLIGHT RECORDER

You can capture QEMU trace data all the time using a systemtap initscript provided in the qemu-kvm
package. This package uses SystemTap's flight recorder mode to trace all running guest virtual
machines and to save the results to a fixed-size buffer on the host. Old trace entries are overwritten by
new entries when the buffer is filled.

Procedure A.1. Configuring and running systemtap

1. Install the package
Install the systemtap-initscript package by running the following command:

yum install systemtap-initscript

2. Copy the configuration file
Copy the systemtap scripts and the configuration files to the systemtap directory by running the
following commands:

cp /usr/share/qemu-kvm/systemtap/script.d/qemu_kvm.stp
/etc/systemtap/script.d/
cp /usr/share/qemu-kvm/systemtap/conf.d/qemu_kvm.conf
/etc/systemtap/conf.d/

The set of trace events to enable is given in qemu_kvm.stp. This SystemTap script can be
customized to add or remove trace events provided in
/usr/share/systemtap/tapset/qemu-kvm-simpletrace.stp.

SystemTap customizations can be made to qemu_kvm.conf to control the flight recorder buffer
size and whether to store traces in memory only or in the disk as well.

3. Start the service
Start the systemtap service by running the following command:

systemctl start systemtap qemu_kvm

4. Make systemtap enabled to run at boot time
Enable the systemtap service to run at boot time by running the following command:

systemctl enable systemtap qemu_kvm

5. Confirmation the service is running
Confirm that the service is working by running the following command:

APPENDIX A. TROUBLESHOOTING

529

https://access.redhat.com/solutions/2292431

systemctl status systemtap qemu_kvm
qemu_kvm is running...

Procedure A.2. Inspecting the trace buffer

1. Create a trace buffer dump file
Create a trace buffer dump file called trace.log and place it in the tmp directory by running the
following command:

staprun -A qemu_kvm >/tmp/trace.log

You can change the file name and location to something else.

2. Start the service
As the previous step stops the service, start it again by running the following command:

systemctl start systemtap qemu_kvm

3. Convert the trace contents into a readable format
To convert the trace file contents into a more readable format, enter the following command:

/usr/share/qemu-kvm/simpletrace.py --no-header /usr/share/qemu-
kvm/trace-events /tmp/trace.log

NOTE

The following notes and limitations should be noted:

The systemtap service is disabled by default.

There is a small performance penalty when this service is enabled, but it depends
on which events are enabled in total.

There is a README file located in /usr/share/doc/qemu-kvm-
*/README.systemtap.

A.4. KVM_STAT

The kvm_stat command is a python script which retrieves runtime statistics from the kvm kernel
module. The kvm_stat command can be used to diagnose guest behavior visible to kvm. In particular,
performance related issues with guests. Currently, the reported statistics are for the entire system; the
behavior of all running guests is reported. To run this script you need to install the qemu-kvm-tools
package. For more information, refer to Section 2.2, “Installing Virtualization Packages on an Existing
Red Hat Enterprise Linux System”.

The kvm_stat command requires that the kvm kernel module is loaded and debugfs is mounted. If
either of these features are not enabled, the command will output the required steps to enable debugfs
or the kvm module. For example:

kvm_stat
Please mount debugfs ('mount -t debugfs debugfs /sys/kernel/debug')
and ensure the kvm modules are loaded

Virtualization Deployment and Administration Guide

530

Mount debugfs if required:

mount -t debugfs debugfs /sys/kernel/debug

kvm_stat Output

The kvm_stat command outputs statistics for all guests and the host. The output is updated until the
command is terminated (using Ctrl+c or the q key). Note that the output you see on your screen may
differ. For an explanation of the output elements, click any of the terms to link to the defintion.

 # kvm_stat

 kvm statistics
 kvm_exit 17724 66
 Individual exit reasons follow, refer to kvm_exit (NAME) for more
information.
 kvm_exit(CLGI) 0 0
 kvm_exit(CPUID) 0 0
 kvm_exit(CR0_SEL_WRITE) 0 0
 kvm_exit(EXCP_BASE) 0 0
 kvm_exit(FERR_FREEZE) 0 0
 kvm_exit(GDTR_READ) 0 0
 kvm_exit(GDTR_WRITE) 0 0
 kvm_exit(HLT) 11 11
 kvm_exit(ICEBP) 0 0
 kvm_exit(IDTR_READ) 0 0
 kvm_exit(IDTR_WRITE) 0 0
 kvm_exit(INIT) 0 0
 kvm_exit(INTR) 0 0
 kvm_exit(INVD) 0 0
 kvm_exit(INVLPG) 0 0
 kvm_exit(INVLPGA) 0 0
 kvm_exit(IOIO) 0 0
 kvm_exit(IRET) 0 0
 kvm_exit(LDTR_READ) 0 0
 kvm_exit(LDTR_WRITE) 0 0
 kvm_exit(MONITOR) 0 0
 kvm_exit(MSR) 40 40
 kvm_exit(MWAIT) 0 0
 kvm_exit(MWAIT_COND) 0 0
 kvm_exit(NMI) 0 0
 kvm_exit(NPF) 0 0
 kvm_exit(PAUSE) 0 0
 kvm_exit(POPF) 0 0
 kvm_exit(PUSHF) 0 0
 kvm_exit(RDPMC) 0 0
 kvm_exit(RDTSC) 0 0
 kvm_exit(RDTSCP) 0 0
 kvm_exit(READ_CR0) 0 0
 kvm_exit(READ_CR3) 0 0
 kvm_exit(READ_CR4) 0 0
 kvm_exit(READ_CR8) 0 0
 kvm_exit(READ_DR0) 0 0
 kvm_exit(READ_DR1) 0 0
 kvm_exit(READ_DR2) 0 0
 kvm_exit(READ_DR3) 0 0

APPENDIX A. TROUBLESHOOTING

531

 kvm_exit(READ_DR4) 0 0
 kvm_exit(READ_DR5) 0 0
 kvm_exit(READ_DR6) 0 0
 kvm_exit(READ_DR7) 0 0
 kvm_exit(RSM) 0 0
 kvm_exit(SHUTDOWN) 0 0
 kvm_exit(SKINIT) 0 0
 kvm_exit(SMI) 0 0
 kvm_exit(STGI) 0 0
 kvm_exit(SWINT) 0 0
 kvm_exit(TASK_SWITCH) 0 0
 kvm_exit(TR_READ) 0 0
 kvm_exit(TR_WRITE) 0 0
 kvm_exit(VINTR) 1 1
 kvm_exit(VMLOAD) 0 0
 kvm_exit(VMMCALL) 0 0
 kvm_exit(VMRUN) 0 0
 kvm_exit(VMSAVE) 0 0
 kvm_exit(WBINVD) 0 0
 kvm_exit(WRITE_CR0) 2 2
 kvm_exit(WRITE_CR3) 0 0
 kvm_exit(WRITE_CR4) 0 0
 kvm_exit(WRITE_CR8) 0 0
 kvm_exit(WRITE_DR0) 0 0
 kvm_exit(WRITE_DR1) 0 0
 kvm_exit(WRITE_DR2) 0 0
 kvm_exit(WRITE_DR3) 0 0
 kvm_exit(WRITE_DR4) 0 0
 kvm_exit(WRITE_DR5) 0 0
 kvm_exit(WRITE_DR6) 0 0
 kvm_exit(WRITE_DR7) 0 0
 kvm_entry 17724 66
 kvm_apic 13935 51
 kvm_emulate_insn 13924 51
 kvm_mmio 13897 50
 varl-kvm_eoi 3222 12
 kvm_inj_virq 3222 12
 kvm_apic_accept_irq 3222 12
 kvm_pv_eoi 3184 12
 kvm_fpu 376 2
 kvm_cr 177 1
 kvm_apic_ipi 278 1
 kvm_msi_set_irq 295 0
 kvm_pio 79 0
 kvm_userspace_exit 52 0
 kvm_set_irq 50 0
 kvm_pic_set_irq 50 0
 kvm_ioapic_set_irq 50 0
 kvm_ack_irq 25 0
 kvm_cpuid 90 0
 kvm_msr 12 0

Explanation of variables:

kvm_ack_irq - Number of interrupt controller (PIC/IOAPIC) interrupt acknowledgements.

Virtualization Deployment and Administration Guide

532

kvm_age_page - Number of page age iterations by memory management unit (MMU) notifiers.

kvm_apic - Number of APIC register accesses.

kvm_apic_accept_irq - Number of interrupts accepted into local APIC.

kvm_apic_ipi - Number of inter processor interrupts.

kvm_async_pf_completed - Number of completions of asynchronous page faults.

kvm_async_pf_doublefault - Number of asynchronous page fault halts.

kvm_async_pf_not_present - Number of initializations of asynchronous page faults.

kvm_async_pf_ready - Number of completions of asynchronous page faults.

kvm_cpuid - Number of CPUID instructions executed.

kvm_cr - Number of trapped and emulated control register (CR) accesses (CR0, CR3, CR4,
CR8).

kvm_emulate_insn - Number of emulated instructions.

kvm_entry - Number of emulated instructions.

kvm_eoi - Number of Advanced Programmable Interrupt Controller (APIC) end of interrupt
(EOI) notifications.

kvm_exit - Number of VM-exits.

kvm_exit (NAME) - Individual exits that are processor-specific. Refer to your processor's
documentation for more information.

kvm_fpu - Number of KVM floating-point units (FPU) reloads.

kvm_hv_hypercall - Number of Hyper-V hypercalls.

kvm_hypercall - Number of non-Hyper-V hypercalls.

kvm_inj_exception - Number of exceptions injected into guest.

kvm_inj_virq - Number of interrupts injected into guest.

kvm_invlpga - Number of INVLPGA instructions intercepted.

kvm_ioapic_set_irq - Number of interrupts level changes to the virtual IOAPIC controller.

kvm_mmio - Number of emulated memory-mapped I/O (MMIO) operations.

kvm_msi_set_irq - Number of message-signaled interrupts (MSI).

kvm_msr - Number of model-specific register (MSR) accesses.

kvm_nested_intercepts - Number of L1 ⇒ L2 nested SVM switches.

kvm_nested_vmrun - Number of L1 ⇒ L2 nested SVM switches.

APPENDIX A. TROUBLESHOOTING

533

kvm_nested_intr_vmexit - Number of nested VM-exit injections due to interrupt window.

kvm_nested_vmexit - Exits to hypervisor while executing nested (L2) guest.

kvm_nested_vmexit_inject - Number of L2 ⇒ L1 nested switches.

kvm_page_fault - Number of page faults handled by hypervisor.

kvm_pic_set_irq - Number of interrupts level changes to the virtual programmable interrupt
controller (PIC).

kvm_pio - Number of emulated programmed I/O (PIO) operations.

kvm_pv_eoi - Number of paravirtual end of input (EOI) events.

kvm_set_irq - Number of interrupt level changes at the generic IRQ controller level (counts
PIC, IOAPIC and MSI).

kvm_skinit - Number of SVM SKINIT exits.

kvm_track_tsc - Number of time stamp counter (TSC) writes.

kvm_try_async_get_page - Number of asynchronous page fault attempts.

kvm_update_master_clock - Number of pvclock masterclock updates.

kvm_userspace_exit - Number of exits to user space.

kvm_write_tsc_offset - Number of TSC offset writes.

vcpu_match_mmio - Number of SPTE cached memory-mapped I/O (MMIO) hits.

The output information from the kvm_stat command is exported by the KVM hypervisor as pseudo files
which are located in the /sys/kernel/debug/tracing/events/kvm/ directory.

A.5. TROUBLESHOOTING WITH SERIAL CONSOLES

Linux kernels can output information to serial ports. This is useful for debugging kernel panics and
hardware issues with video devices or headless servers.

To enable serial console output for KVM guests:

1. Ensure that the domain XML file of the guest includes configuration for the serial console. For
example:

2. On the guest, follow the How can I enable serial console for Red Hat Enterprise Linux 7? article
on Red Hat Knowledgebase.

 <console type='pty'>
 <source path='/dev/pts/16'/>
 <target type='virtio' port='1'/>
 <alias name='console1'/>
 </console>

Virtualization Deployment and Administration Guide

534

https://access.redhat.com/solutions/277793

On the host, you can then access the serial console with the following command, where guestname is
the name of the guest virtual machine:

virsh console guestname

You can also use virt-manager to display the virtual text console. In the guest console window, select
Serial 1 in Text Consoles from the View menu.

A.6. VIRTUALIZATION LOGS

The following methods can be used to access logged data about events on your hypervisor and your
guests. This can be helpful when troubleshooting virtualization on your system.

Each guest has a log, saved in the /var/log/libvirt/qemu/ directory. The logs are named
GuestName.log and are periodically compressed when a size limit is reached.

To view libvirt events in the systemd Journal, use the following command:

journalctl _SYSTEMD_UNIT=libvirtd.service

The auvirt command displays audit results related to guests on your hypervisor. The displayed
data can be narrowed down by selecting specific guests, time frame, and information format. For
example, the following command provides a summary of events on the testguest virtual
machine on the current day.

auvirt --start today --vm testguest --summary
Range of time for report: Mon Sep 4 16:44 - Mon Sep 4 17:04
Number of guest starts: 2
Number of guest stops: 1
Number of resource assignments: 14
Number of related AVCs: 0
Number of related anomalies: 0
Number of host shutdowns: 0
Number of failed operations: 0

You can also configure auvirt information to be automatically included in the systemd Journal.
To do so, edit the /etc/libvirt/libvirtd.conf file and set the value of the
audit_logging parameter to 1.

For more information, see the auvirt man page.

If you encounter any errors with the Virtual Machine Manager, you can review the generated
data in the virt-manager.log file in the $HOME/.virt-manager/ directory.

For audit logs of the hypervisor system, see the /var/log/audit/audit.log file.

Depending on the guest operating system, various system log files may also be saved on the
guest.

For more information about logging in Red Hat Enterprise Linux, see the System Administrator's Guide.

A.7. LOOP DEVICE ERRORS

APPENDIX A. TROUBLESHOOTING

535

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Viewing_and_Managing_Log_Files.html

If file-based guest images are used you may have to increase the number of configured loop devices.
The default configuration allows up to eight active loop devices. If more than eight file-based guests or
loop devices are needed the number of loop devices configured can be adjusted in the
/etc/modprobe.d/directory. Add the following line:

options loop max_loop=64

This example uses 64 but you can specify another number to set the maximum loop value. You may also
have to implement loop device backed guests on your system. To use a loop device backed guests for a
full virtualized system, use the phy: device or file: file commands.

A.8. LIVE MIGRATION ERRORS

There may be cases where a guest changes memory too fast, and the live migration process has to
transfer it over and over again, and fails to finish (converge).

The current live-migration implementation has a default migration time configured to 30ms. This value
determines the guest pause time at the end of the migration in order to transfer the leftovers. Higher
values increase the odds that live migration will converge

A.9. ENABLING INTEL VT-X AND AMD-V VIRTUALIZATION HARDWARE
EXTENSIONS IN BIOS

NOTE

To expand your expertise, you might also be interested in the Red Hat Virtualization
(RH318) training course.

This section describes how to identify hardware virtualization extensions and enable them in your BIOS if
they are disabled.

The Intel VT-x extensions can be disabled in the BIOS. Certain laptop vendors have disabled the Intel
VT-x extensions by default in their CPUs.

The virtualization extensions cannot be disabled in the BIOS for AMD-V.

Refer to the following section for instructions on enabling disabled virtualization extensions.

Verify the virtualization extensions are enabled in BIOS. The BIOS settings for Intel VT or AMD-V are
usually in the Chipset or Processor menus. The menu names may vary from this guide, the
virtualization extension settings may be found in Security Settings or other non standard menu
names.

Procedure A.3. Enabling virtualization extensions in BIOS

1. Reboot the computer and open the system's BIOS menu. This can usually be done by pressing
the delete key, the F1 key or Alt and F4 keys depending on the system.

2. Enabling the virtualization extensions in BIOS

Virtualization Deployment and Administration Guide

536

http://www.redhat.com/en/services/training/rh318-red-hat-enterprise-virtualization?cr=cp|tr|pdtxt|00004

NOTE

Many of the steps below may vary depending on your motherboard, processor
type, chipset and OEM. Refer to your system's accompanying documentation for
the correct information on configuring your system.

a. Open the Processor submenu The processor settings menu may be hidden in the
Chipset, Advanced CPU Configuration or Northbridge.

b. Enable Intel Virtualization Technology (also known as Intel VT-x). AMD-V
extensions cannot be disabled in the BIOS and should already be enabled. The virtualization
extensions may be labeled Virtualization Extensions, Vanderpool or various other
names depending on the OEM and system BIOS.

c. Enable Intel VT-d or AMD IOMMU, if the options are available. Intel VT-d and AMD IOMMU
are used for PCI device assignment.

d. Select Save & Exit.

3. Reboot the machine.

4. When the machine has booted, run grep -E "vmx|svm" /proc/cpuinfo. Specifying --
color is optional, but useful if you want the search term highlighted. If the command outputs,
the virtualization extensions are now enabled. If there is no output your system may not have the
virtualization extensions or the correct BIOS setting enabled.

A.10. SHUTTING DOWN RED HAT ENTERPRISE LINUX 6 GUESTS ON
A RED HAT ENTERPRISE LINUX 7 HOST

Installing Red Hat Enterprise Linux 6 guest virtual machines with the Minimal installation option
does not install the acpid (acpi daemon). Red Hat Enterprise Linux 7 no longer requires this package, as
it has been taken over by systemd. However, Red Hat Enterprise Linux 6 guest virtual machines
running on a Red Hat Enterprise Linux 7 host still require it.

Without the acpid package, the Red Hat Enterprise Linux 6 guest virtual machine does not shut down
when the virsh shutdown command is executed. The virsh shutdown command is designed to
gracefully shut down guest virtual machines.

Using the virsh shutdown command is easier and safer for system administration. Without graceful
shut down with the virsh shutdown command a system administrator must log into a guest virtual
machine manually or send the Ctrl-Alt-Del key combination to each guest virtual machine.

NOTE

Other virtualized operating systems may be affected by this issue. The virsh shutdown
command requires that the guest virtual machine operating system is configured to handle
ACPI shut down requests. Many operating systems require additional configurations on
the guest virtual machine operating system to accept ACPI shut down requests.

Procedure A.4. Workaround for Red Hat Enterprise Linux 6 guests

1. Install the acpid package
The acpid service listens and processes ACPI requests.

APPENDIX A. TROUBLESHOOTING

537

Log into the guest virtual machine and install the acpid package on the guest virtual machine:

yum install acpid

2. Enable the acpid service on the guest
Set the acpid service to start during the guest virtual machine boot sequence and start the
service:

chkconfig acpid on
service acpid start

3. Prepare guest domain XML
Edit the domain XML file to include the following element. Replace the virtio serial port with
org.qemu.guest_agent.0 and use your guest's name instead of the one shown. In this
example, the guest is guest1. Remember to save the file.

