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Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
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Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
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{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Fedora 25.

When submitting a bug report, be sure to mention the manual's identifier: virtualization-getting-started-
guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/
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Introduction
The Fedora Virtualization Getting Started Guide introduces the basics of virtualization and assists with
the navigation of other virtualization documentation and products that Fedora provides.

This guide also explains the advantages of virtualization and dispels some common myths that exist
regarding virtualization.

1.1. Who should read this guide?
This guide is designed for anyone wishing to understand the basics of virtualization, but may be of
particular interest to:

• Those who are new to virtualization.

• Those considering deployment of virtualized machines in their environment.

• Those looking for an overview of the virtualization technologies that Fedora produces and supports.

1.2. Virtualization in Fedora Linux
Fedora contains packages and tools to support a variety of virtualized environments.

Virtualization in Fedora is carried out by KVM (Kernel-based Virtual Machine). KVM is a full
virtualization solution built into Fedora.

Refer to Chapter 3, Introduction to Fedora virtualization products for more about the virtualization
products available in Fedora.

1.3. Virtualization resources
Fedora contains packages and tools to support a variety of virtualized environments. Fedora
virtualization provides the upstream development for virtualization in Red Hat Enterprise Linux. Refer
to Chapter 3, Introduction to Fedora virtualization products for more information about the virtualization
products available in Fedora.
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What is Virtualization?
Virtualization is a broad term used to describe running multiple guest operating systems with a
software to manage them.

2.1. How Does Virtualization work?
Most implementations of virtualization use a hypervisor. The hypervisor allows multiple operating
systems, called guests, to run on the same physical system by offering virtualized hardware to the
guest operating system.

2.2. Virtualization Methods
Full virtualization

Full virtualization uses the hardware features of the processor to provide guests with total abstraction
of the underlying physical system. This creates a new virtual system, called a virtual machine, that
allows guest operating systems to run without modifications. The guest operating system and any
applications on the guest virtual machine are unaware of their virtualized environment and run
normally. Hardware-assisted virtualization is the technique used for full virtualization with KVM (Kernel-
based Virtual Machine) in Fedora.

Para-virtualization

Para-virtualization employs a collection of software and data structures that are presented to the
virtualized guest, requiring software modifications in the guest to use the para-virtualized environment.
Para-virtualization can encompass the entire kernel, as is the case for Xen para-virtualized guests, or
drivers that virtualize I/O devices.

Software virtualization]

Software virtualization uses slower binary translation and other emulation techniques to run
unmodified operating systems.

Note

For more information and detailed instructions on guest installation, refer to the Fedora
Virtualization Deployment and Administration Guide

2.3. Virtualization Considerations
Before you consider to virtualize your environment it is important to perform a return on investment
(ROI) analysis to determine the best use of virtualization in your environment. Consider the following
benefits:

• Smaller footprint Using virtualization negates much of the need for multiple physical platforms.
Consolidating servers onto fewer machines means less physical space is required. This equates to
less power being drawn for machine operation and cooling, resulting in reduced energy costs. This
means more efficient energy resource management for your data center.

• Less time and maintenance needed to support virtualized systems provided that adequate planning
is performed before migrating physical systems to virtualized ones.
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• Extended life for installed software. Older versions of software may not run on newer, bare metal
machines directly. However, by running the older software virtually on a larger, faster system, the
life of the software may be extended while taking advantage of the performance from the new
hardware.

2.4. Performance
Modern servers have multiple core CPUs. This has significantly changed the possibilities with virtual
machines. Depending on what you would like to use your virtual machine for, and how many CPUs are
available, you can now set up a virtual machines with multiple CPUs.

2.5. Flexibility
• Virtualization provides greater flexibility for managing systems.

Virtual machines can be copied or moved to test software updates and validate configuration changes,
without impacting other systems. Because each of the virtualized systems are completely separate to
each other, one system's downtime will not affect any others.

Since less space is needed in a data center to put up the production environment, it is easier to create
extra space for development and testing environments. Both are easily set up and discarded. Having a
more flexible environment, makes it easier to provide secure redundancy planning.

With the fast changing market, a virtual configuration will provide a flexible, stable environment, with
which a business can quickly adapt, this helps the organization stay competitive.

2.6. Disaster Recovery
• Disaster Recovery is generally easier

Disaster recovery is a major component in information technology planning. Virtualization provides a
flexible and reliable environment for production systems. This flexibility also gives a large benefit of
flexible and easy disaster recovery. Virtual machines have features that they can be moved, backed
up, and restored, in many different ways that are not available with a typical server.

