PostgreSQL 14.1 Documentation

The PostgreSQL Global Development Group

PostgreSQL 14.1 Documentation
The PostgreSQL Global Development Group
Copyright © 19962021 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 19962021 by the PostgreSQL Global Development Group.
Postgresos is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee,
and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph
and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-|S” BASIS, AND
THEUNIVERSITY OF CALIFORNIA HASNO OBLIGATIONSTO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PRI XXXil
1. What 1S POSIOrESQL? ...ttt ettt e e XXXil
2. A Brief History Of POSIGrESQLccuvuiiiiiiiiieeiiii et XXXil

2.1. The Berkeley POSTGRES ProjeCtcccuuviviiiiiiiiiiiieeciiie e XXXl
2.2, POSIOrESOS ...t XXXl
2.3, POSIOrESQL .. XXXIV
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et e e e e e e e e eba s XXXIV
4. Further INfOrmationcooouiiiiiii e XXXIV
5. Bug Reporting GUIEIINESuuiiiiiiiecee e XXXV
5.1 1dentifying BUGScevvvneeiiiiiee ettt et e eeaa e XXXV
5.2. WHEt t0 REDPOIT ...ttt e XXXVi
5.3. Where to REPOIt BUGScovvvieiiiiiiieiei et XXXVil
I NV 1o - PP 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 3
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 14
2.9, DEBLIONSeeiieieeeeie e 15
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 16
130 B [L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONSuiiiiii et 19
3.6, INNEITEANCE ...t e 22
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 32
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 32
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 41
4.3. CaliNg FUNCLIONS ...ttt 54
5. Data DEFINITION ...ceeviiiiii e et et e 57
5.1 TADIE BASICS vt 57
5.2. DEFAUIT VAIUBS ...t 58
5.3. Generated COIUMNSooeueiiiiiii et 59
B4, CONSITAINTS ..ottt ettt et e et e et e e e b 60
5.5, SYyStemM COIUMNS ...t e 68
5.6. MOAIfyiNg TablES ... 69
BT PrIVIIEOES ..o e 72
5.8. ROW SeCUrity POIICIESouuiiiiiiiciei e 76
5.9, SCREMAS ...t 82
5.10. INNEITANCE ... ceeeii ettt e e e e e e 87
5.11. Table Partitioningccouuuiiiiiiiiiiii e 90
5.12. FOrEIgN DaIA ... ceieeeiieeeeii ettt 104
5.13. Other Datahase ODJECEScivvevieiiiiii e 104

PostgreSQL 14.1 Documentation

5.14. Dependency TraCKiNgeciunieiiiieeiie e e e e e e e e e e e e e e eens 104
6. Data ManipUlationcccouuieiiiieii e e e e e e e e e 107
Lo 1 == g To [- - PN 107
(S 1o = 1] oo J T - L 108
(SRR D= 1= (] ool D - LN 109
6.4. Returning Data from Modified ROWScocouiiiiiiiiiiiiicci e, 109
2O N = 1= P 111
48 T @ = 4T 1 PP 111
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 111
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 127
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)coovvvviieeeiiiiieeeeeiennn. 129
7.5. Sorting ROWS (ORDER BY) ..uuiiiiiiiiiiciie e ea e 130
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiii ettt e e e 131
T.7. VALUES LISES ittt e et e e s 131
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 132
S T DT = T Y/ o1 PP 142
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 143
8.2, MONEAY Ty DS ittt ittt 148
LI @ o= = Tot (= G Y/ o= PPN 149
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 151
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 153
S = T To = g N Y/ o= 163
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 164
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 166
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 168
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 170
8.11. TeXt SEACH TYPES . oeen ittt e e 171
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 174
ST Q1 R 1Y/ o= PP 174
ST N S @ N Y/ o=~ ST 177
S I N = Y P 187
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 196
8.17. RANGE TYPES .. ueniiiiiie it 202
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 209
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 209
8.20. PO | SN TP P ettt 212
ST T e =0 (o 0l N o1 PN 212
9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 215
1< I oo [or= B @ o= = (] £ 215
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 216
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 220
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 227
9.5. Binary String Functions and OPEratorscccuuvevieeeinieriineeiieeeeieeeaneeeens 236
9.6. Bit String Functions and OPEratorseveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 240
A = 1 (= ¢ TN\ (o 11 o P 242
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 259
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 267
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 283
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 284
9.12. Network Address Functions and OPEratorseevvuveiviieeeiieeiiiieeiieeeaneens 291
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 294
9.14. UUID FUNCHIONSuiiieiiee et e ettt e et e e et e e e e s 300
9.15. XML FUNCLIONSciiiiiieeeii ettt e e et e et a e 300
9.16. JSON Functions and OPEratorscuueeeruieiiiieeiiieeeiieeeiee e e eee e eeeannas 315
9.17. Sequence Manipulation FUNCLIONSoovviiiiiiieeiii e 333
9.18. Conditional EXPreSSIONSucvvuniiiiieiiieeiiieeie e e e e e e e e e e e 334
9.19. Array FUNCtions and OPEratorsScc.ueeuuieeeinieeiieesiiieeiie e e e et eeaneeeens 337
9.20. Range/Multirange Functions and OPEratorscc.uveeunieeinieeinieeiineennnans 341

PostgreSQL 14.1 Documentation

9.21. AQQregate FUNCLIONScovuiiii e e e e 346
9.22. WINAOW FUNCLIONSuuueiiiiii et eeiin e 353
9.23. SUDQUENY EXPrESSIONS ...vuuciiineeiieeiie et e e et ee e e e e s st e e et e e st e eaaeeaneeaen 354
9.24. Row and Array COMPAIiSONSuueiutieriineeiiieeeieeeteesieeeatneeaneesteesnnaaees 357
9.25. Set RetUrning FUNCLIONSuiiiiiiii e e e 360
9.26. System Information Functions and OPEratorsccoceuveveveevineeeineeennennn, 363
9.27. System Administration FUNCLIONScouviiiiiiiiieccii e 380
9.28. Trigger FUNCHIONSuuiii i et e e e e e e e e e e et e eeaneees 397
9.29. Event Trigger FUNCLIONSccuuiiiiii e e e e 398
9.30. Statistics INfOrmation FUNCLIONSvvviiiiiieiiiii e 400
O Y oL o017/ = o] o PN 402
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 402
F0.2, O AIONS ittt et 403
10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 407
O R 1 oI (o] - o = 411
10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 412
10.6. SELECT OULPUL COIUMNSvvueeiiiieeeeiii et e et e et e e 413
T o (== USSP 415
00 O 1 oo 0 1o ISP 415
2 1 o L= G Y/ o === 416
11.3. MUItiCOIUMN INAEXES .. .ceeeviieeiii e 418
11.4. Indexes and ORDER BYcicuuuiiiiiiiiieiiiiiie ettt 419
11.5. Combining MUltiple INAEXESviiiiieiiieeie e 420
12.6. UNIQUE INAEXES ...vuiieeeii et e e e e e e e e e e e 420
11.7. INAEXES ON EXPrESSIONS ...vuiivieeiiiieii et e e et e e e e e e e e e e e et e e eaeeeanees 421
11.8. Partial INAEXES .. .ceevviieeiiii e eaens 421
11.9. Index-Only Scans and Covering INdeXeScoevvviiiiiiieiiieeiieeeeeeaies 424
11.10. Operator Classes and Operator FamilieSccooevviiiiiiiciiiiecii e, 427
11.11. Indexes and CollationSoovvuuiiiiiiiiiiee e 428
11.12. Examining INdeX USAQEuvvvniiiiieiii e e e e e e e e e e 429
N T = A= o 431
12,1 INEFOAUCTION ittt e et e e et s e e e et e e e e eae e eeeee 431
12.2. TablesS @and INAEXEScocvvuiiiiiiie e 435
12.3. Controlling TexXt SEarchccuviiiiiiiii e 437
12.4. AddItional FEAIUMESuuiiiiiii e 444
D25, PaISErS .. ettt ettt ettt ettt 450
12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 451
12.7. Configuration EXamMPIEcouiiiiiiiiii e 461
12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, 462
12.9. GIN and GiST INAEX TYPES ..evvvneiiiiiieiiiiiieee et e et e et e et eeeaenas 467
2250 O T 1= o ST o) oo o 468
2 T I 1] = o) PP 471
13, ConCUrrenCy CONLIOlceee e e e e e e e e e aeas 472
G20 O 1 11 oo (0o 1o PSPPSR 472
13.2. Transaction ISOIAONccevvneeiiii et 472
13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 478
13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 483
T O (V= PP 485
13.6. Locking and INAEXESvvvniei e 485
e (o0 7= 0= T 1= P 487
14.1. USING EXPLAIL N Looi e 487
14.2. Statistics Used by the Planner ..o 499
14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvveiiinieinnnnnns 504
14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 506
14.5. NON-DUrable SEtliNGScvvvniiii e e e e eeens 509
15, Parallel QUETY ...ovniiiiiii e e e 510
15.1. How Parallel QUEry WOrKScovviiiiii e 510
15.2. When Can Parallel Query Be USed?ocuvviiiiiiiiiiiiiiiii e 511

PostgreSQL 14.1 Documentation

15.3. Parallel PIanscooovuiiiiii e 512

15.4. Parallel SAfEtYooveeeiiieiiii e 514

RIS o V7= g AN 41T o T = (o o P 516
16. Installation from BiNAIEScoeeueieiiiiisiee s 523
17. Installation from SOUrCE COUEuuiiiiiiiii e 524
S oo g Y= = o] o PR 524

17.2. REQUITEIMENES ..ui i e e e e e e e e e e e e e e e et e e aaeeeanes 524

17.3. GELHNG thE SOUICEcvuiiii e 526

17.4. InStallation ProCeAUMEvivieii e 526

17.5. Post-INStallation SEIUPcvuueiini e 539

17.6. Supported Platformsoiiiiiiii e 540

17.7. Platform-Specific NOESu.iiie i 541

18. Installation from Source Code 0N WINAOWSveiiiiiiieieiiiieeeeeiee e 546
18.1. Building with Visual C++ or the Microsoft Windows SDK 546

19. Server Setup and OPEratioNoevuueiii e e 551
19.1. The PostgreSQL USEr ACCOUNLcvuuiiiieiiieeeiieeei e e e e e et e e e e eaaeeeens 551

19.2. Creating a Datahase CIUSLEYovviniiiiieciie e 551

19.3. Starting the Database SErVErccvuiiiiii e 554

19.4. Managing Kernel RESOUICEScovviviin i ee e e e e e e e eae 557

19.5. Shutting DOWN the SEIVErcovuiiiiii e 565

19.6. Upgrading a POStgreSQL CIUSEESrccevueiiieiiieeeiie e ee e ea e 566

19.7. Preventing Server SPOOfiNg ...couueivieeiii e e e e e e 568

19.8. ENCryption OPtioNScvuiiiiieii e e e e e e e e eans 569

19.9. Secure TCP/IP Connections with SSLccovuiiiiiiiiiieeicieecc e, 570
19.10. Secure TCP/IP Connections with GSSAPI Encryptioncccccevevvnnenee. 574
19.11. Secure TCP/IP Connections with SSH Tunnelsccoovvvvviiiiiiiiinneeenn, 574
19.12. Registering Event Log on WIiNdOWScc.oviiiieiiiieiiiiceciieee e e 575

20. Server CONfIQUIAIONuuieiie e e e e e e e e e e e e e et e e e e eean s 577
20.1. Setting ParameerS ... cvvv e 577

20.2. FIlE LOCAHONS .. .civeviiee ettt e e e e e e eeeaenns 581

20.3. Connections and AUthentiCationc.uoveeviiiiiieiiii e 582

20.4. Resource CONSUMPLIONv.uueiiieiiiiieeiie e et e et e e e e e e e e e et e e et e eaneeanns 589

20.5. Writ€ ANEA LOQ ...cvvniiiiicie et e e 597

P20 N ST = L= o] o= 1o o 607
20.7. QUENY Planningc.uueiiiieiiii e e 613
20.8. Error Reporting and LOGQINGg «....uevveeiiiieeiiieiiii e e e e e e et e e e 620

20.9. RUN-tIME SEALISHICS . vvvvieeiiiiieeeeiis et e e et e e e ee e 632
L0 B O RANU 1 (o 0 47 (TRV A= o: U101 o 11 oo 633
20.11. Client Connection DEfaUITSccuuuiiiiiiinieie e 635
20.12. LOCK MaNAGEMENLcuuniiiiieeii e e e e e e e e et e e e e e eaens 645
20.13. Version and Platform Compatibilityccooooeiiiiiiiiiiiniiecs 646
20.24. Error HaNAliNgccvniiiiciie e e e e e e 648
20.15. Preset OPLiONS . o.uuiei e e e e e e e e e e e e e 649
20.16. CusStomMiZEd OPLiONSuuueiiieiiiieeiiie e e e e e e e e e e e e e e 650
20.17. DeVEIOPEr OPLIONScivviiiiieeii e e e e 651
20.18. SNOIt OPLIONS ...vuiiiiieii i ee e e e e e e e e e e e e e et e e eanaee 655

21, Client AUtNENLICALTIONc.vviieiii e e e e e 657
21.1. The pg_hba. conf Fileccoiiiiiii e 657
21.2. USEr NAIME MBS ..ttt 665
21.3. Authentication MethOSviiiiiiiiiiii e 667
214, Trust AULNENEICAIION ..ovvuiiiiiii e 667

21.5. Password AUtNentiCatioNcovuuiiieiiiiiee e 668

21.6. GSSAPI AUtNENLICALION ...cevvviieiiiii e 669
21.7. SSPI AUNENtICALION ...eevviieeeiie e 670
21.8. Ident AULhENTICAIONcevevieeeeii e et e e e eeee e eees 671
21.9. Peer AULNENLICALIONcveeeiiieiieii e eaaens 672
21.10. LDAP AUthENtiCALIONevvveiseieiis ettt e s 672
21.11. RADIUS AUtRENICALION ...vvvviieiiiiie et 675

Vi

PostgreSQL 14.1 Documentation

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

21.12. Certificate AUENICALIONuuiiiiiiieeci e 676
21.13. PAM AULheNtiCatioNuiieeeiiiiiiii e e e e e 676
21.14. BSD AUhENtiCAtioNcvvvveiiieeeeeeeciiiis e s e e e e eeeiis s e e e e e e eeaare e e e eeeeeaes 677
21.15. Authentication Problemsviiiiiiiiiiiiiiii e 677
DataDase ROIESceeiiiei et 679
22.1. Datahase ROIESuuuuiieeeiiiieee et 679
22.2. ROIE ALIDULES ... e et et eeees 680
22.3. ROIE MEMDBErSNIP . ivecii e 681
22.4. Dropping ROIESiii e 683
22.5. Predefined ROIESoviiiiii e e e e e e e e e aanee 683
22.6. FUNCHION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e e aa e eeas 685
Managing Databasesccvueiiii i 686
23,1, OVEIVIBIW eeviiiii et e et s s e e e e e e et s e e e e e e e e aaaa e e e e eeaeeannnes 686
23.2. Creating @ Databaseccvvuiiiiieii e 686
23.3. Template Databasesuovvvieiii e 687
23.4. Database Configurationc.eeiuiieiiiieiii e e e e e e eaes 689
23.5. Destroying a DatabhaSecceuuiiiiiiiiiiieci e 689
23.6. TADIESPACES ... cive e 689
(oo 112 1o PP 692
P I o oz LIS o] oo o AP 692
24.2. Coll@tion SUPPOITcieieeii et e e e e e e e e e e et e et e e aaeeeens 694
24.3. CharaCter Set SUPPOIciii e e e e e aes 700
Routine Database MaintenanCe TasKSveeeereieriiiiiieeeiiieee e e e eein e eeeieneeeeee 711
25.1. ROULINE VACUUMING ...uuiiitiieii e e e e e e e e e e e e s e e e e e e et e e eaneeeenes 711
25.2. ROULINE REINAEXING ©..cvvveiiiieii e e e e e e e e e e eeens 719
25.3. Log File MaiNteNanCeueeuueiiii e ee e e e e e e e 719
Backup and RESIOIEuuuiii e e 721
26.1. SOL DUIMIP .ottiiiiieeeie ettt e e e e e e e e et e s e e e e e e e aaaaan s e e e eeaeaenes 721
26.2. File System Level Backupc..oevuiiiiiiiiiiiiccie e 724
26.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 725
High Availability, Load Balancing, and Replicationcccoeeviiiiiiiieiiinecinens 737
27.1. Comparison of Different SOIUtioNScccuviiiiiiiiiii e 737
27.2. Log-Shipping Standby SErVErScccvniiiiieiii e 740
27.3. FallOVEL ..ot aaaaaaan 749
27.4, HOt StANADY ..vvvniiieeiiieieiee et s e e e e e e e e e e e e e e e eanaae 750
Monitoring Database ACHIVITYcouvneiiicii e 758
28.1. Standard UnNiX TOOIS ..euuuuieeiiiieeiiii ettt 758
28.2. The StatisticsS COHECONuiiiiii e 759
28.3. VIEeWING LOCKScouiiiiiiii e e 792
28.4. Progress REPOMINGuvvvuieiii e e e e e e e e e e e e e e e e aaeees 793
28.5. DYNAMIC TIaCiNG ...vuueiiieiiiieiiiie e e e e e e et e e e e e e e e e e e e e e aaeeanns 800
MONItOriNG DisSK USBOEcivviiiiii e e e e e e e e e et e eeanaees 810
29.1. Determining DiSK USAQEuiivniiiiieiiieeie e ee e e e e e et e e 810
29.2. Disk FUIl FaIlUIccceeiieiiie e eeeaaaaes 811
Reliability and the Write-AhEad LOgccvuiiiiiiiiiii e 812
O = = T] 1 YRR 812
30.2. Data ChECKSUMScvviieeiii et e e e e e et e eeeat e eeeee 814
30.3. Write-Ahead Logging (WAL) ...oouiiiiiie e 814
30.4. Asynchronous COMMITveiunieiiiieei e e e e e e e e e e eaaeens 815
30.5. WAL Configurationccuueeiuuieiiieeiiie e e e e e e e e e e et eesa e eaaneeeees 816
30.6. WAL INEEIMEIS ..vuiiiiii ettt e e et e e e eeeat e e eees 819
oo Torz I == o) Lo 1 Lo o RN 821
T . o o= 1o o PP 821
G IS U 1= v] o)1 Lo o P 822
3 G I 0o 1T £ PP 823
G I (== Ao o LS P 823
315, ATChITECIUIE ...t 824
13 ST 1 o g (o oo [825

vii

PostgreSQL 14.1 Documentation

I S = ol 1) YRR 825

31.8. Configuration SEINGSoeeuniiiiieiiie e e e e e e eaaes 825

31.9. QUICK SELUP ..ueieeiii et 826

32. Just-in-Time Compilation (JIT) ...cuueeeeniiiii e e e e e e 827
32.1. What IS JIT compilation?coviiiiiiiiiieii e 827

32.2. WHEN 10 JIT 2 oottt e e e et eeaees 827

IC2C T @0 011 To 1= 1 (o] o U 829

324, EXEENSIDIITY ooeeveieeeii e 829

T B L= | (= o T 1= = 831
33.1. RUNNING the TESES ...iviiciii e e e e e e 831

33.2. TSt EVAIUBLION ..vuieeiiiieeee et 835

33.3. Variant Comparison FilESccouiiiiiiiiii e 837

T A e = £ S 838

33.5. Test Coverage EXaminaionc.uvveiuneeiiieiiiieeiie e e e e e e e eaaeeeeen 839

IV, Clent INEEIACES ...vu i e 840
34, 1iBPG — C LIbrary ..coouooeieei e 845
34.1. Database Connection Control FUNCLIONScccvviiiiiiiiiieiiie e, 845

34.2. Connection StatUS FUNCLIONSuuuiiiiiii it e e 861

34.3. Command EXeCUtion FUNCLIONSooeviiiiieieiiiieeeeiiie e 867

34.4. Asynchronous Command ProCESSINGcuueivnieiiieeiiieeeiieeeiieeeieeeaineeaanens 883

34.5. PIPEliNE MOUEcoviiiiei e e 887

34.6. Retrieving Query Results ROW-bY-ROWccooceiiiiiiiiiiii e, 891

34.7. Canceling QUENES IN ProgresSuuevuueiiiiieeiieeeiieeee e e ee et e et e e e eeens 892

34.8. The Fast-Path Interfaceccooviiiiiiiiii e 893

34.9. Asynchronous NOEIfICatiONcocviiiiiiiiii e, 894
34.10. Functions Associated with the COPY Commandcccceveeviiineeriiinnnnn. 895

17 0 I o g o I 0T 1o PRSPPI 899
34.12. Miscellaneous FUNCLIONSc.uuieiiiiiieeiiii e e e e 901
34.13. NOLICE PrOCESSING ©..cvvvneieineeiie et e et e e e e et e e e e e e e e et e e et e e e e e eaaeeaens 905
3414, EVENE SYSLOIM ..uuiiiiiiii ettt e e e e et e e e e e et e aeee 906
34.15. Environment VariableSovviiiiiiiiiii e 912
34.16. The Password FIlecoeuuiiiiii e 914
34.17. The Connection Service Fileiviiiiiiiiiii e 914
34.18. LDAP Lookup of Connection Parametersooceuvveviiiieiiieeiiiieciieeeaneens 915
34.19. SSL SUPPOIT ..ttt 916
34.20. Behavior in Threaded Programscoceuieiiiieeiiniiiii e een e 920
34.21. Building [ibpg Programscccuieiiiiciii e 920
34.22. EXaMPIE PrOQramSuueiiiieii e et e e e e e e e e e e eaes 922

LS T IR (0 (=l @) o[ox P 933
11300 I g1 o (8o ' o PP 933
35.2. Implementation FEAIUIESccvvviiiii e 933