Figure A.1. Guest XML replacement

4. Install the QEMU guest agent
Install the QEMU guest agent (QEMU-GA) and start the service as directed in the
Red Hat Enterprise Linux 6 Virtualization Administration Guide.

5. Shut down the guest

a. List the known guest virtual machines so you can retrieve the name of the one you want to
shutdown.

virsh list --all
 Id Name State

 14 guest1 running

b. Shut down the guest virtual machine.

virsh shutdown guest1

guest virtual machine guest1 is being shutdown

c. Wait a few seconds for the guest virtual machine to shut down. Verify it is shutdown.

virsh list --all
 Id Name State

 14 guest1 shut off

<channel type='unix'>
 <source mode='bind' path='/var/lib/libvirt/qemu/guest1.agent'/>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
</channel>

Virtualization Deployment and Administration Guide

538

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-QEMU_Guest_Agent.html

d. Start the guest virtual machine named guest1, with the XML file you edited.

virsh start guest1

e. Shut down the acpi in the guest1 guest virtual machine.

virsh shutdown --mode acpi guest1

f. List all the guest virtual machines again, guest1 should still be on the list, and it should
indicate it is shut off.

virsh list --all
 Id Name State

 14 guest1 shut off

g. Start the guest virtual machine named guest1, with the XML file you edited.

virsh start guest1

h. Shut down the guest1 guest virtual machine guest agent.

virsh shutdown --mode agent guest1

i. List the guest virtual machines. guest1 should still be on the list, and it should indicate it is
shut off.

virsh list --all
 Id Name State

 guest1 shut off

The guest virtual machine will shut down using the virsh shutdown command for the consecutive
shutdowns, without using the workaround described above.

In addition to the method described above, a guest can be automatically shutdown, by stopping the
libvirt-guests service. Refer to Section A.11, “Optional Workaround to Allow for Graceful
Shutdown” for more information on this method.

A.11. OPTIONAL WORKAROUND TO ALLOW FOR GRACEFUL
SHUTDOWN

The libvirt-guests service has parameter settings that can be configured to assure that the guest
can shutdown properly. It is a package that is a part of the libvirt installation and is installed by default.
This service automatically saves guests to the disk when the host shuts down, and restores them to their
pre-shutdown state when the host reboots. By default, this setting is set to suspend the guest. If you
want the guest to be gracefully shutdown, you will need to change one of the parameters of the
libvirt-guests configuration file.

Procedure A.5. Changing the libvirt-guests service parameters to allow for the graceful shutdown
of guests

APPENDIX A. TROUBLESHOOTING

539

The procedure described here allows for the graceful shutdown of guest virtual machines when the host
physical machine is stuck, powered off, or needs to be restarted.

1. Open the configuration file
The configuration file is located in /etc/sysconfig/libvirt-guests. Edit the file, remove
the comment mark (#) and change the ON_SHUTDOWN=suspend to ON_SHUTDOWN=shutdown.
Remember to save the change.

$ vi /etc/sysconfig/libvirt-guests

URIs to check for running guests
example: URIS='default xen:/// vbox+tcp://host/system lxc:///'

#URIS=default

action taken on host boot
- start all guests which were running on shutdown are started on
boot
regardless on their autostart settings
- ignore libvirt-guests init script won't start any guest on
boot, however,
guests marked as autostart will still be automatically
started by
libvirtd

#ON_BOOT=start

Number of seconds to wait between each guest start. Set to 0 to

allow
parallel startup.
#START_DELAY=0

action taken on host shutdown
- suspend all running guests are suspended using virsh
managedsave
- shutdown all running guests are asked to shutdown. Please be
careful with
this settings since there is no way to distinguish
between a
guest which is stuck or ignores shutdown requests and
a guest
which just needs a long time to shutdown. When
setting
ON_SHUTDOWN=shutdown, you must also set
SHUTDOWN_TIMEOUT to a
value suitable for your guests.

ON_SHUTDOWN=shutdown

If set to non-zero, shutdown will suspend guests concurrently.

Virtualization Deployment and Administration Guide

540

Number of
guests on shutdown at any time will not exceed number set in this

variable.
#PARALLEL_SHUTDOWN=0

Number of seconds we're willing to wait for a guest to shut down.
If parallel
shutdown is enabled, this timeout applies as a timeout for
shutting down all
guests on a single URI defined in the variable URIS. If this is 0,
then there
is no time out (use with caution, as guests might not respond to a
shutdown
request). The default value is 300 seconds (5 minutes).

#SHUTDOWN_TIMEOUT=300

If non-zero, try to bypass the file system cache when saving and
restoring guests, even though this may give slower operation for
some file systems.

#BYPASS_CACHE=0

URIS - checks the specified connections for a running guest. The Default setting functions in
the same manner as virsh does when no explicit URI is set In addition, one can explicitly set
the URI from /etc/libvirt/libvirt.conf. Note that when using the libvirt configuration
file default setting, no probing will be used.

ON_BOOT - specifies the action to be done to / on the guests when the host boots. The
start option starts all guests that were running prior to shutdown regardless on their autostart
settings. The ignore option will not start the formally running guest on boot, however, any
guest marked as autostart will still be automatically started by libvirtd.

The START_DELAY - sets a delay interval in between starting up the guests. This time period is
set in seconds. Use the 0 time setting to make sure there is no delay and that all guests are
started simultaneously.

ON_SHUTDOWN - specifies the action taken when a host shuts down. Options that can be set
include: suspend which suspends all running guests using virsh managedsave and
shutdown which shuts down all running guests. It is best to be careful with using the
shutdown option as there is no way to distinguish between a guest which is stuck or ignores
shutdown requests and a guest that just needs a longer time to shutdown. When setting the
ON_SHUTDOWN=shutdown, you must also set SHUTDOWN_TIMEOUT to a value suitable for
the guests.

PARALLEL_SHUTDOWN Dictates that the number of guests on shutdown at any time will not
exceed number set in this variable and the guests will be suspended concurrently. If set to 0,
then guests are not shutdown concurrently.

APPENDIX A. TROUBLESHOOTING

541

Number of seconds to wait for a guest to shut down. If SHUTDOWN_TIMEOUT is enabled, this
timeout applies as a timeout for shutting down all guests on a single URI defined in the variable
URIS. If SHUTDOWN_TIMEOUT is set to 0, then there is no timeout (use with caution, as guests
might not respond to a shutdown request). The default value is 300 seconds (5 minutes).

BYPASS_CACHE can have 2 values, 0 to disable and 1 to enable. If enabled it will by-pass the
file system cache when guests are restored. Note that setting this may effect performance and
may cause slower operation for some file systems.

2. Start libvirt-guests service
If you have not started the service, start the libvirt-guests service. Do not restart the
service as this will cause all running guest virtual machines to shutdown.

A.12. KVM NETWORKING PERFORMANCE

By default, KVM virtual machines are assigned a virtual Realtek 8139 (rtl8139) NIC (network interface
controller).

The rtl8139 virtualized NIC works fine in most environments,but this device can suffer from performance
degradation problems on some networks, such as a 10 Gigabit Ethernet.

To improve performance, you can switch to the paravirtualized network driver.

NOTE

Note that the virtualized Intel PRO/1000 (e1000) driver is also supported as an emulated
driver choice. To use the e1000 driver, replace virtio in the procedure below with
e1000. For the best performance it is recommended to use the virtio driver.

Procedure A.6. Switching to the virtio driver

1. Shut down the guest operating system.

2. Edit the guest's configuration file with the virsh command (where GUEST is the guest's name):

virsh edit GUEST

The virsh edit command uses the $EDITOR shell variable to determine which editor to use.

3. Find the network interface section of the configuration. This section resembles the snippet
below:

<interface type='network'>
 [output truncated]
 <model type='rtl8139' />
</interface>

4. Change the type attribute of the model element from 'rtl8139' to 'virtio'. This will change
the driver from the rtl8139 driver to the e1000 driver.

Virtualization Deployment and Administration Guide

542

<interface type='network'>
 [output truncated]
 <model type='virtio' />
</interface>

5. Save the changes and exit the text editor

6. Restart the guest operating system.

Creating New Guests Using Other Network Drivers

Alternatively, new guests can be created with a different network driver. This may be required if you are
having difficulty installing guests over a network connection. This method requires you to have at least
one guest already created (possibly installed from CD or DVD) to use as a template.

1. Create an XML template from an existing guest (in this example, named Guest1):

virsh dumpxml Guest1 > /tmp/guest-template.xml

2. Copy and edit the XML file and update the unique fields: virtual machine name, UUID, disk
image, MAC address, and any other unique parameters. Note that you can delete the UUID and
MAC address lines and virsh will generate a UUID and MAC address.

cp /tmp/guest-template.xml /tmp/new-guest.xml
vi /tmp/new-guest.xml

Add the model line in the network interface section:

 <interface type='network'>
 [output truncated]
 <model type='virtio' />
</interface>

3. Create the new virtual machine:

virsh define /tmp/new-guest.xml
virsh start new-guest

A.13. WORKAROUND FOR CREATING EXTERNAL SNAPSHOTS WITH
LIBVIRT

There are two classes of snapshots for KVM guests:

Internal snapshots are contained completely within a qcow2 file, and fully supported by libvirt,
allowing for creating, deleting, and reverting of snapshots. This is the default setting used by
libvirt when creating a snapshot, especially when no option is specified. This file type take
slightly longer than others for creating the snapshot, and has the drawback of requiring qcow2
disks.

IMPORTANT

Internal snapshots are not being actively developed, and Red Hat discourages
their use.

APPENDIX A. TROUBLESHOOTING

543

External snapshots work with any type of original disk image, can be taken with no guest
downtime, and are more stable and reliable. As such, external snapshots are recommended for
use on KVM guest virtual machines. However, external snapshots are currently not fully
implemented on Red Hat Enterprise Linux 7, and are not available when using virt-manager.

To create an external snapshot, use the snapshot-create-as with the --diskspec
vda,snapshot=external option, or use the following disk line in the snapshot XML file:

<disk name=’vda’ snapshot=’external’>
 <source file=’/path/to,new’/>
</disk>

At the moment, external snapshots are a one-way operation as libvirt can create them but
cannot do anything further with them. A workaround is described on libvirt upstream pages.

A.14. MISSING CHARACTERS ON GUEST CONSOLE WITH JAPANESE
KEYBOARD

On a Red Hat Enterprise Linux 7 host, connecting a Japanese keyboard locally to a machine may result
in typed characters such as the underscore (the _ character) not being displayed correctly in guest
consoles. This occurs because the required keymap is not set correctly by default.

With Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 7 guests, there is usually no error
message produced when pressing the associated key. However, Red Hat Enterprise Linux 4 and
Red Hat Enterprise Linux 5 guests may display an error similar to the following:

atkdb.c: Unknown key pressed (translated set 2, code 0x0 on
isa0060/serio0).
atkbd.c: Use 'setkeycodes 00 <keycode>' to make it known.

To fix this issue in virt-manager, perform the following steps:

Open the affected guest in virt-manager.

Click View → Details.

Select Display VNC in the list.

Change Auto to ja in the Keymap pull-down menu.

Click the Apply button.

Alternatively, to fix this issue using the virsh edit command on the target guest:

Run virsh edit guestname

Add the following attribute to the <graphics> tag: keymap='ja'. For example:

 <graphics type='vnc' port='-1' autoport='yes' keymap='ja'/>

A.15. GUEST VIRTUAL MACHINE FAILS TO SHUTDOWN

Traditionally, executing a virsh shutdown command causes a power button ACPI event to be sent,

Virtualization Deployment and Administration Guide

544

http://wiki.libvirt.org/page/I_created_an_external_snapshot,_but_libvirt_will_not_let_me_delete_or_revert_to_it

thus copying the same action as when someone presses a power button on a physical machine. Within
every physical machine, it is up to the OS to handle this event. In the past operating systems would just
silently shutdown. Today, the most usual action is to show a dialog asking what should be done. Some
operating systems even ignore this event completely, especially when no users are logged in. When
such operating systems are installed on a guest virtual machine, running virsh shutdown just does
not work (it is either ignored or a dialog is shown on a virtual display). However, if a qemu-guest-agent
channel is added to a guest virtual machine and this agent is running inside the guest virtual machine's
OS, the virsh shutdown command will ask the agent to shut down the guest OS instead of sending
the ACPI event. The agent will call for a shutdown from inside the guest virtual machine OS and
everything works as expected.

Procedure A.7. Configuring the guest agent channel in a guest virtual machine

1. Stop the guest virtual machine.

2. Open the Domain XML for the guest virtual machine and add the following snippet:

Figure A.2. Configuring the guest agent channel

3. Start the guest virtual machine, by running virsh start [domain].

4. Install qemu-guest-agent on the guest virtual machine (yum install qemu-guest-agent)
and make it run automatically at every boot as a service (qemu-guest-agent.service).

A.16. DISABLE SMART DISK MONITORING FOR GUEST VIRTUAL
MACHINES

SMART disk monitoring can be safely disabled as virtual disks and the physical storage devices are
managed by the host physical machine.

service smartd stop
systemctl --del smartd

A.17. LIBGUESTFS TROUBLESHOOTING

A test tool is available to check that libguestfs is working. Enter the following command after installing
libguestfs (root access not required) to test for normal operation:

$ libguestfs-test-tool

This tool prints a large amount of text to test the operation of libguestfs. If the test is successful, the
following text will appear near the end of the output:

===== TEST FINISHED OK =====

<channel type='unix'>
 <source mode='bind'/>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
</channel>

APPENDIX A. TROUBLESHOOTING

545

A.18. TROUBLESHOOTING SR-IOV

This section contains solutions for problems which may affect SR-IOV. If you need additional help, refer
to Section 17.2.4, “Setting PCI device assignment from a pool of SR-IOV virtual functions”.

Error starting the guest

When starting a configured virtual machine, an error occurs as follows:

virsh start test
error: Failed to start domain test
error: Requested operation is not valid: PCI device 0000:03:10.1 is in
use by domain rhel7

This error is often caused by a device that is already assigned to another guest or to the host itself.

Error migrating, saving, or dumping the guest

Attempts to migrate and dump the virtual machine cause an error similar to the following:

virsh dump rhel7/tmp/rhel7.dump

error: Failed to core dump domain rhel7 to /tmp/rhel7.dump
error: internal error: unable to execute QEMU command 'migrate': State
blocked by non-migratable device '0000:00:03.0/vfio-pci'

Because device assignment uses hardware on the specific host where the virtual machine was
started, guest migration and save are not supported when device assignment is in use. Currently, the
same limitation also applies to core-dumping a guest; this may change in the future. It is important to
note that QEMU does not currently support migrate, save, and dump operations on guest virtual
machines with PCI devices attached, unless the --memory-only option is specified. Currently, it
only can support these actions with USB devices. Work is currently being done to improve this in the
future.

A.19. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

This appendix documents common libvirt-related problems and errors along with instructions for dealing
with them.

Locate the error on the table below and follow the corresponding link under Solution for detailed
troubleshooting information.

Table A.1. Common libvirt errors

Error Description of problem Solution

libvirtd failed to
start

The libvirt daemon failed to start.
However, there is no information
about this error in
/var/log/messages.

Section A.19.1, “libvirtd failed to
start”

Virtualization Deployment and Administration Guide

546

Cannot read CA
certificate

This is one of several errors that
occur when the URI fails to
connect to the hypervisor.

Section A.19.2, “The URI Failed to
Connect to the Hypervisor”

Other connectivity errors These are other errors that occur
when the URI fails to connect to
the hypervisor.

Section A.19.2, “The URI Failed to
Connect to the Hypervisor”

Failed to create domain
from vm.xml error:
monitor socket did not
show up.: Connection
refused

The guest virtual machine (or
domain) starting fails and returns
this error or similar.

Section A.19.3, “Guest Starting
Fails with Error: monitor
socket did not show up”

Internal error cannot
find character device
(null)

This error can occur when
attempting to connect a guest's
console. It reports that there is no
serial console configured for the
guest virtual machine.

Section A.19.4, “internal
error cannot find
character device
(null)”

No boot device After building a guest virtual
machine from an existing disk
image, the guest booting stalls.
However, the guest can start
successfully using the QEMU
command directly.

Section A.19.5, “Guest Virtual
Machine Booting Stalls with Error:
No boot device”

The virtual network
"default" has not been
started

If the default network (or other
locally-created network) is unable
to start, any virtual machine
configured to use that network for
its connectivity will also fail to
start.

Section A.19.6, “Virtual network
default has not been started”

PXE boot (or DHCP) on guest
failed

A guest virtual machine starts
successfully, but is unable to
acquire an IP address from
DHCP, boot using the PXE
protocol, or both. This is often a
result of a long forward delay time
set for the bridge, or when the
iptables package and kernel do
not support checksum mangling
rules.

Section A.19.7, “PXE Boot (or
DHCP) on Guest Failed”

Error Description of problem Solution

APPENDIX A. TROUBLESHOOTING

547

Guest can reach outside network,
but cannot reach host when using
macvtap interface

A guest can communicate with
other guests, but cannot connect
to the host machine after being
configured to use a macvtap (or
type='direct') network
interface.

This is actually not an error — it is
the defined behavior of macvtap.

Section A.19.8, “Guest Can
Reach Outside Network, but
Cannot Reach Host When Using
macvtap interface”

Could not add rule to
fixup DHCP response
checksums on network
'default'

This warning message is almost
always harmless, but is often
mistakenly seen as evidence of a
problem.

Section A.19.9, “Could not add
rule to fixup DHCP response
checksums on network 'default'”

Unable to add bridge
br0 port vnet0: No such
device

This error message or the similar
Failed to add tap
interface to bridge
'br0': No such device
reveal that the bridge device
specified in the guest's (or
domain's) <interface>
definition does not exist.

Section A.19.10, “Unable to add
bridge br0 port vnet0: No such
device”

Warning: could not open
/dev/net/tun: no
virtual network
emulation qemu-kvm: -
netdev
tap,script=/etc/my-
qemu-ifup,id=hostnet0:
Device 'tap' could not
be initialized

The guest virtual machine does
not start after configuring a
type='ethernet' (or 'generic
ethernet') interface in the host
system. This error or similar
appears either in
libvirtd.log,
/var/log/libvirt/qemu/n
ame_of_guest.log, or in
both.

Section A.19.11, “Guest is Unable
to Start with Error: warning:
could not open
/dev/net/tun”

Unable to resolve
address name_of_host
service '49155': Name
or service not known

QEMU guest migration fails and
this error message appears with
an unfamiliar host name.

Section A.19.12, “Migration Fails
with error: unable to
resolve address”

Unable to allow access
for disk path
/var/lib/libvirt/images
/qemu.img: No such file
or directory

A guest virtual machine cannot be
migrated because libvirt cannot
access the disk image(s).

Section A.19.13, “Migration Fails
with Unable to allow
access for disk path:
No such file or
directory”

No guest virtual machines are
present when libvirtd is started

The libvirt daemon is
successfully started, but no guest
virtual machines appear to be
present when running virsh
list --all.