Even when the production environment is still on normal server hardware, disaster recovery is quicker
and easier when the systems are virtualized. If something catastrophic happens on a typical physical
server a complete or complicated re-install of the system is usually required; resulting in hours of
recovery time. However, when a clone or snapshot of a virtual machine is stored as a backup, this can
be used as a fast recovery method of the virtual machine. A virtual machine does not depended on
specific hardware, this makes any server suitable to recover a virtual machine on.
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Introduction to Fedora virtualization
products
This chapter introduces the various virtualization products available in Fedora.

3.1. KVM in Fedora
What is KVM?

KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux on AMD64 and
Intel 64 hardware that is built into the standard Fedora kernel. It can run multiple, unmodified
Windows and Linux guest operating systems. The KVM hypervisor in Fedora is managed with the
libvirt API and tools built for libvirt (such as virt-manager and virsh). Virtual machines are
executed and run as multi-threaded Linux processes controlled by these tools.

Overcommitting:
KVM hypervisor supports overcommitting of system resources. Overcommitting means allocating
more virtualized CPUs or memory than the available resources on the system. Memory
overcommitting allows hosts to utilize memory and virtual memory to increase guest densities.

Important

Overcommitting involves possible risks to system stability.

Thin provisioning:
Thin provisioning allows the allocation of flexible storage and optimizes the available space for
every guest. It gives the appearance that there is more physical storage on the guest than is
actually available. This is not the same as overcommitting as this only pertains to storage and not
CPUs or memory allocations. However, like overcommitting, the same warning applies.

Important

Thin provisioning involves possible risks to system stability.

KSM:
Kernel SamePage Merging (KSM), is used by the KVM hypervisor, allows KVM guests to share
identical memory pages. These shared pages are usually common libraries or other identical,
high-use data. KSM allows for greater guest density of identical or similar guest operating systems
by avoiding memory duplication.

QEMU guest agent:
The QEMU guest agent runs on the guest operating system and allows the host machine to issue
commands to the guest operating system.

KVM guest virtual machine compatibility
KVM requires a CPU with virtualization extensions, found on most modern consumer CPUs.
These extensions are called Intel VT or AMD-V.
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3.2. libvirt and libvirt tools
The libvirt package is a hypervisor-independent virtualization API that is able to interact with the
virtualization capabilities of a range of operating systems.

The libvirt package provides:

• A common, generic, and stable layer to securely manage virtual machines on a host.

• A common interface for managing local systems and networked hosts.

• All of the APIs required to provision, create, modify, monitor, control, migrate, and stop virtual
machines, but only if the hypervisor supports these operations. Although multiple hosts may be
accessed with libvirt simultaneously, the APIs are limited to single node operations.

The libvirt package is designed as a building block for higher level management tools and applications.
For example, virt-manager and virsh are included management tools. With the exception of
migration capabilities, libvirt focuses on managing single hosts and provides APIs to enumerate,
monitor and use the resources available on the managed node. libvirt can monitor CPU, memory,
storage, networking, and Non-Uniform Memory Access (NUMA) partitions. The management tools
can be located on separate physical machines from the host using secure protocols. libvirt is the
foundation of the Gnome application: gnome-boxes.

Fedora supports libvirt and included libvirt-based tools as its default method for virtualization
management.

The libvirt package is available as free software under the GNU Lesser General Public License. The
libvirt project aims to provide a long term stable C API to virtualization management tools, running on
top of varying hypervisor technologies.

virsh
The virsh command-line tool is built on the libvirt management API and operates as an
alternative to the graphical virt-manager application. The virsh command can be used in
read-only mode by unprivileged users or, with root access, full administration functionality. The
virsh command is ideal for scripting virtualization administration.

virt-manager
virt-manager is a graphical desktop tool for managing virtual machines. It allows access to
graphical guest consoles and can be used to perform virtualization administration, virtual machine
creation, migration, and configuration tasks. The ability to view virtual machines, host statistics,
device information and performance graphs is also provided. The local hypervisor and remote
hypervisors can be managed through a single interface.

virt-install
virt-install is a command line tool to provision new virtual machines. It supports both text-
based and graphical installations, using serial console, SDL, SPICE, or VNC client/server pair
graphics. Installation media can be local, or exist remotely on an NFS, HTTP, or FTP server.
The tool can also be configured to run unattended and kickstart the guest when installation is
complete, allowing for easy automation of installation.