35.3. ClENt INtEIfACES . .cevvviieeeii e eees 933

35.4. Server-Side FUNCHIONScoiieiiieeeiii et e s 938

35.5. EXAMPIE Programc.uuiiiiieii e e e e e e e 939

36. ECPG — Embedded SQL INC ..ooovviiiiiiiii e 945
G T N I =T o o= o | 945

36.2. Managing Database CONNECLIONSocvuviieiiiieiiiiecie e ee e e e e e aen 945

36.3. Running SQL CoMMANGSccouuieiiiieiiiie e e e e e eeens 949

36.4. Using HOSt VariableScovuiiiiiiii e 952

36.5. DYNAMIC SQL .oeviiiiiiiiiie e 966

36.6. POLYPES LIbraryoeeeeiiii i 968

36.7. USING DESCIIPLOr ATEBScivvieiiieiiiiee e ee e e e e e e e e e e e e e e eeaes 982

36.8. Error Handlingccoueiiniiiii e e e e e e e 995

36.9. PreproCessor DITECHIVESuueiiii e e e e 1002
36.10. Processing Embedded SQL Programscc.eevviiieviiieeiieciiieeiieesinns 1004
36.11. Library FUNCLIONSc.uiiiicei e 1005
36.12. Large ObJECESevuuiiiiieii e e e e e e e e e e e e 1006
36.13. CH+ APPHCALIONS .. cevvciii e e e 1007

viii

PostgreSQL 14.1 Documentation

36.14. Embedded SQL COMMANGSccvvueiiiiiiiiieeiii e e e e e e e e 1011
36.15. Informix Compatibility MOdecoovviiiiiiii e, 1036
36.16. INEEIMAIS ...t 1051
37. The INformation SChEeMAaviiiiii e 1054
37.1. The SChEM@ ... 1054
A DT - B Y oS PP 1054
37.3.informati on_schema _catal og namecccocccoveiiiiiincvee e, 1055
374.adm nistrable role _authorizationscccoeeiiiiiiiininnennn, 1055
37.5.applicabl @ rol €S .o, 1055
7.6, At LT DUL ES oo 1056
37.7. Char @Ct BF S S ittt 1058
37.8.check_constraint_routine_usagecccoeveviieeiiiieiiineciineeennn, 1059
37.9.cheCk _CONSErai NES oo 1059
37.10. COI T @t T ONS coviiiiiiie e 1060
37.11.col l ation_character_set _applicabilityccccooininiinnin. 1060
37.12. cOl UM_COl UMM_USAQE ..ievniiiii e e 1061
37.13. cOl UM _dOMBI N_USAQE ..civvniiiiiieiei e 1061
37.14. COl UNM_OPL i ONS oiviiiii e e 1061
37.15. COl UMM_Pri Vil €06S oo 1062
37.16. COl UNM_UAL _USAQE .uiiiiiiiiii e e e e e e eaaes 1063
37.17. COL UMMIS Lo 1063
37.18. constrai Nt _COl UNM_USAQEuiivvniiiiiieiii e 1066
37.19.constraint_tabl e _uUsSagecocccoeeviiiiiiiin i 1067
37.20.data_type priVvil €ges .o 1067
37.21. dOMBI N_CONSETai NE'S toviiiiiiiiii e e 1068
37.22. dOMBI N_UAL _USAQE ..iiiiiiiii e e e e e e e e eaaes 1068
7 T (o] 11 U o =S PP 1069
37.24. €l EIMENE L Y PES it 1071
37.25. €Nabl €d 0l €S i 1073
37.26.foreign_data wrapper_OptioNnsccccoeveiiiiiiiiiiin e, 1073
37.27.T0orei gn_dat @ W apPer'S .oiiiiiieiii e 1074
37.28.forei gn_Server_Opti ONS ..ociiiiiiiiiiii i 1074
37.29. f OF €I gN_SBI VI S 1otiiiiii e et et e e e e e e e e e e aanaees 1074
37.30.foreign_table Optionscccoviiiiiiiiiii 1075
37.3L.foreign_tabl €S .o 1075
37.32. KEY_COl UM _USAQE ..iivieiiiieiiii e e e e e e e e et e e e e eanes 1076
37,33, Par AR B S ittt 1076
3734 referential _constraintsccooeiiiiiiiiii i 1078
37.35. 10l €_COl UM_grant's ..cocoieiiiiiiii e e 1079
37.36. 10l €_routine_grants ...coooiiiiiiiiii i 1079
37.37.r0le_tabl e grantsoocoiiiiiiiiii 1080
37.38. 10l €_UAL _grant'S ..oooiiiiiiiiiiiiie e 1081
37.39. 10l €_USAQE_grantS ..iiiiiiiiiiii e 1081
37.40. routi Ne_COl UNM_USAQE ..evviiiiiiiiii e 1082
374L. routiNe_Privil @0ES . 1083
37.42. 10Ut i NE_TOUL I NE_USAQE .vuiiviiiiii i e e e e e e e 1083
37.43. 10Ut i NE_SEQUENCE _USAQJEL .cvvvueirneeeinieeineeriieeaieesineeetnaesanaeeannes 1084
3744. routine_tabl @ USAge ...cooviiiiiiiii 1084
745, TOUL T MBS it e e 1085
37.46. SChEMAL @ .oieveieii e 1089
Y T =To [1] [o =1 PP 1090
37.48. SOl _F AL UINES oviiiii e 1090
3749.sql _inmplenmentation info ..o, 1091
37.50. SOl PAIt S ciriiiii i 1091
37.5L SOl ST ZI N e 1092
37.52. tabl e _CONStrai NtS ..o 1092
37.53. tabl @ Pri Vil @0ES . 1093
754, 1AD] €S v 1094

PostgreSQL 14.1 Documentation

3755, L FANST OF ITB oo e e 1094
37.56.triggered _update Col UMScooiiiiiiiie e, 1095
YAy A W g e [0 =] =T 1096
37.58. Udt _Pri Vil €0ES i 1097
37.59. USAQE_Pri Vil BOES i 1098
37.60. user _defined _tYPeS .o 1098
37.61. user _mappi NG_OPLi ONS ..iiiiii e 1100
37.62. USEI _ITBPPI NUS wuueiiiiiiiieeiii ettt e e e e e e e e e e e e e e e e st eeaaaeaanaees 1100
37.63. Vi EW _COl UMMN_USAQE .ivvniiiiieiiii et e e e 1101
37.64. Vi W T OUL i NE_USAQE ..uuiiiiiiiii e ee e e e e e e 1101
37.65. view tabl @ USAQe ..occoiiiiiii 1102
706, Vi BWS oiiiiieiiiii ettt e ettt e 1102

AV = L= . 0o = 0 1 411 oo P 1104
38. EXIENAING SQL ..evviiiiiii ettt 1110
38.1. How Extensibility WOrksSc.ooiviiiiiiiiici e 1110

38.2. The PostgreSQL TYPe SYSEM ...vuiiiiiiiii e 1110

38.3. User-Defined FUNCLIONSoiiiiiiieeiiii e 1113

38.4. User-Defined ProCeAUMEScvvuvuieiiiiiieeeee e 1114

38.5. Query Language (SQL) FUNCLIONSccvvueiiiiii e eeeee e, 1114

38.6. Function Overloadingcoovvuiiiiiiiiiie e 1131

38.7. Function Volatility CategOori€suieiiuieiiiiieiiie e e e e e e e 1132

38.8. Procedural Language FUNCLIONSuviviieiiii e eeee e e e e 1134

38.9. INternal FUNCLIONSuiiiiiiiiei e 1134
38.10. C-Language FUNCLIONScouueiiii e e e e e e e 1134
38.11. Function Optimization INfOrmationcceceiveiiiieiiiieeie e, 1155
38.12. User-Defined AQQregatesc.uuviiunieiiieiiieeeee e e e e e et e e e eaaes 1156
38.13. USer-DefiNed TYPES ..vuueieeiieiiii ettt 1163
38.14. User-Defined OperatOrscccuuieiiiieiiie e e e e e e e 1168
38.15. Operator Optimization INfOrmMationccceceuiieiiiieiiii e, 1168
38.16. Interfacing EXteNSIONS t0 INAEXEScvvviiiiiiiii e 1172
38.17. Packaging Related Objects into an EXteNSionccovevvveviieeiineennnn. 1185
38.18. Extension Building INfrastruCturecoccoveeiiiiiiiieiie e, 1194

11 T I o (o = N 1198
39.1. Overview of Trigger BEhaViorccovvviiiiiiiiiiie e 1198

39.2. Visibility of Data ChangeSovvevuieiiieiiii e e e 1201

39.3. Writing Trigger FUNCLIONS IN Covviiiiiiii e 1201

39.4. A Complete Trigger EXamplecccouneiiiiiiiii e 1204

O V= o | T (o (= N 1208
40.1. Overview of Event Trigger BENaVIOrccciiiiiiiiiiiicie e 1208

40.2. Event Trigger Firing MatriXooovvuiiiiiiiiiiii e 1209

40.3. Writing Event Trigger FUNCEIONSIN C ...ocovviiiiiiieccie e, 1212

40.4. A Complete Event Trigger EXampleooviiiiiiiiiiiiiiece e 1213

40.5. A Table Rewrite Event Trigger EXampleccccoveviiiiiiieciiieceeeeeeen, 1214

A1, The RUIE SYSLEIM ...ttt e et e e et e e e eaeaeeeees 1216
41.1. ThE QUENY TrEE .uuiiiiiieii ettt e e e e e e et e e e e eees 1216

41.2. Views and the RUIE SYStEMccovviiiiiiii e 1217

41.3. MAEri@iZed VIBWS ... e a e 1224

41.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiiiiiinieiiiieeeeeii, 1227

41.5. RUIES aNd PrIVIIEES .. .covneii e 1238

41.6. Rules and Command SEALUSc.uuieriiinieieiiiiie e e e e e 1240

41.7. RUIES VErSUS TIIQOENS covueiinieeiiieeeieeee e e e e e eae e et e e e et e e ete e et aesaaeeaanaees 1240

42. Procedural LanQUABOESu.evvunieeieeiiieeie e et eeeeteeeae e st s e et e e st e estnaesanesannaens 1243
42.1. Installing Procedural LangUagEeSccuovvviieiieeiiieciineee e e e 1243

43. PL/pgSQL — SQL Procedural LangUagecc.uveeuneeiiiieiiiieeiineeiieeeieeeaneens 1246
T I @Y= VPSPPSR 1246
43.2. Structure of PL/PGSQLivveieii e 1247

A3.3. DECIArAHONS .. e 1249
R d o (== 0] 1 1255

PostgreSQL 14.1 Documentation

43.5. BASIC SEALEIMENES ...uuiiieiiiiee e et et et et e e e e e e e eaeans 1256
43.6. CONLTOl SITUCLUMNESieeeii et e e e e e e eannns 1264
A O 1 o = T PP PTP TP 1279
43.8. TransaCtion Managementcveiuieeeiieeiiiie e ee e e e e e eanes 1285
43.9. Errors ant MESSAgES . ..vuuevineiiieeiiiee e et e e e e e e e e e et e et e e e e et 1286
43.10. Trigger FUNCLIONSccuuiiii e e e e e e e e e e e eees 1288
43.11. PL/pgSQL under the HOOdoeiiiieiiiiii e 1297
43.12. Tips for Developing in PL/PGSQLuovvvniiiiiceieeee e, 1300
43.13. Porting from Oracle PL/SQLccovuiiiiiieiiieeee e 1304
44, PL/Tcl — Tcl Procedural LangUageceeuueviinieiiiieeiieeeiieeeeee e e e e e e 1314
Y I @Y= VPSPPSR 1314
44.2. PL/Tcl Functions and ArgumeNtSccuuveviiieiineeiiiieeiiee e eeei e eaeeeens 1314
44.3. Data Values in PLITCl ..o 1316
44.4. Globa Datain PLITCl ..ouuiiiiiiii e 1316
44.5. Database AcCeSS From PL/TCliviiiiiiiiii e 1317
44.6. Trigger FUNCLiONS iN PLITCl .ouniiiii e 1319
44.7. Event Trigger FUNCtions in PL/TCl ...vvivviiii e, 1321
44.8. Error Handling in PL/TCl ...oovniiiii e e 1321
44.9. Explicit Subtransactions in PL/TClccouviiiiiiiiici e 1322
44.10. Transaction ManagemeNtooiviiieiiiieii e e 1323
44.11. PL/Tcl CONfigUIationoveueieiiiieeieeeei e e e e e e e e e e e e eeeen 1324
44.12. Tcl Procedure NaMESuviiiiiieeeiii ettt e eeeai e 1324
45, PL/Perl — Perl Procedural LanguUagecceuueeeinieiiiieeiieeceiieeeiee e e e eeaieens 1325
45.1. PL/Perl Functions and ArguMENTSccuuieiiiieiiiieeeiieeii e e ieeaineeaaeens 1325
45.2. Data Values in PLIPErlooovuiiii e 1330
45.3. BUIlt-iN FUNCHIONS ...coeviieei e 1330
45.4. Globa Values in PLIPENoiiiiiiie e 1335
45.5. Trusted and Untrusted PL/Per|oiiiiiiiiiiiiiiieee e 1336
N T o I = 4 B I e o L= 1337
45.7. PL/Perl EVENt TIIQOEIS . cvvueiii e e e et e e e et e s e et e e e aens 1338
45.8. PL/Perl Under the HOOooviiiiiiiiiiii e 1339
46. PL/Python — Python Procedural Languageooevvvieiiiieiiiiieii e e 1341
46.1. Python 2 vsS. PYthOn 3coii e 1341
46.2. PL/Python FUNCHIONSouiiiici e 1342
46.3. DAA VAIUBS ...t e 1343
46.4. ShaNG Dalal .. .ccvuiiiiieiiii e e 1349
46.5. Anonymous Code BIOCKSovvuuiiiiiiiii e e 1349
46.6. Trigger FUNCHIONSiiiiiii e e e e aaa s 1349
46.7. DAADASE ACCESS ...evviieieiiiie ettt e et e e e et e e eaaas 1350
46.8. EXplicit SUDLraNSaCioNSoovvunieiiieeii e e 1354
46.9. Transaction ManagemeNtoveiuieeiiieeiiie e e e e e e eeaes 1355
46.10. Utility FUNCLIONSciiviiiii e e e e e 1356
46.11. Environment VariableScoovvuiiiiiiiiii 1357
47. Server Programming INtErfaceooovviiiiiii e 1358
47.1. Interface FUNCLIONS ... ciieiiiieeeii e et eeen e eees 1358
47.2. Interface SUPPOrt FUNCLIONScivi i e e e 1400
47.3. Memory Managementccuviuiiuiiiiiien e e 1409
47.4. TransaCtion Managementveiuiieeeiieeiiie e e e e e e eanes 1419
47.5. Visibility of Data Changesccuuveiiiiiiiiiiiii e 1422
A7.6. EXAMPIES ..ot 1422
48. Background WOTKEr PrOCESSESc.uuiiiiieiiiiieiii e e e e e e e e e e e e et e e e e aanas 1426
L R T o= I D= wo o [o [P 1429
49.1. Logical Decoding EXampleSccuuiiiiiiiiiiciiie e 1429
49.2. Logical Decoding CONCEPLSuueivueeiiieiiiiieeiieeeiie e e e e e e e e e eaaeees 1432
49.3. Streaming Replication Protocol Interfacecccoveviiviiiiiiiiiiciiecceeenn, 1434
49.4. Logical Decoding SQL INtErfacecccuveviiiiiiiieii e 1434
49.5. System Catalogs Related to Logical Decodingcooeevveviveiiineiiinennnnn. 1434
49.6. Logical Decoding OUtpUt PIUGINSccvviiiiiiiiecii e ee e 1434

Xi

PostgreSQL 14.1 Documentation

49.7. Logical Decoding OULPUL WIHLEISuuevviiiiiiiciie e 1442
49.8. Synchronous Replication Support for Logical Decodingccoccvvueennnn. 1443
49.9. Streaming of Large Transactions for Logical Decodingcccoeevvvnnennn. 1443
49.10. Two-phase Commit Support for Logical Decodingcoccvvveviiieennnnnns 1444
50. Replication Progress TraCKingeiuieiiii i eeie e e e s e e e e e e eaneens 1446
VL REFBIBNCE ...ttt et et et e e e e e 1447
S @ I o 910900 1452
A B RT ittt 1456
ALTER AGGREGATEiiiiiiieeiie ettt e e e e e 1457
ALTER COLLATION .uutiiiiiii ettt e et e e e es 1459
ALTER CONVERSIONooiiiiiiiiiiieeiiii e e et e et eeane s 1462
ALTER DATABASE ..o 1464
ALTER DEFAULT PRIVILEGEScooiiiiiiiii e 1467
ALTER DOMAIN L.ttt e et e e e 1470
ALTER EVENT TRIGGERcccouiiiiiiiiiiieii e 1474
ALTER EXTENSION ...ouiiiiiiiiieiiiie ettt e s 1475
ALTER FOREIGN DATA WRAPPERccuuiiiiiiiiiieiiie e 1479
ALTER FOREIGN TABLE ...coitiiiiiii e e 1481
ALTER FUNCTION L.uiiiiiiieeee et e e e e 1486
ALTER GROUP ...ttt et e e et e e et e eaeeans 1490
ALTER INDEX ..ottt e et e et e e e e 1492
ALTER LANGUAGE ..ottt 1495
ALTER LARGE OBUJECT ...ouuiiiiiiiiieiiiinie et s et e et e et e et eeeean e 1496
ALTER MATERIALIZED VIEWcooiiiiiiiiiiie e 1497
ALTER OPERATOR ...ttt e et e e e e e e eees 1499
ALTER OPERATOR CLASS ...ttt ettt eeaeens 1501
ALTER OPERATOR FAMILY oottt 1502
ALTER POLICY ittt e e e s 1506
ALTER PROCEDUREcuuiiiiiiiiee ettt 1508
ALTER PUBLICATION ..ottt 1511
ALTER ROLE ..ottt 1513
ALTER ROUTINE ...ttt e e e e aai e e e eeans 1517
ALTER RULE ..ottt 1519
ALTER SCHEMA ..o et e e e eeeaa e eaes 1520
ALTER SEQUENCE ..ottt 1521
ALTER SERVER ...ttt 1524
ALTER STATISTICS ... 1526
ALTER SUBSCRIPTION ...coitiiiiiiiiiieiiiii ettt e e e e 1527
ALTER SYSTEM ..ottt 1530
ALTER TABLE ... 1532
ALTER TABLESPACE ..ottt 1549
ALTER TEXT SEARCH CONFIGURATIONcociiiiiiieiiiiiiieeeiiieeeeeiiee e 1551
ALTER TEXT SEARCH DICTIONARY ..ottt 1553
ALTER TEXT SEARCH PARSERccoviiiiiiiiii e 1555
ALTER TEXT SEARCH TEMPLATEviiiiiieee e 1556
ALTER TRIGGERooiiiiiiiiieie et 1557
ALTER TY PE it e et e aaan s 1559
ALTER USER ...t et e et e et e e et e eees 1564
ALTER USER MAPPING .. .coitiiiiiiiii e e e e 1565
ALTER VIEW ..ottt 1566
ANALYZE ..o e e e 1568
BEGIN Lot 1571
L L SRR 1573
CHECKPOINT ettt e et e e et e e et e e e e aan s 1575
CLOSE ..ottt 1576
L0 0 S I = PP 1577
COMMENT oot e e e et e et e e e et e e eenens 1580
L@@ 1Y I PP 1585

Xii

PostgreSQL 14.1 Documentation

COMMIT PREPAREDccoiiiiiiiiiiiii e 1586
O Y 1587
CREATE ACCESS METHODccuiiiiiiiiiiicii e 1597
CREATE AGGREGATE ... 1598
CREATE CAST o 1606
CREATE COLLATION L..uiiiiiiiiiiiii e 1610
CREATE CONVERSION ..ottt 1613
CREATE DATABASE ..o 1615
CREATE DOMAIN ..ot 1619
CREATE EVENT TRIGGERooiiiiiiiiii e 1622
CREATE EXTENSIONoviiiiiiii e 1624
CREATE FOREIGN DATA WRAPPERcooiiiii 1627
CREATE FOREIGN TABLEiiiii 1629
CREATE FUNCTION L..ooiiiiiiiiii e 1633
CREATE GROUP ..ottt 1642
CREATE INDEX ...t 1643
CREATE LANGUAGE ... 1652
CREATE MATERIALIZED VIEW ... 1655
CREATE OPERATOR ...t 1657
CREATE OPERATOR CLASS ... 1660
CREATE OPERATOR FAMILY .o 1663
CREATE POLICY .o 1664
CREATE PROCEDUREcoiiiiiiiii e 1670
CREATE PUBLICATION ...ttt 1674
CREATE ROLE ...ooiiii e 1677
CREATE RULE ..o 1682
CREATE SCHEMA ..o 1685
CREATE SEQUENCEcoiiiiiiiiii e 1688
CREATE SERVER ... 1692
CREATE STATISTICS ... 1694
CREATE SUBSCRIPTIONouiiiiiiiiii e 1698
CREATE TABLE ... 1701
CREATE TABLE AS L. o 1723
CREATE TABLESPACE ... 1726
CREATE TEXT SEARCH CONFIGURATIONcooiiiiiiiiiiice e, 1728
CREATE TEXT SEARCH DICTIONARYoiiiiiiiiiiiiiiie e 1729
CREATE TEXT SEARCH PARSER ...t 1731
CREATE TEXT SEARCH TEMPLATE ..., 1733
CREATE TRANSFORM ..ottt 1734
CREATE TRIGGER ...t 1736
CREATE TYPE ..o 1743
CREATE USER ...coiiiiiii e 1752
CREATE USER MAPPING ..ot 1753
CREATE VIEW Lo 1755
DEALLOCATE ..o 1760
DECLARE ..o 1761
DELETE . o 1765
DISCARD ...t 1768
DO e 1769
DROP ACCESS METHODcoviiiiiiiiiiiiicii e 1771
DROP AGGREGATE ...t 1772
DROP CAST oo 1774
DROP COLLATION .ottt 1775
DROP CONVERSIONcouiiiiiiiiiiii e 1776
DROP DATABASE ..o 1777
DROP DOMAIN .ot 1778
DROP EVENT TRIGGERcoiiiiiiiiiiii e 1779
DROP EXTENSION ...coiiiiiiiiiic e 1780

Xiii

PostgreSQL 14.1 Documentation

DROP FOREIGN DATA WRAPPERccociiiiii e, 1781
DROP FOREIGN TABLEooiiiii e 1782
DROP FUNCTION ..ottt 1783
DROP GROUP ...ttt 1785
DROP INDEX ...ttt 1786
DROP LANGUAGE ... oot 1788
DROP MATERIALIZED VIEW ..o 1789
DROP OPERATOR ...ttt 1790
DROP OPERATOR CLASS ..o 1792
DROP OPERATOR FAMILY oiiiiiiiii e 1794
DROP OWNEDcoiiiiiiiiiiiii et 1796
DROP POLICY ottt 1797
DROP PROCEDUREiiiiiiiiiici e 1798
DROP PUBLICATION ..ottt 1801
DROP ROLE ..ot 1802
DROP ROUTINE ..ottt 1803
DROP RULE ...t 1805
DROP SCHEMA ... 1806
DROP SEQUENCEcoiiiiiiiiii 1807
DROP SERVER ...t 1808
DROP STATISTICS ... 1809
DROP SUBSCRIPTION ..ottt 1810
DROP TABLE ... 1812
DROP TABLESPACE ... 1813
DROP TEXT SEARCH CONFIGURATIONooivviiiiiiiiiiiiiiceee 1814
DROP TEXT SEARCH DICTIONARY ..ot 1815
DROP TEXT SEARCH PARSER ..o 1816
DROP TEXT SEARCH TEMPLATE ..o, 1817
DROP TRANSFORM ...ttt 1818
DROP TRIGGERcouiiiiiiiiiii e 1819
DROP TYPE ..o 1820
DROP USER ..ottt 1821
DROP USER MAPPINGouiiiiiiii e 1822
DROP VIEW ..ot 1823
END oo 1824
EXECUTE .o 1825
EXPLAIN Lo 1826
FET CH 1831
GRAIN T 1835
IMPORT FOREIGN SCHEMA ...t 1840
INSERT .o 1842
LISTEN Lo 1850
LOAD o 1852
LOCK i 1853
MOVE .o 1856
NOTIFY e 1858
PREPARE ... 1861
PREPARE TRANSACTIONciviiiiiiiiicii e 1864
REASSIGN OWNEDociiiiiiiiii e 1866
REFRESH MATERIALIZED VIEW ..o 1867
REINDEX ...t 1869
RELEASE SAVEPOINT ..ot 1874
RESE T e 1876
REVOKE ..o 1877
ROLLBACK o 1881
ROLLBACK PREPAREDoiiiiiiiiiiiic e 1882
ROLLBACK TO SAVEPOINT ..ot 1883
SAVEPOINT ..o 1885