Section A.19.14, “No Guest Virtual
Machines are Present when
libvirtd is Started”

Error Description of problem Solution

Virtualization Deployment and Administration Guide

548

Common XML errors libvirt uses XML documents to
store structured data. Several
common errors occur with XML
documents when they are passed
to libvirt through the API. This
entry provides instructions for
editing guest XML definitions, and
details common errors in XML
syntax and configuration.

Section A.19.16, “Common XML
Errors”

Error Description of problem Solution

A.19.1. libvirtd failed to start

Symptom

The libvirt daemon does not start automatically. Starting the libvirt daemon manually fails as well:

systemctl start libvirtd.service
* Caching service dependencies ...
[ok]
* Starting libvirtd ...
/usr/sbin/libvirtd: error: Unable to initialize network sockets. Check
/var/log/messages or run without --daemon for more info.
* start-stop-daemon: failed to start `/usr/sbin/libvirtd'
[!!]
* ERROR: libvirtd failed to start

Moreover, there is not 'more info' about this error in /var/log/messages.

Investigation

Change libvirt's logging in /etc/libvirt/libvirtd.conf by enabling the line below. To enable
the setting the line, open the /etc/libvirt/libvirtd.conf file in a text editor, remove the hash
(or #) symbol from the beginning of the following line, and save the change:

log_outputs="3:syslog:libvirtd"

NOTE

This line is commented out by default to prevent libvirt from producing excessive log
messages. After diagnosing the problem, it is recommended to comment this line
again in the /etc/libvirt/libvirtd.conf file.

Restart libvirt to determine if this has solved the problem.

If libvirtd still does not start successfully, an error similar to the following will be printed:

systemctl restart libvirtd
Job for libvirtd.service failed because the control process exited with
error code. See "systemctl status libvirtd.service" and "journalctl -xe"
for details.

APPENDIX A. TROUBLESHOOTING

549

Sep 19 16:06:02 jsrh libvirtd[30708]: 2017-09-19 14:06:02.097+0000:
30708: info : libvirt version: 3.7.0, package: 1.el7 (Unknown, 2017-09-
06-09:01:55, js
Sep 19 16:06:02 jsrh libvirtd[30708]: 2017-09-19 14:06:02.097+0000:
30708: info : hostname: jsrh
Sep 19 16:06:02 jsrh libvirtd[30708]: 2017-09-19 14:06:02.097+0000:
30708: error : daemonSetupNetworking:502 : unsupported configuration: No
server certif
Sep 19 16:06:02 jsrh systemd[1]: libvirtd.service: main process exited,
code=exited, status=6/NOTCONFIGURED
Sep 19 16:06:02 jsrh systemd[1]: Failed to start Virtualization daemon.

-- Subject: Unit libvirtd.service has failed
-- Defined-By: systemd
-- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel
--
-- Unit libvirtd.service has failed.
--
-- The result is failed.

The libvirtd man page shows that the missing cacert.pem file is used as TLS authority when libvirt
is run in Listen for TCP/IP connections mode. This means the --listen parameter is
being passed.

Solution

Configure the libvirt daemon's settings with one of the following methods:

Install a CA certificate.

NOTE

For more information on CA certificates and configuring system authentication,
refer to the Configuring Authentication chapter in the Red Hat Enterprise
Linux 7 Domain Identity, Authentication, and Policy Guide.

Do not use TLS; use bare TCP instead. In /etc/libvirt/libvirtd.conf set
listen_tls = 0 and listen_tcp = 1. The default values are listen_tls = 1 and
listen_tcp = 0.

Do not pass the --listen parameter. In /etc/sysconfig/libvirtd.conf change the
LIBVIRTD_ARGS variable.

A.19.2. The URI Failed to Connect to the Hypervisor

Several different errors can occur when connecting to the server (for example, when running virsh).

A.19.2.1. Cannot read CA certificate

Symptom

When running a command, the following error (or similar) appears:

Virtualization Deployment and Administration Guide

550

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/index.html

$ virsh -c qemu://$hostname/system_list
error: failed to connect to the hypervisor
error: Cannot read CA certificate '/etc/pki/CA/cacert.pem': No such file
or directory

Investigation

The error message is misleading about the actual cause. This error can be caused by a variety of
factors, such as an incorrectly specified URI, or a connection that is not configured.

Solution

Incorrectly specified URI

When specifying qemu://system or qemu://session as a connection URI, virsh attempts to
connect to host names' system or session respectively. This is because virsh recognizes the
text after the second forward slash as the host.

Use three forward slashes to connect to the local host. For example, specifying
qemu:///system instructs virsh connect to the system instance of libvirtd on the local host.

When a host name is specified, the QEMU transport defaults to TLS. This results in certificates.

Connection is not configured

The URI is correct (for example, qemu[+tls]://server/system) but the certificates are not
set up properly on your machine. For information on configuring TLS, see the upstream libvirt
website.

A.19.2.2. Other Connectivity Errors

Unable to connect to server at server:port: Connection refused

The daemon is not running on the server or is configured not to listen, using configuration option
listen_tcp or listen_tls.

End of file while reading data: nc: using stream socket: Input/output error

If you specified ssh transport, the daemon is likely not running on the server. Solve this error by
verifying that the daemon is running on the server.

A.19.3. Guest Starting Fails with Error: monitor socket did not show up

Symptom

The guest virtual machine (or domain) starting fails with this error (or similar):

virsh -c qemu:///system create name_of_guest.xml error: Failed to
create domain from name_of_guest.xml error: monitor socket did not show
up.: Connection refused

Investigation

This error message shows:

APPENDIX A. TROUBLESHOOTING

551

http://wiki.libvirt.org/page/TLSSetup

1. libvirt is working;

2. The QEMU process failed to start up; and

3. libvirt quits when trying to connect QEMU or the QEMU agent monitor socket.

To understand the error details, examine the guest log:

cat /var/log/libvirt/qemu/name_of_guest.log
LC_ALL=C PATH=/sbin:/usr/sbin:/bin:/usr/bin QEMU_AUDIO_DRV=none
/usr/bin/qemu-kvm -S -M pc -enable-kvm -m 768 -smp
1,sockets=1,cores=1,threads=1 -name name_of_guest -uuid ebfaadbe-e908-
ba92-fdb8-3fa2db557a42 -nodefaults -chardev
socket,id=monitor,path=/var/lib/libvirt/qemu/name_of_guest.monitor,serve
r,nowait -mon chardev=monitor,mode=readline -no-reboot -boot c -kernel
/var/lib/libvirt/boot/vmlinuz -initrd /var/lib/libvirt/boot/initrd.img -
append
method=http://www.example.com/pub/product/release/version/x86_64/os/ -
drive file=/var/lib/libvirt/images/name_of_guest.img,if=none,id=drive-
ide0-0-0,boot=on -device ide-drive,bus=ide.0,unit=0,drive=drive-ide0-0-
0,id=ide0-0-0 -device virtio-net-
pci,vlan=0,id=net0,mac=52:40:00:f4:f1:0a,bus=pci.0,addr=0x4 -net
tap,fd=42,vlan=0,name=hostnet0 -chardev pty,id=serial0 -device isa-
serial,chardev=serial0 -usb -vnc 127.0.0.1:0 -k en-gb -vga cirrus -
device virtio-balloon-pci,id=balloon0,bus=pci.0,
addr=0x3
char device redirected to /dev/pts/1
qemu: could not load kernel '/var/lib/libvirt/boot/vmlinuz':
Permission denied

Solution

The guest log contains the details needed to fix the error.

If a host physical machine is shut down while the guest is still running a libvirt version prior to 0.9.5,
the libvirt-guest's init script attempts to perform a managed save of the guest. If the managed save
was incomplete (for example, due to loss of power before the managed save image was flushed to
disk), the save image is corrupted and will not be loaded by QEMU. The older version of libvirt does
not recognize the corruption, making the problem perpetual. In this case, the guest log shows an
attempt to use -incoming as one of its arguments, meaning that libvirt is trying to start QEMU by
migrating in the saved state file.

This problem can be fixed by running virsh managedsave-remove name_of_guest to remove
the corrupted managed save image. Newer versions of libvirt take steps to avoid the corruption in the
first place, as well as adding virsh start --force-boot name_of_guest to bypass any
managed save image.

A.19.4. internal error cannot find character device (null)

Symptom

This error message appears when attempting to connect to a guest virtual machine's console:

virsh console test2
Connected to domain test2

Virtualization Deployment and Administration Guide

552

Escape character is ^]
error: internal error cannot find character device (null)

Investigation

This error message shows that there is no serial console configured for the guest virtual machine.

Solution

Set up a serial console in the guest's XML file.

Procedure A.8. Setting up a serial console in the guest's XML

1. Add the following XML to the guest virtual machine's XML using virsh edit:

2. Set up the console in the guest kernel command line.

To do this, either log in to the guest virtual machine to edit the /boot/grub2/grub.cfg file
directly, or use the virt-edit command-line tool. Add the following to the guest kernel
command line:

console=ttyS0,115200

3. Run the followings command:

virsh start vm && virsh console vm

A.19.5. Guest Virtual Machine Booting Stalls with Error: No boot device

Symptom

After building a guest virtual machine from an existing disk image, the guest booting stalls with the
error message No boot device. However, the guest virtual machine can start successfully using
the QEMU command directly.

Investigation

The disk's bus type is not specified in the command for importing the existing disk image:

virt-install \
--connect qemu:///system \
--ram 2048 -n rhel_64 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-
virtio.qcow2,device=disk,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

<serial type='pty'>
 <target port='0'/>
</serial>
<console type='pty'>
 <target type='serial' port='0'/>
</console>

APPENDIX A. TROUBLESHOOTING

553

However, the command line used to boot up the guest virtual machine using QEMU directly shows
that it uses virtio for its bus type:

ps -ef | grep qemu
/usr/libexec/qemu-kvm -monitor stdio -drive file=/root/RHEL-Server-5.8-
32-virtio.qcow2,index=0,if=virtio,media=disk,cache=none,format=qcow2 -
net nic,vlan=0,model=rtl8139,macaddr=00:30:91:aa:04:74 -net
tap,vlan=0,script=/etc/qemu-ifup,downscript=no -m 2048 -smp
2,cores=1,threads=1,sockets=2 -cpu qemu64,+sse2 -soundhw ac97 -rtc-td-
hack -M rhel5.6.0 -usbdevice tablet -vnc :10 -boot c -no-kvm-pit-
reinjection

Note the bus= in the guest's XML generated by libvirt for the imported guest:

<domain type='qemu'>
 <name>rhel_64</name>
 <uuid>6cd34d52-59e3-5a42-29e4-1d173759f3e7</uuid>
 <memory>2097152</memory>
 <currentMemory>2097152</currentMemory>
 <vcpu>2</vcpu>
 <os>
 <type arch='x86_64' machine='rhel5.4.0'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'>
 <timer name='pit' tickpolicy='delay'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none'/>
 <source file='/root/RHEL-Server-5.8-64-virtio.qcow2'/>
 <emphasis role="bold"><target dev='hda' bus='ide'/></emphasis>
 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'/>
 <interface type='bridge'>
 <mac address='54:52:00:08:3e:8c'/>
 <source bridge='br0'/>
 </interface>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target port='0'/>
 </console>
 <input type='mouse' bus='ps2'/>

Virtualization Deployment and Administration Guide

554

The bus type for the disk is set as ide, which is the default value set by libvirt. This is the incorrect
bus type, and has caused the unsuccessful boot for the imported guest.

Solution

Procedure A.9. Correcting the disk bus type

1. Undefine the imported guest virtual machine, then re-import it with bus=virtio and the
following:

virsh destroy rhel_64
virsh undefine rhel_64
virt-install \
--connect qemu:///system \
--ram 1024 -n rhel_64 -r 2048 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-
virtio.qcow2,device=disk,bus=virtio,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

2. Edit the imported guest's XML using virsh edit and correct the disk bus type.

A.19.6. Virtual network default has not been started

Symptom

Normally, the configuration for a virtual network named default is installed as part of the libvirt
package, and is configured to autostart when libvirtd is started.

If the default network (or any other locally-created network) is unable to start, any virtual machine
configured to use that network for its connectivity will also fail to start, resulting in this error message:

Virtual network default has not been started

Investigation

One of the most common reasons for a libvirt virtual network's failure to start is that the dnsmasq
instance required to serve DHCP and DNS requests from clients on that network has failed to start.

To determine if this is the cause, run virsh net-start default from a root shell to start the
default virtual network.

If this action does not successfully start the virtual network, open
/var/log/libvirt/libvirtd.log to view the complete error log message.

 <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>
 <video>
 <model type='cirrus' vram='9216' heads='1'/>
 </video>
 </devices>
 </domain>

APPENDIX A. TROUBLESHOOTING

555

If a message similar to the following appears, the problem is likely a system-wide dnsmasq instance
that is already listening on libvirt's bridge, and is preventing libvirt's own dnsmasq instance from
doing so. The most important parts to note in the error message are dnsmasq and exit status 2:

Could not start virtual network default: internal error
Child process (/usr/sbin/dnsmasq --strict-order --bind-interfaces
--pid-file=/var/run/libvirt/network/default.pid --conf-file=
--except-interface lo --listen-address 192.168.122.1
--dhcp-range 192.168.122.2,192.168.122.254
--dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
--dhcp-lease-max=253 --dhcp-no-override) status unexpected: exit status
2

Solution

If the machine is not using dnsmasq to serve DHCP for the physical network, disable dnsmasq
completely.

If it is necessary to run dnsmasq to serve DHCP for the physical network, edit the
/etc/dnsmasq.conf file. Add or remove the comment mark the first line, as well as one of the two
lines following that line. Do not add or remove the comment from all three lines:

After making this change and saving the file, restart the system wide dnsmasq service.

Next, start the default network with the virsh net-start default command.

Start the virtual machines.

A.19.7. PXE Boot (or DHCP) on Guest Failed

Symptom

A guest virtual machine starts successfully, but is then either unable to acquire an IP address from
DHCP or boot using the PXE protocol, or both. There are two common causes of this error: having a
long forward delay time set for the bridge, and when the iptables package and kernel do not support
checksum mangling rules.

Long forward delay time on bridge

Investigation

This is the most common cause of this error. If the guest network interface is connecting to a
bridge device that has STP (Spanning Tree Protocol) enabled, as well as a long forward delay
set, the bridge will not forward network packets from the guest virtual machine onto the bridge
until at least that number of forward delay seconds have elapsed since the guest connected to
the bridge. This delay allows the bridge time to watch traffic from the interface and determine
the MAC addresses behind it, and prevent forwarding loops in the network topology.

If the forward delay is longer than the timeout of the guest's PXE or DHCP client, the client's
operation will fail, and the guest will either fail to boot (in the case of PXE) or fail to acquire an
IP address (in the case of DHCP).

bind-interfaces
interface=name_of_physical_interface
listen-address=chosen_IP_address

Virtualization Deployment and Administration Guide

556

Solution

If this is the case, change the forward delay on the bridge to 0, disable STP on the bridge, or
both.

NOTE

This solution applies only if the bridge is not used to connect multiple networks,
but just to connect multiple endpoints to a single network (the most common
use case for bridges used by libvirt).

If the guest has interfaces connecting to a libvirt-managed virtual network, edit the definition
for the network, and restart it. For example, edit the default network with the following
command:

virsh net-edit default

Add the following attributes to the <bridge> element:

NOTE

delay='0' and stp='on' are the default settings for virtual networks, so this
step is only necessary if the configuration has been modified from the default.

If the guest interface is connected to a host bridge that was configured outside of libvirt,
change the delay setting.

Add or edit the following lines in the /etc/sysconfig/network-
scripts/ifcfg-name_of_bridge file to turn STP on with a 0 second delay:

After changing the configuration file, restart the bridge device:

NOTE

If name_of_bridge is not the root bridge in the network, that bridge's delay will
be eventually reset to the delay time configured for the root bridge. To prevent
this from occurring, disable STP on name_of_bridge.

The iptables package and kernel do not support checksum mangling rules

Investigation

This message is only a problem if all four of the following conditions are true:

<name_of_bridge='virbr0' delay='0' stp='on'/>

STP=on DELAY=0

/usr/sbin/ifdown name_of_bridge
/usr/sbin/ifup name_of_bridge

APPENDIX A. TROUBLESHOOTING

557

The guest is using virtio network devices.

If so, the configuration file will contain model type='virtio'

The host has the vhost-net module loaded.

This is true if ls /dev/vhost-net does not return an empty result.

The guest is attempting to get an IP address from a DHCP server that is running
directly on the host.

The iptables version on the host is older than 1.4.10.

iptables 1.4.10 was the first version to add the libxt_CHECKSUM extension. This is
the case if the following message appears in the libvirtd logs:

warning: Could not add rule to fixup DHCP response checksums
on network default
warning: May need to update iptables package and kernel to
support CHECKSUM rule.

IMPORTANT

Unless all of the other three conditions in this list are also true, the
above warning message can be disregarded, and is not an indicator of
any other problems.

When these conditions occur, UDP packets sent from the host to the guest have uncomputed
checksums. This makes the host's UDP packets seem invalid to the guest's network stack.

Solution

To solve this problem, invalidate any of the four points above. The best solution is to update
the host iptables and kernel to iptables-1.4.10 or newer where possible. Otherwise, the most
specific fix is to disable the vhost-net driver for this particular guest. To do this, edit the
guest configuration with this command:

virsh edit name_of_guest

Change or add a <driver> line to the <interface> section:

Save the changes, shut down the guest, and then restart it.

If this problem is still not resolved, the issue may be due to a conflict between firewalld and
the default libvirt network.

To fix this, stop firewalld with the service firewalld stop command, then restart libvirt
with the service libvirtd restart command.

<interface type='network'>
 <model type='virtio'/>
 <driver name='qemu'/>
 ...
</interface>

Virtualization Deployment and Administration Guide

558

A.19.8. Guest Can Reach Outside Network, but Cannot Reach Host When Using
macvtap interface

Symptom

A guest virtual machine can communicate with other guests, but cannot connect to the host machine
after being configured to use a macvtap (also known as type='direct') network interface.

Investigation

Even when not connecting to a Virtual Ethernet Port Aggregator (VEPA) or VN-Link capable switch,
macvtap interfaces can be useful. Setting the mode of such an interface to bridge allows the guest
to be directly connected to the physical network in a very simple manner without the setup issues (or
NetworkManager incompatibility) that can accompany the use of a traditional host bridge device.

However, when a guest virtual machine is configured to use a type='direct' network interface
such as macvtap, despite having the ability to communicate with other guests and other external
hosts on the network, the guest cannot communicate with its own host.

This situation is actually not an error — it is the defined behavior of macvtap. Due to the way in which
the host's physical Ethernet is attached to the macvtap bridge, traffic into that bridge from the guests
that is forwarded to the physical interface cannot be bounced back up to the host's IP stack.
Additionally, traffic from the host's IP stack that is sent to the physical interface cannot be bounced
back up to the macvtap bridge for forwarding to the guests.