3.3. Boxes
Boxes is a lightweight graphical desktop virtualization tool used to view and access virtual machines
and remote systems. It provides a way to test different operating systems and applications from the
desktop with minimal configuration. Boxes is based on QEMU and is included in Fedora Workstation.

Boxes is explained in more detail in Chapter 4, "Getting Started with Boxes".



Chapter 4.

7

Introduction to Boxes
Boxes is a simple graphical interface for managing and using virtual machines. Boxes can also
connect to computers via VNC, SPICE, and Quemu.

Boxes uses qemu-kvm, libvirt-glib, and spice-gtk to allow users to easily manage virtual machines
and connect to remote machines.

4.1. Features of Boxes
• Create, access, and manage, local virtual machines.

• Connect to remote machines (called connections) via SPICE, Quemu, or VNC protocols.

• Select and create favorite virtual machines or connections.

4.2. How do I create a virtual machine in Boxes?

Procedure 4.1. Create a Virtual Machine In Boxes
1. Download an ISO image of an operating system that will be used in the virtual machine.

2. Launch Boxes from the application launcher, super key, or terminal.

Figure 4.1. Boxes Icon

3. Click the New Button.



Chapter 4. Introduction to Boxes

8

Figure 4.2. New button location within the GUI in Gnome Shell

4. Read the introduction and click continue in the upper right hand corner.

5. Select the ISO Image file that was previously downloaded to the Downloads folder, otherwise click
select a file to find an ISO image file located somewhere else. Boxes will try to auto-detect ISO
files in your Downloads folder, but it may not always be successful.

Figure 4.3. ISO Image Selection within Gnome Shell
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6. Boxes will then auto create settings, they can be edited by clicking the customize button.

Figure 4.4. Customize Button Location within Gnome Shell

7. Memory and Disk allocation can be changed via the customize menu.
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Figure 4.5. Customize Memory and Hard drive Space within Gnome Shell

8. After you are done allocating memory and hard drive space to the virtual machine click on the
back button

Figure 4.6. Customize back button within Gnome Shell
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9. Click Create.

Figure 4.7. Create button within Gnome Shell

10. The new virtual machine will now boot.

4.3. How do I connect to other computers in Boxes?

Note

Boxes Supports three protocols: SPICE, Qemu, and VNC.

Procedure 4.2. To connect to another computer using Boxes:
1. Open Boxes.

2. ClickNew.
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Figure 4.8. New button location within the GUI in Gnome Shell

3. Click Enter URL.

Figure 4.9. Enter URL location within the GUI in Gnome Shell

4. Enter the IP address or hostname of the remote machine you want to connect to. Remember to
specify the protocol in the field. For example to connect to a computer via VNC at IP Address
192.168.1.115, you would type in vnc://192.168.1.115.
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Figure 4.10. Enter URL to the computer you want to connect to in Gnome Shell

5. Click Continue.

Figure 4.11. Continue button location connect to a different computer in Gnome Shell
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6. The Review screen will now show you the type (protocol) and host (either hostname or IP
address) of the remote connection.

Figure 4.12. Review Screen example in Gnome Shell

7. Click Create.
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Figure 4.13. Create button location in Gnome Shell

8. The Remote connection is now available in the selection screen.

Figure 4.14. example selection screen in Gnome Shell after vnc connection is created

4.4. How do I change the settings of a machine in boxes?
• On the listing of machines, right click on the machine and then choose Properties.
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Figure 4.15. Right Click menu in Boxes in Gnome Shell

• If the machine is running, click on the menu button, the button with three lines, also known as the
hamburger button
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Figure 4.16. Menu button location on a running VM on Gnome Shell

Once you have accessed the settings menu you can change various items of the virtual machine:

• Sharing the clipboard

• Resize Guest

• Redirect New USB Devices to the Virtual Machine

• Redirect currently plugged in USB devices to the Virtual machine

• Create Snapshots of the Virtual Machine from the snapshot heading

• Restart, If the Virtual machine is running, you can use the Restart button, to restart it. The Restart
button is to the immediate left of the red Force Shutdown button on the system tab.
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To exit the settings menu, press the X button X it is located in the upper right hand corner of the menu
bar. This will close the settings screen and return you to your previous screen.

Figure 4.17. Close button location for VM settings in Gnome Shell

4.5. How do I delete a box?
Deleting a box is simple and it can be done two ways:

Procedure 4.3. How to delete a single Box
1. Open Boxes.