Xiv

PostgreSQL 14.1 Documentation

SECURITY LABEL ...oiiiiiii e 1887
SE L T ot 1890
SELECT INTO ittt ettt e et e e e e e e e ennns 1911
SE T e e 1913
SET CONSTRAINTS ..ottt e e e e e eeees 1916
S I (O PP 1917
SET SESSION AUTHORIZATION ...uuiiiiiiiiieiiii e 1919
SET TRANSACTION ..ttt e e e e et e eeenaaeeees 1921
SHOW e 1924
START TRANSACTION ...ouiiiiiiiiieeeei e e s 1926
TRUNCATE ..ottt et e e e e e e e e e aaa s 1927
UNLISTEN L.t e e e et e e e e aa s 1929
L N I PP 1931
VACUUM L. e et e e et e e et e e e eatn e aaens 1936
VALUES ..ot e et aaae 1940
I1. PostgreSQL Client APPlICAIONSuuieiiiieeii e e e e 1943
CIUSLEIAD ..o e 1944
(o= 1= | o ISP 1947
(0= (S T PP 1950
01 0] 0o | o S 1954
(01 0] 11 P 1957
1< 0¢ oo PP PP 1960
1o I 1.1 1= P 1963
PG _DESEDACKUD .. oo 1969
070170 o TSN 1977
o100 0 T 1997
o700 L0 o TP 2000
PO AUMPAIL ..o 2013
[T TS (== |V N 2020
[T T = o= AV L=V 2022
[oTo T (= o1/ oo o= 2026
10 (== (0] (PP PPRPPPIPRN 2030
PY_VENTYDACKUD . eeiee e 2039
0 o | 2042
=T 070 1= | o T PP 2084
(2= e U 1H 0 1o o PP 2088
[11. PostgreSQL Server APPlICaLiONScvvuiiiiieeii e e e e e e e e e eaaes 2094
TNTEAD e 2095
PY_arChiVECIEaNUDcii e 2100
1o e 0= S 041N 2102
[oTo T w0 01101 Lo =1 - PN 2104
oo N o | P 2105
Lo T == = A1 | 2111
o To T (=111 o P 2115
L0 T (=S)Y 1 2119
o To === A (1421 Vo PN 2120
o100 oo =" [TP P 2124
o102z o L1 33T o 2133
105 0 === PPN 2136
POSIMIBSEE ...ttt ettt 2143
RV I 1 1= 0= ST PT 2144
51. Overview of PoStgreSQL INtErNalSc.uuiviiiiii e 2150
51.1. The Path Of @ QUENYuuiiieiiiici e e 2150
51.2. How Connections Are Establishedccooooiiiiiiiiiiii e, 2150
51.3. ThE Parser StAgE ...uuivvieiii e et e e e e e eeas 2151
51.4. The PostgreSQL RUIE SYStEMccvvuiiiiiiiiieieiie e 2152
51.5. Planner/OptiMizZEerccuuiiiii e e eaaaes 2152
Y I = o U (o P 2153

XV

PostgreSQL 14.1 Documentation

YRSV (= 1 (I OF - [0 o 2155
521, OVEIVIBIW ...ttt ettt e ettt e e ettt e e et e e e et r e e e et s e e e et s e e eestnaaaaees 2155
52.2. PO 00N €A & ouiviiiiiiiiie 2157
Y2 T o Lo T 1o ¢ I PP 2158
Y2 N o Lo J= 11 0] o H PP 2159
2.5, PO NPT OC ittt 2160
52.6. pg_at trdef oo 2160
B2.7.pg_attribut @ .o 2160
52.8. PO _AUL NI 0 oo 2162
52.9. pg_aut h_mMBNDErsS ..o 2164
52,00, PO LS ittt 2164
5211 PO _Cl @SS it 2165
52.12. PG _COl L At i ON coveiiiici e 2167
LSy K T o To T X o] 1 11 A - Y N o | PN 2168
LSy S o To T X o] 0 VA=Y G =Y o] o PN 2170
52.15. pg_dat @DaSE ..ccvuiiiiiiii 2170
52.16. pg_db rol e Setting .coociiiiiiiiii e 2171
52.17. pg_defaul t _acl ..o 2172
LSy S I o To o =Y 01T o [o [P 2172
Y228 K N o To o (Y=Y of g I o) A o o [2174
52.20. PO BNUM .t 2175
Sy O o T T =AVA =1 o | G A o o Lo [2175
52.22. PY_EXE ENST ON ciuiiiiiiicii e e 2176
52.23. pg_foreign_data W apper ...cccccoiiiiiiiiiiieeiii e 2176
52.24. PG _fOr €I N _SEI VeI ittt 2177
52.25. pg foreign tabl @ .o 2177
YA T o Yo T T o 1= G 2178
52.27. PO i NNEI T 1S it e 2179
Sy T o 1o T o VI S] YA TP 2180
s I o T T B Y 1o 1V = Vo [PN 2180
52.30. pg_l argeobj Ct ... 2181
52.31. pg_l argeobject_netadataccoeeeiviiiiiiiiiiii e 2182
52,32, PO _NAIMBSPACE ottt 2182
52.33. PO _OPCl @SS .uniiiiiiiiii i 2182
52.34. PO 0PI AL OF oeiiiiiiiii e 2183
52.35. PG _OPf A [Y oo 2184
52.36. pg_partitioned tabl eccooiiiiiiii 2184
52.37. PO PO i CY et 2185
L2t A o To T o] (o 1o RSP 2186
52.39. pg_PUbl i Cati ON oo 2188
52.40. pg_publicati on_rel .., 2189
Ly o o T - 1 [0 =T PP 2189
52.42. pg_replicati on_Ori giN .o 2190
YA I o To T =X I A = TN 2190
52.44. pg_secl abel ... 2191
5245, PO _SEUUEBINCE ..ttt 2191
52.46. pg_ShAepend ..o 2192
52.47. pg_ShAeSCri PtiON i 2193
52.48. pg_shsecl abel ... 2193
52.49. PG ST AT STI C crvriiiiiiiii e 2194
52.50. PG St At i STi C_ X i 2195
5251. pg_statistic_ext_datacccooiiiiiiiiiiiiiiii 2196
52.52. PG _SUDSCIi PLI ON coiniiiici e 2196
52.53. pg_SUDbSCription_rel . 2197
52.54. pg tabl ESPACE ..civviiiii e 2198
B52.55. PG _transSt OF M. 2198
Y T o To T O I [1= N 2199
B52.57. PG 1S _CONT I § ciriiiiiiiiii e 2200

XVi

PostgreSQL 14.1 Documentation

52.58. P9 tS _CONFi g IMBP ooiiiiiiii e 2201
52.59. PO 1S i Cl orriiiiiiii i 2201
52,60, POl S PaI ST ittt 2201
52.61L. PG tS tEMPI At @ coivriii i 2202
Y2 2 o To T A o 1 PP 2202
52.63. PG _USEI _IMAPPI NQ tovniiiiiieiiiie e ee e eees e e e e e e e e e e e e e e aanees 2206
52.64. SYSIEM VIBWS ...ttt e e e et e e e et e e eeaaaeeees 2206
52.65. pg_avai l abl €_ext eNSi ONS ...cccciiiiiiiiiiie e 2207
52.66. pg_avai | abl e_ext ensi on_Vversi onsc.ccccceeeeviiieiiineeinneennn, 2208
52.67. pg_backend _meEMDry _CONtextscccoveviiieiiiiiiiiieciieece e 2208
Lyt I o To T oZ o 1 | o PN 2209
Y1 A oo T o1 U1 oY o] g T PP 2209
52.70. pg _fil € SEttiNGS ciiiiiiiii i 2210
Y2 o o To T o | a0 1 U1 o R PP 2211
52.72. pg_hba file rul @S . 2211
A (ST o To T 4 o 123 €= N 2212
B52.74. PO | OCKS it 2212
A (ST o To T .- SV = 1PN 2215
B52.76. PG _POI i Cl 8BS iiiiiiiiii i 2215
52.77. pg_prepared_Stat eMBNtScooiiii i 2216
52.78. pg_prepar €d_XaCl S ...cociiiiiiiiiiiii e 2217
52.79. pg_publication_tabl scccoiiiiiiiiiii 2217
52.80.pg_replication_origin_statuscccooveiiiiiiiiiiiin i, 2218
52.8L.pg replicati on_SIotsS .o 2218
52.82. PO T Ol BS ittt 2219
Sy I o To T G V1 =TSN 2220
52.84. pg_SeCl abel s ..o 2220
52.85. PO _SEUUEBNCES ottt 2221
52.86. PO SO LI NOS iiiiiieiiii et 2222
52.87. P _ShAUOWuiiiiiii 2224
52.88. pg_shmem al | 0Ccat i ONSccccoviiiiiiiiiii e 2224
52,89, PO St AL S ittt 2225
52.90. PO _St Al S BXE 1ot 2226
5291, PO_St Al S_BXL _BXPI S 1ttt 2227
52.92. PG 1 Abl €S corriiiii i 2229
52.93. pg_timezone_abbrevs ... 2229
52.94. PG _ti MBZONE _NAIMES ..ivuiiiiieiiii e et et e e e e e e e e eanes 2230
2 ST o o T U =1 = PP 2230
Sy Re S o To IRV EST=1 N 1Y o] o L o 1T 2231
e A o To T4 I =1 SN 2231
53. Frontend/Backend ProtOCOIoveiiiiiiiiiiii e 2233
X I @Y= V1= 1 SRR 2233
53.2. MESSAPE FIOW ...vviiiiiiii e 2235
53.3. SASL AULNENTICALIONiiieeiieeeei e 2248
53.4. Streaming Replication ProtoColcccceuiieiiiieiiiieiiiieeii e eee e 2249
53.5. Logical Streaming Replication Protocolccooeeviiiiiiiiiiniiece, 2256
53.6. MESSAgE Dala TYPES ..vuivuiiiiiiie et 2257
53.7. MESSA0E FOIMMELS . vuieiiiee e 2258
53.8. Error and Notice Message FieldSooeviiiiiiiiiiin e 2275
53.9. Logical Replication Message FOrMAELSccevueeiinieiiiieeiiieeiiieeeiieeeineens 2277
53.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiiiecieeeiees 2283
54, PostgreSQL Coding CONVENTIONScc.uuiiiiiieiiiieiieeeiie e e e e e et e e e e e eaanees 2285
oY I o 4 0= 1] o P 2285
54.2. Reporting Errors Within the Serverccoovvviiiiiiii e 2285
54.3. Error Message Style GUIAEco.viviiiiiii e 2289
54.4. Miscellaneous Coding CONVENLIONSccvvuieiiieeiiiieiiie e e 2293
55. Native Language SUPPOITuuuiiiieiiie et e e e ee e e e e e e e e e e e et e e et e esaneees 2295
55.1. FOr the TranSlatoruieiieiiieieiiis e 2295

XVii

PostgreSQL 14.1 Documentation

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

55.2. FOr the Programimercociuiiii e e e e e s 2297
Writing a Procedural Language Handlercooovviiiiiicii e, 2301
Writing a Foreign Data WIaDPENcvvieiii e e e e e e e e e e e e e ean s 2303

57.1. Foreign Data Wrapper FUNCLIONSccovviiiiiiiiiiieccie e ec e 2303

57.2. Foreign Data Wrapper Callback ROULINESoevvviiiiiiieiiieccineciieeeen, 2303

57.3. Foreign Data Wrapper Helper FUNCtionSccooveviiiiii e 2319

57.4. Foreign Data Wrapper Query Planningccccoevieiiiiiiiin i 2320

57.5. Row Locking in Foreign Data WIapperSoevvveeviineeiiieeiiieeeieeeaineeaenns 2322
Writing a Table Sampling Method ..o, 2324

58.1. Sampling Method Support FUNCLIONSccvveiiiciiiiec e, 2324
Writing a Custom SCan ProVideroveiiieiiiiiciie e 2327

59.1. Creating Custom Scan Pathscccccviiiiiiiiiii e 2327

59.2. Creating Custom SCan PlanSc..oeiiiiiiiiiiciii e e 2328

59.3. EXECUiNG CUSLOM SCANSuvvvieiiiiieiieeii i e e e e e e e e e e e e e e eeees 2329
GenEetiC QUENY OPLIMIZENieiiicie e e e e e aens 2332

60.1. Query Handling as a Complex Optimization Problemcceeeennn. 2332

60.2. GENELIC AlQOMItNMS ...t 2332

60.3. Genetic Query Optimization (GEQO) in PostgreSQLccccvvvvvvvievinnnnnn. 2333

60.4. Further REAINGoovvuiiii e e e 2335
Table Access Method Interface Definitioncooiiieiiiiiiiieii e, 2336
Index Access Method Interface Definitioncccuvviiiiiiiiiiiiii e 2337

62.1. Basic APl Structure for INJeXescocuvieiiiiiiieeii e 2337

62.2. Index Access Method FUNCLIONScoovvvviiiiiiii e 2340

62.3. INAEX SCANNING +..evvneieiieeie e e e e e e e e e e e e e e e e e et e e e eeaes 2345

62.4. Index Locking Considerationsc..ovevuieiiiieeiiieeiii e e e e 2347

62.5. Index Uniqueness ChECKSocvuuiiiiiiii e 2348

62.6. Index Cost EStimation FUNCHIONSuuieiiiiiiieiiiiiie e 2349
GENEiC WAL RECOIUSuiiiiiiie et e s 2352
B-TrEE INUEXES ..vn ettt e e et e e et e e eab e eeee 2354

o7 0 1 oo [0 [o o ST 2354

64.2. Behavior of B-Tree Operator ClasseSccvvveviiiiiiiieiiiiieceeee e 2354

64.3. B-Tree SUPPOrt FUNCLIONScc.uiiiiiieiii e e e e 2355

64.4. IMPIEMENTBEION .. .euuiiii e e e e e e e e e e e e e eaaeens 2358
GIST INOEXES ..ottt e et e e et e e e e e 2361

L0 g1 oo (8o 1o o SRR 2361

65.2. BUilt-in Operator ClasseScvuuiiiiii e 2361

S I N (=01] o 1) P 2364

65.4. IMPIEMENTBEIONuuiiiii e e e e e e e e eaaeens 2377

B5.5. EXAMPIES ...vviiiie ettt aaaaaaan 2377
SP-GIST INUEXESvvviieeeeee ettt e et e e e e e e e e e e e e e e e et e e e e eeeaaenes 2379

L1200 g1 oo [0 [o o ST 2379

66.2. BUilt-in Operator ClasseSccvuieiiiieeiiie e 2379

ST R T N (=01 o 1 1 P 2381

66.4. IMPIEMENTBEIONuuiiii i e e e e e e e e e eaaeees 2390

B6.5. EXAMPIES ...vvviiieeeiee ettt e e e e e e aaaaan 2391
€]V o (=P 2392

5 1o o (8o 1o o ST 2392

67.2. BUilt-iN Operator ClasseSccvuuieiiiieeiii e e 2392

YT N (=01] o 1 1 P 2393

67.4. IMPIEMENTBEION .. .euuiiii e e e e e e e e e eaaeees 2395

67.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e aeas 2397

A I T 011 = 1 o) PSP 2397

B7.7. EXBMPIES ..evviiii ettt e e e e aaaan 2398
BRIN INEXES ...vvuiiieeeiee ettt e e e e e et s e e e e e e e aaaaa s 2399

51C 00 g1 oo (8o 1o o TP 2399

68.2. BUilt-iN Operator ClasseScvuuiiiiii i 2400

S R T N (=011 o 1 1 S 2407
[E= s T D10 (o= 2412

XViii

PostgreSQL 14.1 Documentation

B9.1. OVEIVIBIW ...iiiiiieeeiii ettt e ettt e e et s e e e et s e e e e et s e e e et e e e e eatn e e eeesenaeeaees 2412

69.2. IMPIEMENTBEION .. .evuiiii e e e e e e e e e e e eaaeees 2413

70. Database PhySICal SIOraQgecvvvnieiii et e e 2414
70.1. Database FIle LayOutocvuuieiiiccie e e 2414

70,2, TOAST ottt ettt e e et e e et e e et a e ae 2416

70.3. Free SPaCe Mapcvuiiiiiie e 2419

T0.4. VIiSIDIIITY M@ ..o 2419

70.5. The INitidization FOrKovieiiiiiiieii e 2420

70.6. Database Page LayOutccoevuiiiiieiiiec e 2420

71. System Catalog Declarations and Initial Contentscccevevviieiiiiieiiieeiinenn, 2424
71.1. System Catalog Declaration RUIEScccviiiiiiiiiiieciiee e, 2424

71.2. System Catalog INnitial Data.........covuieiiiiiiiieiiieeeii e 2425

71.3. BKI Fil@ FOMMEL ...ccevnieiiii e e 2430

714, BKI COMMENGSoeeviiieeeiiiieee e e e e e e e e e 2430
71.5. Structure of the Bootstrap BKI Fileccooiiiiiiiiiii e, 2431

71.6. BKI EXAMPIE coviiiieiii e 2432

72. How the Planner USES SEAtIStICS ...vvvvvneiieiiieiiiii e 2433
72.1. Row EStimation EXamMPIESccuuviiiiieiiiciiee e 2433

72.2. Multivariate Statistics EXamplesc.ooevviiiiiiiiiie e 2438

72.3. Planner Statistics and SECUNLYcovvneviiieiiiiicii e 2442

73. Backup Manifest FOMELcoouniiiiiiiii e e e aens 2444
73.1. Backup Manifest Top-level ODJECtocvviiiiiieii e, 2444

73.2. Backup Manifest File ObJECtcvvviiii i 2444

73.3. Backup Manifest WAL Range ObjeCtcevvviiiiiieiiieecie e 2445

RV L TN o) = o [=S 2446
A. POSIOreSOQL Error COUESuuiiiieiiiiei e ee e e e e e e e e e e e e e e et e e eaaaeees 2452
B. Dat€/Time SUPPOITiiiieii et e e e e e e e e e e e e e e et e e e e et e e et e eaanaees 2461
B.1. Date/Time Input INterpretationeevviieeiiieii e 2461

B.2. Handling of Invalid or Ambiguous Timestampsccocvvveiiieveineeninennn, 2462

B.3. Date/Time K&y WOrAScovviiiiiieii e e e e 2463

B.4. Date/Time Configuration Fil€Scoovuiiiiiiicii e, 2464

B.5. POSIX Time Zone SpeCifiCationScc.veviiiiiiiiieiiiecii e 2465

B.6. HIiStory Of UNItSccoviiiiiiiii i e e 2467

B.7. JUAN DAESuiiieeiiiie et 2468

C. SOL KEBY WOIAS ... cevueiiiieiie e e e e e e e e e e e e et e e e e eaaees 2469
D. SQL CONfOIMMANCEcetiiie e e e e e e e e e et e eaeeanns 2494
D.1. SUPPOIEd FEAUINESccvvuiiii e e e e e e e e e e 2495

D.2. UNSUPPOrted FEAIUIESuuiiiieeii e eeie e e e e e e e eanas 2506

D.3. XML Limits and Conformance to SQL/XMLcooevviiiiiiiiiiieiiiieeiiees 2514

E. REEASE NOES ...oevviieiiii e e e e et e e et e e eeraaeaaes 2518
E.L REEESE 141 ..o 2518

E.2. REEESE 14 ... e 2523

E.3. Prior REIEASES ...t 2546

F. Additional Supplied MOAUIESccuuiiiiiiiii e 2547
F.L adminpackcovniiiiiii e e 2548

F.2. @MCNECK .. 2549

F.3. aUth delay ..ooviec 2554

O 0| (o T = o] =1 o N 2554

FLB. BIOOM L. 2557

FLB. DB GiN oo e 2560

A o 1 (==Y o [N 2561

RS T o) (=4 A PSP 2562

FiO. CUDE Lo 2565
FLL0. dBIINK Lo 2569

Nt I o [T | PP 2600

L 2o [T D 6/ PN 2601

F.13. €arthdiStanCevvneeiiii e 2602

N 1T = o PP 2604

XiX

PostgreSQL 14.1 Documentation

F.A5. fUZZYSIIMAECH «.evecc e 2606
S 01 o = PP 2609
T 17 o o 2616
S T - - Y 2618
Nt T 1 o TP 2621
Fo20. 10 ettt e 2625
L T | == PSP 2626
F.22. 0ld SNapSNOL .. ceuiciiecc e 2633
(SIS R 070 (= 1 41 o)< vt P 2633
F.24. passWOrdChECKciiiiiii e 2643
F.25. pg bUFfEICaCE .. cov e 2644
FL26. POCTYPLO ettt e 2645
F.27. PY_freeSpaCcemMa . ..c.u et 2657
FL28. PO_PIEWEAII Lot 2658
F.29. POrOWIOCKS ...uiiiceii e e e e e e e e e e ee 2659
F.30. pO_stal StatBmMENTSuiiie e 2660
oo = (0o TN 2668
[oo =0 ([Y PRI 2672
e 3C T oo [1 (0 [o 2673
F.34. PO VISIDIHILY .o 2679
F.35. POSIOrES FOW ..ovvniii e 2680
TSI = o PP 2689
G S = oo o | 2692
L T o O SPPR 2700
F.39. SSIINTO ittt 2701
F.40. taDIEFUNC ...oeeeee e 2703
R I (o o SRS 2712
S (== o =0 o] oo [FRR N 2714
F.A3. TSN _SYSIBIM TOWS L.t a e en 2714
F.A4. tSM_SYSIEIM TIME .oovniiii e e e e e e 2715
FLA5. UNBCCENT ...t e et e e ees 2716
L D TH T 01\ o ISP 2718
41 1 PP 2719
G. Additional SUpPlied Programsccouuiiiiiiieii e 2724
G.1. Client APPlICALIONScvvuciii e eaaes 2724
G.2. Server ApPlICALIONScvvicii e 2731
L T (= g = I (0= o £ 2732
H.L CHENt INtEITACESoiiieii e 2732
H.2. AdMINIStration TOOISuuuiiiiiiiiieiiiiis e eaees 2732
H.3. Procedural LanQUAagEScuueeiuniiiiiieiiie e ee e e e e e e e e 2732
H.A, EXEENSIONS .ttuiiiiiie et e ettt e et e e et e e et e e et e e e e eaa s 2733
I. The Source Code REPOSITOIYccuuiiiiieiii e eee e e e e e e e e e e e e e e aaeees 2734
[.1. Getting the SOUrCe VIia Gtcevviiiiiiiiie e 2734
I B o oi 1091 01 = 1o PP 2735
J. L DOCBOOK ...ttt 2735
B o] B <SP 2735
J.3. Building the DOCUMENLAEIONcvvvuiiiieii e e e e e e e e 2737
J.4. Documentation AULNOIINGoovuiieiii e 2739
J5. SEYIE GUITE ...evvieiiii e 2739
K. POStGreSQL LIMItS ...iuvuiiiiiii e e e e e e e e et e ea e eees 2741
[o {0017/ 1 PP PPN 2742
1 o= Y N 2748
[N IR @0 oS 0T o] o o AN 2760
N.L When Color IS USBHccuuiiiiiiiiieiii e 2760
N.2. Configuring the COlOrScccuuiiiiiiieiie e e e 2760
O. Obsolete or ReNAME FEAIUIESccuuniiiiiiiieeiii e 2761
O.1l.recovery. conf filemergedinto post gresql .conf 2761
0.2. Default Roles Renamed to Predefined ROIEScccvvvieiiiiiiiiiiiieeccii, 2761