Solution

Use libvirt to create an isolated network, and create a second interface for each guest virtual
machine that is connected to this network. The host and guests can then directly communicate over
this isolated network, while also maintaining compatibility with NetworkManager.

Procedure A.10. Creating an isolated network with libvirt

1. Add and save the following XML in the /tmp/isolated.xml file. If the 192.168.254.0/24
network is already in use elsewhere on your network, you can choose a different network.

Figure A.3. Isolated Network XML

2. Create the network with this command: virsh net-define /tmp/isolated.xml

3. Set the network to autostart with the virsh net-autostart isolated command.

4. Start the network with the virsh net-start isolated command.

...
<network>
 <name>isolated</name>
 <ip address='192.168.254.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.254.2' end='192.168.254.254'/>
 </dhcp>
 </ip>
</network>
...

APPENDIX A. TROUBLESHOOTING

559

5. Using virsh edit name_of_guest, edit the configuration of each guest that uses
macvtap for its network connection and add a new <interface> in the <devices> section
similar to the following (note the <model type='virtio'/> line is optional to include):

Figure A.4. Interface Device XML

6. Shut down, then restart each of these guests.

The guests are now able to reach the host at the address 192.168.254.1, and the host will be able to
reach the guests at the IP address they acquired from DHCP (alternatively, you can manually
configure the IP addresses for the guests). Since this new network is isolated to only the host and
guests, all other communication from the guests will use the macvtap interface. For more information,
refer to Section 24.18.9, “Network Interfaces”.

A.19.9. Could not add rule to fixup DHCP response checksums on network
'default'

Symptom

This message appears:

Could not add rule to fixup DHCP response checksums on network 'default'

Investigation

Although this message appears to be evidence of an error, it is almost always harmless.

Solution

Unless the problem you are experiencing is that the guest virtual machines are unable to acquire IP
addresses through DHCP, this message can be ignored.

If this is the case, refer to Section A.19.7, “PXE Boot (or DHCP) on Guest Failed” for further details on
this situation.

A.19.10. Unable to add bridge br0 port vnet0: No such device

Symptom

The following error message appears:

Unable to add bridge name_of_bridge port vnet0: No such device

For example, if the bridge name is br0, the error message appears as:

Unable to add bridge br0 port vnet0: No such device

...
<interface type='network' trustGuestRxFilters='yes'>
 <source network='isolated'/>
 <model type='virtio'/>
</interface>

Virtualization Deployment and Administration Guide

560

In libvirt versions 0.9.6 and earlier, the same error appears as:

Failed to add tap interface to bridge name_of_bridge: No such device

Or for example, if the bridge is named br0:

Failed to add tap interface to bridge 'br0': No such device

Investigation

Both error messages reveal that the bridge device specified in the guest's (or domain's)
<interface> definition does not exist.

To verify the bridge device listed in the error message does not exist, use the shell command ip
addr show br0.

A message similar to this confirms the host has no bridge by that name:

br0: error fetching interface information: Device not found

If this is the case, continue to the solution.

However, if the resulting message is similar to the following, the issue exists elsewhere:

br0 Link encap:Ethernet HWaddr 00:00:5A:11:70:48
 inet addr:10.22.1.5 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:249841 errors:0 dropped:0 overruns:0 frame:0
 TX packets:281948 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:106327234 (101.4 MiB) TX bytes:21182634 (20.2 MiB)

Solution

Edit the existing bridge or create a new bridge with virsh

Use virsh to either edit the settings of an existing bridge or network, or to add the bridge device
to the host system configuration.

Edit the existing bridge settings using virsh

Use virsh edit name_of_guest to change the <interface> definition to use a bridge
or network that already exists.

For example, change type='bridge' to type='network', and <source
bridge='br0'/> to <source network='default'/>.

Create a host bridge using virsh

For libvirt version 0.9.8 and later, a bridge device can be created with the virsh iface-
bridge command. This creates a bridge device br0 with eth0, the physical network interface
that is set as part of a bridge, attached:

virsh iface-bridge eth0 br0

APPENDIX A. TROUBLESHOOTING

561

Optional: If needed, remove this bridge and restore the original eth0 configuration with this
command:

virsh iface-unbridge br0

Create a host bridge manually

For older versions of libvirt, it is possible to manually create a bridge device on the host. For
instructions, refer to Section 6.4.3, “Bridged Networking with libvirt”.

A.19.11. Guest is Unable to Start with Error: warning: could not open
/dev/net/tun

Symptom

The guest virtual machine does not start after configuring a type='ethernet' (also known as
'generic ethernet') interface in the host system. An error appears either in libvirtd.log,
/var/log/libvirt/qemu/name_of_guest.log, or in both, similar to the below message:

warning: could not open /dev/net/tun: no virtual network emulation qemu-
kvm: -netdev tap,script=/etc/my-qemu-ifup,id=hostnet0: Device 'tap'
could not be initialized

Investigation

Use of the generic ethernet interface type (<interface type='ethernet'>) is discouraged,
because using it requires lowering the level of host protection against potential security flaws in
QEMU and its guests. However, it is sometimes necessary to use this type of interface to take
advantage of some other facility that is not yet supported directly in libvirt. For example,
openvswitch was not supported in libvirt until version 0.9.11, so in prior versions of libvirt,
<interface type='ethernet'> was the only way to connect a guest to an openvswitch bridge.

However, if you configure a <interface type='ethernet'> interface without making any other
changes to the host system, the guest virtual machine does not start successfully.

The reason for this failure is that for this type of interface, a script called by QEMU needs to
manipulate the tap device. However, with type='ethernet' configured, in an attempt to lock down
QEMU, libvirt and SELinux have put in place several checks to prevent this. (Normally, libvirt
performs all of the tap device creation and manipulation, and passes an open file descriptor for the tap
device to QEMU.)

Solution

Reconfigure the host system to be compatible with the generic ethernet interface.

Procedure A.11. Reconfiguring the host system to use the generic ethernet interface

1. Set SELinux to permissive by configuring SELINUX=permissive in
/etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:

Virtualization Deployment and Administration Guide

562

enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of
enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2. From a root shell, run the command setenforce permissive.

3. In /etc/libvirt/qemu.conf add or edit the following lines:

clear_emulator_capabilities = 0

user = "root"

group = "root"

cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
 "/dev/rtc", "/dev/hpet", "/dev/net/tun",

4. Restart libvirtd.

IMPORTANT

Since each of these steps significantly decreases the host's security protections
against QEMU guest domains, this configuration should only be used if there is no
alternative to using <interface type='ethernet'>.

NOTE

For more information on SELinux, refer to the Red Hat Enterprise Linux 7 SELinux User's
and Administrator's Guide.

A.19.12. Migration Fails with error: unable to resolve address

Symptom

QEMU guest migration fails and this error message appears:

virsh migrate qemu qemu+tcp://192.168.122.12/system
 error: Unable to resolve address name_of_host service '49155': Name or
service not known

For example, if the destination host name is newyork, the error message appears as:

APPENDIX A. TROUBLESHOOTING

563

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

virsh migrate qemu qemu+tcp://192.168.122.12/system
error: Unable to resolve address 'newyork' service '49155': Name or
service not known

However, this error looks strange as we did not use newyork host name anywhere.

Investigation

During migration, libvirtd running on the destination host creates a URI from an address and port
where it expects to receive migration data and sends it back to libvirtd running on the source host.

In this case, the destination host (192.168.122.12) has its name set to 'newyork'. For some
reason, libvirtd running on that host is unable to resolve the name to an IP address that could be
sent back and still be useful. For this reason, it returned the 'newyork' host name hoping the source
libvirtd would be more successful with resolving the name. This can happen if DNS is not properly
configured or /etc/hosts has the host name associated with local loopback address
(127.0.0.1).

Note that the address used for migration data cannot be automatically determined from the address
used for connecting to destination libvirtd (for example, from
qemu+tcp://192.168.122.12/system). This is because to communicate with the destination
libvirtd, the source libvirtd may need to use network infrastructure different from the type that virsh
(possibly running on a separate machine) requires.

Solution

The best solution is to configure DNS correctly so that all hosts involved in migration are able to
resolve all host names.

If DNS cannot be configured to do this, a list of every host used for migration can be added manually
to the /etc/hosts file on each of the hosts. However, it is difficult to keep such lists consistent in a
dynamic environment.

If the host names cannot be made resolvable by any means, virsh migrate supports specifying
the migration host:

virsh migrate qemu qemu+tcp://192.168.122.12/system
tcp://192.168.122.12

Destination libvirtd will take the tcp://192.168.122.12 URI and append an automatically
generated port number. If this is not desirable (because of firewall configuration, for example), the port
number can be specified in this command:

virsh migrate qemu qemu+tcp://192.168.122.12/system
tcp://192.168.122.12:12345

Another option is to use tunneled migration. Tunneled migration does not create a separate
connection for migration data, but instead tunnels the data through the connection used for
communication with destination libvirtd (for example, qemu+tcp://192.168.122.12/system):

virsh migrate qemu qemu+tcp://192.168.122.12/system --p2p --tunnelled

Virtualization Deployment and Administration Guide

564

A.19.13. Migration Fails with Unable to allow access for disk path: No such file
or directory

Symptom

A guest virtual machine (or domain) cannot be migrated because libvirt cannot access the disk
image(s):

virsh migrate qemu qemu+tcp://name_of_host/system
error: Unable to allow access for disk path
/var/lib/libvirt/images/qemu.img: No such file or directory

For example, if the destination host name is newyork, the error message appears as:

virsh migrate qemu qemu+tcp://newyork/system
error: Unable to allow access for disk path
/var/lib/libvirt/images/qemu.img: No such file or directory

Investigation

By default, migration only transfers the in-memory state of a running guest (such as memory or CPU
state). Although disk images are not transferred during migration, they need to remain accessible at
the same path by both hosts.

Solution

Set up and mount shared storage at the same location on both hosts. The simplest way to do this is to
use NFS:

Procedure A.12. Setting up shared storage

1. Set up an NFS server on a host serving as shared storage. The NFS server can be one of
the hosts involved in the migration, as long as all hosts involved are accessing the shared
storage through NFS.

mkdir -p /exports/images
cat >>/etc/exports <<EOF
/exports/images 192.168.122.0/24(rw,no_root_squash)
EOF

2. Mount the exported directory at a common location on all hosts running libvirt. For example,
if the IP address of the NFS server is 192.168.122.1, mount the directory with the following
commands:

cat >>/etc/fstab <<EOF
192.168.122.1:/exports/images /var/lib/libvirt/images nfs auto
0 0
EOF
mount /var/lib/libvirt/images

APPENDIX A. TROUBLESHOOTING

565

NOTE

It is not possible to export a local directory from one host using NFS and mount it at
the same path on another host — the directory used for storing disk images must be
mounted from shared storage on both hosts. If this is not configured correctly, the
guest virtual machine may lose access to its disk images during migration, because
the source host's libvirt daemon may change the owner, permissions, and SELinux
labels on the disk images after it successfully migrates the guest to its destination.

If libvirt detects that the disk images are mounted from a shared storage location, it
will not make these changes.

A.19.14. No Guest Virtual Machines are Present when libvirtd is Started

Symptom

The libvirt daemon is successfully started, but no guest virtual machines appear to be present.

virsh list --all
 Id Name State
--

Investigation

There are various possible causes of this problem. Performing these tests will help to determine the
cause of this situation:

Verify KVM kernel modules

Verify that KVM kernel modules are inserted in the kernel:

lsmod | grep kvm
kvm_intel 121346 0
kvm 328927 1 kvm_intel

If you are using an AMD machine, verify the kvm_amd kernel modules are inserted in the kernel
instead, using the similar command lsmod | grep kvm_amd in the root shell.

If the modules are not present, insert them using the modprobe <modulename> command.

NOTE

Although it is uncommon, KVM virtualization support may be compiled into the
kernel. In this case, modules are not needed.

Verify virtualization extensions

Verify that virtualization extensions are supported and enabled on the host:

egrep "(vmx|svm)" /proc/cpuinfo
flags : fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock
nrip_save

Virtualization Deployment and Administration Guide

566

flags : fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock
nrip_save

Enable virtualization extensions in your hardware's firmware configuration within the BIOS setup.
Refer to your hardware documentation for further details on this.

Verify client URI configuration

Verify that the URI of the client is configured as intended:

virsh uri
vbox:///system

For example, this message shows the URI is connected to the VirtualBox hypervisor, not QEMU,
and reveals a configuration error for a URI that is otherwise set to connect to a QEMU hypervisor.
If the URI was correctly connecting to QEMU, the same message would appear instead as:

virsh uri
qemu:///system

This situation occurs when there are other hypervisors present, which libvirt may speak to by
default.

Solution

After performing these tests, use the following command to view a list of guest virtual machines:

virsh list --all

A.19.15. unable to connect to server at 'host:16509': Connection refused ... error:
failed to connect to the hypervisor

Symptom

While libvirtd should listen on TCP ports for connections, the connections fail:

virsh -c qemu+tcp://host/system
error: failed to connect to the hypervisor
error: unable to connect to server at 'host:16509': Connection refused

The libvirt daemon is not listening on TCP ports even after changing configuration in
/etc/libvirt/libvirtd.conf:

grep listen_ /etc/libvirt/libvirtd.conf
listen_tls = 1
listen_tcp = 1
listen_addr = "0.0.0.0"

However, the TCP ports for libvirt are still not open after changing configuration:

netstat -lntp | grep libvirtd
#

APPENDIX A. TROUBLESHOOTING

567

Investigation

The libvirt daemon was started without the --listen option. Verify this by running this command:

ps aux | grep libvirtd
root 10749 0.1 0.2 558276 18280 ? Ssl 23:21 0:00
/usr/sbin/libvirtd

The output does not contain the --listen option.

Solution

Start the daemon with the --listen option.

To do this, modify the /etc/sysconfig/libvirtd file and uncomment the following line:

LIBVIRTD_ARGS="--listen"

Then, restart the libvirtd service with this command:

/bin/systemctl restart libvirtd.service

A.19.16. Common XML Errors

The libvirt tool uses XML documents to store structured data. A variety of common errors occur with
XML documents when they are passed to libvirt through the API. Several common XML errors —
including erroneous XML tags, inappropriate values, and missing elements — are detailed below.

A.19.16.1. Editing domain definition

Although it is not recommended, it is sometimes necessary to edit a guest virtual machine's (or a
domain's) XML file manually. To access the guest's XML for editing, use the following command:

virsh edit name_of_guest.xml

This command opens the file in a text editor with the current definition of the guest virtual machine. After
finishing the edits and saving the changes, the XML is reloaded and parsed by libvirt. If the XML is
correct, the following message is displayed:

virsh edit name_of_guest.xml

Domain name_of_guest.xml XML configuration edited.

IMPORTANT

When using the edit command in virsh to edit an XML document, save all changes
before exiting the editor.

After saving the XML file, use the xmllint command to validate that the XML is well-formed, or the
virt-xml-validate command to check for usage problems:

xmllint --noout config.xml

Virtualization Deployment and Administration Guide

568

virt-xml-validate config.xml

If no errors are returned, the XML description is well-formed and matches the libvirt schema. While the
schema does not catch all constraints, fixing any reported errors will further troubleshooting.

XML documents stored by libvirt

These documents contain definitions of states and configurations for the guests. These documents
are automatically generated and should not be edited manually. Errors in these documents contain
the file name of the broken document. The file name is valid only on the host machine defined by the
URI, which may refer to the machine the command was run on.

Errors in files created by libvirt are rare. However, one possible source of these errors is a
downgrade of libvirt — while newer versions of libvirt can always read XML generated by older
versions, older versions of libvirt may be confused by XML elements added in a newer version.

A.19.16.2. XML syntax errors

Syntax errors are caught by the XML parser. The error message contains information for identifying the
problem.

This example error message from the XML parser consists of three lines — the first line denotes the
error message, and the two following lines contain the context and location of the XML code containing
the error. The third line contains an indicator showing approximately where the error lies on the line
above it:

error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^

Information contained in this message:

(name_of_guest.xml)

This is the file name of the document that contains the error. File names in parentheses are
symbolic names to describe XML documents parsed from memory, and do not directly correspond
to files on disk. File names that are not contained in parentheses are local files that reside on the
target of the connection.

6

This is the line number in the XML file that contains the error.

StartTag: invalid element name

This is the error message from the libxml2 parser, which describes the specific XML error.

A.19.16.2.1. Stray < in the document

Symptom

The following error occurs:

APPENDIX A. TROUBLESHOOTING

569

error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^

Investigation

This error message shows that the parser expects a new element name after the < symbol on line 6
of a guest's XML file.

Ensure line number display is enabled in your text editor. Open the XML file, and locate the text on
line 6:

<domain type='kvm'>
 <name>name_of_guest</name>
<memory>524288</memory>
<vcpu>2</vcpu><

This snippet of a guest's XML file contains an extra < in the document:

Solution

Remove the extra < or finish the new element.

A.19.16.2.2. Unterminated attribute

Symptom

The following error occurs:

error: (name_of_guest.xml):2: Unescaped '<' not allowed in attributes
values
<name>name_of_guest</name>
--^

Investigation

This snippet of a guest's XML file contains an unterminated element attribute value:

<domain type='kvm>
<name>name_of_guest</name>

In this case, 'kvm' is missing a second quotation mark. Strings of attribute values, such as quotation
marks and apostrophes, must be opened and closed, similar to XML start and end tags.

Solution

Correctly open and close all attribute value strings.

A.19.16.2.3. Opening and ending tag mismatch

Symptom

The following error occurs:

Virtualization Deployment and Administration Guide

570

error: (name_of_guest.xml):61: Opening and ending tag mismatch: clock
line 16 and domain
</domain>
---------^

Investigation

The error message above contains three clues to identify the offending tag:

The message following the last colon, clock line 16 and domain, reveals that <clock>
contains a mismatched tag on line 16 of the document. The last hint is the pointer in the context part
of the message, which identifies the second offending tag.

Unpaired tags must be closed with />. The following snippet does not follow this rule and has
produced the error message shown above:

<domain type='kvm'>
 ...
 <clock offset='utc'>

This error is caused by mismatched XML tags in the file. Every XML tag must have a matching start
and end tag.

Other examples of mismatched XML tags

The following examples produce similar error messages and show variations of mismatched XML
tags.

This snippet contains an mismatch error for <features> because there is no end tag (</name>):

<domain type='kvm'>
 ...
 <features>
 <acpi/>
 <pae/>
 ...
 </domain>

This snippet contains an end tag (</name>) without a corresponding start tag:

<domain type='kvm'>
 </name>
 ...
</domain>

Solution

Ensure all XML tags start and end correctly.

A.19.16.2.4. Typographical errors in tags

Symptom

The following error message appears:

APPENDIX A. TROUBLESHOOTING

571

error: (name_of_guest.xml):1: Specification mandate value for attribute
ty
<domain ty pe='kvm'>
-----------^

Investigation

XML errors are easily caused by a simple typographical error. This error message highlights the XML
error — in this case, an extra white space within the word type — with a pointer.