2. Right Click the Box or Boxes you wish to delete.
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Figure 4.18. Right click context menu in Gnome Shell

3. click the Delete button.
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Figure 4.19. Right click context delete box in Gnome Shell

4. Click the X on the confirmation notification if you are sure you have deleted the correct boxes. Or
click UNDO if you made a mistake.

Procedure 4.4. How to delete a multiple Boxes at once
1. Open Boxes.

2. Click the checkmark button on the top right hand of the menu bar.
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Figure 4.20. Check mark button location in Gnome Shell

3. Select the boxes you wish to delete
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Figure 4.21. Multiple device selection checkmarks in Gnome Shell

4. After the Boxes have a check mark on them that you wish to delete, click the Delete button on the
bottom bar.
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Figure 4.22. Multiple device deletion button in Gnome Shell

5. Click the X on the confirmation notification if you are sure you have deleted the correct boxes. Or
click UNDO if you made a mistake.

4.6. Boxes Tips and Tricks
• Boxes uses libvirtd and many libvirtd commands can be used for Boxes virtual machines.

• Boxes keeps the virtual machine disks or images in:/home/$USER/.local/share/gnome-
boxes/images

4.7. Advanced Commands in Boxes
You can start and stop virtual machines from the command line as well as using the boxes interface .

• virsh shutdown or virsh reboot will use ACPI to shutdown or reboot the virtual machine.

• virsh destroy will mimic if you pulled the power from a running virtual machine.

• virsh start will power on or start the virtual machine.

Warning

Do not use the virsh destory often or corruption and data loss will occur!



24



Chapter 5.

25

Creating and Managing Guests with
Virt-Manager
This chapter describes how to install the virtualization packages for virt-manager and the KVM
hypervisor, and how to create guest virtual machines.

5.1. System Requirements
The common system requirements for virtualization on Fedora are:

• 10GB of hard disk storage per guest

• 1GB of RAM per guest

• 1GHz or faster processor

KVM requires a CPU with virtualization extensions, found on most modern consumer CPUs. These
extensions are called Intel VT or AMD-V. To check whether you have proper CPU support, run the
command:

     $ egrep '^flags.*(vmx|svm)' /proc/cpuinfo

If nothing is printed, your system does not support the relevant extensions. You can still use the
QEMU/KVM, but the emulator will fall back to software virtualization, which is much slower.

5.2. Installing Virtualization package groups
You can install virtualization packages from package groups with the following command:

# dnf group install Virtualization

Note

Note that the qemu-img package is installed as a dependency of the Virtualization
package group if it is not already installed on the system.

The following describes the Virtualization package:

$ dnf group info "Virtualization"

Group: Virtualization
 Description: These packages provide a virtualization environment.
 Mandatory Packages:
   virt-install
 Default Packages:
   libvirt-daemon-config-network
   libvirt-daemon-kvm
   qemu-kvm
   virt-manager
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   virt-viewer
 Optional Packages:
   guestfs-browser
   libguestfs-tools
   python-libguestfs
   virt-top

The following list describes some of these packages.

Recommended virtualization packages
qemu-kvm

This package provide the user-level KVM emulator on the host Fedora system.

virt-install
Provides the virt-install command line tool for creating virtual machines.

virt-manager
virt-manager, also known as Virtual Machine Manager, provides a graphical tool for
administering virtual machines.

5.3. Network Support
By default libvirt creates a private network for your guests on the host machine. This private network
will use a 192.168.x.x subnet and not be reachable directly from the network the host machine is on,
but virtual guests can use the host machine as a gateway and can connect out with it. If you need
to provide services on your guests that are reachable through other machines on your host network
you can use firewalld to forward in specific ports, or you can setup a Bridged env. See the Networking
Guide1 for more details.

5.4. Creating guests with virt-manager
virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and
managing guest virtual machines.

Procedure 5.1. Creating a guest virtual machine with virt-manager
1. Open virt-manager

Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Optional: Open a remote hypervisor
Select the hypervisor and click the Connect button to connect to the remote hypervisor.

3. Create a new virtual machine
The virt-manager window allows you to create a new virtual machine. Click the Create a new
virtual machine button (Figure 5.1, “Virtual Machine Manager window”) to open the New VM
wizard.

1 http://docs.fedoraproject.org/en-US/Fedora/21/html/Networking_Guide/index.html

http://docs.fedoraproject.org/en-US/Fedora/21/html/Networking_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora/21/html/Networking_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora/21/html/Networking_Guide/index.html
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Figure 5.1. Virtual Machine Manager window

The New VM wizard breaks down the virtual machine creation process into five steps:

1. Choosing the installation type

2. Selecting the installation media

3. Configuring memory and CPU options

4. Configuring the virtual machine's storage

5. Naming the guest virtual machine, configuring networking, architecture, and other hardware
settings

Ensure that virt-manager can access the installation media (whether locally or over the
network) before you continue.