XX

PostgreSQL 14.1 Documentation

0.3. pg_xI ogdunp renamed to pg_wal dunpccooeviieiiiieeiiic e, 2761
0.4.pg_resetxl ogrenamedtopg_resetwalccoocoiiiiiiiiiiiniiiineins 2761
0.5. pg_recei vexl og renamedto pg_recei vewalccooceeviviiiiinnnnnn, 2761
(23] o] oo r="o] /0P 2763
g0 1= PP 2765

XXi

List of Figures

60.1. Structure of a Genetic AlGONThMooouiiiii e

67.1. GIN Internals

70.1. Page Layout ..

XXii

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 35
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 40
5.1. ACL Privilege ADDreViationscoouuiiiiiiiieiii et 74
5.2. SUMMary of ACCESS PriVIIEOESuiiiiiiiiiiii e 75
I DT r= R Y o= T PSPPI 142
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 143
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 149
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 149
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 151
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 151
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 152
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 153
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 153
8.10. DB INPUL ..ottt ettt et e e e 155
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 155
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt ettt et e et e e e e e e era s 156
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 157
8.14. Date/TIime OULPUL SEYIESot 158
8.15. Date Order CONVENTIONSu.eieitteeiiii et eeti ettt et et et e e e et et eet e e enna e eennas 159
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 161
8.L7. INEIVEl INPUL ...ttt e e et 162
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 163
8.19. BOOIEAN DELA TYPE ... eeeetie ettt ettt ettt ettt e et 163
8.20. GEOMELNIC TYPES ..ttt ettt ettt ettt ettt ettt e ettt e ettt e e e e et e e e eeba e eees 166
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 168
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 169
8.23. JSON Primitive Types and Corresponding PoStgreSQL TYPEScevvvvneviriinieieiiineeenns 178
8.24.] sonpat h Variablescoouuiiiii e 186
8.25.] SONPAL N ACCESSOIS ...ttt ettt et e e e e 186
8.26. ODJECt 1deNtifier TYPES ...t 210
8.27. PSRULO-TYPES ...ttt ettt et 212
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 216
9.2. COMPATISON PreEdiCALESvuueiiiii ettt e e eenees 216
9.3. COomMPAriSON FUNCLIONS ...ttt 219
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 220
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 222
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 225
9.7. TrigONOMELNIC FUNCHIONS eiieiei ettt et e e e e eneens 225
9.8. HyperboliC FUNCHIONSiiiiiii et 227
9.9. SQL String FUNCLiONS 8Nd OPEIELIOISuuiieeiiiieeeeii ettt e et e e e eni e eens 227
9.10. Other StNG FUNCHIONSuuiiiiiii e e e 229
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeririnieeiiiieeeeeiie e e e 237
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 238
9.13. Text/Binary String Conversion FUNCLIONSc.uuuiiiiiiiieiiiieeeei e 239
9.14. Bit SING OPEIEIOISveieeeeti ettt ettt ettt et e et e e et e e et eeeaa s 241
9.15. Bit SING FUNCLIONSviiiiii ettt e 241
9.16. Regular EXpression MatCh OPEraOrSceuuueierrieieiii et e et e e e e eeeees 246
9.17. Regular EXPression ATOIMSuu ittt et e e et e et e e e eat e e e enta e eeenes 250
9.18. Regular EXpression QUENTITIENSuuuiieiiiieiei e 251
9.19. Regular EXpression CONSIFAINTSciierieeiiii ettt e e e 251
9.20. Regular Expression Character-Entry ESCaPESccvvvuiiiiiiiiieiiiiie e 253
9.21. Regular Expression Class-Shorthand ESCapESvevvviiieiiiiiiieeeii e 254
9.22. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 254
9.23. Regular Expression Back REFEIENCESccuuuiiiiiiiciiii e 255
9.24. ARE Embedded-Option LEErSiiiiiieeie e 255

XXiii

PostgreSQL 14.1 Documentation

9.25. FOrmatting FUNCLIONSouuiiii e e e e e e e e aa s 260
9.26. Template Patterns for Date/Time FOrmMattingoevvvieiiieeeiiieiiiieeee e e e e 261
9.27. Template Pattern Modifiers for Date/Time FOrmattingcccoevviiiieiiineiiiieiiieeeis 263
9.28. Template Patterns for NUumeric FOrmattingccoveviiiiiiiiiiiiiiecie e 265
9.29. Template Pattern Modifiers for Numeric Formattingccooevviieiiineii i, 266
9.30. 1t 0_Char EXAMPIEScuuiiiiiiciii e e e e e e e 266
RGBT (= A N1 1Y O o= = (0] £ T 268
9.32. DAe/TIME FUNCLIONS ...oevviieiiiii ettt e et e e et e e et e e e e aan s 269
9.33. AT TIME ZONE VATAMES ..euueeiiiiiieeiiiiiie e e et e et e et e e et e e e et eeeeaen s 280
9.34. ENUM SUPPOIt FUNCHIONSiieiiiii e e e e e e e e et e e e e e e aaa s 283
0.35. GEOMELIIC OPEIALONS .. evuueiitieii et et e e e e e e et e e et e e e e e et e e et e e et e e et e eaa e eanneeaens 284
9.36. GEOMELNIC FUNCHIONS .. .vteeiiii ettt e e e e et e e et e e et eeeeaen s 287
9.37. Geometric Type Conversion FUNCLIONSoovuuiiiiiiiii e e 288
L S | AN (0| (=SSR @] 1= - (0 = PN 291
9.39. [P AdAreSS FUNCLIONSvuiieeiiie ettt e e e e e et e e e et e e e e ean s 292
9.40. MAC AdUress FUNCLIONSccuuuiiiiiii ettt et e et e e e e e e e e eeean s 293
S S = (v A 0= - (0 = PN 294
9.42. TexXt SEACH FUNCHIONSuiiiiii ettt e et e e et e e et e e e e aaa s 295
9.43. Text Search Debugging FUNCLIONSiiiiiiii e e 299
9.44. sSON and | SOND OPEIAIOISccvuieiiiieeiiee e e et e e e e e e e e e e e e e e e e e aeaes 315
9.45. Additional | SOND OPEIAOrSuuiiiiiieiiie et e e e e e e e e aaa e 316
9.46. JSON Creation FUNCLIONScovvviieiiiii e e e e e et e e e et e e e eet e e e eaieneeeenes 318
9.47. JSON Processing FUNCHIONScuuuuiiiiieiiiieeiee e e e e e e e e e e e e e e e e et e e e e eanaeeeen 319
9.48. j sonpat h Operators and MethodSoovvuiiiiiiiiiii e 328
9.49. | sonpat h Filter EXpression EleMentSoiviiiiiii i 330
9.50. SEqUENCE FUNCLIONSuuiiiieii e e e et e e e e e e e e e e et e e et e e et e e aaeeaanas 333
.50, AITAY OPEIEIONS ..ttt e e e e et e e e e e 337
9.52. ATTay FUNCHIONSuiiiiicii e e e e e e e e e e e et e e e e eanaas 338
O.53. RANGE OPBIAIOIS . eueuiiiitiiie ettt e e e e e ana 341
.54, MUILITANGE OPEIBIOIS ...vueivteeitieeei e et e et e e e e e e e e e et e e e e et e e et e e et e e et e eaneeannns 342
9.55. RANGE FUNCLIONSiiiiii e e e e e e e e e e e e e e anas 345
9.56. MUILITANQE FUNCLIONScuuiiiiiei e e e e e e e et e e e e an s 345
9.57. General-Purpose Aggregate FUNCHIONScouuieiiiieiii e e e e 347
9.58. Aggregate FUNCLIONS TOF SEatiStICSuvuiiiiieii e e 349
9.59. Ordered-Set AgQregate FUNCLIONSoiiueieii e e e e e e e eaa s 351
9.60. Hypothetical-Set Aggregate FUNCLIONScouviiiiiiieiii e e 352
9.61. GroupiNg OPEIatiONSuuieiuueiiieiie e et e e e e e e e et eeeat e e et e e st e st eean e eatneeaanaaeenaes 352
9.62. General-Purpose Window FUNCLIONSocouiiiiiiiic e e 353
9.63. Series Generating FUNCHIONScciuuiiiii e e e e e e e e e e e e ees 360
9.64. Subscript Generating FUNCHIONSccuuiiiiiiiii e e e e e e e e e e eees 362
9.65. Session INformation FUNCHIONSiiiiiiiiiei e 364
9.66. Access Privilege INquiry FUNCLIONSoiiiiiiiiicie e e e 367
9.67. AC| i1 t @M OPEIAIONS ... evviiiii et e e e e e e e e e e e e e e e e e ee 368
9.68. ACl 1 t EMEFUNCLIONSevtiiiii e 369
9.69. Schema Visibility INQUINY FUNCLIONSccovuiiiiiici e e 369
9.70. System Catalog Information FUNCLIONScc.uiiiiiieiiiieiie e e e e 370
9.71. IndexX ColUMN PrOPEITIES ...uiiiii et e e e e e e e e e e e aanas 374
O.72. INAEX PrOPEITIES ... iitceiii et e e e e e e e e e e e e e e e e aee 375
9.73. Index Access Method PropeErtiesiiiiieii e 375
9.74. Object Information and Addressing FUNCLIONSccoviiiiiiiiiiiicci e 375
9.75. Comment INformation FUNCLIONScovuviiiiiiiiie e 376
9.76. Transaction 1D and Snapshot Information FUNCLiONScceeviiiiiiiineiiece e, 377
9.77. SNAPSNOt COMPONENES .. .evuueiiieeiie e et e et e e e e e et e e e e e et e e et e et e e et e e et e eean e eanneeeannas 378
9.78. Deprecated Transaction ID and Snapshot Information FUNCLIONSccccvvveeinievnnnnnne. 378
9.79. Committed Transaction Information FUNCLIONSccccuuviiiiiiinieiiiiie e 379
9.80. CONtrol Data FUNCHIONSueiieitiee it e e e et e et e e e et e e e eaa e e eeaenns 379
9.81. pg_control _checkpoi nt Output COIUMNSccovuieiiiiiiii e, 379
9.82. pg_control _syst emOutput ColUMNSccouuiiiiiiiiiii e 380

XXiV

PostgreSQL 14.1 Documentation

9.83. pg_control _init Output COIUMNSccovuieiiiieiiii e e e 380
9.84. pg_control _recovery Output CoOlUMNSccuuiiiiiieiiiieiiii e ee e e e 380
9.85. Configuration Settings FUNCLIONSooiiiiiii e e e e 381
9.86. Server SIgnaling FUNCLIONSocuiiiiiee e e e e e e aaaes 381
9.87. Backup Control FUNCLIONSuiiiiiiiii i e e e e e e e e e e e eaens 383
9.88. Recovery Information FUNCHIONScoovuiiii e e e e e e e e e 385
9.89. Recovery Control FUNCHIONScciuuiiii e e e e e e e e e 386
9.90. Snapshot Synchronization FUNCHIONSc.uuiiiiiieiiie e e e e e e e e e 387
9.91. Replication Management FUNCHIONSccuuiiiiiiiiiii e e e e e e e 388
9.92. Database Object SiZe FUNCLIONSuiiiiici e e 390
9.93. Database Object Location FUNCLIONScouuiiiiieiiiiecie e e e e e 391
9.94. Collation Management FUNCLIONScoouuiiiiiieiiie e e e e 392
9.95. Partitioning INformation FUNCHIONScovviiiiicii e e r e e 392
9.96. Index MaintenancCe FUNCHIONSooiiiiiieiiiii et eeees 393
9.97. Generic File ACCESS FUNCLIONSccuuiiiiiiiiie et e e e e s 394
9.98. AdVISOry LOCK FUNCLIONSuuiiiieiii et e e e e e e e e e e e s e e e e anaeeeen 395
9.99. BUIlt-IN Trigger FUNCHIONScovuiiii e e e e e e e et e e e e eaaes 397
9.100. Table Rewrite Information FUNCLIONSoovviiiiieiiiie e 400
12.1. Default Parser's TOKEN TYPES ..vuuiuteiiiieiiee it e e e e e e e e e e e e s e e et e e aa e aanns 450
13.1. Transaction ISOlation LEVEIScc.uuuiiiiiiiieecii et e e e ees 473
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e 480
13.3. Conflicting ROW-LEVE LOCKSccvuiiiiii i e e e 481
19.1. System V IPC PalramEtarsSuiuiieiiiiiie ettt e e 558
19.2. SSL SerVEr FilE USAE «..vuiiiiiii ettt ettt e et e et 572
20.1. synchronous _COMMIt MOESiiiiniiiiiiii e e e e e e e e e e 599
20.2. MeSSAQE SEVENLY LOVEIS ... 624
P0G TS 4 1o A @ 1] N =Y PP 655
221, PredefiNed ROIESiiieiii e e e 684
24.1. PostgreSQL CharaCter SELSiuuueiiiiiiii e e e e e e e e e e e et e e e eaes 701
24.2. Built-in Client/Server Character Set CONVEISIONSuveiiviniieiiiiieeeeiine e e e e 705
24.3. All Built-in CharaCter Set CONVEISIONSuieiiiiiieeiiiiieeeeeine e et e e et e et eeaenennns 706
27.1. High Availability, Load Balancing, and Replication Feature Matrixcccoeevvnnennnnn. 739
28.1. DYNAMIC StAiSHCS VIEBWS ..oeviiii i e e e et e e e e e e e e e eeeen 760
28.2. Collected SEAISHCS VIBWSveeeeieiiiiiiiee ettt e et e et e e e eaa s 761
283.pg_Stat _aCti Vity VIBW oo e 763
28.4. WAL EVENE TYPES . iiiiiii ettt e ettt e et e e et s e e et e e et e e e e et eeaeaa s 765
28.5. Wait Events of TYPE ACT I Vi LY couiiiiiii e 766
28.6. Wait Events of Type Buf f €r Pi Niiiiiii e 767
28.7. Wait Events of TYPE Tl i €N ..o e 767
28.8. Wait Events of TYpe EXt €NST ON ..oivniiiii e 767
28.9. Wait EventS Of TYPE I O .u.iiiniiiii i e e e e e 767
28.10. Wait Events oOf TYPE I PC ...ouuiiiiiii ettt 770
28.11. Wait Events of TYPE LOCKciviiiiiiiiiie e e 772
28.12. Wait Events of TYPe LVLOCK ...ovuiiiiiii e 772
28.13. Wait Events of TYPe Ti MBOUL ...uiiiiiiiii e e e e e e 775
28.14. pg_stat _replicati ON VIEBW ...oooiiiiiiiii e e 776
28.15.pg_stat _replicati on_ sl otS VIeWw ...cccooieiiiiiiiiiiii e 778
28.16. pg_stat_Wal _reCei VEI VIBW oo 779
28.17. pg_stat _subscCripti on VIEW ..cocooiiiiiiiiii e 780
28.18. PO ST AL SSI VIBW coiiiiii i 780
28.19. pg_Stat _gSSAPI VIBW couiiiii it 781
28.20. pg_Stat _arChi VEr VIieWcoiiiiiiii e e e 781
28.21. pg_Stat _bgWrit €5 VIieW ..o e 782
28.22. pg_Stat WAl VIBW .ouiiiiiiii e 782
28.23. pg_stat_dat abase VIieWc.coiiiiiiiiii i 783
28.24. pg_stat _database _confliCcts VIEWccoeeiiiiiiiiiiiii e, 785
28.25. pg_stat_all _tabl @S VIeW ..o 785
28.26. pg_stat _all i NdeXes VIBWcociiiiiiiici e 787

XXV

PostgreSQL 14.1 Documentation

28.27.pg_statio_all _tabl €S VIEW ..o 788
28.28. pg_statio_all 1 NAdEXES VIBW ..cccuiiiiiiiii e 788
28.29.pg_stati o _all _SeqUENCES VIBW ...ccccuiiiii i 789
28.30. pg_stat _user _fUuNCti ONS VIBWccocviiiiiiiii e 789
28.3L PG St At _SI T U VIBW oo 790
28.32. Additional StatistiCS FUNCHIONSuuuiiiiiiii e e s 790
28.33. Per-Backend Statistics FUNCHONSuuiiiiiiiieeiii e 792
28.34. pg_stat_progress_anal YZe VIEWcoccoiiiiiiiiiin i 793
28.35. ANALY ZE PhaSBS ...u i eiiiiiii ettt e ettt e et e e e et a e e e et e e e e aaa e aeae 793
28.36. pg_stat_progress_create_i NdeX VIBWccooeveiiiiiiiiiii i, 794
28.37. CREATE INDEX PhaSESeuuiiiiiiiiieiiiie ettt e et e et e e et e e e et 795
28.38. pg_stat _progress _VAaCUUMVIBWviiiiieiiiiiiiii e e e e e e s e e e eaens 796
28.39. VACUUM PhESES ..ccvtuiiiiiii ettt ettt e et e e et e e e et e e e et e e e e et e e e e aan e 797
28.40. pg_stat_progress _Cluster VIBW ...ccooooii i 798
28.41. CLUSTER and VACUUM FULL PhaSESccuuiiiiiiiiiieiiiie e 798
28.42. pg_stat _progress_basebackup VIiewccooooviiiiiiiiiiiiie e, 799
28.43. Base baCKUP PRaSESuuiiiiiiii e 799
28.44. pg_stat _progress _COPY VIBW .o iiiiii i e e 800
28.45. BUIlt-iN DTTaCe PrODES .. .cceviii e 801
28.46. Defined Types Used in Probe Parametersccueevviiiiiiiiiiiece e 807
1C7 B IS IV oo LI B =S o] o1 o 918
34.2. Libpg/Client SSL FilE@ USAQE ... cvvniiiiiieiiie et e e e e e aae e 919
35.1. SQL-Oriented Large Object FUNCLIONScccuiiiiiieiii e 938
36.1. Mapping Between PostgreSQL Data Typesand C Variable Typesccocevvvevvvevinnennnn. 954
36.2. Valid Input Formats for PGTYPESdat € from ascc.ccceeeviiiiiiieiin e, 972
36.3. Valid Input Formats for PGTYPESdat € fnt_asCcccooeviviiiiiiiiiiiciicceee e, 974
36.4. Valid Input Formats for rdef mtdat €ocooviviiiiiiii i 975
36.5. Valid Input Formats for PGTYPESt i mest anp_from asccccoevevvieeiiineiiineennnnn, 976
37.1.informati on_schema_catal og name Columns............cccooeviieiiiiiiiiecie e, 1055
37.2.adm ni strabl e rol e_authorizations Columns.............ccoeeeviiiiiiinecinnennnn. 1055
37.3. applicabl e rol s ColumNScooiiiiiiiiii e 1055
37.4. At L ri DUt €S COlUMNS ...utiiiiii e e e eaa e e 1056
37.5.charact er _Set'sS COIUMNSuiiiiiiiiiii e e e e e aaa e 1058
37.6. check_constraint_routine_usage Columns..........c.cccovviiiiiiiiiieiiineeiieeennn, 1059
37.7.check_constrai Nt'sS ColUMNScoceuuiiiiiiiiii e e 1059
37.8. COl 1 @t i ONS COIUMNSuuiiiiiii e e et e e eaa e ees 1060
37.9.col lation_character_set _applicability Columns...........cc.ocvvernnnn. 1060
37.10. col um_col umMm_usSage COlUMNSueiiiiii e e e e e e e e eaa e 1061
37.11. col um_domai N_uSage COIUMNSueiiiiei e e e e e e e 1061
37.12. col UMM_0pPti ONS COlUMNS .. ccuuiiiieii e e e e e e eaas 1062
37.13. col um_privil eges ColuMNSc.ooiiiiiiiiiieci e e 1062
37.14. col um_udt _uSage COlUMNScouuiiii e e 1063
37.15. COl UMMS COIUMNS .. .iiiiiiee ettt e e e et s e e e et e e e e et e e e eareaeaeees 1063
37.16. constrai nt _col unm_usage ColUMNScoevviiiiiiiiiiiiiecii e e 1066
37.17.constraint _tabl e _usage ColumNScc.oeeiiiiiiiiiiiiii e 1067
37.18. data_type privileges ColumMNS........ccooviiiiiiiiiiiiiii e 1068
37.19. domai n_constrai Nts COlUMNScooiiiiiiiii i e 1068
37.20. domai n_udt _uSage COlUMNSc.uuiiii i e e 1069
37.21. dOMBI NS COIUMNSiiiiiieeiii ettt e e et e e et s e e e et e e e e et e e e eereaeeeees 1069
37.22. el erment _t yPES COIUMNSiviiiiii e e e e e e e aeas 1071
37.23. enabl €d_r 0l €S COlUMNSc.uiiiiiiii e e 1073
37.24.forei gn_data wrapper_opti ons ColumNScccuveiiiiiiiieeiiiieeiiieeineeeenn 1073
37.25. foreign_data wappers ColUmMNSccoevuiiiiiiiiiiii e 1074
37.26.foreign_server_opti ons ColUMNScocouuieiiiiiiiiiieiii e e 1074
37.27.Tforei gn_servers COlUMNSoiiiiiiiiii e e e 1075
37.28.foreign_tabl e options ColuMNSccocoviiiiiiiiiii e 1075
37.29.foreign_tabl €5 ColUMNScoouuiiiiiiiii e 1075
37.30. key_col umm_usage COlUMNSoeiiiiiiii e e e e e e e aen 1076