<domain ty pe='kvm'>

These XML examples will not parse correctly because of typographical errors such as a missing
special character, or an additional character:

<domain type 'kvm'>

<dom#ain type='kvm'>

Solution

To identify the problematic tag, read the error message for the context of the file, and locate the error
with the pointer. Correct the XML and save the changes.

A.19.16.3. Logic and configuration errors

A well-formatted XML document can contain errors that are correct in syntax but libvirt cannot parse.
Many of these errors exist, with two of the most common cases outlined below.

A.19.16.3.1. Vanishing parts

Symptom

Parts of the change you have made do not show up and have no effect after editing or defining the
domain. The define or edit command works, but when dumping the XML once again, the change
disappears.

Investigation

This error likely results from a broken construct or syntax that libvirt does not parse. The libvirt tool
will generally only look for constructs it knows but ignore everything else, resulting in some of the
XML changes vanishing after libvirt parses the input.

Solution

Validate the XML input before passing it to the edit or define commands. The libvirt developers
maintain a set of XML schemas bundled with libvirt that define the majority of the constructs allowed
in XML documents used by libvirt.

Validate libvirt XML files using the following command:

virt-xml-validate libvirt.xml

Virtualization Deployment and Administration Guide

572

If this command passes, libvirt will likely understand all constructs from your XML, except if the
schemas cannot detect options that are valid only for a given hypervisor. For example, any XML
generated by libvirt as a result of a virsh dump command should validate without error.

A.19.16.3.2. Incorrect drive device type

Symptom

The definition of the source image for the CD-ROM virtual drive is not present, despite being added:

virsh dumpxml domain
<domain type='kvm'>
 ...
 <disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
 </disk>
 ...
</domain>

Solution

Correct the XML by adding the missing <source> parameter as follows:

<disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/path/to/image.iso'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
</disk>

A type='block' disk device expects that the source is a physical device. To use the disk with an
image file, use type='file' instead.

APPENDIX A. TROUBLESHOOTING

573

APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE
ARCHITECTURES
By default, KVM virtualization on Red Hat Enterprise Linux 7 is compatible with the AMD64 and Intel 64
architectures. However, starting with Red Hat Enterprise Linux 7.5, KVM virtualization is also supported
on the following architectures, thanks to the introduction of the kernel-alt packages:

IBM POWER

IBM z Systems

ARM systems (Development Preview only)

Note that when using virtualization on these architectures, the installation, usage, and feature support
differ from AMD64 and Intel 64 in certain respects. For more information, see the sections below:

B.1. USING KVM VIRTUALIZATION ON IBM POWER SYSTEMS

Starting with Red Hat Enterprise Linux 7.5, KVM virtualization is supported on IBM POWER8 Systems
and IBM POWER9 systems. However, IBM POWER8 does not use kernel-alt, which means that these
two architectures differ in certain aspects.

Installation
To install KVM virtualization on Red Hat Enterprise Linux 7 for IBM POWER 8 and POWER9 Systems:

1. Install the host system from the bootable image on the Customer Portal:

IBM POWER8

IBM POWER9

For detailed instructions, see the Red Hat Enterprise Linux 7 Installation Guide.

2. Ensure that your host system meets the hypervisor requirements:

Verify that you have the correct machine type:

grep ^platform /proc/cpuinfo

The output of this command must include the PowerNV entry, which indicates that you are
running on a supported PowerNV machine type:

platform : PowerNV

Load the KVM-HV kernel module:

modprobe kvm_hv

Verify that the KVM-HV kernel module is loaded:

lsmod | grep kvm

If KVM-HV was loaded successfully, the output of this command includes kvm_hv.

Virtualization Deployment and Administration Guide

574

https://access.redhat.com/downloads/content/279/ver=/rhel---7/7.5/ppc64le/product-software
https://access.redhat.com/downloads/content/420/ver=/rhel---7/7.5/ppc64le/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/part-installation-ibm-power

3. Install the qemu-kvm-ma package in addition to other virtualization packages described in
Chapter 2, Installing the Virtualization Packages.

Architecture Specifics
KVM virtualization on Red Hat Enterprise Linux 7.5 for IBM POWER differs from KVM on AMD64 and
Intel 64 systems in the following:

The SPICE protocol is not supported on IBM POWER Systems. To display the graphical output
of a guest, use the VNC protocol. In addition, only the following virtual graphics card devices are
supported:

vga - only supported in -vga std mode and not in -vga cirrus mode

virtio-vga

virtio-gpu

The following virtualization features are disabled on AMD64 and Intel 64 hosts, but work on IBM
POWER. However, they are not supported by Red Hat, and therefore not recommended for use:

I/O threads

SMBIOS configuration is not available.

Transparent huge pages (THPs) currently do not provide any notable performance benefits on
IBM POWER8 guests

Also note that the sizes of static huge pages on IBM POWER8 systems are 16MiB and 16GiB,
as opposed to 2MiB and 1GiB on AMD 64 and Intel64 and on IBM POWER9. As a consequence,
migrating a guest from an IBM POWER8 host to an IBM POWER9 host fails if the guest is
configured with static huge pages.

In addition, to be able to use static huge pages or THPs on IBM POWER8 guests, you must first
set up huge pages on the host.

A number of virtual peripheral devices that are supported on AMD64 and Intel 64 systems are
not supported on IBM POWER systems, or a different device is supported as a replacement:

Devices used for PCI-E hierarchy, including the ioh3420 and xio3130-downstream
devices, are not supported. This functionality is replaced by multiple independent PCI root
bridges, provided by the spapr-pci-host-bridge device.

UHCI and EHCI PCI controllers are not supported. Use OHCI and XHCI controllers instead.

IDE devices, including the virtual IDE CD-ROM (ide-cd) and the virtual IDE disk (ide-hd),
are not supported. Use the virtio-scsi and virtio-blk devices instead.

Emulated PCI NICs (rtl8139) are not supported. Use the virtio-net device instead.

Sound devices, including intel-hda, hda-output, and AC97, are not supported.

USB redirection devices, including usb-redir and usb-tablet, are not supported.

The kvm-clock service does not have to be configured for time management on IBM POWER
systems.

The pvpanic device is not supported on IBM POWER systems. However, an equivalent

APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE ARCHITECTURES

575

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-tuning#sect-Virtualization_Tuning_Optimization_Guide-Memory-Huge_Pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-configuring_transparent_huge_pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-tuning#sect-confing_static_hugepages

functionality is available and activated on this architecture by default. To enable it on a guest,
use the <on_crash> configuration element with the preserve value. In addition, make sure to
remove the <panic> element from the <devices> section, as its presence can lead to the
guest failing to boot on IBM POWER systems.

On POWER8 systems, the host machine must run in single-threaded mode to support guests.
This is automatically configured if the qemu-kvm-ma packages are installed. However, guests
running on a single-threaded hosts can still use multiple threads.

B.2. USING KVM VIRTUALIZATION ON IBM Z SYSTEMS

Installation
On IBM z System hosts, the KVM hypervisor has to be installed in a dedicated logical partition (LPAR).
Running KVM on the z/VM OS is not supported. The LPAR also has to support the so-called start-
interpretive execution (SIE) virtualization extensions.

To install KVM Virtualization on Red Hat Enterprise Linux 7 for IBM z Systems:

1. Install the system from the bootable image on the Customer Portal - for detailed instructions,
see the Installation guide.

2. Ensure that your system meets the hypervisor requirements:

Verify that the CPU virtualization extensions are available:

grep sie /proc/cpuinfo

The output of this command must include the sie entry, which indicates that your processor
has the required virtualization extension.

features : esan3 zarch stfle msa ldisp eimm dfp edat
etf3eh highgprs te sie

Load the KVM kernel module:

modprobe kvm

Verify that the KVM kernel module is loaded:

lsmod | grep kvm

If KVM was loaded successfully, the output of this command includes kvm. If it does not,
make sure that you are using the kernel-alt version of the kernel for Red Hat Enterprise
Linux 7.

3. Install the qemu-kvm-ma package in addition to other virtualization packages described in
Chapter 2, Installing the Virtualization Packages.

4. When setting up guests, it is recommended to configure their CPU in one of the following ways to
protect the guests from the "Spectre" vulnerability:

Use the host CPU model, for example as follows:

Virtualization Deployment and Administration Guide

576

https://access.redhat.com/downloads/content/72/ver=/rhel---7/7.5/s390x/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/part-installation-system-z
https://access.redhat.com/security/vulnerabilities/speculativeexecution

This makes the ppa15 and bpb features available to the guest if the host supports them.

If using a specific host model, add the ppa15 and bpb features. The following example uses
the zEC12 CPU model:

Architecture Specifics
KVM Virtualization on Red Hat Enterprise Linux 7.5 for IBM z Systems differs from KVM on AMD64 and
Intel 64 systems in the following:

The SPICE and VNC protocols are not available and virtual graphical card devices are not
supported on IBM z Systems. Therefore, displaying the guest graphical output is not possible.

Virtual PCI and USB devices are not supported on IBM z Systems. This also means that virtio-*-
pci devices are unsupported, and virtio-*-ccw devices should be used instead. For
example, use virtio-net-ccw instead of virtio-net-pci.

The <boot dev='device'/> XML configuration element is not supported on z Systems. To define
device boot order, use the <boot order='number'/> in the <devices> section. For an example,
see the upstream libvirt documentation.

NOTE

Using <boot order='number'/> for boot order management is preferred also on
AMD64 and Intel 64 hosts.

SMBIOS configuration is not available.

The watchdog device model used on IBM z Systems should be diag288.

To enable nested virtualization, do the following. Note that like on AMD64 and Intel 64 systems,
the nested virtualization feature is available as a Technology Preview on IBM z Systems, and
therefore is not recommended for use in production environments.

1. 1. Check whether nested virtualization is already enabled on your system:

$ cat /sys/module/kvm/parameters/nested

If this command returns 1, the feature is already enabled.

If the command returns 0, use the following steps to enable it.

2. 2. Unload the kvm module:

<cpu mode='host-model' check='partial'>
 <model fallback='allow'/>
</cpu>

<cpu mode='custom' match='exact' check='partial'>
 <model fallback='allow'>zEC12</model>
 <feature policy='force' name='ppa15'/>
 <feature policy='force' name='bpb'/>
</cpu>

APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE ARCHITECTURES

577

https://libvirt.org/formatdomain.html#elementsDisks

modprobe -r kvm

3. 3. Activate the nesting feature:

modprobe kvm nested=1

4. 4. The nesting feature is now enabled only until the next reboot of the host. To enable it
permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm nested=1

The kvm-clock service is specific to AMD64 and Intel 64 systems, and does not have to be
configured for time management on IBM z Systems.

B.3. USING KVM VIRTUALIZATION ON ARM SYSTEMS

IMPORTANT

KVM virtualization is provided as a Development Preview in Red Hat Enterprise Linux 7.5
for the 64-bit ARM architecture. As such, KVM virtualization on ARM systems is not
supported, not intended for use in a production environment, and may not address known
security vulnerabilities. In addition, because KVM virtualization on ARM is still in rapid
development, the information below is not guaranteed to be accurate or complete.

Installation
To use install virtualization on Red Hat Enterprise Linux 7.5 for ARM:

1. Install the system from the bootable image on the Customer Portal.

2. After the system is installed, install the virtualization stack on the system by using the following
command:

yum install qemu-kvm-ma libvirt libvirt-client virt-install AAVMF

Make sure you have the Optional channel enabled for the installation to succeed.

Architecture Specifics
KVM virtualization on Red Hat Enterprise Linux 7.5 for the 64-bit ARM architecture differs from KVM on
AMD64 and Intel 64 systems in the following:

PXE booting is only supported with the virtio-net-device and virtio-net-pci network
interface controllers (NICs). In addition, the built-in VirtioNetDxe driver of the ARM
Architecture Virtual Machine Firmware (AAVMF) needs to be used for PXE booting. Note that
iPXE option ROMs are not supported.

Only up to 123 virtual CPUs (vCPUs) can be allocated to a single guest.

Virtualization Deployment and Administration Guide

578

https://access.redhat.com/downloads/content/419/ver=/rhel---7/7.5/aarch64/product-software
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/rhsm/supplementary-repos

APPENDIX C. VIRTUALIZATION RESTRICTIONS
This appendix covers additional support and product restrictions of the virtualization packages in
Red Hat Enterprise Linux 7.

C.1. SYSTEM RESTRICTIONS

Host Systems

Red Hat Enterprise Linux with KVM is supported only on the following host architectures:

AMD64 and Intel64

IBM z Systems

IBM POWER8

IBM POWER9

This document primarily describes AMD64 and Intel64 features and functionalities, but the other
supported architectures work very similarly. For details, see Appendix B, Using KVM Virtualization on
Multiple Architectures.

Guest Systems

On Red Hat Enterprise Linux 7, Microsoft Windows guest virtual machines are only supported under
specific subscription programs such as Advanced Mission Critical (AMC). If you are unsure whether
your subscription model includes support for Windows guests, contact customer support.

For more information about Windows guest virtual machines on Red Hat Enterprise Linux 7, see
Windows Guest Virtual Machines on Red Hat Enterprise Linux 7 Knowledgebase article.

C.2. FEATURE RESTRICTIONS

The hypervisor package included with Red Hat Enterprise Linux is qemu-kvm. This differs from the
qemu-kvm-rhev package included with Red Hat Virtualization (RHV) and Red Hat OpenStack (RHOS)
products. Many of the restrictions that apply to qemu-kvm do not apply to qemu-kvm-rhev.

For more information about the differences between the qemu-kvm and qemu-kvm-rhev packages, see
What are the differences between qemu-kvm and qemu-kvm-rhev and all sub-packages?

The following restrictions apply to the KVM hypervisor included with Red Hat Enterprise Linux:

Maximum vCPUs per guest

Red Hat Enterprise Linux 7.2 and above supports 240 vCPUs per guest, up from 160 in Red Hat
Enterprise Linux 7.0.

Nested virtualization

Nested virtualization is available as a Technology Preview in Red Hat Enterprise Linux 7.2 and later.
This feature enables KVM to launch guests that can act as hypervisors and create their own guests.

Tiny Code Generator Support

APPENDIX C. VIRTUALIZATION RESTRICTIONS

579

https://access.redhat.com/articles/2470791
https://access.redhat.com/solutions/629513

QEMU and libvirt include a dynamic translation mode using the QEMU Tiny Code Generator (TCG).
This mode does not require hardware virtualization support. However, TCG is not supported by Red
Hat.

When the qemu-kvm package is used to create nested guests in a virtual machine, it uses TCG
unless nested virtualization is enabled on the parent virtual machine. Note that nested virtualization is
currently a Technology Preview. For more information, refer to Chapter 12, Nested Virtualization.

In the Overview pane of the Virtual hardware details view, virt-manager displays the type of virtual
machine, KVM or QEMU TCG. For more information on the Virtual hardware details view, refer to
Section 20.3, “The Virtual Hardware Details Window”.

TCG-based virtual machines can also be recognized by the following line in the domain XML file:

Constant TSC bit

Systems without a Constant Time Stamp Counter require additional configuration. Refer to Chapter 8,
KVM Guest Timing Management for details on determining whether you have a Constant Time Stamp
Counter and configuration steps for fixing any related issues.

Emulated SCSI adapters

SCSI device emulation is only supported with the virtio-scsi paravirtualized host bus adapter (HBA).
Emulated SCSI HBAs are not supported with KVM in Red Hat Enterprise Linux.

Emulated IDE devices

KVM is limited to a maximum of four virtualized (emulated) IDE devices per virtual machine.

Paravirtualized devices

Paravirtualized devices are also known as VirtIO devices. They are purely virtual devices designed to
work optimally in a virtual machine.

Red Hat Enterprise Linux 7 supports 32 PCI device slots per virtual machine bus, and 8 PCI functions
per device slot. This gives a theoretical maximum of 256 PCI functions per bus when multi-function
capabilities are enabled in the virtual machine, and PCI bridges are used. Each PCI bridge adds a
new bus, potentially enabling another 256 device addresses. However, some buses do not make all
256 device addresses available for the user; for example, the root bus has several built-in devices
occupying slots.

Refer to Chapter 17, Guest Virtual Machine Device Configuration for more information on devices and
Section 17.1.5, “Creating PCI Bridges” for more information on PCI bridges.

Migration restrictions

Device assignment refers to physical devices that have been exposed to a virtual machine, for the
exclusive use of that virtual machine. Because device assignment uses hardware on the specific host
where the virtual machine runs, migration and save/restore are not supported when device
assignment is in use. If the guest operating system supports hot plugging, assigned devices can be
removed prior to the migration or save/restore operation to enable this feature.

Live migration is only possible between hosts with the same CPU type (that is, Intel to Intel or AMD to
AMD only).

<domain type='qemu'>

Virtualization Deployment and Administration Guide

580

For live migration, both hosts must have the same value set for the No eXecution (NX) bit, either on
or off.

For migration to work, cache=none must be specified for all block devices opened in write mode.

WARNING

Failing to include the cache=none option can result in disk corruption.

Storage restrictions

There are risks associated with giving guest virtual machines write access to entire disks or block
devices (such as /dev/sdb). If a guest virtual machine has access to an entire block device, it can
share any volume label or partition table with the host machine. If bugs exist in the host system's
partition recognition code, this can create a security risk. Avoid this risk by configuring the host
machine to ignore devices assigned to a guest virtual machine.

WARNING

Failing to adhere to storage restrictions can result in risks to security.

Live snapshots

The backup and restore API in KVM in Red Hat Enterprise Linux does not support live snapshots.

Streaming, mirroring, and live-merge

Streaming, mirroring, and live-merge are not supported. This prevents block-jobs.

I/O throttling

Red Hat Enterprise Linux does not support configuration of maximum input and output levels for
operations on virtual disks.

I/O threads

Red Hat Enterprise Linux does not support creation of separate threads for input and output
operations on disks with VirtIO interfaces.

Memory hot plug and hot unplug

Red Hat Enterprise Linux does not support hot plugging or hot unplugging memory from a virtual
machine.

vhost-user

Red Hat Enterprise Linux does not support implementation of a user space vhost interface.





APPENDIX C. VIRTUALIZATION RESTRICTIONS

581

CPU hot unplug

Red Hat Enterprise Linux does not support hot-unplugging CPUs from a virtual machine.

NUMA guest locality for PCIe

Red Hat Enterprise Linux does not support binding a virtual PCIe device to a specific NUMA node.

Core dumping restrictions

Because core dumping is currently implemented on top of migration, it is not supported when device
assignment is in use.

Realtime kernel

KVM currently does not support the realtime kernel, and thus cannot be used on Red Hat Enterprise
Linux for Real Time.

C.3. APPLICATION RESTRICTIONS

There are aspects of virtualization that make it unsuitable for certain types of applications.

Applications with high I/O throughput requirements should use KVM's paravirtualized drivers (virtio
drivers) for fully-virtualized guests. Without the virtio drivers certain applications may be unpredictable
under heavy I/O loads.