4. Specify the installation type
The guest virtual machine creation process starts with the selection of the installation type.
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Figure 5.2. Select installation method

Choose an installation type:

Local install media (ISO image or CDROM)
This method uses a CD-ROM, DVD, or image of an installation disk (for example, .iso).

Network Install (HTTP, FTP, or NFS)
This method involves the use of a mirrored Fedora installation tree to install a guest. The
installation tree must be accessible through either HTTP, FTP, or NFS.

Network Boot (PXE)
This method uses a Preboot eXecution Environment (PXE) server to install the guest
virtual machine. Setting up a PXE server is covered in the Virtualization Deployment and
Administration Guide2. To install via network boot, the guest must have a routable IP address

2 http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/
Virtualization_Deployment_and_Administration_Guide/index.html

http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
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or shared network device. For information on the required networking configuration for PXE
installation, refer to the Virtualization Deployment and Administration Guide3.

Import existing disk image
This method allows you to create a new guest virtual machine and import a disk image
(containing a pre-installed, bootable operating system) to it.

Click Forward to continue.

5. Locate the installation media
Select the installation from either a CDROM/DVD, or browse to the downloaded ISO image. Virt-
manager will automatically detect the OS and version. Ensure that virt-manager selected the
appropriate OS type for your virtual machine. Depending on the method of installation, provide the
install drive or existing storage path.

Figure 5.3. Local ISO image installation

3 http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/
Virtualization_Deployment_and_Administration_Guide/index.html

http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Virtualization_Deployment_and_Administration_Guide/index.html
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6. Configure CPU and memory
The next step involves configuring the number of CPUs and amount of memory to allocate to the
virtual machine. The wizard shows the number of CPUs and amount of memory you can allocate;
configure these settings and click Forward.

Figure 5.4. Configuring CPU and Memory

7. Configure storage
Assign storage to the guest virtual machine.
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Figure 5.5. Configuring virtual storage

If you chose to import an existing disk image during the first step, virt-manager will skip this
step.

Assign sufficient space for your virtual machine and any applications it requires, then click
Forward to continue.

8. Final configuration
Next, name the virtual machine. Virtual machine names can have underscores (_), periods
(.), and hyphens (-). Verify the settings of the virtual machine and click Finish when you are
satisfied; doing so will create the virtual machine with default networking settings, virtualization
type, and architecture.
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Figure 5.6. Verifying the configuration

If you prefer to further configure the virtual machine's hardware first, check the Customize
configuration before install box first before clicking Finish. Doing so will open another wizard
that will allow you to add, remove, and configure the virtual machine's hardware settings.

After configuring the virtual machine's hardware, click Apply. virt-manager will then create the
virtual machine with your specified hardware settings.
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Appendix A. Advanced Virtualization
Concepts

A.1. Virtualized hardware devices
Virtualization on Fedora presents three distinct types of system devices to virtual machines. The three
types include:

• Virtualized and emulated devices

• Para-virtualized devices

• Physically shared devices

These hardware devices all appear as being physically attached to the virtual machine but the device
drivers work in different ways.

A.1.1. Virtualized and emulated devices
KVM implements many core devices for virtual machines in software. These emulated hardware
devices are crucial for virtualizing operating systems.

Emulated devices are virtual devices which exist entirely in software.

Emulated drivers may use either a physical device or a virtual software device. Emulated drivers are a
translation layer between the virtual machine and the Linux kernel (which manages the source device).
The device level instructions are completely translated by the KVM hypervisor. Any device, of the
same type (storage, network, keyboard, and mouse) and recognized by the Linux kernel, may be used
as the backing source device for the emulated drivers.

Virtual CPUs (vCPUs)
A host system can have up to 160 virtual CPUs (vCPUs) that can be presented to guests for their
use, regardless of the number of host CPUs.