XXVi

PostgreSQL 14.1 Documentation

37.3L. par anBt €r'S COIUMNSciuiiiiii e e e e e e e eaa e eees 1077
37.32.referential _constraints ColUmMNS.........ccooouuiiiiiiiiiiiieiii e 1078
37.33.role_colum_grants ColUMNScooiuiiiiiiiiiii e 1079
37.34.role_routine _grants ColUMNScccouuiiiiiiiiiiieiii e ee e e e eaae e 1080
37.35.ro0le_table grants ColUMNSoooviiiiiiiiiiiii e 1080
37.36.r0l e_udt _grants COlUMNSoieiiiiiiiii e e 1081
37.37.r0l e_usage_grants COolUMNSc.oeiiiiiiiiiieiii e e e 1081
37.38. routine_col umm_usage ColUMNSc.uvviiiiiiiiiieiie e e e 1082
37.39. routine_privileges ColUmMNScooeiiiiiiiii i 1083
37.40.routine_routine_usage ColUMNSccoeeuiiiiiiiiiii e 1083
3741 routine_sequence_usage COlUMNScocouieiiiiiiiiieeiii e e e e e 1084
3742. routine_tabl e_usage ColUmMNSc.cc.iiiiiiiiiiicii e 1084
37.43. T 0UL T NES COIUMNS ...eiiiiieiii et e et e et e e e eat e e e eatnnaaaees 1085
37.44. schemBt @ COIUMNSuuiiiiii e et e e e e e et e eeeaen e aaee 1089
37.45. SEqUENCES COIUMNSuuiiii i e e e e e e e e e e eees 1090
37.46.sql _feat ures COlUMNScc.iiiiiiiii e 1091
3747.sql _inplenmentation_info Columns........cccoooviiiiiiiii e 1091
37.48. 501 _Part s COlUMNScouuiiiiiiieiie e e e e e e e e eaes 1092
37.49. 5l _Si Zi NG COIUMNSiiiiiiiii e e e e e e e e e aes 1092
37.50.tabl e_constrai Nts COlUMNSccuiiiiiiiiiiiic e 1092
3751 tabl e privileges ColUmMNScccocouiiiiiiiiiii e e 1093
37.52. t @bl €S COIUMNS ...t e e et e e et e eeee 1094
37.53. t ranSf Or B COIUMNSuiiiiiii e e e e e e eera e eees 1094
37.54.triggered _update_col ums ColumMNScooevviiiiiiiiiii e, 1095
37.55. 111 OIS COIUMNScutniii e e et e e e e e e e e et e et e et e e aan e eeas 1096
37.56. udt _priVvil eges COolUMNScccuiiiiiiiiii e e e e e 1097
37.57. usage_priVvil eges ColUMNScociuiiiiiiiiiii e e 1098
37.58. user _defined _types COolUMNScoeviiiiiiiiiiii e 1098
37.59. user _mappi NG_0opti 0NS COlUMNScovuiiiiiieii e e 1100
37.60. user _mBpPi NGS COIUMNSc.uiiiiieee e e e e e e e e aeas 1100
37.61. vi ew_col um_usage ColUMNSccuiiiiiiiiiiiiciii e e e e e 1101
37.62. view routine_usage COlUMNSooeiiiiiiiii i e 1101
37.63. view tabl e_usage ColumNScooiiiiiiiiiii e 1102
37.64. Vi @WS COIUMNS ..ttt e e e et s e e et r e e e et aeeeaaeaeeenees 1102
38.1. POIYMOIPRNIC TYPES . ovtniiiiieiie et e e et e e e e e e e e e e e st e e et e e e e eeens 1111
38.2. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiiiieeeeee e e 1137
G T T S O I (= IS = (=0 == P 1173
K o oS I 1 = = 1= PP 1174
38.5. GIST Two-Dimensional “R-treg” StrategieSuoeivuieiiiiieiiieeiiiieeie e e e 1174
38.6. SP-GIST POINt SIrALEJIESvu i eeeiiiiiee et e et e et e e et e e e e 1174
G I € N N 4 - VA = =0 == RN 1175
38.8. BRIN MiNMaX SIralEOIES .. cevuueiinieiiiieiiieeeee e e e e e e e e e e e e e e e e e e et eeaaneeeanas 1175
38.9. B-Tree SUPPOrt FUNCLIONScoviiii et e e e e e e e e e e aae e 1175
38.10. Hash Support FUNCLIONSiiiiieiie e e e e e e e s e e e e 1176
38.11. GiST SUPPOIt FUNCLIONSiivieiii e et e e e e e e e e e e e et eeaa e eaes 1176
38.12. SP-GiST SUPPOIt FUNCHIONS ... cevuiiiiieiieei e e e e e e e e e e e aaaas 1177
38.13. GIN SUPPOIt FUNCLIONSieeciiii e e e e e e e e et e et e e e e eens 1177
38.14. BRIN SUPPOIt FUNCLIONSuuiiiiiiii e eee e e e e e et e e e e e e et e e et e e e eeaens 1177
40.1. Event Trigger Support by Command Tagoevvveiinieiiiieeiii e eee e e e e e eenas 1209
43.1. Available DiagnostiCS ItEMSiiiiiiiie e e e e e e e 1263
43.2. Error DIiagnoStiCS ITEIMS . ..uuiiii i e e e e e e e e e aes 1277
281. Policies Applied by Command TYPEuueiiuieiiii e e 1667
282. pghench Automatic Variablesoiiiiiiii i 1985
283. PODENCH OPEIGIOISevvieii et e e e e e e e e e e e e e et e et e et eeaaeeaens 1988
284, POENCH FUNCLIONSiiiicii e e e e e e e e e e e aans 1990
52.1. SYStEM CalAlOOS ... cvvvneeiueiii e ee e et e e e e e e e e e e e e e e et e e et e e et e e e e e e aaaaes 2155
52.2. pg_aggregat @ COlUMNSccouuiiiiiieiiii e e e e e e e e e e e e e e e et eeaaaees 2157
Sy T o o T -1 41] 1070 TP 2158

XXVii

PostgreSQL 14.1 Documentation

52.4. pg_anmDP COIUMNSuiiiiiii e e e e e e e et e e eaas 2159
52.5. Pg_anPr OC COlUMNScuuuiiiii i e e e e e e e e e e e e e e e e e st e e e e e ean e eaen 2160
52.6. pg_attrdef ColUMNSiiiiiiii e e 2160
52.7.pg_attribut @ ColUMNScocouiiiiii i e 2161
52.8. pg_aut hi d COlUMNSciiiiiiiiie e e e e e e e e e e e 2163
52.9. pg_aut h_menbers ColUMNScciiiiiiiiiii e e e 2164
52.10. PG_CASt COIUMNS ...ttt e e e e st e e e e e e aens 2164
52.11. PG _Cl @SS COlUMNS .. .covuiii e e e e e e e e e e eeas 2165
52.12. pg_col 1 ati on COlUMNScouuiiiiiiii e e 2167
52.13. pg_constrai Nt COlUMNSc.uiiiiiiii e e e e e e e 2168
52.14. pg_CONVETr Si ON COIUMNSoviiiiiieei e e e e e e e e e e e e e eens 2170
52.15. pg_dat abase COolUMNSco.uiiiiiiiii e e e e e e e 2170
52.16. pg_db _role_setting ColUmMNSccooeuiiiiiiiiiii e 2171
52.17. pg_defaul t _acl ColUMNScoiiiiiiiiiii e 2172
52.18. pg_depend COlUMNSccuiiiiiiieiiie e e e e e e e e e e eees 2172
52.19. pg_descCri ption COlUMNSccouuuiiiiiiii e e e e e e e eeas 2174
52.20. PG_ENUMECOIUMNSuiiiiiii e e e e e e e e e e e et e e st e et e e eaeeaens 2175
52.21. pg_event _trigger ColUMNSccooiiiiiiiiiii e e e e e 2175
52.22. pg_ext ensi 0N COIUMNScc.iiiiiiiiiii e e e e 2176
52.23. pg_foreign_data wapper ColUmMNScccoovviiiiiiiiiiiiieiie e e e 2177
52.24. pg_forei gn_server COolUMNSc.ooiiiiiiiiiiieiii e e e e 2177
52.25. pg _foreign_tabl @ ColUumMNScocouuiiiiiiiiiii e 2178
52.26. PG i NAEX COIUMNS .. .couuiiiieiiii e e e e e e e e e e e e e et e et e e aaneeeeas 2178
52.27. pg_ 1 NNEritS COlUMNScouiiiii i e e e e e e e e een 2179
52.28. pg i Nit _Privs COUMNScoiiiiiieei e e e e e e e aens 2180
52.29. pg_| anguage COlUMNScouuuiiiieeiii e e e e e e e e e et e e e e aneeeeen 2180
52.30. pg_| ar geobj €Ct COlUMNScccuiiiiiiiiii e e 2181
52.31. pg_l argeobj ect _netadat a ColumNScoceuviiiiiiiiiiiieiin e 2182
52.32. pg_NamESPACE COIUMNScouiiiiiieie e e e e e e e 2182
52.33. PG_0PCI @SS COIUMNSuiiiiiiiii e e e e e e e e e eaes 2182
52.34. pg_0oper at Or COlUMNSciuiniiiieeiii e ee e e e e e e e e e e e e e et e e e eaneeeen 2183
52.35. pg_opfam |y COlUMNScoiuiiiiiiieii e e e e e e e e e e een 2184
52.36. pg_partitioned tabl @ ColUMNScooiiiiiiiiii i 2184
52.37. Pg_POI i CY COIUMNSuuiiiiii e e eaas 2185
52.38. PG _PrOC COIUMNSuiiiieiii e e e e e e e et e st e e et e e e e eeens 2186
52.39. pg_publicati on ColUMNScccuiiiiiiiiii e e eeas 2188
52.40. pg_publication_rel Columnscccocciiiiiiiiiiiii e 2189
52.41. PG _range COlUMNSuuiiiieiiiie et e e e e e e e e e e e e et e e et e et e e et e e saneeeens 2189
52.42.pg_replication_originColumnscccocouiiiiiiiiiiiiiiii e 2190
52.43. PG reWr it € COIUMNSiiiiiiiii e e e e e e e e e e e e eaes 2190
52.44. pg_secl abel ColUMNScouiiiiiieiii e e e e 2191
52.45. pg_SEQUENCE COIUMNScuuiiiiiieiii e e e e e e e e e e e e e e e et e e et e e e eaneeeen 2191
52.46. pg_shdepend ColUMNScc.uiiiiiiiiiiii e e e e e 2192
52.47. pg_shdescri pti on ColUMNScoiiuiiiiiiiiii e e 2193
52.48. pg_shsecl abel Columnscccoiiiiiiiiii e 2194
52.49. pg st ati StiC COUMNSccoviiiiiiii e e 2194
52.50. pg_statistic_ext ColUMNScooeiiiiiiiiiiii e e e e 2195
5251. pg_statistic_ext_data Columnsc.coiiiiiiiiiiiiiiii e 2196
52.52. pg_subscri ption ColUMNSoiiiiiiiii e e 2197
52.53. pg_subscription_rel ColumNSc.cccoiiiiiiiiiiiiiii e 2197
52.54. pg_tabl espace COlUMNScciuiiiiiiieii e e e e e e aens 2198
52.55. pg_transf or MCOIUMNScoouiiiiiii e 2198
52.56. PG _tri gger COIUMNScouuiiiii e e e e e e e e e e e e eaes 2199
52.57.pg ts _config COlUMNSccouniiiiiiii e 2200
52.58. pg_ts_confi g _mBp ColUMNScociiiiiiiiiiii e e 2201
52.59. PG tS_di Ct COIUMNSuiiiiiiii e e e e e e e e e 2201
52.60. pg_ts_parser COIUMNScouiiiiiiiiiii e e e e e aeas 2202
52.61. pg ts tenpl at @ ColUMNSccccuiiiiiiiiii e 2202

XXVili

PostgreSQL 14.1 Documentation

52.62. PG _tYPE COIUMNS ...uuiiiiiiii e e e e et e e e e eaens 2203
Y S IR] o Tox- Y A =To [o] YA ©C0 o == N 2205
52.64. pg_user _mappi NG COlUMNSoiiiiii e e e 2206
52.65. SYSEIM VIBWS ...ttt e ettt e e ettt e e e et r e e e et neeeeatnneaaees 2206
52.66. pg_avai | abl e_ext ensi ons ColUMNSccoovviiiiiiiiiiiiiecie e 2207
52.67. pg_avai | abl e_extensi on_versi ons ColumnScccoeevvieeiiiieiiineeenneennn. 2208
52.68. pg_backend_nmenpry_contexts ColumNSccoeevvieiiiiieiiiieeiin e 2208
52.69. pg_CONfi g COIUMNSouiiiiiii e e e e e e e e 2209
52.70. PG _CUIrSOI'S COIUMNS ...ttt e e e e e e e e e e et e e e e eaen 2210
52.71. pg fil e _settings ColUMNSccoooeuiiiiiiiiii e e 2210
YA ¢ o To T o [@Ko 10 o I @] 1N 1 410 TP 2211
52.73. pg_hba file rul es ColumnS........cccocouiiiiiiiiiii i 2211
52.74. pg_1 NAEXES COIUMNSiiiiiiiii i e e e e e e e e e eaes 2212
52.75. PG | OCKS COlUMNS ... couuiiiiiiiii e e e e e e e e e e e e et e e aa e eeas 2213
52.76. pg_MBAt Vi WS COIUMNScutiiiii e e e e e e e e e e e e et e e e e aa e eeen 2215
52.77. PG_POI i Ci €S COlUMNScuuiiiiiiiii e e e e e e e e e e e e e e e e een 2216
52.78. pg_prepared_stat ement's ColUMNSc.cooieiiiiiiiiiiiiii e 2216
52.79. pg_prepared _Xact s COlUMNSc.oiiiiiiiiiiiieii e e e 2217
52.80. pg_publication_tabl es ColumMNSc.cccoieiiiiiiiii i 2217
52.81l.pg_replication_origin_status ColUmNS.........cccoeeviiiiiiiieeiiiieiiineeineeeenn, 2218
52.82.pg_replication_slots ColUMNSc.ooviiiiiiiiiieiii e e e 2218
52.83. PG 0l €S COlUMNS .. .couuiiiiiiii e e e e e e e e e e et e e e e e e eeas 2219
52.84. PG T Ul €S COIUMNS .. .cuuuiiiiieiiii e e e e e e e e e e e e et e et e aa e eeas 2220
52.85. pg_secl abel s COlUMNSiiiiiiiiii e 2221
52.86. pg_SeqUENCES COIUMNScouiiiiiieiii e e e e e e 2221
52.87. pg_SettiNGS COIUMNScuuiiiiiiiii e e e e e e e e e e e eeen 2222
52.88. pg_Shadow COlUMNScuuiiiiiiii e e 2224
52.89. pg_shmem al l ocat i oNs COlUMNSooiiiiiiiiiiciie e 2225
52.90. PG ST At'S COlUMNS .. .cevuiiii e e e e e e e e e et e e e ea e eeas 2225
52.91. pg_stats_ext COlUMNScc.oiiiiiiiiiii e e 2227
52.92. pg_stats_ext _exprs COolUMNSccoeiiiiiiiii i 2228
52.93. pg_tabl €5 COlUMNSccouiiiiiicii e e 2229
52.94. pg_ti mezone_abbrevs ColUMNSc.co.viiiiiiiiiiiccc e 2230
52.95. pg_timezone_Nanmes COlUMNScccuiiiiiiiiiiie e e e e 2230
52.96. PG _USEI COIUMNSuiiiieiii e e e e e e e e e et e e st e et e e e e eens 2230
52.97. pg_user _nmappi NGS COlUMNSoiiii e e 2231
52.98. PG Vi €WS COIUMNS .. .ceuuiiieiiiie e e e e e e e e e e e e et e e et e e et e e st e e aaneeeeas 2232
65.1. BUilt-iN GIST OpErator ClaSSESuuiiiuuieiieiiiiie e et e e e e e e e et e e e e et e eaanaaes 2361
66.1. BUilt-in SP-GIST OpEerator ClaSSESuociuuiiiieeiiieeeiiee et e eiieeeie e ee e e e aaaeannees 2379
67.1. BUilt-iN GIN OpPErator ClaSSESuuiiiiiieiiieiii et e e e e e e e e e e e e e e et eraneen 2392
68.1. Built-in BRIN Operator ClaSSeScivuuiiiiiieiiiieiiiieeiie e e eie e e e e e e e et e e sanaeens 2400
68.2. Function and Support Numbers for Minmax Operator ClasseScoeevvveviiiieiinnennnnn. 2409
68.3. Function and Support Numbers for Inclusion Operator ClasseScccvvevvviveeineennnnnns 2409
68.4. Procedure and Support Numbers for Bloom Operator Classesccevvevvviiveinierinnnns 2410
68.5. Procedure and Support Numbers for minmax-multi Operator Classesccuvveevnnnnns 2411
70.1. CoNteNtS Of PGDATA L..oiitiiieeiit ettt e e e e et e e e et e e e et e e e et neeeenens 2414
O =Tl R Yo | PP 2420
70.3. PageHeaderData LayOULc..uiiiiuiiii e e e e e e e e e e e st e e e eanes 2421
70.4. HeapTupleHeaderData LayOuLooeeuniiiiieiiii e ceee e e e e e e e e e e 2422
A.L POSIOreSOQL Error COUESuuiiiiiiiiieiie e et e e e e e e e e e e e e e e e e e eaes 2452
230 Vo g 11 I = 0 1= <SPS 2463
B.2. Day Of the Week NAMESciiiiii e 2463
B.3. Date/Time Field MOGIfIerS ...coouuniiiiiiiieeeee e e 2463
C.L. SOL KEBY WOIASeitieiiiecii e et e e e e e e e e e et e e et e e e e et e e st e eeanaes 2469
F.1 adm NPacK FUNCHIONS ..o e e e e e aen 2548
F.2. Cube External REPreSentationsSccuuiiiiieiiii e eeee e e e e e e e e e e e e e eaens 2565
[R 0oL @] o= - o] TP 2566
Fod. CUDE FUNCLIONS ... ittt e e et e e e et e e e e et neeeeatnneeeees 2567

XXiX

PostgreSQL 14.1 Documentation

F.5. Cube-Based Earthdistance FUNCLIONSoooviiiiiiiiiiiie e 2603
F.6. Point-Based EarthdiStance OPeratorsc..uiiiiieiiiiiiiieeie e e e e e e e e 2604
L O 1 TSY o T @ o= = o) £ P 2610
F.8. NSt Or @ FUNCHONS ..oiviiieii e 2611
FO. intarray FUNCHONS ..o e e e e e e e e aen 2618
[(ORI oL A= L = | VA @ o= = o) £ 2619
L Y T I 7 = W Y/ o= P 2621
[A =Y o I ¥ o o L PP 2623
[T I B YT @ o= (o) £ 2628
[N I O T W o PP 2629
F.15. pg_buffercache Columnsccoooiiiiiiiiii e 2644
F.16. Supported Algorithms fOr Crypt () oeeeeeeeiieie e 2646
F.17. Iteration Counts fOr CrYPE () covvieiiiiiiiie e e s 2647
F.18. Hash AlQorithm SPEEASiveiii e e 2648
F.19. Summary of Functionality with and without OpenSSLcccoovviieiiiiicciie e, 2655
F.20. pgr oW 0cks OULPUL COIUMNScovuniiiiiciie e e e e e eaens 2659
F.21. pg stat_statenments ColUMNScoooiiiiiiiiiiii e e 2661
F.22. pg_stat_statements_ info ColumNS.........cccooiuiiiiiiiiiii e 2664
F.23. pgstatt upl @ OUutpUt COIUMNSc.uuiiiiieiii e e e e ea e eees 2668
F.24. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiiieiie e e e 2671
F.25. PGt FgMEUNCHONS .. couniiii e e e e e e e e e e e e e e eaaes 2674
F.26. PO_t I OMOPEIEIOISvuiiiie et aaas 2675
F.27. seg External REPreSentationsScccuuiiiiiieiiii e e e e e e 2690
F.28. Examples of Valid SEQ INPULo.uuiiiiiiii e e e e 2690
F.29. SO GiST OPErAONS . .evueiineeiteeeii ettt et e e et e e e et e e et e e et e e st r e et e ean e eateeenneaeens 2691
(GO~ oo o | I 19 Tox o) 2698
F.31. t abl €f UNC FUNCHONSccouiiiiiii e 2703
F.32. CONNECE DY Palrameterscouuiiiiiiii e e e 2710
F.33. FUNCtionS fOr UUID GENEIAONccvvviieiiiiiieeeiiiie et s e e et e e eeii e e eeai e e eeni e eees 2718
F.34. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeiii e e eeiee et ee e e eaneeeaen 2719
F.35. XM 2 FUNCHONS ...t e et e e et e e et 2720
F.36. xpat h_t abl @ Parameterscccviiiiiiiiii e 2721
H.1. Externally Maintained Client INterfacescc.oviviiiiiiiiiii e 2732
H.2. Externally Maintained Procedural LangUagescoevuuieiiieiiiiieiieec e 2733
K.1. PoStgreSQL Limitalionscceuueiriieiiiieeiii e e e e e e e e e e e e e et e e s e e et eeaaeeanns 2741

XXX

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 150
8.2. USING the DOOI €8N TYPE ... 163
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 171
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin, 314
10.1. Square Root Operator TYpe RESOIULIONoveveiieiiiiii e 404
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 405
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 405
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 406
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 406
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 409
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 409
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 410
10.9. char act er Storage TYPE CONVEISIONcceeuuneiiiiieeieiieeeeeti e eeetis e e eeti e e eeriaeeees 411
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 412
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 412
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 413
10.13. Type Resolution in @ Nested UNiONcc.uuuieiiiiiieiiiiiieeeeei e 413
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 422
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 422
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 423
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccccveveeviiinneeiennnnn. 424
21.1. Example pg_hba. conf ENtriEsiiiiiiiiiii e 663
21.2. An Example pg_i dent . conf File ... 666
34.1. libpg EXample Program Luuoeiiiieieei et 922
34.2. 1ibpg EXample Program 2oiiiiiieeei e 925
34.3. libpg EXample Program 3c.oue e 928
35.1. Large Objects with libpg Example Programooceeuviiiiiiiiineeeieeei e 939
36.1. Example SQLDA PrOQraMcieeieieeeiiie et ettt e e et e e et eeaaa s 992
36.2. ECPG Program Accessing Large ObJECESccuvuiiiiiiieeiiiii et 1006
42.1. Manua Installation of PLIPEITcoiiiiiiiiii e 1244
43.1. Quoting Vaues in DYNamiC QUENTESuuiiiieiiiaeieiiie et eeei e 1261
43.2. Exceptions With UPDATE/I NSERToiiiiiiiieiiii e ettt 1276
43.3. A PL/PgSQL Trigger FUNCHIONuniiiiiieecie et 1290
43.4. A PL/pgSQL Trigger Function for AUitingcoeeveieiiminieiiiiieeee e 1291
43.5. A PL/pgSQL View Trigger Function for AUditingccoovieiiiiiiniiiiicceieeceeenn 1292
43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccooeeeueeennn. 1293
43.7. Auditing with Transition Tablesccoeuiiiii e 1295
43.8. A PL/pgSQL Event Trigger FUNCLIONooiiiiiieiiiii et 1297
43.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuuiiiiiiiieiiiiiieeciieeeeeiiee 1305
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1306
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[I 0TSO U UUT PP 1307
43.12. Porting a Procedure from PL/SQL to PL/PGSQLuvviiiiiiiiiiiiie e 1309
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2605

XXXIi

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitps://dsf .berkel ey.edu/postgres.htm

XXXii

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades
of development behind it, PostgreSQL is now the most advanced open-source database available
anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rational e and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POST GRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finally, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project®,

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgresob release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXl

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXIV

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXV

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXVi

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 14.1 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for
your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

9 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXVil

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the wuser maling lists, such as
<pgsql -sqgl @i sts. postgresql.org> or
<pgsql -general @i sts. postgresqgl . org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they
are unlikely to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . or g>. Thislist is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation
mailing list <pgsql - docs@ i st s. post gresqgl . or g>. Please be specific about what part of
the documentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i sts. postgresqgl .org>, so we (and you) can work on porting
PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXViii

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming
experienceisrequired. Thispart is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 14
2.9, DEIBHIONSviieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONScviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 22
G I o o Tox 11 Lo o T 23

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator aready installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it
starts (“forks’) a new process for each connection. From that point on, the client and the new server
process communicate without intervention by the original post gr es process. Thus, the supervisor
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact
it. Again, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 22 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assighed a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR perm ssion
deni ed to create database

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part V.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (14.1)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

PostgreSQ. 14.1 on x86_64-pc-I|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not provide thosefiles.) To use those
files, first change to that directory and run make:

$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psqgl with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -
") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, smal | i nt, real , doubl e precision,
char (N),varchar(N),date,time,tinestanp, andi nt erval , aswell as other types of
genera utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

);
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair asinput, as shown here:

I NSERT INTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The SQL Language

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;

| NSERT | NTO weat her (date, city, tenmp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could aso have used COPY to load large amounts of data from flat-text files. Thisis usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
I NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

Toretrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), atable list (the
part that lists the tables from which to retrieve the data), and an optiona qualification (the part that
specifies any restrictions). For example, to retrieve al the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “al columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenp_hi | prcp | dat e
--------------- T T e T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
VWHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T I O
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

10

The SQL Language

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent resultsby using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed onetable at atime. Queries can access multipletablesat once,
or access the same table in such away that multiple rows of the table are being processed at the same
time. Queriesthat access multipletables (or multipleinstances of the sametable) at onetimearecalled
join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needsto comparetheci t y column of each row of the
weat her tablewith the nane column of al rowsintheci ti es table, and select the pairs of rows
where these values match.2 This would be accomplished by the following query:

SELECT * FROM weather JO N cities ON city = nane;

city | temp_lo | tenp_hi | prcp | dat e nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

» Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

 There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tables are concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, temp_hi, prcp, date, |ocation
FROM weat her JON cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of
rows, but thisisinvisible to the user.