The following applications should be avoided due to high I/O requirements:

kdump server

netdump server

You should carefully evaluate applications and tools that heavily utilize I/O or those that require real-time
performance. Consider the virtio drivers or PCI device assignment for increased I/O performance. For
more information on the virtio drivers for fully virtualized guests, refer to Chapter 5, KVM Paravirtualized
(virtio) Drivers. For more information on PCI device assignment, refer to Chapter 17, Guest Virtual
Machine Device Configuration.

Applications suffer a small performance loss from running in virtualized environments. The performance
benefits of virtualization through consolidating to newer and faster hardware should be evaluated against
the potential application performance issues associated with using virtualization.

C.4. OTHER RESTRICTIONS

For the list of all other restrictions and issues affecting virtualization read the Red Hat Enterprise Linux 7
Release Notes. The Red Hat Enterprise Linux 7 Release Notes cover the present new features, known
issues and restrictions as they are updated or discovered.

C.5. STORAGE SUPPORT

The supported storage methods for virtual machines are:

files on local storage,

physical disk partitions,

Virtualization Deployment and Administration Guide

582

locally connected physical LUNs,

LVM partitions,

NFS shared file systems,

iSCSI,

GFS2 clustered file systems,

Fibre Channel-based LUNs, and

Fibre Channel over Ethernet (FCoE).

C.6. USB 3 / XHCI SUPPORT

USB 3 (xHCI) USB host adapter emulation is supported in Red Hat Enterprise Linux 7.2 and above. All
USB speeds are available, meaning any generation of USB device can be plugged into a xHCI bus.
Additionally, no companion controllers (for USB 1 devices) are required. Note, however, that USB 3 bulk
streams are not supported.

Advantages of xHCI:

Virtualization-compatible hardware design, meaning xHCI emulation requires less CPU
resources than previous versions due to reduced polling overhead.

USB passthrough of USB 3 devices is available.

Limitations of xHCI:

Not supported for Red Hat Enterprise Linux 5 guests.

See Figure 17.19, “Domain XML example for USB3/xHCI devices” for a domain XML device example for
xHCI devices.

APPENDIX C. VIRTUALIZATION RESTRICTIONS

583

APPENDIX D. ADDITIONAL RESOURCES
To learn more about virtualization and Red Hat Enterprise Linux, refer to the following resources.

D.1. ONLINE RESOURCES

http://www.libvirt.org/ is the official upstream website for the libvirt virtualization API.

https://virt-manager.org/ is the upstream project website for the Virtual Machine Manager (virt-
manager), the graphical application for managing virtual machines.

Red Hat Virtualization - http://www.redhat.com/products/cloud-computing/virtualization/

Red Hat product documentation - https://access.redhat.com/documentation/en/

Virtualization technologies overview - http://virt.kernelnewbies.org

D.2. INSTALLED DOCUMENTATION

man virsh and /usr/share/doc/libvirt-version-number — Contains sub-commands
and options for the virsh virtual machine management utility as well as comprehensive
information about the libvirt virtualization library API.

/usr/share/doc/gnome-applet-vm-version-number — Documentation for the GNOME
graphical panel applet that monitors and manages locally-running virtual machines.

/usr/share/doc/libvirt-python-version-number — Provides details on the Python
bindings for the libvirt library. The libvirt-python package allows python developers to
create programs that interface with the libvirt virtualization management library.

/usr/share/doc/virt-install-version-number — Provides documentation on the
virt-install command that helps in starting installations of Fedora and Red Hat Enterprise
Linux related distributions inside of virtual machines.

/usr/share/doc/virt-manager-version-number — Provides documentation on the
Virtual Machine Manager, which provides a graphical tool for administering virtual machines.

NOTE

For more information about other Red Hat Enterprise Linux components, see the
appropriate man page or file in usr/share/doc/.

Virtualization Deployment and Administration Guide

584

http://www.libvirt.org/
https://virt-manager.org/
http://www.redhat.com/products/cloud-computing/virtualization/
https://access.redhat.com/documentation/en/
http://virt.kernelnewbies.org/

APPENDIX E. WORKING WITH IOMMU GROUPS[1]

Introduced in Red Hat Enterprise Linux 7, VFIO, or Virtual Function I/O, is a set of Linux kernel modules
that provide a user-space driver framework. This framework uses input–output memory management
unit (IOMMU) protection to enable secure device access for user-space drivers. VFIO enables user-
space drivers such as the Data Plane Development Kit (DPDK), as well as the more common PCI device
assignment.

VFIO uses IOMMU groups to isolate devices and prevent unintentional Direct Memory Access (DMA)
between two devices running on the same host physical machine, which would impact host and guest
functionality. IOMMU groups are available in Red Hat Enterprise Linux 7, which is a big improvement
over the legacy KVM device assignment that is available in Red Hat Enterprise Linux 6. This appendix
highlights the following:

An overview of IOMMU groups

The importance of device isolation

VFIO benefits

E.1. IOMMU OVERVIEW

An IOMMU creates a virtual address space for the device, where each I/O Virtual Address (IOVA) may
translate to different addresses in the physical system memory. When the translation is completed, the
devices are connected to a different address within the physical system's memory. Without an IOMMU,
all devices have a shared, flat view of the physical memory because they lack memory address
translation. With an IOMMU, devices receive the IOVA space as a new address space, which is useful for
device assignment.

Different IOMMUs have different levels of functionality. In the past, IOMMUs were limited, providing only
translation, and often only for a small window of the address space. For example, the IOMMU would only
reserve a small window (1GB or less) of IOVA space in low memory, which was shared by multiple
devices. The AMD graphics address remapping table (GART), when used as a general-purpose IOMMU,
is an example of this model. These classic IOMMUs mostly provided two capabilities: bounce buffers and
address coalescing.

Bounce buffers are necessary when the addressing capabilities of the device are less than that
of the platform. For example, if a device's address space is limited to 4GB (32 bits) of memory
and the driver was to allocate to a buffer above 4GB, the device would not be able to directly
access the buffer. Such a situation necessitates using a bounce buffer; a buffer space located in
lower memory, where the device can perform a DMA operation. The data in the buffer is only
copied to the driver's allocated buffer on completion of the operation. In other words, the buffer is
bounced from a lower memory address to a higher memory address. IOMMUs avoid bounce
buffering by providing an IOVA translation within the device's address space. This allows the
device to perform a DMA operation directly into the buffer, even when the buffer extends beyond
the physical address space of the device. Historically, this IOMMU feature was often the
exclusive use case for the IOMMU, but with the adoption of PCI-Express (PCIe), the ability to
support addressing above 4GB is required for all non-legacy endpoints.

In traditional memory allocation, blocks of memory are assigned and freed based on the needs
of the application. Using this method creates memory gaps scattered throughout the physical
address space. It would be better if the memory gaps were coalesced so they can be used more
efficiently, or in basic terms it would be better if the memory gaps were gathered together. The
IOMMU coalesces these scattered memory lists through the IOVA space, sometimes referred to
as scatter-gather lists. In doing so the IOMMU creates contiguous DMA operations and
ultimately increases the efficiency of the I/O performance. In the simplest example, a driver may

APPENDIX E. WORKING WITH IOMMU GROUPS[1]

585

allocate two 4KB buffers that are not contiguous in the physical memory space. The IOMMU can
allocate a contiguous range for these buffers allowing the I/O device to do a single 8KB DMA
rather than two separate 4KB DMAs.

Although memory coalescing and bounce buffering are important for high performance I/O on the host,
the IOMMU feature that is essential for a virtualization environment is the isolation capability of modern
IOMMUs. Isolation was not possible on a wide scale prior to PCI-Express, because conventional PCI
does not tag transactions with an ID of the requesting device (requester ID). Even though PCI-X included
some degree of a requester ID, the rules for interconnecting devices that take ownership of the
transaction did not provide complete support for device isolation.

With PCIe, each device’s transaction is tagged with a requester ID unique to the device (the PCI
bus/device/function number, often abbreviated as BDF), which is used to reference a unique IOVA table
for that device. Now that isolation is possible, the IOVA space cannot only be used for translation
operations such as offloading unreachable memory and coalescing memory, but it can also be used to
restrict DMA access from the device. This allows devices to be isolated from each other, preventing
duplicate assignment of memory spaces, which is essential for proper guest virtual machine device
management. Using these features on a guest virtual machine involves populating the IOVA space for
the assigned device with the guest-physical-to-host-physical memory mappings for the virtual machine.
Once this is done, the device transparently performs DMA operations in the guest virtual machine’s
address space.

E.2. A DEEP-DIVE INTO IOMMU GROUPS

An IOMMU group is defined as the smallest set of devices that can be considered isolated from the
IOMMU’s perspective. The first step to achieve isolation is granularity. If the IOMMU cannot differentiate
devices into separate IOVA spaces, they are not isolated. For example, if multiple devices attempt to
alias to the same IOVA space, the IOMMU is not able to distinguish between them. This is the reason
why a typical x86 PC will group all conventional-PCI devices together, with all of them aliased to the
same requester ID, the PCIe-to-PCI bridge. Legacy KVM device assignment allows a user to assign
these conventional-PCI devices separately, but the configuration fails because the IOMMU cannot
distinguish between the devices. As VFIO is governed by IOMMU groups, it prevents any configuration
that violates this most basic requirement of IOMMU granularity.

The next step is to determine whether the transactions from the device actually reach the IOMMU. The
PCIe specification allows for transactions to be re-routed within the interconnect fabric. A PCIe
downstream port can re-route a transaction from one downstream device to another. The downstream
ports of a PCIe switch may be interconnected to allow re-routing from one port to another. Even within a
multifunction endpoint device, a transaction from one function may be delivered directly to another
function. These transactions from one device to another are called peer-to-peer transactions and can
destroy the isolation of devices operating in separate IOVA spaces. Imagine for instance, if the network
interface card assigned to a guest virtual machine, attempts a DMA write operation to a virtual address
within its own IOVA space. However in the physical space, that same address belongs to a peer disk
controller owned by the host. As the IOVA to physical translation for the device is only performed at the
IOMMU, any interconnect attempting to optimize the data path of that transaction could mistakenly
redirect the DMA write operation to the disk controller before it gets to the IOMMU for translation.

To solve this problem, the PCI Express specification includes support for PCIe Access Control Services
(ACS), which provides visibility and control of these redirects. This is an essential component for isolating
devices from one another, which is often missing in interconnects and multifunction endpoints. Without
ACS support at every level from the device to the IOMMU, it must be assumed that redirection is
possible. This will, therefore, break the isolation of all devices below the point lacking ACS support in the
PCI topology. IOMMU groups in a PCI environment take this isolation into account, grouping together
devices which are capable of untranslated peer-to-peer DMA.

In summary, the IOMMU group represents the smallest set of devices for which the IOMMU has visibility

Virtualization Deployment and Administration Guide

586

and which is isolated from other groups. VFIO uses this information to enforce safe ownership of devices
for user space. With the exception of bridges, root ports, and switches (all examples of interconnect
fabric), all devices within an IOMMU group must be bound to a VFIO device driver or known safe stub
driver. For PCI, these drivers are vfio-pci and pci-stub. pci-stub is allowed simply because it is known
that the host does not interact with devices via this driver[2]. If an error occurs indicating the group is not
viable when using VFIO, it means that all of the devices in the group need to be bound to an appropriate
host driver. Using virsh nodedev-dumpxml to explore the composition of an IOMMU group and
virsh nodedev-detach to bind devices to VFIO compatible drivers, will help resolve such problems.

E.3. HOW TO IDENTIFY AND ASSIGN IOMMU GROUPS

This example demonstrates how to identify and assign the PCI devices that are present on the target
system. For additional examples and information, refer to Section 17.7, “Assigning GPU Devices”.

Procedure E.1. IOMMU groups

1. List the devices
Identify the devices in your system by running the virsh nodev-list device-type
command. This example demonstrates how to locate the PCI devices. The output has been
truncated for brevity.

virsh nodedev-list pci

pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
[...]
pci_0000_00_1c_0
pci_0000_00_1c_4
[...]
pci_0000_01_00_0
pci_0000_01_00_1
[...]
pci_0000_03_00_0
pci_0000_03_00_1
pci_0000_04_00_0
pci_0000_05_00_0
pci_0000_06_0d_0

2. Locate the IOMMU grouping of a device
For each device listed, further information about the device, including the IOMMU grouping, can
be found using the virsh nodedev-dumpxml name-of-device command. For example, to
find the IOMMU grouping for the PCI device named pci_0000_04_00_0 (PCI address
0000:04:00.0), use the following command:

virsh nodedev-dumpxml pci_0000_04_00_0

This command generates a XML dump similar to the one shown.

APPENDIX E. WORKING WITH IOMMU GROUPS[1]

587

Figure E.1. IOMMU Group XML

3. View the PCI data
In the output collected above, there is one IOMMU group with 4 devices. This is an example of a
multi-function PCIe root port without ACS support. The two functions in slot 0x1c are PCIe root
ports, which can be identified by running the lspci command (from the pciutils package):

lspci -s 1c

00:1c.0 PCI bridge: Intel Corporation 82801JI (ICH10 Family) PCI
Express Root Port 1
00:1c.4 PCI bridge: Intel Corporation 82801JI (ICH10 Family) PCI
Express Root Port 5

Repeat this step for the two PCIe devices on buses 0x04 and 0x05, which are endpoint devices.

lspci -s 4
04:00.0 Ethernet controller: Intel Corporation 82574L Gigabit
Network Connection This is used in the next step and is called
04:00.0
lspci -s 5 This is used in the next step and is called 05:00.0
05:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5755
Gigabit Ethernet PCI Express (rev 02)

<device>
 <name>pci_0000_04_00_0</name>
 <path>/sys/devices/pci0000:00/0000:00:1c.0/0000:04:00.0</path>
 <parent>pci_0000_00_1c_0</parent>
 <capability type='pci'>
 <domain>0</domain>
 <bus>4</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10d3'>82574L Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <iommuGroup number='8'> <!--This is the element block you
will need to use-->
 <address domain='0x0000' bus='0x00' slot='0x1c'
function='0x0'/>
 <address domain='0x0000' bus='0x00' slot='0x1c'
function='0x4'/>
 <address domain='0x0000' bus='0x04' slot='0x00'
function='0x0'/>
 <address domain='0x0000' bus='0x05' slot='0x00'
function='0x0'/>
 </iommuGroup>
 <pci-express>
 <link validity='cap' port='0' speed='2.5' width='1'/>
 <link validity='sta' speed='2.5' width='1'/>
 </pci-express>
 </capability>
</device>

Virtualization Deployment and Administration Guide

588

4. Assign the endpoints to the guest virtual machine
In order to assign either one of the endpoints to a virtual machine, the endpoint which you are
not assigning at the moment, must be bound to a VFIO compatible driver so that the IOMMU
group is not split between user and host drivers. If for example, using the output received above,
you were to configuring a virtual machine with only 04:00.0, the virtual machine will fail to start
unless 05:00.0 is detached from host drivers. To detach 05:00.0, run the virsh nodedev-
detach command as root:

virsh nodedev-detach pci_0000_05_00_0
Device pci_0000_05_00_0 detached

Assigning both endpoints to the virtual machine is another option for resolving this issue. Note
that libvirt will automatically perform this operation for the attached devices when using the yes
value for the managed attribute within the <hostdev> element. For example: <hostdev
mode='subsystem' type='pci' managed='yes'>. Refer to Note for more information.

NOTE

libvirt has two ways to handle PCI devices. They can be either managed or unmanaged.
This is determined by the value given to the managed attribute within the <hostdev>
element. When the device is managed, libvirt automatically detaches the device from the
existing driver and then assigns it to the virtual machine by binding it to vfio-pci on boot
(for the virtual machine). When the virtual machine is shutdown or deleted or the PCI
device is detached from the virtual machine, libvirt unbinds the device from vfio-pci and
rebinds it to the original driver. If the device is unmanaged, libvirt will not automate the
process and you will have to ensure all of these management aspects as described are
done before assigning the device to a virtual machine, and after the device is no longer
used by the virtual machine you will have to reassign the devices as well. Failure to do
these actions in an unmanaged device will cause the virtual machine to fail. Therefore, it
may be easier to make sure that libvirt manages the device.

E.4. IOMMU STRATEGIES AND USE CASES

There are many ways to handle IOMMU groups that contain more devices than intended. For a plug-in
card, the first option would be to determine whether installing the card into a different slot produces the
intended grouping. On a typical Intel chipset, PCIe root ports are provided via both the processor and the
Platform Controller Hub (PCH). The capabilities of these root ports can be very different. Red Hat
Enterprise Linux 7 has support for exposing the isolation of numerous PCH root ports, even though
many of them do not have native PCIe ACS support. Therefore, these root ports are good targets for
creating smaller IOMMU groups. With Intel® Xeon® class processors (E5 series and above) and "High
End Desktop Processors", the processor-based PCIe root ports typically provide native support for PCIe
ACS, however the lower-end client processors, such as the Core™ i3, i5, and i7 and Xeon E3
processors do not. For these systems, the PCH root ports generally provide the most flexible isolation
configurations.

Another option is to work with the hardware vendors to determine whether isolation is present and quirk
the kernel to recognize this isolation. This is generally a matter of determining whether internal peer-to-
peer between functions is possible, or in the case of downstream ports, also determining whether
redirection is possible. The Red Hat Enterprise Linux 7 kernel includes numerous quirks for such devices
and Red Hat Customer Support can help you work with hardware vendors to determine if ACS-
equivalent isolation is available and how best to incorporate similar quirks into the kernel to expose this
isolation. For hardware vendors, note that multifunction endpoints that do not support peer-to-peer can

APPENDIX E. WORKING WITH IOMMU GROUPS[1]

589

expose this using a single static ACS table in configuration space, exposing no capabilities. Adding such
a capability to the hardware will allow the kernel to automatically detect the functions as isolated and
eliminate this issue for all users of your hardware.

In cases where the above suggestions are not available, a common reaction is that the kernel should
provide an option to disable these isolation checks for certain devices or certain types of devices,
specified by the user. Often the argument is made that previous technologies did not enforce isolation to
this extent and everything "worked fine". Unfortunately, bypassing these isolation features leads to an
unsupportable environment. Not knowing that isolation exists, means not knowing whether the devices
are actually isolated and it is best to find out before disaster strikes. Gaps in the isolation capabilities of
devices may be extremely hard to trigger and even more difficult to trace back to device isolation as the
cause. VFIO’s job is first and foremost to protect the host kernel from user owned devices and IOMMU
groups are the mechanism used by VFIO to ensure that isolation.

In summary, by being built on top of IOMMU groups, VFIO is able to provide an increased degree of
security and isolation between devices than was possible using legacy KVM device assignment. This
isolation is now enforced at the Linux kernel level, allowing the kernel to protect itself and prevent
dangerous configurations for the user. Additionally, hardware vendors should be encouraged to support
PCIe ACS support, not only in multifunction endpoint devices, but also in chip sets and interconnect
devices. For existing devices lacking this support, Red Hat may be able to work with hardware vendors
to determine whether isolation is available and add Linux kernel support to expose this isolation.