Emulated graphics devices
Two emulated graphics devices are provided. These devices can be connected to with the SPICE
(Simple Protocol for Independent Computing Environments) protocol or with VNC:

• A Cirrus CLGD 5446 PCI VGA card (using the cirrus device)

• A standard VGA graphics card with Bochs VESA extensions (hardware level, including all non-
standard modes)

Emulated system components
The following core system components are emulated to provide basic system functions:

• Intel i440FX host PCI bridge

• PIIX3 PCI to ISA bridge

• PS/2 mouse and keyboard

• EvTouch USB graphics tablet

• PCI UHCI USB controller and a virtualized USB hub
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• Emulated serial ports

• EHCI controller, virtualized USB storage and a USB mouse

• USB 3.0 xHCI host controller

Emulated sound devices
The following two emulated sound devices are also available, but are not recommended due to
compatibility issues with certain guest operating systems:

• ac97, an emulated Intel 82801AA AC97 Audio compatible sound card

• es1370, an emulated ENSONIQ AudioPCI ES1370 sound card

Emulated watchdog devices
Fedora provides two emulated watchdog devices. A watchdog can be used to automatically reboot
a virtual machine when it becomes overloaded or unresponsive.

The watchdog package must be installed on the guest.

The two devices available are:

• i6300esb, an emulated Intel 6300 ESB PCI watchdog device.

• ib700, an emulated iBase 700 ISA watchdog device.

Emulated network devices
There are two emulated network devices available:

• The e1000 device emulates an Intel E1000 network adapter (Intel 82540EM, 82573L,
82544GC).

• The rtl8139 device emulates a Realtek 8139 network adapter.

Emulated storage drivers
Storage devices and storage pools can use these emulated devices to attach storage devices to
virtual machines. The guest uses an emulated storage driver to access the storage pool.

Note that like all virtual devices, the storage drivers are not storage devices. The drivers are used
to attach a backing storage device, file or storage pool volume to a virtual machine. The backing
storage device can be any supported type of storage device, file, or storage pool volume.

The emulated IDE driver
KVM provides two emulated PCI IDE interfaces. An emulated IDE driver can be used to attach
any combination of up to four virtualized IDE hard disks or virtualized IDE CD-ROM drives to each
virtual machine. The emulated IDE driver is also used for virtualized CD-ROM and DVD-ROM
drives.

The emulated floppy disk drive driver
The emulated floppy disk drive driver is used for creating virtualized floppy drives.

A.1.2. Storage volumes
Storage pools are further divided into storage volumes. Storage volumes are an abstraction of
physical partitions, LVM logical volumes, file-based disk images and other storage types handled by
libvirt. Storage volumes are presented to virtual machines as local storage devices regardless of the
underlying hardware.
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For more information on storage and virtualization, refer to the Fedora Virtualization Deployment and
Administration Guide.

A.1.3. Para-virtualized devices
Para-virtualized devices are drivers for virtual devices that increase the I/O performance of virtual
machines.

Para-virtualized devices decrease I/O latency and increase I/O throughput to near bare-metal levels.
It is recommended to use the para-virtualized device drivers for virtual machines running I/O intensive
applications.

The para-virtualized devices must be installed on the guest operating system. The para-virtualized
device drivers must be manually installed on Windows guests.

The para-virtualized network driver (virtio-net)
The para-virtualized network driver can be used as the driver for existing network devices or new
network devices for virtual machines.

The para-virtualized block driver (virtio-blk)
The para-virtualized block driver is a driver for all storage devices, is supported by the hypervisor,
and is attached to the virtual machine (except for floppy disk drives, which must be emulated).

The para-virtualized controller device (virtio-scsi)
The para-virtualized SCSI controller device provides a more flexible and scalable alternative to
virtio-blk. A virtio-scsi guest is capable of inheriting the feature set of the target device, and can
handle hundreds of devices compared to virtio-blk, which can only handle 28 devices.

The para-virtualized clock
Guests using the Time Stamp Counter (TSC) as a clock source may suffer timing issues. KVM
works around hosts that do not have a constant Time Stamp Counter by providing guests with a
para-virtualized clock.

The para-virtualized serial driver (virtio-serial)
The para-virtualized serial driver is a bytestream-oriented, character stream driver, and provides a
simple communication interface between the host's user space and the guest's user space.

The balloon driver (virtio-balloon)
The balloon driver can designate part of a virtual machine's RAM as not being used (a process
known as balloon inflation), so that the memory can be freed for the host (or for other virtual
machines on that host) to use. When the virtual machine needs the memory again, the balloon can
be deflated and the host can distribute the RAM back to the virtual machine.

The para-virtualized random number generator (virtio-rng)
The para-virtualized random number generator enables virtual machines to collect entropy, or
randomness, directly from the host to use for encrypted data and security. Virtual machines can
often be starved of entropy because typical inputs (such as hardware usage) are unavailable.
Sourcing entropy can be time-consuming; virtio-rng makes this process faster by injecting entropy
directly into guest virtual machines from the host.