11

The SQL Language

SELECT weat her.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nane;

It iswidely considered good style to qualify al column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can aso be written in this form:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-dates the JO N/ON syntax, which was introduced in SQL-92. The tables are simply
listed in the FROMclause, and the comparison expression is added to the WHERE clause. The results
fromthisolder implicit syntax and the newer explicit JO NONsyntax areidentical. But for areader of
the query, the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced
by its own key word whereas previously the condition was mixed into the WHERE clause together
with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city =
cities. nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T T L e
o e R
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the | eft table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join a table against itself. Thisis called a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her rowtothet enp_| o and
t enp_hi columns of all other weat her rows. We can do this with the following query:

12

The SQL Language

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wi JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | lTow | high | city | low | high
--------------- e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, .g.:

SELECT *
FROM weat her w JON cities ¢ ONw.city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Likemost other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(tenp_| o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rowswill beincluded in the aggregate calculation;
so obvioudly it hasto be evaluated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

13

The SQL Language

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:;

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ [S,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

city | max
_________ [N
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_| o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this. WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause
that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently
at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping
and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

Y ou can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

14

The SQL Language

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her ;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T L L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her ;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(nane),
tenmp_lo int,

16

Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

17

Advanced Features

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

18

Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

19

Advanced Features

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enmpno | salary | rank
----------- T e Y
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2 | 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e oo -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken from thefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden el sewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and
the SELECT reference page.

21

Advanced Features

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables. A tableci ti es and atable capi t al s. Naturaly, capitals are aso cities,

S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this:

CREATE TABLE capitals (

name t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, elevation FROM non_capitals;

Thisworks OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis;

CREATE TABLE cities (

nane t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERITS (cities);

Inthiscase, arow of capi t al s inheritsall columns(nane, popul ati on,andel evat i on)from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its
state abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located

at an elevation over 500 feet:

SELECT nane, el evation
FROM citi es
VWHERE el evati on > 500;

which returns;

22

Advanced Features

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated

at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tablesbelow ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to

more resources.

2 https://www.postgresgl.org

23

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 32
A1, LeXiCal SIUCTUME ...ttt ettt e e 32
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 32
.02, CONSLANESeeree ettt ettt 34
40,3, OPEIELOISeieeeeei ettt ettt et 38
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 39
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 39
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 40

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 41
4.2.1. ColUMN REFEIEINCEScovviieiiii e 41
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 41
4.2.3. SUDSCIIPES ettt ettt e 42
424, Field SEIECHON ...t 42
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 43
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 43
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 44
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 46
4.2.9. TYPR CaASLS ..cvtiiiieeet et 48
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 49
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 50
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 50
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 52
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 53

4.3, CalliNg FUNCLIONS ...ttt e e e 54
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 55
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 55
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 56

5. Dat@ DEFINITION ..ottt et e aaas 57
5.1 TADIE BASICS ..ttt ettt 57
5.2, DEFAUIT VAIUBS ...t 58
5.3. Generated COIUMNScoouiiieiiii e e 59
B4, CONSITAINTS ..ttt ettt ettt e e e et e e e et e e e et e e e e ena s 60
5.4.1. Check CONSITAINTScevuieeiiiiieeeeii ettt ettt e et eeeere e eees 60
5.4.2. NO-NUII CONSIFAINES ...cceveiieieii et 62
5.4.3. UNIQUE CONSITAINESevviieiiiiie ettt 63
544, PrIMAY KEYS ...ttt 64
545, FOrEigN KEYS ...t 65
5.4.6. EXCIUSION CONSITAINTScevviiiiiiiee ettt ettt e e e 68

5.5, SYStEM COIUMNS ...t ettt e e et e e et e eeees 68
5.6. MOAIfTYiNG TaDIES ...t e 69
5.6.1. AddiNg @ COIUMNoouuiiiiiii e 69
5.6.2. ReEMOVING @ COIUMNoouiiiiiii et 70
5.6.3. AddiNG @ CONSIFAINTccevviiiiiiiie e 70
5.6.4. ReMOVING @ CONSIIAINTccvvviieiiiiie ettt 71
5.6.5. Changing a Column's Default Valueccoouviiieiiiiiiiciiii e 71
5.6.6. Changing a Column'S Data TYPEc.uuuieiiiiiieiiiie e 71
5.6.7. Renaming & COIUMINcoouuiiiiiiii e 72
5.6.8. ReNaMiNg @ TaDI€coovuiiiiiiii e 72

BT PrIVIIEOES ..o e 72
5.8. ROW SeCurity POIICIESuiiiiii e 76
5.9, SCREMAS ... 82
5.9.1. Creating & SCNEMAceuuiiiiiiii e 83
5.9.2. The PUBIIC SChemMacoooiiiiii e 84
5.9.3. The Schema Search Pathoooooiiiiiiiii e 84
5.9.4. Schemas and PrivilEgESooiiiiiiiiii e 85

25

The SQL Language

5.9.5. The System Catalog SChEMAcccviiiiiiiiiii e 86
5.9.6. USAQE PaleINSviiiiiii e 86
5.9.7. POMabIITY ..vvueiiiiii i 87
5.10. INNEITANCE ... eeeiiii e e e e et e e et e e et e e e e e e aae 87
T L0 T O Y= (PP 90

5.11. Table Partitioningceeuuiiiiieiii e e e e e e 90
D111 OVEIVIEIW oottt ettt e e e et e e e et e e e e et s e e e eebe e e e aeatanaeeees 90
5.11.2. Declarative Partitioningcccouuiiiiiiiiiiiciiie e 91
5.11.3. Partitioning Using INNEritanCeccooeeeiiiiiiiieiie e, 96
5.11.4. Partition Pruningooiuuiiiii e e e e e e e e e e e et e e e e e e een 101
5.11.5. Partitioning and Constraint EXCIUSIONooevviiiiiiiieiiecceec e 102
5.11.6. Best Practices for Declarative Partitioningc.ccooeevvieeiiiciiinecinneen, 103

I o (= o | B T - L 104
5.13. Other Database OBJECISu.iviniciii i e 104
5.14. Dependency TraCKingc..ciuuieiiieeiiee i e e e e e e e e e e e et e e e e e e e et e e eaneen 104
6. Data ManipUIAioNoiiiiiiiii e e e e e e e e e e e e e e e e e e ee 107
L 1S g To [D - - Y 107
S UL o = (] o I T - L 108
SRCR D= I (] oo - - P 109
6.4. Returning Data from Modified ROWSccoviiiiiiiiiicie e 109
2O 0 = 1= N 111
7.0 OVEIVIBIW ..ottt ettt e ettt e e e et n e e e et e e e e et n e e e aa e e eaaan s 111
7.2. TahIE EXPIrESSIONSivviiiiie e e e e e e e e e e e e e e e e et e e e e e e aens 111
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 112
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 120
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvviieeiiiieeeeiiie e ee et e e 121
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 124
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 127

SRS = < ox B I £ PR 127
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 127
7.3.2. COlUMN LADEIS ..oeviieiiii et 128
7.3.3. DESTINCT it e e e et eeeaanns 128

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)cooviviiieeiiiiineeveiiieeeeeiinnnn 129
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiii i e e e e e e 130
T76. LIM T @nNd OFFSET ..ovniiiiiiiiieii et e e e eeeaa e eees 131
TV A/ O S R I £ PSP 131
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 132
7.8.1L SELECT INW TH .ot 133
7.8.2. RECUISIVE QUENIES ...uuiiiiciii et et e e e e e e e e e e e e eeen 133
7.8.3. Common Table Expression Materiaizationccooeeeveiiiniiiiniiiieennnnn, 138
7.8.4. Data-Modifying Statements in W THcoooiiiiiii i, 139

S T D= = T Y/ 0 P 142
300 O N0 0= o Y o= 143
e I 1 011 o = g Y/ o1 PRSP 144
8.1.2. Arbitrary Precision NUMbBErSc.ooiiiiiiiiii e 144
8.1.3. Floating-POINt TYPES ..cvvuiiiii i e 146

8. LA SEIA TYPES ettt 147

e I o g1 = 1Y o< T PPN 148
G I O == ot (= G Y/ o= P 149
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 151
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 152
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 152

R = (=l T2 1T Y/ o= P 153
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 154
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 158
8.5.3. TIME ZONES ... ittt e e e e e e aaens 159
8.5.4. Interval INPULcovtiiii e e 160
8.5.5. INTEIVAl OULPULuveiiiiiieeeii e et e e e 162

26

The SQL Language

S = ToTo = Y/ o= P 163
A 1000 = =0 B Y/ o= 164
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiiieii e 164
A @ (o[41 o PN 164
B.7.3. TYPE SAFELY eeeveieeieii ettt 165
8.7.4. Implementation DELalSveiiiiiiii e 165
R CTc o0 0= (o Y o1 166
B.8.L. POINES ...ttt 166
882, LINES ittt 166
8.8.3. LiNE SEgMENLSceviiiiii i e 167
8.8, BOXES ...ttt ettt ettt 167
B.8.5. PalNS ...t 167
8.8.6. POIYQONS .. .oviiii e 167
B.8.7. CICIES ittt 168
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiieei et e e e e e e e e e e e e e e e eaans 168
S I R T 1= PP 168
S o3 i | PP 169
8.9.3. 1 NEL VS Cl Al et 169
S I 1= U= o o | PP PP 169
8.9.5. MACAUAN 8 .ouiiiiiiii i 170
8.10. Bit SIHNG TYPES . iittiiii et e e e e e e e et e e et e e e ean s 170
8.11. TeXt SEArCh TYPES evniii i 171
00 O A= VT o3 A o TP 171
S I 2 A=Y o [6T 173
ST 2 U1 1 T Y/ o U PTRSPN 174
ST Q1 I 1Y/ o= PP 174
8.13.1. Creating XML ValUESoiiiiiieiiiii e 175
8.13.2. Encoding Handlingcevuiiiiiiiiiii e 176
8.13.3. AcCeSSING XML ValUESciveiiiiieie e 176
ST N S O NI Y/ o=~ 177
8.14.1. JSON Input and OULPUE SYNEAXeeveeiiiieiiii e e e e 178
8.14.2. Designing JSON DOCUMENTScvvueeineiiiieiiee e e eeine e e et ee e e eaaneeaens 179
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 179
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 181
8.14.5. | SOND SUDSCIIPLING ..vuviieeii e e e e e aens 184
8.14.6. TraNSfOMIS .. ettt e 185
8.14.7. JSONPAEN TYPE . eveicii e 185
8L, AT A S ettt ittt 187
8.15.1. Declaration Of Array TYPES ...ceuuiiiiiieiiiieeie e e e e e e e e e e e 187
8.15.2. Array ValUB INPULcovviiii e 188
8.15.3. ACCESSING ATTAYS .vueivneiiieeeiiee et e et e e et e e e e e st e e e e e e et e e st e eeanaeeaes 189
8.15.4. MOAITYING ATTAYS ...uieiieii et e e e e e e e e e aaeees 191
8.15.5. SEarChING IN ATTAYS «.ouuiiiii e e e e e eens 194
8.15.6. Array Input and OULPUL SYNEAXcevvneeeinieiiieeeiiieciieee e e e eaaeeeens 195
8.16. COMPOSITE TYPES .vvueeineiiiietitie et e e et e e et e ettt e et e e et e e et e e st e et eeateesaneeetnees 196
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvuiiiieiii e e e e e e e e 196
8.16.2. Constructing Composite ValUEScceuviiviiiieiiieiiiiieeie e 197
8.16.3. AccesSiNg COMPOSIEE TYPES ...vvvuiiiiieiiieeiie e e e e e e et e e e e e eanas 198
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiiieiiiieeeiee e e e e e e e 199
8.16.5. Using Composite TYPeS iN QUENEScouuuveiineeiiiieeiii e e e e e e e 199
8.16.6. Composite Type Input and Output SYNtaXxcceevvvveeinieiiieeiiieeiieennn. 202
8.7, RANGE TYPES .ottt 202
8.17.1. Built-in Range and MUItirange TYPES «....uvvvreiiiieriiieeeie e e e eaenns 203
8.17.2. EXAMPIES ...t 203
8.17.3. Inclusive and EXCIUSIVE BOUNGSvveiiiiiiieiiiiineeciiie e 204
8.17.4. Infinite (Unbounded) RaNGESocivviiiiiiiiiii e 204
8.17.5. Range INPUL/OULPULcovuiiieeii e e e e e e e e e e 204
8.17.6. Constructing Ranges and MUILirangesSccoevviveiiiiieiiiecci e, 205

27

The SQL Language

8.17.7. DISCrete RANGE TYPES .. vvvneiii i et et e e e e e e e e et e e e eaaas 206
8.17.8. Defining New RaNGE TYPEScvvviiiii et e e e 206
8.17.9. INAEXING ...vuiii i 207
8.17.10. COonStraintS 0N RANGESu.ivvueiiieiiieeiee e e e e e e e e e eaaeee 208

TR0 T I T4 F= T T Y 0 1= 209
8.19. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e eaaas 209
<320 o To TN =Y 2 N 1Y/ o= 212
ST T e =0 (o 0l 1N o1 212
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 215
1o I oo Tor= I @ o= = (o) £ S 215
9.2. Comparison FUNCtions and OPEratorSeeevueeeiieiiieeeiieeeeiie e e e e e e e eeaneeaes 216
9.3. Mathematical Functions and OPEratorSevvuiieiiiieeiii e e e e 220
9.4. String FUNCLioNS and OPEIAtOrSu.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 227
LS T o T 112 PP PTRPPPRN 234

9.5. Binary String FUnctions and OPEratorsSccuuveiuuieiiineeiiieieiieeeiieeeieeraineesanens 236
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeii e e e e e e e e e e 240
A = (= 1 T\ (11 o P 242
S O I PP 243
9.7.2. SIM LAR TORegular EXPreSSIONScvvvuieiiieeeiiieeiiieeeiieesineesineesaneens 244
9.7.3. POSIX ReguIar EXPreSSIONSuuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 245

9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 259
9.9. Date/Time FUNCtions and OPEratorSuveiuuieiiiieiiiiee e e ee e e e e eaeens 267
9.9.1. EXTRACT, dat € _Part ..oiciiiiiiiiieiii e e e aens 274
0.9.2. dAt € LT UNC .iiiieiii e e e 278
0.9.3. dat @ DI N oo 279
9.9.4. AT TIME ZONE ...ttt ettt 280
9.9.5. CUITENt DA/ TIME ...evvnieiiiii e e et e eana e 281
9.9.6. Delaying EXECULIONiivuieiiie e e e e e e e e e e e e e eees 282

9.10. ENUM SUPPOIt FUNCLIONScvticiiieci e e e e e e e e e e e aans 283
9.11. Geometric FUNCtioNS and OPEratOrSevvuneiiiieiieeeiiee e e e e e eee e eaneeaens 284
9.12. Network Address Functions and OPEratorsScc.uveevuieiviieeiiieeeiieeeeeeaieeaenns 291
9.13. Text Search FUNCioNS anNd OPEratOrSueevvnieiiiieiiiieeie e eeeee e e e e e e 294
9.14. UUID FUNCLIONSieeitiiieeeiii e ettt e et s e e et e e e e aan e e e et e 300
9.15. XML FUNCLIONS ... eiiiiiieee et e e et e e et s e e et e e e e et 300
9.15.1. Producing XML CONENLcccuuiiiiieiieeiii e e e e e e e e e e e eaen 301
9.15.2. XML PrediCatesuuieiiiiieeeii et e et e e e e e 305
9.15.3. ProCesSiNg XML ...uuuiiiiiiiiiiiii et 307
9.15.4. Mapping TableSto XMLcvvniiiiiicii e 311

9.16. JSON FUNCLiONS aNd OPEraIOrScvvvneiiieeeieeeieeeieeeaee et e e e e et ee e et e e e eeens 315
9.16.1. Processing and Creating JSON Dafacc.vevevneiiiiieiiiieeiieeeneeeiee e 315
9.16.2. The SQL/JSON Path Languagec.uuveeiiiinieeiiiiiieeeeiineeeeiine e e 325

9.17. Sequence Manipulation FUNCHIONSooviiiiiiiiicii e 333
9.18. Conditional EXPrESSIONSuuiiiuiieiiieiii e e e e e e e e e e e e e e e e e aens 334
O.18. 1. CASE ...ttt 334
9.18.2. COALESCEciiitiiieeiii ettt ettt e e e et e et e e aeaen s 336

0 ST U I P 336
9.18.4. GREATEST and LEASTiiiiiiiiieiii ettt e e e 337

9.19. Array FUNCtioNS and OPEIralOrSccuuieiiuieiiieiiii e e e e e e e e e e e e eaanes 337
9.20. Range/Multirange Functions and OPEratorsSc..uvevvuieiiineeiieesiieeeieeeaieeeaenns 341
9.21. AQQregate FUNCLIONScoun i e e e e e e e eaes 346
9.22. WINAOW FUNCHIONSvuieiiiiii e ettt e et e e e et e e e eai e eeees 353
9.23. SUDQUENY EXPrESSIONS ...euueiiiiiiiiieeiieeet e e e e e e e e e et e s e e et e e et e e st e e e eeannas 354
0.23. L. EXI ST ittt 354
0,232, I N ettt 355
9.23.3. NOT | N Lot e e e 355
9.23.4. ANY/SOMEouiiiiiiiii ettt ettt ettt e et e e et e et e e e e e e eaean 356
0,235, ALL ottt 357
9.23.6. SINGIE-ROW COMPAITSONcovvieiiiieeii e e e e e e e e e e e e eees 357

28

The SQL Language

9.24. Row and Array COMPAISONScvuuieiiieriteeeiiieeeiieeeie e st re st e e e eetreeanaeeennns 357
.24, 1. I N 1ot 357
9.24.2. NOT | N Lottt e e e 358
9.24.3. ANY/SONE (BITAY) +oeevvvneteetinieteeiiieeeetn e e et e e et s e e eain e e e erin e e era s 358
9.24.4. ALL (BITAY) +evvtnieeeiiiiee et e e ettt s e e ettt e et s e e et e e e et a e e e et e e e e eaaaaaae 359
9.24.5. Row Constructor COMPAariSONeeeuueeriiieriiieriiieeeieerieesieeeaneesnnnns 359
9.24.6. Composite Type COMPAiSONcevuneiiiieeiieeeieeeiie e e e e e eaneeaeans 360

9.25. Set REtUrNING FUNCHIONSo.viiiieci e e e e e e eens 360

9.26. System Information Functions and OPEratorsScc.uvevvveiiinieiiieeeiiieriineeaneens 363

9.27. System Administration FUNCHIONSccuuiiiiiiiiiiie e e 380
9.27.1. Configuration SettingS FUNCLIONSccviviiiiieiiiccie e, 381
9.27.2. Server SIgnaling FUNCLIONSoivuiieiiii e 381
9.27.3. Backup Control FUNCHIONSuiiiiieiii e e 383
9.27.4. Recovery Control FUNCLONSocvvveiiiiicii e e 385
9.27.5. Snapshot Synchronization FUNCLIONSoeeviiieiiiieiiieece e, 387
9.27.6. Replication Management FUNCLIONScccvieviiiiiiiie e 387
9.27.7. Database Object Management FUNCIONScccoeevvieviiieeiiiecci e, 390
9.27.8. Index Mantenance FUNCLIONSoveviuiiiieiiiinee e eeii e eeeenns 393
9.27.9. Generic File ACCESS FUNCHIONSuiiiiiiieiiii e 393
9.27.10. Advisory LOCK FUNCLIONScccuiiiieiii e 395

9.28. Trigger FUNCLIONSuuiii it cii e e e e e e e e e e et e e et e e e e e e e eenas 397

9.29. Event Trigger FUNCLIONScouuiiiii e e e e e e eaa e 398
9.29.1. Capturing Changes at Command Endcocooiiiiiiiiiiniiiieceeeees 398
9.29.2. Processing Objects Dropped by a DDL Commandccocevvvviiineeninnnns 398
9.29.3. Handling a Table ReWrite EVENtccoveiiieiiii e, 400

9.30. Statistics INfOrmMation FUNCLIONSviiiiiiieeiii e e 400
9.30.1. INSPECEiNg MCV LiStS ..uuiiviiiiiicii i e e 400

O Y/ oL @0 517/ = T o P 402

FO. 1. OVEIVIBIW Leueieiiiie ettt e ettt e e et e e e e et e e e e et e e e eett e eeeetaaeaeees 402

O @ o< - o] = TR 403

L0 R ¢ o] L PRSP 407

O R NI (o] = o = 411

10.5. UNI ON, CASE, and Related CONSITUCESuuiiiiiiiieiiiiie e 412

10.6. SELECT OUPUL COIUMNSvueeiiiiiee it ee et e et e et e et e e et e e eeaeaaeeees 413

T o (== S UPPP 415

0 O oo (0 1o USSP 415

2 1 o L= G Y/ o === 416
O I = = PP 416
L1.2.2. HASN oo 416
2 T €11 PSPPI 416
112, SP-GIST ittt aaaan 417
L1125, GIN i e 417
2 G T =1 PSPPSR 417

11.3. MUItICOIUMN INAEXESeeeveieeeeii e e e e e eaeen 418

11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiiii e e e e e et e e 419

11.5. Combining MUItiple INAEXEScviiiii e 420

12.6. UNIQUE INAEXESuiiieeii et e e e e e e e e e e e eaens 420

11.7. INAEXES ON EXPrESSIONSuiviiieiiieeei e e e e e e e e e e e e et e e et e e e e e e eens 421

11.8. Partial INOEXES .. eevvviieiieii et e et e e e e e e aeens 421

11.9. Index-Only Scans and Covering INAEXEScc.uvvvviiiiiiiieiii e 424

11.10. Operator Classes and Operator FamilieSccooevviieiiiiiiiiii e, 427

11.11. Indexes and COlEtONSuieiiiiiiiee e 428

11.12. EXxamining INAeX USAQEuucvvinieiiiiiii et e e e e e e e e e aaes 429

12, FUIL TEXE SEAICH .ot 431

25 O 1 oo (0 o USSP 431
12.1.1. What 1S @ DOCUMENE? ..euueiiiii et e e 432
12.1.2. Basic Text MatChingoovviiiiiii e 432
12.1.3. CONfIQUIBLIONS .. .vuuiiiieeii e e e e e e e e e e e e e et e et e e e eaens 434

29

The SQL Language

12.2. TAhleS @A INOEXES .. .vevveieieiii et e e et 435
12.2.1. Searching @ Table ...covvnii e 435
12.2.2. Creating INAEXES ... cvveeiii et e e e e e e e aes 436

12.3. Controlling TEXt SEarChccovvniiii e 437
12.3.1. ParSiNg DOCUMENESuiiiiieiii e e e e e e e e e e e e e e e e e e eens 437
12.3.2. ParSiNG QUETTES .. .cuuiiiiiciiie e ettt e e e e e e e e e e e e 438
12.3.3. Ranking Search RESUILSoiiiiiiice e 441
12.3.4. Highlighting RESUILSccvviiiiicei e e 443