[1] The original content for this appendix was provided by Alex Williamson, Principal Software Engineer.

[2] The exception is legacy KVM device assignment, which often interacts with the device while bound to the pci-
stub driver. Red Hat Enterprise Linux 7 does not include legacy KVM device assignment, avoiding this interaction
and potential conflict. Therefore, mixing the use of VFIO and legacy KVM device assignment within the same
IOMMU group is not recommended.

Virtualization Deployment and Administration Guide

590

APPENDIX F. REVISION HISTORY

Revision 2-35 Thu Apr 5 2018 Jiri Herrmann
Version for 7.5 GA publication

Revision 2-32 Thu Jul 27 2017 Jiri Herrmann
Version for 7.4 GA publication

Revision 2-29 Mon Oct 17 2016 Jiri Herrmann
Version for 7.3 GA publication

Revision 2-24 Thu Dec 17 2015 Laura Novich
Republished guide and fixed multiple issues

Revision 2-23 Sun Nov 22 2015 Laura Novich
Republished guide

Revision 2-21 Thu Nov 12 2015 Laura Novich
Multiple content updates for 7.2

Revision 2-19 Thu Oct 08 2015 Jiri Herrmann
Cleaned up the Revision History

Revision 2-17 Thu Aug 27 2015 Dayle Parker
Updates for the 7.2 beta release

APPENDIX F. REVISION HISTORY

591

	Table of Contents
	PART I. DEPLOYMENT
	CHAPTER 1. SYSTEM REQUIREMENTS
	1.1. HOST SYSTEM REQUIREMENTS
	1.2. KVM HYPERVISOR REQUIREMENTS
	1.3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY
	1.4. SUPPORTED GUEST CPU MODELS
	1.4.1. Listing the Guest CPU Models

	CHAPTER 2. INSTALLING THE VIRTUALIZATION PACKAGES
	2.1. INSTALLING VIRTUALIZATION PACKAGES DURING A RED HAT ENTERPRISE LINUX INSTALLATION
	2.1.1. Installing KVM Packages with Kickstart Files

	2.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED HAT ENTERPRISE LINUX SYSTEM
	2.2.1. Installing Virtualization Packages Manually
	2.2.2. Installing Virtualization Package Groups

	CHAPTER 3. CREATING A VIRTUAL MACHINE
	3.1. GUEST VIRTUAL MACHINE DEPLOYMENT CONSIDERATIONS
	3.2. CREATING GUESTS WITH VIRT-INSTALL
	3.2.1. Installing a virtual machine from an ISO image
	3.2.2. Importing a virtual machine image
	3.2.3. Installing a virtual machine from the network
	3.2.4. Installing a virtual machine using PXE
	3.2.5. Installing a virtual machine with Kickstart
	3.2.6. Configuring the guest virtual machine network during guest creation
	Default network with NAT
	Bridged network with DHCP
	Bridged network with a static IP address
	No network

	3.3. CREATING GUESTS WITH VIRT-MANAGER
	3.3.1. virt-manager installation overview
	3.3.2. Creating a Red Hat Enterprise Linux 7 Guest with virt-manager

	3.4. COMPARISON OF VIRT-INSTALL AND VIRT-MANAGER INSTALLATION OPTIONS

	CHAPTER 4. CLONING VIRTUAL MACHINES
	4.1. PREPARING VIRTUAL MACHINES FOR CLONING
	4.2. CLONING A VIRTUAL MACHINE
	4.2.1. Cloning Guests with virt-clone
	4.2.2. Cloning Guests with virt-manager

	CHAPTER 5. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
	5.1. USING KVM VIRTIO DRIVERS FOR EXISTING STORAGE DEVICES
	5.2. USING KVM VIRTIO DRIVERS FOR NEW STORAGE DEVICES
	5.3. USING KVM VIRTIO DRIVERS FOR NETWORK INTERFACE DEVICES

	CHAPTER 6. NETWORK CONFIGURATION
	6.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT
	6.2. DISABLING VHOST-NET
	6.3. ENABLING VHOST-NET ZERO-COPY
	6.4. BRIDGED NETWORKING
	6.4.1. Configuring Bridged Networking on a Red Hat Enterprise Linux 7 Host
	6.4.2. Bridged Networking with Virtual Machine Manager
	6.4.3. Bridged Networking with libvirt

	CHAPTER 7. OVERCOMMITTING WITH KVM
	7.1. INTRODUCTION
	7.2. OVERCOMMITTING MEMORY
	7.3. OVERCOMMITTING VIRTUALIZED CPUS

	CHAPTER 8. KVM GUEST TIMING MANAGEMENT
	8.1. REQUIRED TIME MANAGEMENT PARAMETERS FOR RED HAT ENTERPRISE LINUX GUESTS
	8.2. STEAL TIME ACCOUNTING

	CHAPTER 9. NETWORK BOOTING WITH LIBVIRT
	9.1. PREPARING THE BOOT SERVER
	9.1.1. Setting up a PXE Boot Server on a Private libvirt Network

	9.2. BOOTING A GUEST USING PXE
	9.2.1. Using bridged networking
	9.2.2. Using a Private libvirt Network

	CHAPTER 10. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE
	10.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE
	10.1.1. Configuring virt-who

	10.2. REGISTERING A NEW GUEST VIRTUAL MACHINE
	10.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY
	10.4. INSTALLING VIRT-WHO MANUALLY
	10.5. TROUBLESHOOTING VIRT-WHO
	10.5.1. Why is the hypervisor status red?
	10.5.2. I have subscription status errors, what do I do?

	CHAPTER 11. ENHANCING VIRTUALIZATION WITH THE QEMU GUEST AGENT AND SPICE AGENT
	11.1. QEMU GUEST AGENT
	11.1.1. Setting up Communication between the QEMU Guest Agent and Host
	11.1.1.1. Configuring the QEMU Guest Agent on a Linux Guest

	11.2. USING THE QEMU GUEST AGENT WITH LIBVIRT
	11.2.1. Creating a Guest Disk Backup

	11.3. SPICE AGENT
	11.3.1. Setting up Communication between the SPICE Agent and Host

	CHAPTER 12. NESTED VIRTUALIZATION
	12.1. OVERVIEW
	12.2. SETUP
	12.3. RESTRICTIONS AND LIMITATIONS

	PART II. ADMINISTRATION
	CHAPTER 13. STORAGE POOLS
	13.1. DISK-BASED STORAGE POOLS
	13.1.1. Creating a Disk-based Storage Pool Using virsh
	13.1.2. Deleting a Storage Pool Using virsh

	13.2. PARTITION-BASED STORAGE POOLS
	13.2.1. Creating a Partition-based Storage Pool Using virt-manager
	13.2.2. Deleting a Storage Pool Using virt-manager
	13.2.3. Creating a Partition-based Storage Pool Using virsh
	13.2.4. Deleting a Storage Pool Using virsh

	13.3. DIRECTORY-BASED STORAGE POOLS
	13.3.1. Creating a Directory-based Storage Pool with virt-manager
	13.3.2. Deleting a Storage Pool Using virt-manager
	13.3.3. Creating a Directory-based Storage Pool with virsh
	13.3.4. Deleting a Storage Pool Using virsh

	13.4. LVM-BASED STORAGE POOLS
	13.4.1. Creating an LVM-based Storage Pool with virt-manager
	13.4.2. Deleting a Storage Pool Using virt-manager
	13.4.3. Creating an LVM-based Storage Pool with virsh
	13.4.4. Deleting a Storage Pool Using virsh

	13.5. ISCSI-BASED STORAGE POOLS
	13.5.1. Configuring a Software iSCSI Target
	13.5.2. Creating an iSCSI Storage Pool in virt-manager
	13.5.3. Deleting a Storage Pool Using virt-manager
	13.5.4. Creating an iSCSI-based Storage Pool with virsh
	13.5.5. Securing an iSCSI Storage Pool
	13.5.6. Deleting a Storage Pool Using virsh

	13.6. NFS-BASED STORAGE POOLS
	13.6.1. Creating an NFS-based Storage Pool with virt-manager
	13.6.2. Deleting a Storage Pool Using virt-manager
	13.6.3. Creating an NFS-based Storage Pool with virsh
	13.6.4. Deleting a Storage Pool Using virsh

	13.7. USING AN NPIV VIRTUAL ADAPTER (VHBA) WITH SCSI DEVICES
	13.7.1. Creating a vHBA
	13.7.2. Creating a Storage Pool Using the vHBA
	13.7.3. Configuring the Virtual Machine to Use a vHBA LUN
	13.7.4. Destroying the vHBA Storage Pool

	13.8. GLUSTERFS STORAGE POOLS
	13.8.1. Creating a GlusterFS Storage Pool Using virsh
	13.8.2. Deleting a GlusterFS Storage Pool Using virsh

	CHAPTER 14. STORAGE VOLUMES
	14.1. INTRODUCTION
	14.1.1. Referencing Volumes

	14.2. CREATING VOLUMES
	14.3. CLONING VOLUMES
	14.4. DELETING AND REMOVING VOLUMES
	14.5. ADDING STORAGE DEVICES TO GUESTS
	14.5.1. Adding File-based Storage to a Guest
	14.5.2. Adding Hard Drives and Other Block Devices to a Guest
	14.5.3. Adding SCSI LUN-based Storage to a Guest
	Reconnecting to an exposed LUN after a hardware failure

	14.5.4. Managing Storage Controllers in a Guest Virtual Machine

	CHAPTER 15. USING QEMU-IMG
	15.1. CHECKING THE DISK IMAGE
	15.2. COMMITTING CHANGES TO AN IMAGE
	15.3. COMPARING IMAGES
	15.4. MAPPING AN IMAGE
	15.4.1. The human Format
	15.4.2. The json Format

	15.5. AMENDING AN IMAGE
	15.6. CONVERTING AN EXISTING IMAGE TO ANOTHER FORMAT
	15.7. CREATING AND FORMATTING NEW IMAGES OR DEVICES
	15.8. DISPLAYING IMAGE INFORMATION
	15.9. REBASING A BACKING FILE OF AN IMAGE
	15.10. RE-SIZING THE DISK IMAGE
	15.11. LISTING, CREATING, APPLYING, AND DELETING A SNAPSHOT
	15.12. SUPPORTED QEMU-IMG FORMATS

	CHAPTER 16. KVM MIGRATION
	16.1. MIGRATION DEFINITION AND BENEFITS
	16.2. MIGRATION REQUIREMENTS AND LIMITATIONS
	16.3. LIVE MIGRATION AND RED HAT ENTERPRISE LINUX VERSION COMPATIBILITY
	16.4. SHARED STORAGE EXAMPLE: NFS FOR A SIMPLE MIGRATION
	16.5. LIVE KVM MIGRATION WITH VIRSH
	16.5.1. Additional Tips for Migration with virsh
	16.5.2. Additional Options for the virsh migrate Command

	16.6. MIGRATING WITH VIRT-MANAGER

	CHAPTER 17. GUEST VIRTUAL MACHINE DEVICE CONFIGURATION
	17.1. PCI DEVICES
	17.1.1. Assigning a PCI Device with virsh
	17.1.2. Assigning a PCI Device with virt-manager
	17.1.3. PCI Device Assignment with virt-install
	17.1.4. Detaching an Assigned PCI Device
	17.1.5. Creating PCI Bridges
	17.1.5.1. PCI Bridge hot plug/hot unplug Support

	17.1.6. PCI Device Assignment Restrictions

	17.2. PCI DEVICE ASSIGNMENT WITH SR-IOV DEVICES
	17.2.1. Advantages of SR-IOV
	17.2.2. Using SR-IOV
	17.2.3. Configuring PCI Assignment with SR-IOV Devices
	17.2.4. Setting PCI device assignment from a pool of SR-IOV virtual functions
	17.2.5. SR-IOV Restrictions

	17.3. USB DEVICES
	17.3.1. Assigning USB Devices to Guest Virtual Machines
	17.3.2. Setting a Limit on USB Device Redirection

	17.4. CONFIGURING DEVICE CONTROLLERS
	17.5. SETTING ADDRESSES FOR DEVICES
	17.6. RANDOM NUMBER GENERATOR DEVICE
	17.7. ASSIGNING GPU DEVICES
	17.7.1. GPU PCI Device Assignment
	17.7.2. NVIDIA vGPU Assignment
	NVIDIA vGPU Setup
	Removing NVIDIA vGPU Devices
	Querying NVIDIA vGPU Capabilities
	Remote Desktop Streaming Services for NVIDIA vGPU

	CHAPTER 18. VIRTUAL NETWORKING
	18.1. VIRTUAL NETWORK SWITCHES
	18.2. BRIDGED MODE
	18.3. NETWORK ADDRESS TRANSLATION
	18.4. DNS AND DHCP
	18.5. ROUTED MODE
	18.6. ISOLATED MODE
	18.7. THE DEFAULT CONFIGURATION
	18.8. EXAMPLES OF COMMON SCENARIOS
	18.8.1. Bridged Mode
	18.8.2. Routed Mode
	18.8.3. NAT Mode
	18.8.4. Isolated Mode

	18.9. MANAGING A VIRTUAL NETWORK
	18.10. CREATING A VIRTUAL NETWORK
	18.11. ATTACHING A VIRTUAL NETWORK TO A GUEST
	18.12. ATTACHING A VIRTUAL NIC DIRECTLY TO A PHYSICAL INTERFACE
	18.12.1. Configuring macvtap using domain XML
	18.12.2. Configuring macvtap using virt-manager

	18.13. DYNAMICALLY CHANGING A HOST PHYSICAL MACHINE OR A NETWORK BRIDGE THAT IS ATTACHED TO A VIRTUAL NIC
	18.14. APPLYING NETWORK FILTERING
	18.14.1. Introduction
	18.14.2. Filtering Chains
	18.14.3. Filtering Chain Priorities
	18.14.4. Usage of Variables in Filters
	18.14.5. Automatic IP Address Detection and DHCP Snooping
	18.14.5.1. Introduction
	18.14.5.2. DHCP Snooping

	18.14.6. Reserved Variables
	18.14.7. Element and Attribute Overview
	18.14.8. References to Other Filters
	18.14.9. Filter Rules
	18.14.10. Supported Protocols
	18.14.10.1. MAC (Ethernet)
	18.14.10.2. VLAN (802.1Q)
	18.14.10.3. STP (Spanning Tree Protocol)
	18.14.10.4. ARP/RARP
	18.14.10.5. IPv4
	18.14.10.6. IPv6
	18.14.10.7. TCP/UDP/SCTP
	18.14.10.8. ICMP
	18.14.10.9. IGMP, ESP, AH, UDPLITE, 'ALL'
	18.14.10.10. TCP/UDP/SCTP over IPV6
	18.14.10.11. ICMPv6
	18.14.10.12. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

	18.14.11. Advanced Filter Configuration Topics
	18.14.11.1. Connection tracking
	18.14.11.2. Limiting number of connections
	18.14.11.3. Command-line tools
	18.14.11.4. Pre-existing network filters
	18.14.11.5. Writing your own filters
	18.14.11.6. Sample custom filter

	18.14.12. Limitations

	18.15. CREATING TUNNELS
	18.15.1. Creating Multicast Tunnels
	18.15.2. Creating TCP Tunnels

	18.16. SETTING VLAN TAGS
	18.17. APPLYING QOS TO YOUR VIRTUAL NETWORK

	CHAPTER 19. REMOTE MANAGEMENT OF GUESTS
	19.1. TRANSPORT MODES
	19.2. REMOTE MANAGEMENT WITH SSH
	19.3. REMOTE MANAGEMENT OVER TLS AND SSL
	19.4. CONFIGURING A VNC SERVER
	19.5. ENHANCING REMOTE MANAGEMENT OF VIRTUAL MACHINES WITH NSS

	CHAPTER 20. MANAGING GUESTS WITH THE VIRTUAL MACHINE MANAGER (VIRT-MANAGER)
	20.1. STARTING VIRT-MANAGER
	20.2. THE VIRTUAL MACHINE MANAGER MAIN WINDOW
	20.3. THE VIRTUAL HARDWARE DETAILS WINDOW
	20.3.1. Applying Boot Options to Guest Virtual Machines
	20.3.2. Attaching USB Devices to a Guest Virtual Machine
	20.3.3. USB Redirection

	20.4. VIRTUAL MACHINE GRAPHICAL CONSOLE
	20.5. ADDING A REMOTE CONNECTION
	20.6. DISPLAYING GUEST DETAILS
	20.7. MANAGING SNAPSHOTS

	CHAPTER 21. MANAGING GUEST VIRTUAL MACHINES WITH VIRSH
	21.1. GUEST VIRTUAL MACHINE STATES AND TYPES
	21.2. DISPLAYING THE VIRSH VERSION
	21.3. SENDING COMMANDS WITH ECHO
	21.4. CONNECTING TO THE HYPERVISOR WITH VIRSH CONNECT
	21.5. DISPLAYING INFORMATION ABOUT A GUEST VIRTUAL MACHINE AND THE HYPERVISOR
	21.6. STARTING, RESUMING, AND RESTORING A VIRTUAL MACHINE
	21.6.1. Starting a Guest Virtual Machine
	21.6.2. Configuring a Virtual Machine to be Started Automatically at Boot
	21.6.3. Rebooting a Guest Virtual Machine
	21.6.4. Restoring a Guest Virtual Machine
	21.6.5. Resuming a Guest Virtual Machine

	21.7. MANAGING A VIRTUAL MACHINE CONFIGURATION
	21.7.1. Saving a Guest Virtual Machine's Configuration
	21.7.2. Defining a Guest Virtual Machine with an XML File
	21.7.3. Updating the XML File That will be Used for Restoring a Guest Virtual Machine
	21.7.4. Extracting the Guest Virtual Machine XML File
	21.7.5. Editing the Guest Virtual Machine Configuration

	21.8. SHUTTING OFF, SHUTTING DOWN, REBOOTING, AND FORCING A SHUTDOWN OF A GUEST VIRTUAL MACHINE
	21.8.1. Shutting down a Guest Virtual Machine
	21.8.2. Suspending a Guest Virtual Machine
	21.8.3. Resetting a Virtual Machine
	21.8.4. Stopping a Running Guest Virtual Machine in Order to Restart It Later

	21.9. REMOVING AND DELETING A VIRTUAL MACHINE
	21.9.1. Undefining a Virtual Machine
	21.9.2. Forcing a Guest Virtual Machine to Stop

	21.10. CONNECTING THE SERIAL CONSOLE FOR THE GUEST VIRTUAL MACHINE
	21.11. INJECTING NON-MASKABLE INTERRUPTS
	21.12. RETRIEVING INFORMATION ABOUT YOUR VIRTUAL MACHINE
	21.12.1. Displaying Device Block Statistics
	21.12.2. Retrieving Network Interface Statistics
	21.12.3. Modifying the Link State of a Guest Virtual Machine's Virtual Interface
	21.12.4. Listing the Link State of a Guest Virtual Machine's Virtual Interface
	21.12.5. Setting Network Interface Bandwidth Parameters
	21.12.6. Retrieving Memory Statistics
	21.12.7. Displaying Errors on Block Devices
	21.12.8. Displaying the Block Device Size
	21.12.9. Displaying the Block Devices Associated with a Guest Virtual Machine
	21.12.10. Displaying Virtual Interfaces Associated with a Guest Virtual Machine