A.1.4. Physical host devices
Certain hardware platforms allow virtual machines to directly access various hardware devices and
components. This process in virtualization is known as device assignment. Device assignment is also
known as passthrough.
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PCI device assignment
The KVM hypervisor supports attaching PCI devices on the host system to virtual machines. PCI
device assignment allows guests to have exclusive access to PCI devices for a range of tasks. It
allows PCI devices to appear and behave as if they were physically attached to the guest virtual
machine.

Device assignment is supported on PCI Express devices, with the exception of graphics cards.
Parallel PCI devices may be supported as assigned devices, but they have severe limitations due
to security and system configuration conflicts.

USB passthrough
The KVM hypervisor supports attaching USB devices on the host system to virtual machines. USB
device assignment allows guests to have exclusive access to USB devices for a range of tasks.
It allows USB devices to appear and behave as if they were physically attached to the virtual
machine.

SR-IOV
SR-IOV (Single Root I/O Virtualization) is a PCI Express standard that extends a single physical
PCI function to share its PCI resources as separate, virtual functions (VFs). Each function is
capable of being used by a different virtual machine via PCI device assignment.

An SR-IOV capable PCI-e device, provides a Single Root Function (for example, a single Ethernet
port) and presents multiple, separate virtual devices as unique PCI device functions. Each
virtual device may have its own unique PCI configuration space, memory-mapped registers, and
individual MSI-based interrupts.

NPIV
N_Port ID Virtualization (NPIV) is a functionality available with some Fibre Channel devices. NPIV
shares a single physical N_Port as multiple N_Port IDs. NPIV provides similar functionality for
Fibre Channel Host Bus Adapters (HBAs) that SR-IOV provides for PCIe interfaces. With NPIV,
virtual machines can be provided with a virtual Fibre Channel initiator to Storage Area Networks
(SANs).

NPIV can provide high density virtualized environments with enterprise-level storage solutions.

A.1.5. CPU models
CPU models define which host CPU features are available to the guest operating system. qemu-
kvm and libvirt contain definitions for a number of current processor models, allowing users to
enable features that are available only in newer CPU models. The CPU feature set available to guests
depends on support in the host CPU kernel. The qemu-kvm code must also allow the feature to be
enabled.

To safely migrate virtual machines between hosts with different CPU feature sets, qemu-kvm does
not expose all CPU features from the host CPU to guest operating systems by default. Instead, CPU
features are exposed to virtual machines based on the chosen CPU model.

It is also possible to enable or disable specific CPU features in a virtual machine's XML configuration.
However, it is safer to use predefined CPU models, as incorrect configuration can cause compatibility
issues with the guest operating system.

A.1.6. Storage
Storage for virtual machines is abstracted from the physical storage used by the virtual machine. It is
attached to the virtual machine using the para-virtualized or emulated block device drivers.
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A storage pool is a file, directory, or storage device managed by libvirt for the purpose of providing
storage to virtual machines. Storage pools are divided into storage volumes that store virtual machine
images or are attached to virtual machines as additional storage. Multiple guests can share the same
storage pool, allowing for better allocation of storage resources.

Local storage pools
Local storage pools are directly attached to the host server. They include local directories, directly
attached disks, physical partitions, and LVM volume groups on local devices. Local storage
pools are useful for development, testing and small deployments that do not require migration or
large numbers of virtual machines. Local storage pools may not be suitable for many production
environments as they do not support live migration.

Networked (shared) storage pools
Networked storage pools include storage devices shared over a network using standard protocols.
Networked storage is required when migrating virtual machines between hosts with virt-manager,
but is optional when migrating with virsh. Networked storage pools are managed by libvirt.

A.2. guestfish
guestfish is a command line tool for examining and modifying the file systems of the host. This tool
uses libguestfs and exposes all functionality provided by the guestfs API. This tool ships in its own
package entitled guestfish.

Warning

Using guestfish on running virtual machines can cause disk-image corruption. Use the
guestfish command with the --ro (read-only) option if the disk image is being used by a
running virtual machine.

A.3. Other useful tools
The following tools are used to access a virtual machine's disk via the host. The guest's disk is usually
accessed directly via the disk-image file located on the host. However it is sometimes possible to
gain access via the libvirt domain. The commands that follow are part of the libvirt domain and are
used to gain access to the guest's disk image.

guestmount
A command line tool used to mount virtual machine file systems and disk images on the host
machine. This tool is installed as part of the libguestfs-mount package.