12,4, AddItioNal FEAIUMESvuuiieii e e e 444
12.4.1. Manipulating DOCUMENESuiiiiiieiiecii e e e e e e e e 444
12.4.2. Manipulating QUENIEScouueiiiieei e e e e e e e e 445
12.4.3. Triggers for Automatic Updatesceevuieiiiieiiiieiiii e eie e 448
12.4.4. Gathering DocumeNt StatiStiCS . .uvuvivneiiieiiii e e e 449

T T = P PPPURN 450

T B T Lo g = = PP 451
12.6.1. SIOP WOIAS ...ccvnieiiieii e et e e e e e e e e et e e e e e aanaees 452
12.6.2. SIMPIE DICHIONAIY ..vuuiiiiieii e e e e e e e e 453
12.6.3. SYNONYM DICHIONANYvuiiiiieeeiieiie e e e e e e e e e e e e eaaas 454
12.6.4. TheSaUrus DiCtONANYcccuuiiiiiiiiii e e e e e s 456
12.6.5. ISPEI DICHONAIY ...cvvniiiiiicie e e e e e 458
12.6.6. SNOWDaEll DICHIONAIYcvvveiiiieeii e e e aens 460

12.7. Configuration EXaMPIEcouuniiii e 461

12.8. Testing and Debugging Text Searchccocoviiiiiciii e, 462
12.8.1. Configuration TESLNGcvvueieiieiiii e e e e e e e eanas 462
12.8.2. ParSer TESHNG «.ovvvvvvveineieeeeeteieiiias s e e e eeeeesttis s e s e e e eeaaaatn s e e eeeeeeannennnns 465
TG B Tox i [0) 4 = VA = (Vo [P 466

12.9. GIN and GiST INAEX TYPES ..vvvvvvrniieeeeieiiiiiiiieeeeereeeraiiaaseaeeeeeassenn e aeeaeeannnns 467

2250 O T o1 o [T o] oo o 468

2 T T 1] = o) PSP 471

13. ConCUrENCY CONLION ...uuiii it e e e e e e e e et e et e et e e st e e e e eaaeeeen 472

30 O 1 oo (0 1o TSP 472

13.2. TransaCtion I1SOIAHONccuvuiieiiii e e e 472
13.2.1. Read Committed ISOlation LEVEluovviiiiiiiiiiiiiiiecce e 473
13.2.2. Repeatable Read 1S0lation LEVElccovviiiiiiiiiii e, 475
13.2.3. Serializable [S0lation LEVE!cooveviiiiiiiiieeee e 476

T (ol [T o Vo PN 478
13.3.1. TaADIE-LEVE LOCKS ..cevvueiiiiiie ettt 478
13.3.2. ROW-LEVEl LOCKS ..iivviieeiiiii et 480
13.3.3. Page-Level LOCKSciiiiiiii e 481
13.3.4. DEBAIOCKS ...t 481
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e e e eaens 482

13.4. Data Consistency Checks at the Application Levelccocoiiveiiiiiiiieiieeceee, 483
13.4.1. Enforcing Consistency with Serializable Transactionsccccceuvveeee. 484
13.4.2. Enforcing Consistency with Explicit Blocking LOckScccocvvvevinnnnnn. 484

ST O Y= 485

13.6. LOCKiNg and INAEXESu.evviiiii et e e e e e e e 485

I (o0 7= o= T T 487

14.2. USING EXPLAIL N Looiiiiiiieii it e e et e e e e e e e e et a e e e e e e aeennnees 487
I T (o Y I AV 27 T o 487
14.2.2. EXPLAI N ANALYZEooviiiiiie et e et e e 493
R I O = £ 498

14.2. Statistics Used by the Plannerooiiiiiiiii e, 499
14.2.1. SINgle-Column StaiStiCS . .cvvueeriiiii e 499
14.2.2. EXtended SEatiStCS ..vvvvvvrrnnieeeereieiiiiiisseeeeeeeeiiie e s s e e eeeeaeatin e e e eeeeeannes 501

14.3. Controlling the Planner with Explicit JO N ClaUSEScccuveiviiiiiiieciiiicciieeeiees 504

14.4. Populating @ Databaseoevueieiiieiie e 506
14.4.1. Disable AULOCOMIMITvuuiiiiiiii e e et e e e e eaenns 506
L4.4.2. USE COPY outiiiiiieeiieeett e et e e et e e e e e e e e et e e e e e e e e e aaa e s e e eaaeeeanees 506

30

The SQL Language

14.4.3. REMOVE INAEXES ...cevvvieeeiiiie ettt 507
14.4.4. Remove Foreign Key CONSITaiNtScccvuvviinieeiiieiiiieeieeeiineeeieeeaneeeens 507
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cciieiiiieiiii e, 507
14.4.6. Increase MAX_Wal _Si Z€ ..iiiviiiiii i 507
14.4.7. Disable WAL Archival and Streaming Replicationc.c.ccovvvinnn. 507
14.4.8. RuN ANALYZE AFtErWardScovvvuvuiiiiieeeeeeiiiiies s e e e e e eeesiiin s e e eeeeaanns 508
14.4.9. Some Notes about Pg_ AUMPvuiiiniiieei e e e e 508

14.5. NON-DUrable SEtlNGSvuveeiiiiieiii e e e e e e e e e aaa s 509
ST = = O TN oSSR 510
15.1. How Parallel QUENY WOTKSoiiiiiiii i 510
15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiee e e e e 511
15.3. Parallel PLanscoovueiiiii i 512
15.3.1. Parallel SCaNSccvvuiiiiiieeeeii it e e e 512
15.3.2. Parallel JOINScvvvviiieieeiiiiiis et e e 512
15.3.3. Parallel AQQregationocvuuiiiiiiiii e 513
15.3.4. Parallel APPENdcovniiiii e 513
15.3.5. Parallel Plan TIPS ..uccuuiiiiieiie e e e e e e 513

15.4. Parallel SafElYoiieeeeieeiiiiie e e 514
15.4.1. Parallel Labeling for Functions and Aggregatesooovvvvevvveviiieeineennnnn. 514

31

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, andan“INSERT” command. But for instance
the UPDATE command always requires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

32

SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never akey word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where a table or column name is expected. The example can be written with
quoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting anidentifier al so makesit case-sensitive, whereas unquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and" f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator & Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or aternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

33

SQL Syntax

U&'d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literaly, writeit twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to
compose characters with code points|larger than U+FFFF, although the availability of the 6-digit form
technically makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can & so be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (*), for
example' This is a string'.Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g., ' Di anne' ' s hor se' . Note that thisis not the same as a
double-quote character (").

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0

"bar';

is equivalent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This dlightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4.1.

34

SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nter pretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A—F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x = 0-9, A-F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. A useful
aternative is to use Unicode escapes or the aternative Unicode escape syntax, explained in
Section 4.1.2.3; then the server will check that the character conversion is possible.

Caution

If the configuration parameter standard conforming_strings is of f, then PostgreSQL
recognizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recognized. As a workaround, you can set this parameter to of f, but it is better to migrate
away from using backslash escapes. If you need to use abackslash escapeto represent aspecial
character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_ warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string ' dat a' could be written as

U&' d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

35

SQL Syntax

U& \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash isdesired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or awhitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to
compose characters with code pointslarger than U+FFFF, although the availability of the 6-digit form
technically makes this unnecessary. (Surrogéte pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne'shorse” using
dollar quoting:

3D anne' s horse$$
$SoneTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\vi\]$99%);
END,;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

36

SQL Syntax

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backsl ashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.qg., B 1001' . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.g., X' 1FF' . Thisnotation isequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must be before or after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants;

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger ifitsvaluefitsintypei nt eger (32hits); otherwiseitispresumedto betypebi gi nt
if itsvalue fitsin type bi gi nt (64 bits); otherwise it is taken to be type nurrer i ¢. Constants that
contain decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific

37

SQL Syntax

data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f I oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ('string' AS type)

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not all type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types, use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generdlization of the
standard: SQL specifies this syntax only for afew data types, but PostgreSQL allowsit for all types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

+-*[<>=~1@DHW& | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#%"& | ?

38

SQL Syntax

4.1.4.

4.1.5.

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

 Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

* Thecolon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

39

SQL Syntax

4.1.6. Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have
the same precedence and arel eft-associative. The precedence and associativity of the operatorsishard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] | eft array element selection
+ - right unary plus, unary minus
n left exponentiation
*| % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined
operators
BETWEEN| NLI KE I LI KE range containment, set membership,
SI'M LAR string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL I'S TRUE,I S FALSE, | S NULL,
I'S DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
R left logical disjunction

Note that the operator precedence rules al so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea® +” operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versionsbefore 9.5 used dlightly different operator precedencerules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher priority;
and NOT BETWEEN and related constructs acted inconsistently, being taken in some cases
as having the precedence of NOT rather than BETWEEN. These rules were changed for better
compliance with the SQL standard and to reduce confusion from inconsistent treatment of
logically equivalent constructs. In most cases, these changes will result in no behavioral
change, or perhapsin “no such operator” failureswhich can beresolved by adding parentheses.
However there are corner cases in which a query might change behavior without any parsing
error being reported.

40

SQL Syntax

4.2. Value Expressions

4.2.1.

4.2.2.

Value expressions are used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin | NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which isatable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal culation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
» A constant or literal value
* A column reference

» A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

A field selection expression
» An operator invocation

A function call

» An aggregate expression

* A window function call

* A typecast

» A collation expression

* A scalar subquery

e Anarray constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col umnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

41

SQL Syntax

4.2.3.

4.2.4.

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (t ext) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing
expr essi on[subscri pt]

or multiple adjacent elements (an “array sice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, thebrackets[] aremeant to appear literally.) Eachsubscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol uml[4]

nyt abl e. two_d_col um[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dnane

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positiona parameter. For example:

nyt abl e. mycol um
$1. sonecol um

42

SQL Syntax

4.2.5.

4.2.6.

(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(composi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

You can ask for al fields of acomposite value by writing . *:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

wheretheoper at or tokenfollowsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schemma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl) andt abl e. col areinterchangeable. This behavior is not

43

SQL Syntax

SQL-standard but is provided in PostgreSQL because it allows use of functions to emulate
“computed fields’. For more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate nane ([expression [, ... 1]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with a schemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or
a window function call. The optional or der _by_cl ause andfil ter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhich f 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by_cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressions are alwaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;
When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROMtabl e;

not this:

SQL Syntax

SELECT string_agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by_cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a
PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order by cl ause isrequired, usually because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typica examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside
WTH N GROUP (...),asshown in thefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order by cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typicaly used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; inthis case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is.

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY inconme) FROM
househol ds;
percentil e _cont

which obtains the 50th percentile, or median, value of thei ncone columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentilefractionto beavaluevarying
across rows.

If FI LTER s specified, then only the input rows for whichthefi | t er _cl ause evauatesto true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

45

SQL Syntax

4.2.8.

10 | 4
(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole isthen an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_name
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST} 1 [, ...1 1

[frane_cl ause]

The optional f r ane_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAN5 | GROUPS } BETWEEN frane_start AND frane_end
[frane_exclusion]

wheref rame_start andf r ame_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of f set FOLLOW NG

46

SQL Syntax

UNBOUNDED FOLLOW NG

andf r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_nare isareferenceto anamed window specification defined in the query's W NDOWcl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnarre is not exactly equivalent to OVER (wnane .. .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY
clause, except that its expressions are aways just expressions and cannot be output-column names or
numbers. Without PARTI TI ON BY, al rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

Thefrane_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROWS or GROUPS mode; in each casg, it runs from thef rane_st art to the
frame_end. If f rame_end isomitted, the end defaultsto CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af ranme_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (a row that the window's ORDER BY clause sorts as equivaent to the
current row), whileaf r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

» In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

 In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that column in the current row and
itsvaluein preceding or following rowsof theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columnsitisani nt erval .

47

SQL Syntax

4.2.9.

For example, if the ordering column is of type dat e or ti nest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset isdtill
required to be non-null and non-negative, though the meaning of “non-negative’ depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r ane_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE
CURRENT ROWexcludes the current row from the frame. EXCLUDE GROUP excludes the current
row and its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row
from the frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the
default behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this setsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without
ORDER BY, this means al rows of the partition are included in the window frame, since all rows
become peers of the current row.

Restrictions are that f r ame_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andframe_end options than the f r ame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for whichthefi | t er _cl ause evauatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.62. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-1ess aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY Yy) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

48

SQL Syntax

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

Itis also possible to specify atype cast using a function-like syntax:

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the
namesi nterval, tinme, andti nest anp can only be used in this fashion if they are double-
quoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe* function-like syntax” is nothing more than adirect invocation of
the underlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE coll ation

wherecol | at i onisapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involvedinthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:
SELECT a, b, ¢ FROMtbhl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

49

SQL Syntax

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 24.2.) Thus, this gives the same result as the previous example:

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember elements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using
thesamerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1, 2,22.7]::integer[];
array

50

SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]1;
array

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to al the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}}.,{{5.6},.{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. Inthisform, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

51

SQL Syntax

{{1,2},{2,4},{3,6},{4,8},{5, 10}}
(1 row

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that buildsarow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON(1,2.5,"'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT RONt.*, 42) FROM t;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RON(t, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

52

SQL Syntax

CREATE TYPE nyrowype AS (f1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROW11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with 1 S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonmef unc() would (probably) not be called at all. The same would be the case if one wrote;

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

53

SQL Syntax

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 38.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, evenif every row inthetablehasx > 0 sothat the EL SE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

SQL Syntax

4.3.1.

4.3.2.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUACE SQ. | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 38 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat _| ower _or_upper('Hello', "Wrld' , true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat | ower _or_upper (' Hello', '"Wrld');
concat _| ower _or _upper

hello world

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

55

SQL Syntax

4.3.3.

hell o world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld' , uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat _| ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat | ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat _| ower _or_upper(' Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, whileupper case is specified
by name. In thisexample, that adds little except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

56

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

57

Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

58

Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

wherethenext val () function supplies successive valuesfrom asequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A
stored generated column is computed when it is written (inserted or updated) and occupies storage as
if it wereanormal column. A virtual generated column occupies no storage and is computed when it is
read. Thus, avirtual generated columnissimilar to aview and astored generated columnissimilar toa
materialized view (except that it is aways updated automatically). PostgreSQL currently implements
only stored generated columns.

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for
example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _in nunmeric GENERATED ALWAYS AS (height _cm/ 2.54) STORED
)

Thekeyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot
be specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with adefault and agenerated column. The column default
is evaluated once when the row isfirst inserted if no other value was provided; a generated column is
updated whenever the row changes and cannot be overridden. A column default may not refer to other
columns of the table; a generation expression would normally do so. A column default can usevolatile
functions, for example r andon() or functions referring to the current time; thisis not allowed for
generated columns.

Severa restrictions apply to the definition of generated columns and tables involving generated
columns:

» Thegeneration expression can only useimmutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.

A generation expression cannot reference a system column, except t abl eoi d.

59

Data Definition

* A generated column cannot have a column default or an identity definition.

A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance:

« If aparent column is agenerated column, a child column must also be a generated column using
the same expression. In the definition of the child column, leave off the GENERATED clause, as
it will be copied from the parent.

« In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns and with the same expression.

* If aparent column is not a generated column, a child column may be defined to be a generated
column or not.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely,
itisnot allowed to access generated columns in BEFORE triggers.

5.4. Constraints

5.4.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in atable containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error israised. This applies even if the value came from the default
value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

60

Data Definition

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
anamefor you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is atable constraint
becauseit iswritten separately from any one column definition. Column constraints can al so bewritten
astable constraints, whilethereverseisnot necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could aso be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)

It's a matter of taste.

61

Data Definition

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted _price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new
or updated row being checked. While a CHECK constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which
the constraint condition isfalse (due to subsequent changes of the other row(s) involved). This
would cause a database dump and reload to fail. The reload could fail even when the complete
database state is consistent with the constraint, due to rows not being loaded in an order that
will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints
to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement
that. (This approach avoids the dump/reload problem because pg_dump does not reinstall
triggersuntil after rel oading data, so that the check will not be enforced during adump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will
alwaysgivethe sameresult for the sameinput row. Thisassumptioniswhat justifiesexamining
CHECK congtraints only when rows are inserted or updated, and not at other times. (The
warhing above about not referencing other table dataisreally aspecial case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined function
in a CHECK expression, and then change the behavior of that function. PostgreSQL does not
disallow that, but it will not notice if there are rows in the table that now violate the CHECK
constraint. That would cause a subsequent database dump and rel oad to fail. Therecommended
way to handle such a change is to drop the constraint (using ALTER TABLE), adjust the
function definition, and re-add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (

62

Data Definition

5.4.3.

product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_name 1S NOT NULL), but in
PostgreSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot
give explicit names to not-null constraints created this way.

Of course, acolumn can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (

63

Data Definition

5.4.4.

product _no i nteger,
name text,

price nuneric,

UNI QUE (product _no)

)
when written as a table constraint.
To define a unique constraint for a group of columns, write it as a table constraint with the column

names separated by commas:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,
UNI QUE (a, c)

)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT nust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
al of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UNI QUE NOT NULL
name text,
price nunmeric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,

Data Definition

5.4.5.

price nunmeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be ableto identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin a column (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
gquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

65

Data Definition

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can al so constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Sometimes it is useful for the “other table” of aforeign key constraint to be the same table; thisis
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of
atree structure, you could write

CREATE TABLE tree (
node_i d integer PRI MARY KEY,
parent _id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, whilenon-NULL par ent _i d entrieswould be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

66

Data Definition

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disdlow deleting a referenced product
» Delete the orders aswell
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _it ens), wedisalow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents del etion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON alows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisalso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes

67

Data Definition

5.4.6.

satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns alwayshave anindex (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rows are compared on the specified columnsor expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (¢ WTH &&)

)
Seealso CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of the type specified in the constraint
declaration.

5.5. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

t abl eoi d

The OID of thetable containing thisrow. Thiscolumn is particularly handy for queriesthat select
from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since
without it, it's difficult to tell which individual table a row came from. Thet abl eoi d can be
joined against the oi d column of pg_cl ass to obtain the table name.

Xxm n

Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.

Xmax

68

Data Definition

Theidentity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version withinitstable. Notethat althoughthect i d can be used
to locate the row version very quickly, arow's ct i d will change if it is updated or moved by
VACUUM FULL. Thereforect i d isuselessasalong-term row identifier. A primary key should
be used to identify logical rows.

Transaction identifiers are also 32-bit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 25 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL
commandswithin asingle transaction. In practice thislimit is not a problem — note that the limitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.6. Modifying Tables

5.6.1.

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

» Add columns

* Remove columns

» Add constraints

» Remove constraints

» Change default values

» Change column data types
* Rename columns

» Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUMWN description text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

69

Data Definition

5.6.2.

5.6.3.

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that
each row of the table needs to be updated when the ALTER TABLE statement is executed.
Instead, the default value will be returned the next time the row is accessed, and applied when
the tableis rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., cl ock_t i nmest anp()) each row will need
to be updated with the value calculated at the time ALTER TABLE is executed. To avoid a
potentially lengthy update operation, particularly if you intend to fill the column with mostly
nondefault values anyway, it may be preferable to add the column with no default, insert the
correct values using UPDATE, and then add any desired default as described below.

Y ou can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description
< '');

Infact al the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_nane UNI QUE (product no);

ALTER TABLE products ADD FOREI GN KEY (product group_id) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

70

Data Definition

5.6.4. Removing a Constraint

5.6.5.

5.6.6.

Toremoveaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
adefault where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraintsthat involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

71

Data Definition

5.6.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product numnber;

5.6.8. Renaming a Table

To rename atable:

ALTER TABLE products RENAMVE TO iterns;

5.7. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRI GCER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The
privileges applicable to a particular object vary depending on the object's type (table, function, etc).
Moredetail about the meanings of these privileges appears below. Thefollowing sectionsand chapters
will also show you how these privileges are used.

Theright to modify or destroy an object isinherent in being the object's owner, and cannot be granted
or revokedinitself. (However, likeall privileges, that right can be inherited by members of the owning
role; see Section 22.3.)

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, for example

ALTER TABLE t abl e_nane OANER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or amember of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 22.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C,

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grantitinturnto others. If the grant option is subsequently revoked then all who received the privilege

72

Data Definition

from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REV OKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table
read-only for themselves aswell as others. But owners are always treated as holding all grant options,
so they can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or
other table-like object. Also alows use of COPY TO. This privilege is also needed to reference
existing column values in UPDATE or DELETE. For sequences, this privilege also allows use of
thecur rval function. For large objects, this privilege allows the object to be read.

| NSERT

Allows | NSERT of a new row into atable, view, etc. Can be granted on specific column(s), in
which case only those columns may be assigned to in the | NSERT command (other columns will
therefore receive default values). Also alows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any
nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATEand SELECT ... FOR SHARE aso require this privilege on
at least one column, in addition to the SELECT privilege. For sequences, this privilege allows
use of the next val and set val functions. For large objects, this privilege allows writing or
truncating the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command
will require SELECT privilege aswell, since it must reference table columns to determine which
rows to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publicationsto be created within the database, and alows
trusted extensions to be installed within the database.

For schemas, allows new abjects to be created within the schema. To rename an existing object,
you must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace,
and allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.

73

Data Definition

CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

TEMPORARY
Allows temporary tablesto be created while using the database.
EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on
top of thefunction. Thisistheonly type of privilegethat isapplicableto functionsand procedures.

USACE

For procedural languages, allows use of the languagefor the creation of functionsin that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own
privilegerequirementsare al so met). Essentially thisallowsthegranteeto “look up” objectswithin
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements
that have previously performed this lookup, so this is not a completely secure way to prevent
object access.

For sequences, alows use of thecur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and
other schema objects. (Note that this privilege does not control all “usage” of the type, such as
values of the type appearing in queries. It only prevents objectsfrom being created that depend on
the type. The main purpose of this privilege is controlling which users can create dependencies
on atype, which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

The privilegesrequired by other commandsarelisted on the reference page of the respective command.

PostgreSQL grants privileges on some types of objects to PUBLI C by default when the objects
are created. No privileges are granted to PUBLI C by default on tables, table columns, sequences,
foreign data wrappers, foreign servers, large objects, schemas, or tablespaces. For other types of
objects, the default privileges granted to PUBLI Care asfollows: CONNECT and TEMPORARY (create
temporary tables) privileges for databases; EXECUTE privilege for functions and procedures; and
USAGE privilege for languages and data types (including domains). The object owner can, of course,
REVOKE both default and expressly granted privileges. (For maximum security, issue the REVOKE
in the same transaction that creates the object; then there is no window in which another user can
use the object.) Also, these default privilege settings can be overridden using the ALTER DEFAULT
PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL (Access
Control List) values. You will see these letters in the output of the psgl commands listed below, or
when looking at ACL columns of system catal ogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and
table-like objects), table column

74

Data Definition

Privilege Abbreviation Applicable Object Types

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table
column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEVA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA,
SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations
shown above. It aso shows the psgl command that can be used to examine privilege settings for each

object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psql Command
Privileges
DATABASE CTc Tc \
DOVAI N U U \ dD+
FUNCTI ON or PROCEDURE X X \ df +
FOREI GN DATA WRAPPER U none \ dew+
FORElI GN SERVER U none \ des+
LANGUAGE U U \dL+
LARGE OBJECT rw none
SCHENMA uc none \ dn+
SEQUENCE rwJ none \dp
TABLE (and table-like objects) ar wdDxt none \dp
Table column ar wx none \ dp
TABLESPACE C none \ db+
TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of acl i t em
entries, where each acl i t emdescribes the permissions of one grantee that have been granted by
a particular grantor. For example, cal vi n=r *w/ hobbes specifies that the role cal vi n has the
privilege SELECT (r) with grant option (*) as well asthe non-grantable privilege UPDATE (w), both
granted by the role hobbes. If cal vi n aso has some privileges on the same aobject granted by a
different grantor, those would appear as a separate acl i t ementry. An empty grantee field in an
acl i t emstandsfor PUBLI C.