	21.13. WORKING WITH SNAPSHOTS
	21.13.1. Shortening a Backing Chain by Copying the Data
	21.13.2. Shortening a Backing Chain by Flattening the Image
	21.13.3. Changing the Size of a Guest Virtual Machine's Block Device

	21.14. DISPLAYING A URI FOR CONNECTION TO A GRAPHICAL DISPLAY
	21.15. DISPLAYING THE IP ADDRESS AND PORT NUMBER FOR THE VNC DISPLAY
	21.16. DISCARDING BLOCKS NOT IN USE
	21.17. GUEST VIRTUAL MACHINE RETRIEVAL COMMANDS
	21.17.1. Displaying the Host Physical Machine Name
	21.17.2. Displaying General Information about a Virtual Machine
	21.17.3. Displaying a Virtual Machine's ID Number
	21.17.4. Aborting Running Jobs on a Guest Virtual Machine
	21.17.5. Displaying Information about Jobs Running on the Guest Virtual Machine
	21.17.6. Displaying the Guest Virtual Machine's Name
	21.17.7. Displaying the Virtual Machine's State
	21.17.8. Displaying the Connection State to the Virtual Machine

	21.18. CONVERTING QEMU ARGUMENTS TO DOMAIN XML
	21.19. CREATING A DUMP FILE OF A GUEST VIRTUAL MACHINE'S CORE USING VIRSH DUMP
	21.20. CREATING A VIRTUAL MACHINE XML DUMP (CONFIGURATION FILE)
	21.21. CREATING A GUEST VIRTUAL MACHINE FROM A CONFIGURATION FILE
	21.22. EDITING A GUEST VIRTUAL MACHINE'S XML CONFIGURATION SETTINGS
	21.23. ADDING MULTIFUNCTION PCI DEVICES TO KVM GUEST VIRTUAL MACHINES
	21.24. DISPLAYING CPU STATISTICS FOR A SPECIFIED GUEST VIRTUAL MACHINE
	21.25. TAKING A SCREENSHOT OF THE GUEST CONSOLE
	21.26. SENDING A KEYSTROKE COMBINATION TO A SPECIFIED GUEST VIRTUAL MACHINE
	21.27. HOST MACHINE MANAGEMENT
	21.27.1. Displaying Host Information
	21.27.2. Setting NUMA Parameters
	21.27.3. Displaying the Amount of Free Memory in a NUMA Cell
	21.27.4. Displaying a CPU List
	21.27.5. Displaying CPU Statistics
	21.27.6. Managing Devices
	21.27.6.1. Attaching and updating a device with virsh
	21.27.6.2. Attaching interface devices
	21.27.6.3. Changing the media of a CDROM

	21.27.7. Suspending the Host
	21.27.8. Setting and Displaying the Node Memory Parameters
	21.27.9. Listing Devices on a Host
	21.27.10. Creating Devices on Host Machines
	21.27.11. Removing a Device
	21.27.12. Collect Device Configuration Settings
	21.27.13. Triggering a Reset for a Device

	21.28. RETRIEVING GUEST VIRTUAL MACHINE INFORMATION
	21.28.1. Getting the Domain ID of a Guest Virtual Machine
	21.28.2. Getting the Domain Name of a Guest Virtual Machine
	21.28.3. Getting the UUID of a Guest Virtual Machine
	21.28.4. Displaying Guest Virtual Machine Information

	21.29. STORAGE POOL COMMANDS
	21.29.1. Searching for a Storage Pool XML
	21.29.2. Finding a storage Pool
	21.29.3. Listing Storage Pool Information
	21.29.4. Listing the Available Storage Pools
	21.29.5. Refreshing a Storage Pool List
	21.29.6. Creating, Defining, and Starting Storage Pools
	21.29.6.1. Building a storage pool
	21.29.6.2. Defining a storage pool from an XML file
	21.29.6.3. Creating storage pools
	21.29.6.4. Creating storage pools
	21.29.6.5. Defining a storage pool
	21.29.6.6. Starting a storage pool
	21.29.6.7. Auto-starting a storage pool

	21.29.7. Stopping and Deleting Storage Pools
	21.29.8. Creating an XML Dump File for a Pool
	21.29.9. Editing the Storage Pool's Configuration File

	21.30. STORAGE VOLUME COMMANDS
	21.30.1. Creating Storage Volumes
	21.30.2. Creating a Storage Volume from Parameters
	21.30.3. Creating a Storage Volume from an XML File
	21.30.4. Cloning a Storage Volume

	21.31. DELETING STORAGE VOLUMES
	21.32. DELETING A STORAGE VOLUME'S CONTENTS
	21.33. DUMPING STORAGE VOLUME INFORMATION TO AN XML FILE
	21.34. LISTING VOLUME INFORMATION
	21.35. RETRIEVING STORAGE VOLUME INFORMATION
	21.36. UPLOADING AND DOWNLOADING STORAGE VOLUMES
	21.37. RESIZING STORAGE VOLUMES
	21.38. DISPLAYING PER-GUEST VIRTUAL MACHINE INFORMATION
	21.38.1. Displaying the Guest Virtual Machines
	21.38.2. Displaying Virtual CPU Information
	21.38.3. Pinning vCPU to a Host Physical Machine's CPU
	21.38.4. Displaying Information about the Virtual CPU Counts of a Given Domain
	21.38.5. Configuring Virtual CPU Affinity
	21.38.6. Configuring Virtual CPU Count
	21.38.7. Configuring Memory Allocation
	21.38.8. Changing the Memory Allocation for the Domain
	21.38.9. Displaying Guest Virtual Machine Block Device Information
	21.38.10. Displaying Guest Virtual Machine Network Device Information

	21.39. MANAGING VIRTUAL NETWORKS
	21.39.1. Autostarting a Virtual Network
	21.39.2. Creating a Virtual Network from an XML File
	21.39.3. Defining a Virtual Network from an XML File
	21.39.4. Stopping a Virtual Network
	21.39.5. Creating a Dump File
	21.39.6. Editing a Virtual Network's XML Configuration File
	21.39.7. Getting Information about a Virtual Network
	21.39.8. Listing Information about a Virtual Network
	21.39.9. Converting a Network UUID to Network Name
	21.39.10. Converting a Network Name to Network UUID
	21.39.11. Starting a Previously Defined Inactive Network
	21.39.12. Undefining the Configuration for an Inactive Network
	21.39.13. Updating an Existing Network Definition File
	21.39.14. Migrating Guest Virtual Machines with virsh
	21.39.15. Setting a Static IP Address for the Guest Virtual Machine

	21.40. INTERFACE COMMANDS
	21.40.1. Defining and Starting a Host Physical Machine Interface via an XML File
	21.40.2. Editing the XML Configuration File for the Host Interface
	21.40.3. Listing Host Interfaces
	21.40.4. Converting a MAC Address into an Interface Name
	21.40.5. Stopping and Undefining a Specific Host Physical Machine Interface
	21.40.6. Displaying the Host Configuration File
	21.40.7. Creating Bridge Devices
	21.40.8. Tearing Down a Bridge Device
	21.40.9. Manipulating Interface Snapshots

	21.41. MANAGING SNAPSHOTS
	21.41.1. Creating Snapshots
	21.41.2. Creating a Snapshot for the Current Guest Virtual Machine
	21.41.3. Displaying the Snapshot Currently in Use
	21.41.4. snapshot-edit
	21.41.5. snapshot-info
	21.41.6. snapshot-list
	21.41.7. snapshot-dumpxml
	21.41.8. snapshot-parent
	21.41.9. snapshot-revert
	21.41.10. snapshot-delete

	21.42. GUEST VIRTUAL MACHINE CPU MODEL CONFIGURATION
	21.42.1. Introduction
	21.42.2. Learning about the Host Physical Machine CPU Model
	21.42.3. Determining Support for VFIO IOMMU Devices
	21.42.4. Determining a Compatible CPU Model to Suit a Pool of Host Physical Machines

	21.43. CONFIGURING THE GUEST VIRTUAL MACHINE CPU MODEL
	21.44. MANAGING RESOURCES FOR GUEST VIRTUAL MACHINES
	21.45. SETTING SCHEDULE PARAMETERS
	21.46. DISK I/O THROTTLING
	21.47. DISPLAY OR SET BLOCK I/O PARAMETERS
	21.48. CONFIGURING MEMORY TUNING

	CHAPTER 22. GUEST VIRTUAL MACHINE DISK ACCESS WITH OFFLINE TOOLS
	22.1. INTRODUCTION
	22.1.1. Caution about Using Remote Connections

	22.2. TERMINOLOGY
	22.3. INSTALLATION
	22.4. THE GUESTFISH SHELL
	22.4.1. Viewing File Systems with guestfish
	22.4.1.1. Manual Listing and Viewing
	22.4.1.2. Via guestfish inspection
	22.4.1.3. Accessing a guest virtual machine by name

	22.4.2. Adding Files with guestfish
	22.4.3. Modifying Files with guestfish
	22.4.4. Other Actions with guestfish
	22.4.5. Shell Scripting with guestfish
	22.4.6. Augeas and libguestfs Scripting

	22.5. OTHER COMMANDS
	22.6. VIRT-RESCUE: THE RESCUE SHELL
	22.6.1. Introduction
	22.6.2. Running virt-rescue

	22.7. VIRT-DF: MONITORING DISK USAGE
	22.7.1. Introduction
	22.7.2. Running virt-df

	22.8. VIRT-RESIZE: RESIZING GUEST VIRTUAL MACHINES OFFLINE
	22.8.1. Introduction
	22.8.2. Expanding a Disk Image

	22.9. VIRT-INSPECTOR: INSPECTING GUEST VIRTUAL MACHINES
	22.9.1. Introduction
	22.9.2. Installation
	22.9.3. Running virt-inspector

	22.10. USING THE API FROM PROGRAMMING LANGUAGES
	22.10.1. Interaction with the API via a C program

	22.11. VIRT-SYSPREP: RESETTING VIRTUAL MACHINE SETTINGS
	22.12. VIRT-CUSTOMIZE: CUSTOMIZING VIRTUAL MACHINE SETTINGS
	22.13. VIRT-DIFF: LISTING THE DIFFERENCES BETWEEN VIRTUAL MACHINE FILES
	22.14. VIRT-SPARSIFY: RECLAIMING EMPTY DISK SPACE
	Important limitations
	Examples
	virt-sparsify options

	CHAPTER 23. GRAPHICAL USER INTERFACE TOOLS FOR GUEST VIRTUAL MACHINE MANAGEMENT
	23.1. VIRT-VIEWER
	Syntax
	Connecting to a guest virtual machine
	Interface
	Setting hotkeys
	Kiosk mode

	23.2. REMOTE-VIEWER
	Syntax
	Connecting to a guest virtual machine
	Interface

	23.3. GNOME BOXES

	CHAPTER 24. MANIPULATING THE DOMAIN XML
	24.1. GENERAL INFORMATION AND METADATA
	24.2. OPERATING SYSTEM BOOTING
	24.2.1. BIOS Boot Loader
	24.2.2. Direct Kernel Boot
	24.2.3. Container Boot

	24.3. SMBIOS SYSTEM INFORMATION
	24.4. CPU ALLOCATION
	24.5. CPU TUNING
	24.6. MEMORY BACKING
	24.7. MEMORY TUNING
	24.8. MEMORY ALLOCATION
	24.9. NUMA NODE TUNING
	24.10. BLOCK I/O TUNING
	24.11. RESOURCE PARTITIONING
	24.12. CPU MODELS AND TOPOLOGY
	24.12.1. Changing the Feature Set for a Specified CPU
	24.12.2. Guest Virtual Machine NUMA Topology

	24.13. EVENTS CONFIGURATION
	24.14. POWER MANAGEMENT
	24.15. HYPERVISOR FEATURES
	24.16. TIMEKEEPING
	24.17. TIMER ELEMENT ATTRIBUTES
	24.18. DEVICES
	24.18.1. Hard Drives, Floppy Disks, and CD-ROMs
	24.18.1.1. Disk element
	24.18.1.2. Source element
	24.18.1.3. Mirror element
	24.18.1.4. Target element
	24.18.1.5. iotune element
	24.18.1.6. Driver element
	24.18.1.7. Additional Device Elements

	24.18.2. File Systems
	24.18.3. Device Addresses
	24.18.4. Controllers
	24.18.5. Device Leases
	24.18.6. Host Physical Machine Device Assignment
	24.18.6.1. USB / PCI devices
	24.18.6.2. Block / character devices

	24.18.7. Redirected devices
	24.18.8. Smartcard Devices
	24.18.9. Network Interfaces
	24.18.9.1. Virtual networks
	24.18.9.2. Bridge to LAN
	24.18.9.3. Setting a port masquerading range
	24.18.9.4. User space SLIRP stack
	24.18.9.5. Generic Ethernet connection
	24.18.9.6. Direct attachment to physical interfaces
	24.18.9.7. PCI passthrough
	24.18.9.8. Multicast tunnel
	24.18.9.9. TCP tunnel
	24.18.9.10. Setting NIC driver-specific options
	24.18.9.11. Overriding the target element
	24.18.9.12. Specifying boot order
	24.18.9.13. Interface ROM BIOS configuration
	24.18.9.14. Quality of service (QoS)
	24.18.9.15. Setting VLAN tag (on supported network types only)
	24.18.9.16. Modifying virtual link state

	24.18.10. Input Devices
	24.18.11. Hub Devices
	24.18.12. Graphical Framebuffers
	24.18.13. Video Devices
	24.18.14. Consoles, Serial, and Channel Devices
	24.18.15. Guest Virtual Machine Interfaces
	24.18.16. Channel
	24.18.17. Host Physical Machine Interface
	24.18.18. Sound Devices
	24.18.19. Watchdog Device
	24.18.20. Setting a Panic Device
	24.18.21. Memory Balloon Device

	24.19. STORAGE POOLS
	24.19.1. Providing Metadata for the Storage Pool
	24.19.2. Source Elements
	24.19.3. Creating Target Elements
	24.19.4. Setting Device Extents

	24.20. STORAGE VOLUMES
	24.20.1. General Metadata
	24.20.2. Setting Target Elements
	24.20.3. Setting Backing Store Elements

	24.21. SECURITY LABEL
	24.22. A SAMPLE CONFIGURATION FILE

	PART III. APPENDICES
	APPENDIX A. TROUBLESHOOTING
	A.1. DEBUGGING AND TROUBLESHOOTING TOOLS
	A.2. CREATING DUMP FILES
	A.2.1. Creating virsh Dump Files
	A.2.2. Saving a Core Dump Using a Python Script

	A.3. CAPTURING TRACE DATA ON A CONSTANT BASIS USING THE SYSTEMTAP FLIGHT RECORDER
	A.4. KVM_STAT
	Explanation of variables:

	A.5. TROUBLESHOOTING WITH SERIAL CONSOLES
	A.6. VIRTUALIZATION LOGS
	A.7. LOOP DEVICE ERRORS
	A.8. LIVE MIGRATION ERRORS
	A.9. ENABLING INTEL VT-X AND AMD-V VIRTUALIZATION HARDWARE EXTENSIONS IN BIOS
	A.10. SHUTTING DOWN RED HAT ENTERPRISE LINUX 6 GUESTS ON A RED HAT ENTERPRISE LINUX 7 HOST
	A.11. OPTIONAL WORKAROUND TO ALLOW FOR GRACEFUL SHUTDOWN
	A.12. KVM NETWORKING PERFORMANCE
	A.13. WORKAROUND FOR CREATING EXTERNAL SNAPSHOTS WITH LIBVIRT
	A.14. MISSING CHARACTERS ON GUEST CONSOLE WITH JAPANESE KEYBOARD
	A.15. GUEST VIRTUAL MACHINE FAILS TO SHUTDOWN
	A.16. DISABLE SMART DISK MONITORING FOR GUEST VIRTUAL MACHINES
	A.17. LIBGUESTFS TROUBLESHOOTING
	A.18. TROUBLESHOOTING SR-IOV
	A.19. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING
	A.19.1. libvirtd failed to start
	A.19.2. The URI Failed to Connect to the Hypervisor
	A.19.2.1. Cannot read CA certificate
	A.19.2.2. Other Connectivity Errors

	A.19.3. Guest Starting Fails with Error: monitor socket did not show up
	A.19.4. internal error cannot find character device (null)
	A.19.5. Guest Virtual Machine Booting Stalls with Error: No boot device
	A.19.6. Virtual network default has not been started
	A.19.7. PXE Boot (or DHCP) on Guest Failed
	A.19.8. Guest Can Reach Outside Network, but Cannot Reach Host When Using macvtap interface
	A.19.9. Could not add rule to fixup DHCP response checksums on network 'default'
	A.19.10. Unable to add bridge br0 port vnet0: No such device
	A.19.11. Guest is Unable to Start with Error: warning: could not open /dev/net/tun
	A.19.12. Migration Fails with error: unable to resolve address
	A.19.13. Migration Fails with Unable to allow access for disk path: No such file or directory
	A.19.14. No Guest Virtual Machines are Present when libvirtd is Started
	A.19.15. unable to connect to server at 'host:16509': Connection refused ... error: failed to connect to the hypervisor
	A.19.16. Common XML Errors
	A.19.16.1. Editing domain definition
	A.19.16.2. XML syntax errors
	A.19.16.3. Logic and configuration errors

	APPENDIX B. USING KVM VIRTUALIZATION ON MULTIPLE ARCHITECTURES
	B.1. USING KVM VIRTUALIZATION ON IBM POWER SYSTEMS
	Installation
	Architecture Specifics

	B.2. USING KVM VIRTUALIZATION ON IBM Z SYSTEMS
	Installation
	Architecture Specifics

	B.3. USING KVM VIRTUALIZATION ON ARM SYSTEMS
	Installation
	Architecture Specifics

	APPENDIX C. VIRTUALIZATION RESTRICTIONS
	C.1. SYSTEM RESTRICTIONS
	C.2. FEATURE RESTRICTIONS
	C.3. APPLICATION RESTRICTIONS
	C.4. OTHER RESTRICTIONS
	C.5. STORAGE SUPPORT
	C.6. USB 3 / XHCI SUPPORT

	APPENDIX D. ADDITIONAL RESOURCES
	D.1. ONLINE RESOURCES
	D.2. INSTALLED DOCUMENTATION

	APPENDIX E. WORKING WITH IOMMU GROUPS[1]
	E.1. IOMMU OVERVIEW
	E.2. A DEEP-DIVE INTO IOMMU GROUPS
	E.3. HOW TO IDENTIFY AND ASSIGN IOMMU GROUPS
	E.4. IOMMU STRATEGIES AND USE CASES

	APPENDIX F. REVISION HISTORY