Warning

Using guestmount in --r/w (read/write) mode to access a disk that is currently being used
by a guest can cause the disk to become corrupted. Do not use guestmount in --r/w
(read/write) mode on live virtual machines. Use the guestmount command with the --ro
(read-only) option if the disk image is being used.



Appendix A. Advanced Virtualization Concepts

38

virt-cat
A command line tool that can be used to quickly view the contents of one or more files in a
specified virtual machine's disk or disk image. This tool is installed as part of the libguestfs-tools
package.

virt-df
A command line tool used to show the actual physical disk usage of virtual machines. Similar
to the command line tool df. Note that this tool does not work across remote connections. It is
installed as part of the libguestfs-tools package.

virt-edit
A command line tool used to edit files that exist on a specified virtual machine. This tool is installed
as part of the libguestfs-tools package.

Warning

Using virt-edit on live virtual machines can cause disk corruption in the virtual machine.
Although the virt-edit command will try to prevent users from editing files on live virtual
machines, it is not guaranteed to catch all instances. Do not use virt-edit on a live virtual
machine.

virt-filesystems
A command line tool used to discover file systems, partitions, logical volumes and their sizes in a
disk image or virtual machine. One common use is in shell scripts, to iterate over all file systems in
a disk image. This tool is installed as part of the libguestfs-tools package.

This tool replaces virt-list-filesystems and virt-list-partitions.

virt-inspector
A command line tool that can examine a virtual machine or disk image to determine the version of
its operating system and other information. It can also produce XML output, which can be piped
into other programs. Note that virt-inspector can only inspect one domain at a time. This tool
is installed as part of the libguestfs-tools package.

virt-ls
A command line tool that lists files and directories inside a virtual machine. This tool is installed as
part of the libguestfs-tools package.

virt-make-fs
A command line tool for creating a file system based on a tar archive or files in a directory. It is
similar to tools like mkisofs and mksquashfs, but it can create common file system types such
as ext2, ext3 and NTFS, and the size of the file system created can be equal to or greater than the
size of the files it is based on. This tool is provided as part of the libguestfs-tools package.

virt-rescue
A command line tool that provides a rescue shell and some simple recovery tools for unbootable
virtual machines and disk images. It can be run on any virtual machine known to libvirt, or directly
on disk images. This tool is installed as part of the libguestfs-tools package.
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Warning

Using virt-rescue on running virtual machines can cause disk corruption in the virtual
machine. virt-rescue attempts to prevent its own use on running virtual machines, but
cannot catch all cases.

Using the command with the --ro (read-only) option will not cause disk corruption, but may
give strange or inconsistent results. It is better to avoid using virt-rescue on a running
virtual machine.

virt-resize
A command line tool to resize virtual machine disks, and resize or delete any partitions on a virtual
machine disk. It works by copying the guest image and leaving the original disk image untouched.
This tool is installed as part of the libguestfs-tools package.

Important

Using virt-resize on running virtual machines can give inconsistent results. It is best to
shut down virtual machines before attempting to resize them.

virt-top
A command line utility similar to top, which shows statistics related to virtualized domains. This
tool ships in its own package: virt-top.

virt-v2v
A graphical tool to convert virtual machines from Xen and VMware hypervisors to run on KVM.
This tool ships in its own package: virt-v2v.

virt-viewer
A minimal tool for displaying the graphical console of a virtual machine via the VNC and SPICE
protocols. This tool ships in its own package: virt-viewer.

virt-what
A shell script that detects whether a program is running in a virtual machine. This tool ships in its
own package: virt-what.

virt-who
The virt-who package is a Fedora host agent that queries libvirt for guest UUIDs. It then passes
that data to the local entitlement server for the purposes of issuing certificates. This tool ships in its
own package: virt-who.

virt-win-reg
A command line tool to export and merge Windows Registry entries from a Windows guest, and
perform simple Registry operations. This tool is installed as part of the libguestfs-tools package.
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Warning

Using virt-win-reg on running virtual machines will cause irreversible disk corruption
in the virtual machine. virt-win-reg attempts to prevent its own use on running virtual
machines, but cannot catch all cases.

Warning

Modifying the Windows Registry is an inherently risky operation, as the format is deliberately
obscure and undocumented. Changes to the registry can leave the system unbootable, so
ensure you have a reliable backup before you use the --merge option.

virt-xml-validate
A command line tool to validate libvirt XML files for compliance with the published schema. This
tool is installed as part of the libvirt-client package.
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