As an example, suppose that user m r i amcreates table nyt abl e and does:

75

Data Definition

GRANT SELECT ON nytabl e TO PUBLI C,
GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;
GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schenma | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- T
o m e e e e aaa - T
public | mytable | table | mriamrarwdDxt/mriamt| col 1:

+

| | | =r/mriam +| mriamrw=rw

mriam |

| | | admi n=arw/ miriam |
|
(1 row

If the “Access privileges’ column is empty for a given object, it means the object has default
privileges (that is, its privileges entry in the relevant system catalog is null). Default privileges always
include al privileges for the owner, and can include some privileges for PUBLI C depending on
the object type, as explained above. The first GRANT or REVOKE on an object will instantiate the
default privileges (producing, for example, m ri am=ar wdDxt / mi r i am) and then modify them
per the specified request. Similarly, entries are shown in “Column privileges’ only for columns
with nondefault privileges. (Note: for this purpose, “default privileges’ aways means the built-in
default privileges for the object's type. An object whose privileges have been affected by an ALTER
DEFAULT PRI VI LEGES command will always be shown with an explicit privilege entry that
includes the effects of the ALTER.)

Notice that the owner'simplicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), all normal accessto the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.

76

Data Definition

Separate expressions may be specified to provide independent control over the rowswhich arevisible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is always the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of all roles that they are a member of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_ emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLI CY account _nmanagers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in auser s table, a simple policy
can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user _nanme = current_user);

Thisworks similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nod_policy ON users

77

Data Definition

USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then al rowsin the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real _nane text NOT NULL,
honme_phone t ext,
extra_info t ext,
hone _dir text NOT NULL,
shel | text NOT NULL
)
CREATE ROLE admin; -- Adnministrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
I NSERT | NTO passwd VALUES
("admn',"'xxx',0,0," Addmn',"'111-222-3333"' ,null,'/root',"'/bin/
dash');
I NSERT | NTO passwd VALUES
("bob',"xxx"',1,1,"'Bob',"' 123-456-7890', null,"'/hone/bob',"/bin/
zsh');
I NSERT | NTO passwd VALUES
("alice',"xxx',2,1,"Alice',"'098-765-4321" ,null,'/hone/alice',"'/
bi n/ zsh');

-- Be sure to enable row |l evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Normal users can view all rows
CREATE POLICY al |l _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a nornal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/
tcsh')

78

Data Definition

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_nanme, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others
post gr es=> update passwd set real _nane = 'Alice Doe';

79

Data Definition

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admn';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
require the administrator to be connected over alocal Unix socket to accesstherecords of the passwd
table:

CREATE PQOLI CY admin_l ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() 1S NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row)

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nane | hone_phone |
extra_info | hone_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from

80

Data Definition

the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe examples above, the policy expressionsconsider only the current valuesin therow to be accessed
or updated. This is the smplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
allow information leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user_nane =
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table

81

Data Definition

GRANT ALL ON i nformation TO publi c;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEGQ N;

UPDATE users SET group_id =

UPDATE i nformati on SET info
= 2,

COW T,

1 WHERE user_nane = 'nallory';
= 'secret fromnmallory' WHERE group_id

That looks safe; thereisno window whereinmal | or y should be ableto seethe* secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possiblefor her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old vaue of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updates of it are frequent.
Another solution, practical if updates of the referenced table are infrequent, is to take an ACCESS
EXCLUSI VE lock onthereferenced table when updating it, so that no concurrent transactions could be
examining old row values. Or one could just wait for all concurrent transactionsto end after committing
an update of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access datain a
single database, the one specified in the connection request.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schenal and myschena can

82

Data Definition

5.9.1.

contain tablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privilegesto do so.

There are several reasons why one might want to use schemas:
* To alow many users to use one database without interfering with each other.
 To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema aname of your choice.
For example:

CREATE SCHENMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema. t abl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,

but the same ideas apply to other kinds of named objects, such astypes and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE myschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.14 for a description of the general mechanism behind this,

83

Data Definition

5.9.2.

5.9.3.

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:
CREATE SCHEMA schema_nanme AUTHORI ZATI ON user _nane;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.9.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereis no match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that
references precisely the same objects every time. It also opens up the potential for users to change
the behavior of other users' queries, maliciously or accidentally. Due to the prevaence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to sear ch_pat h
effectively trusts all users having CREATE privilege on that schema. When you run an ordinary query,
amalicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

Data Definition

5.9.4.

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mnyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipul ate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schermma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema publ i c. Thisallows all users that are able to connect to a given database
to create objectsin itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

85

Data Definition

5.9.5.

5.9.6.

REVCKE CREATE ON SCHEMA public FROM PUBLI C,

(Thefirst “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.
pg_cat al og is always effectively part of the search path. If it is not named explicitly in the path
thenitisimplicitly searched before searching the path's schemas. This ensuresthat built-in nameswill
always be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table names beginwithpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use
a secure schema usage pattern, users wishing to securely query that database would take protective
action at the beginning of each session. Specifically, they would begin each session by setting
sear ch_pat h to the empty string or otherwise removing non-superuser-writable schemas from
sear ch_pat h. There are afew usage patterns easily supported by the default configuration:

 Constrain ordinary usersto user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLI C, and create a schema for each user with the same name as
that user. Recall that the default search path starts with $user , which resolves to the user name.
Therefore, if each user has a separate schema, they access their own schemas by default. After
adopting this pattern in a database where untrusted users had already logged in, consider auditing
the public schemafor objects named like objectsin schemapg_cat al og. This pattern isasecure
schema usage pattern unless an untrusted user is the database owner or holds the CREATEROLE
privilege, in which case no secure schema usage pattern exists.

» Remove the public schema from the default search path, by modifying post gr esql . conf or
by issuing ALTER ROLE ALL SET search_path = "$user". Everyone retains the
ability to create objects in the public schema, but only qualified names will choose those objects.
While qualified table references are fine, calls to functions in the public schema will be unsafe or
unreliable. If you create functions or extensions in the public schema, use the first pattern instead.
Otherwise, like the first pattern, this is secure unless an untrusted user is the database owner or
holds the CREATEROLE privilege.

» Keep the default. All users access the public schemaimplicitly. This simulates the situation where
schemas are not available at al, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or afew mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search
path, as they choose.

86

Data Definition

5.9.7. Portability

5.10

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basi ¢ schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _name. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by alowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extra column, st at e, that showstheir state.

In PostgreSQL , a table can inherit from zero or more other tables, and a query can reference either
al rows of atable or all rows of atable plus al of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of all cities, including state capitals, that
arelocated at an elevation over 500 feet:

SELECT nane, el evation
FROM citi es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

87

Data Definition

Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

name | elevation
___________ o,
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns;

tabl eoid | nane | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nanme, c.nane, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

88

Data Definition

rel nanme | nane | elevation
__________ e,
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect isto usether egcl ass aiastype, which will print the table OID
symbolicaly:

SELECT c. tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossible to redirect
the insertion using a rule (see Chapter 41). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child tabl€'s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columnsare“ merged” so that thereisonly one such columninthechild table. To
be merged, columns must have the same datatypes, elsean error israi sed. | nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit camefrom ismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritanceistypically established when the child table is created, using thel NHERI TS clause
of the CREATE TABLE statement. Alternatively, atable which isalready defined in acompatibleway
can have anew parent relationship added, using the | NHERI T variant of ALTER TABLE. To do this
the new child table must already include columnswith the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from achild using the NO | NHERI T variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. This creates anew table with the same columns asthe source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.14).

89

Data Definition

ALTER TABLE will propagate any changesin column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the citi es table implies permission to update rows in the
capi t al s table as well, when they are accessed through ci ti es. This preserves the appearance
that the data is (also) in the parent table. But the capi t al s table could not be updated directly
without an additional grant. In asimilar way, the parent table's row security policies (see Section 5.8)
are applied to rows coming from child tables during an inherited query. A child table's policies, if
any, are applied only when it is the table explicitly named in the query; and in that case, any policies
attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

5.11.

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If we declared ci ti es.nanme to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s table from having rows with names duplicating rowsin ci t i es. And those duplicate
rowswould by default show upinqueriesfromci t i es. Infact, by default capi t al s would have
no unigue constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunigue constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

» Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative

partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

90

Data Definition

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be
improved by using asequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

 Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage patternis
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTI TI QN, isfar faster than abulk operation. These commands
also entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The
exact point at which atable will benefit from partitioning depends on the application, although arule
of thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if
one partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10
belongs to the second partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as apartitioned table. The declaration includes the partitioning method as described above,
plus alist of columns or expressions to be used as the partition key.

Thepartitioned tableitself isa“virtual” table having no storage of itsown. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rowsinserted into a partitioned table
will berouted to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of arow will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although
all partitions must have the same columns as their partitioned parent, partitions may have their own

91

Data Definition

indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE
for more details on creating partitioned tables and partitions.

Itisnot possibleto turn aregular tableinto a partitioned table or vice versa. However, itis possible to
add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; this can simplify and speed up many
maintenance processes. See ALTER TABLE to learn more about the ATTACH PARTI TI ON and
DETACH PARTI Tl ON sub-commands.

Partitions can also be foreign tables, although they have some limitations that normal tables do not;
see CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni tsal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of thistable will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1. Createthermeasur enent table asapartitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANCE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasurenent (

city_ id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

) PARTI TI ON BY RANGE (| ogdate);

2. Createpartitions. Each partition'sdefinition must specify boundsthat correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables).
It is possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement
of deleting one month's data at atime. So the commands might look like:

CREATE TABLE measur enment _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01");

CREATE TABLE measur enment _y2006n03 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01') TO ('2006-04-01");

92

Data Definition

CREATE TABLE nmeasurenent _y2007ml1l PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE neasurenent _y2007nml2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enent _y2008n01 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
W TH (paral |l el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clause in the
commands used to create individual partitions, for example:

CREATE TABLE neasurenent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of neasur ement _y2006n02, any datainserted into measur enent

that is mapped to neasurenent y2006n02 (or data that is directly inserted into
measur enment _y2006n02, which is allowed provided its partition constraint is satisfied) will
be further redirected to one of its partitions based on the peakt enp column. The partition
key specified may overlap with the parent's partition key, although care should be taken when
specifying the bounds of a sub-partition such that the set of data it accepts constitutes a subset
of what the partition's own bounds allow; the system does not try to check whether that's really
the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the
partitioned table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This
automatically creates a matching index on each partition, and any partitions you create or attach
later will also have such an index. An index or unique constraint declared on a partitioned table
is“virtual” in the same way that the partitioned table is. the actual dataisin child indexes on the
individual partition tables.

CREATE | NDEX ON neasur enent (| ogdate);
4. Ensure that the enable partition_pruning configuration parameter is not disabled in
post gresqgl . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It iscommon to want to remove partitions holding old data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it alows this

93

Data Definition

otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasur enent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right. This hastwo forms:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006n0D2;
ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006nm02
CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The
first form of the command requires an ACCESS EXCLUSI VE lock on the parent table. Adding the
CONCURRENTLY qualifier asin the second form allows the detach operation to require only SHARE
UPDATE EXCLUSI VElock ontheparent table, but seeALTER TABLE . .. DETACH PARTI TI ON
for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasurenent _y2008nmD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an dternative, it is sometimes more convenient to create the new table outside the partition
structure, and make it a proper partition later. This allows new data to be loaded, checked, and
transformed prior to it appearing in the partitioned table. The CREATE TABLE ... LI KE option
is helpful to avoid tediously repeating the parent table's definition:

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasurement | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008n02 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sone other data preparation work

ALTER TABLE neasurenent ATTACH PARTI TI ON neasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

The ATTACH PARTI TI ON command requires taking a SHARE UPDATE EXCLUSI VE lock on
the partitioned table.

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached that matches the expected partition constraint, as illustrated above. That

94

Data Definition

way, the system will be ableto skip the scan which is otherwise needed to validate theimplicit partition
constraint. Without the CHECK constraint, the table will be scanned to validate the partition constraint
while holding an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-
redundant CHECK constraint after the ATTACH PARTI Tl ONiscomplete. If the table being attached
isitself a partitioned table then each of its sub-partitions will be recursively locked and scanned until
either a suitable CHECK constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK
constraint which excludes the to-be-attached partition's constraint. If this is not done then the
DEFAULT partition will be scanned to verify that it contains no records which should be located in the
partition being attached. This operation will be performed whilst holding an ACCESS EXCLUSI VE
lock onthe DEFAULT partition. If the DEFAULT partition isitself a partitioned table then each of its
partitionswill be recursively checked in the same way asthetable being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically to the entire hierarchy. Thisis very convenient, as not only will the existing partitions
become indexed, but also any partitions that are created in the future will. One limitation is that it's
not possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid
long lock times, it is possible to use CREATE | NDEX ON ONLY the partitioned table; such an
index is marked invalid, and the partitions do not get the index applied automatically. The indexes
on partitions can be created individually using CONCURRENTLY, and then attached to the index on
the parent using ALTER | NDEX .. ATTACH PARTI Tl ON. Once indexes for all partitions are
attached to the parent index, the parent index is marked valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX neasur enent _usls_ 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

Thistechnique can be used with UNI QUE and PRI MARY KEY constraintstoo; theindexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenent ADD UNIQUE (city_ id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city id, |ogdate);
ALTER | NDEX neasurenent _city id | ogdate key
ATTACH PARTI TI ON neasur enent _y2006n02 city id_| ogdate_key;

5.11.2.3. Limitations

The following limitations apply to partitioned tables:

 Unique constraints (and hence primary keys) on partitioned tables must include all the partition key
columns. This limitation exists because the individual indexes making up the constraint can only
directly enforce uniqueness within their own partitions; therefore, the partition structure itself must
guarantee that there are not duplicatesin different partitions.

» There is no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

« BEFORE ROWTtriggers on | NSERT cannot change which partition is the final destination for a
New row.

95

Data Definition

e Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if
the partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitionsarelinked to their partitioned tabl e using inheritance behind-the-scenes. However,
it isnot possible to use al of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can atable inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.10, with
afew exceptions:

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-
the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE . ..
ATTACH PARTI TI ON only if their columns exactly match the parent.

* Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on
partitioned tables. You cannot drop a NOT NULL constraint on a partition's column if the same
constraint is present in the parent table.

» Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

» As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a
partitioned table will always return an error.

5.11.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allowsfor several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns asthe partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

* Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
alows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

5.11.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to all child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the root table isthe neasur enmrent table as originally defined:

CREATE TABLE neasurenent (

96

Data Definition

city_id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

)

. Create severa “child” tables that each inherit from the root table. Normally, these tables will not
add any columnsto the set inherited from theroot. Just aswith declarative partitioning, these tables
arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasurenent _y2006n02 () | NHERI TS (neasurenent);
CREATE TABLE neasur enent _y2006n03 () | NHERI TS (neasurenent);

CREATE TABLE neasurenent _y2007nill () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2007nl2 () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2008n01 () | NHERI TS (neasurenent);

. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletl D BETVEEN 100 AND 200)
CHECK (outletl D BETVEEN 200 AND 300)

Thisiswrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE neasur ement _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (measurenent);

CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (measuremnent);

CREATE TABLE neasurenment _y2007nll (
CHECK (|ogdate >= DATE ' 2007-11-01' AND | ogdate < DATE
'2007-12-01")
) INHERI TS (measurenent);

CREATE TABLE neasurenment _y2007nml2 (
CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate < DATE
' 2008-01-01')
) INHERI TS (measuremnent);

CREATE TABLE neasur enment _y2008n01 (

97

Data Definition

CHECK (| ogdate >= DATE ' 2008-01-01' AND | ogdate < DATE
' 2008- 02-01')
) INHERI TS (measurenent);
4. For each child table, create an index on the key column(s), aswell as any other indexes you might
want.

CREATE | NDEX measur enent _y2006n02_| ogdat e
measur enent _y2006n02 (| ogdate);

CREATE | NDEX measur enent _y2006n03_| ogdat e
measur enent _y2006n03 (| ogdate);

CREATE | NDEX measur enent _y2007nll_| ogdat e
measur enent _y2007nmll (| ogdate);

CREATE | NDEX neasur enent _y2007nl2_| ogdate ON
measur enent _y2007nml2 (| ogdate);

CREATE | NDEX neasur enent _y2008n01_| ogdate ON
measur enent _y2008n01 (| ogdate);

5. We want our application to be ableto say | NSERT | NTO neasurenment ... and havethe
data be redirected into the appropriate child table. We can arrange that by attaching a suitable
trigger function to the root table. If data will be added only to the latest child, we can use a very
simple trigger function:;

2 2 2

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsql ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GGER i nsert_measurenment _trigger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE FUNCTI ON rneasur enent _i nsert _trigger();

We must redefine the trigger function each month so that it always inserts into the current child
table. The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurenent _insert _trigger()
RETURNS TRI GGER AS $$%
BEG N
I F (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW I ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

ELSIF (NEW I ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

98

Data Definition

ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';

END | F;

RETURN NULL;
END,
$$
LANGUAGE pl pgsal ;

Thetrigger definition isthe same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that
child. For simplicity, we have shown the trigger's tests in the same order as in other parts
of thisexample.

A different approach to redirecting insertsinto the appropriate child tableisto set up rules, instead
of atrigger, on the root table. For example:

CREATE RULE neasurenent _insert_y2006n02 AS
ON I NSERT TO neasur enent WHERE
(logdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01")
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008n0D1 AS
ON I NSERT TO neasur enent WHERE
(logdate >= DATE ' 2008-01-01" AND | ogdate < DATE
'2008- 02-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query
rather than once per row, so this method might be advantageous for bulk-insert situations. In most
cases, however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the root. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that there isno simple way to force an error if the set
of rules doesn't cover the insertion date; the datawill silently go into the root table instead.

. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gr esql . conf ; otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

99

Data Definition

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenment _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein its
own right:

ALTER TABLE neasurenment _y2006nmD2 NO | NHERI T neasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measur enent _y2008n02 (
CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01')
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE measur erment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly sone other data preparati on work
ALTER TABLE neasurenent_y2008nD2 | NHERI T neasur ement ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* Indexesandforeign key constraints apply to singletablesand not to their inheritance children, hence
they have some caveats to be aware of .

» Theschemesshown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each child table individually. A command like:
ANALYZE measur enent ;

will only process the root table.

100

Data Definition

e | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's
possible to show the difference between a plan for which partitions have been pruned and one for
which they have not. A typical unoptimized plan for this type of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 w dth=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on measurenent_y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on measurenent_y2006n03 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008n0D1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequentia scans, but the point

here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;

101

Data Definition

EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n0D1 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisisuseful asit can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

* During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAI Nor EXPLAI N ANALYZE. It is possible
to determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAI N output.

* During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the execution
of the query, partition pruning is performed whenever one of the execution parameters being used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of thel oops property in the EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as (never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is
primarily used for partitioning implemented using the legacy inheritance method, it can be used for
other purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makesit slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f, but an
intermediate setting called par ti ti on, which causes the technique to be applied only to queries

102

Data Definition

that are likely to be working on inheritance partitioned tables. The on setting causes the planner to
examine CHECK constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusionisonly applied during query planning, unlike partition pruning, which can also
be applied during query execution.

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child
tables might not need to be visited. Use simple equality conditions for list partitioning, or simple
range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb
is that partitioning constraints should contain only comparisons of the partitioning column(s) to
constants using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed
in the partition key.

» All congtraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try
to use many thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will be to partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are
compatible with the partition bound constraints can be used to prune unneeded partitions. However,
you may be forced into making other decisions by requirementsfor the PRI MARY KEY or a UNI QUE
constraint. Removal of unwanted data is also a factor to consider when planning your partitioning
strategy. An entire partition can be detached fairly quickly, so it may be beneficial to design the
partition strategy in such away that all data to be removed at onceislocated in asingle partition.

Choosing the target number of partitionsthat the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implicationsif in several years you instead find yourself with
alarge number of small customers. In this case, it may be better to choose to partition by HASH and
choose a reasonable number of partitions rather than trying to partition by L1 ST and hoping that the
number of customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsinthe partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The
query planner is generally able to handle partition hierarchies with up to a few thousand partitions
fairly well, provided that typical queries allow the query planner to prune al but a small number
of partitions. Planning times become longer and memory consumption becomes higher when more

103

Data Definition

5.12

5.13

partitions remain after the planner performs partition pruning. Another reason to be concerned about
having alarge number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OL TP type workload. Generally, in data warehouses, query planning time is less of a concern as
the magjority of processing time is spent during query execution. With either of these two types of
workload, it is important to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficia for optimizing the
partitioning strategy. Never just assume that more partitions are better than fewer partitions, nor vice-
versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, alowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such dataisreferred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is alibrary
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are someforeign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it is used, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

Functions, procedures, and operators
» Datatypesand domains
 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

5.14. Dependency Tracking

104

Data Definition

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects till depend on. For example, attempting to drop the products table we
considered in Section 5.4.5, with the orders table depending on it, would result in an error message
likethis:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. Y ou can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visible properties, such asitsargument and result types, but not dependenciesthat could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS

' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ.;

105

Data Definition

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e functiondependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The functionis still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

106

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Datais inserted one row at atime. Y ou can aso insert more than one row in asingle
command, but it is not possible to insert something that is not acomplete row. Even if you know only
some column values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To

avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');
I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

107

Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. Thename of the table and column to update
2. Thenew value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

108

Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is
especialy valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan | NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, sinceit would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

109

Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

110

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification* means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could

call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these

111

Queries

transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

7.2.1. The FROMClause

The FROM clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a
subguery, a JA N construct, or complex combinations of these. If more than one table reference is
listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is
formed; see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the
overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tablesis now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types

Crossjoin

Tl CROSS JAO N T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by al columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA N binds more tightly than comma. For example FROM T1 CROSS JO N T2
I NNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 | NNER JO N

112

Queries

T3 ON condi ti on because the condi ti on can reference T1 in the first case but
not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has arow for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The USI NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

113

Queries

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safefrom column changesin thejoined relationssince only thelisted
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause thejoin
to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

then we get

the following results for the various joins:

=> SELECT * FROMt1l CRCSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP

7
~ 0 00T TUTO9 9O

(9

GQWkFRFUOOWERE OWwPRk

+
|
|
| zzz
|
|
|
|
|
|

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

=> SELECT * FROMt1 INNER JO N t2 USING (num;

num | n

ame | val ue

114

Queries

3| ¢ | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USING (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 51| zzz
(4 rows)

The join condition specified with ON can al so contain conditions that do not relate directly to thejoin.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty U
1| a | 1| xxx
2| b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

115

Queries

=> SELECT * FROMt1 LEFT JON t2 ON t1.num = t2. num WHERE t 2. val ue

= " Xxx";

num| name | num| val ue

----- Ty
1| a | 1| xxx

(1 row

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
meatters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.
A typical application of table aliasesis to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT * FROM sone_very long table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
isnot allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a

tableto itself, e.g.:

SELECT * FROM people AS nmother JO N people AS child ON nother.id =
chi l d. mot her _i d;

Additionally, an aliasisrequired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the

alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny table AS b ...
SELECT * FROM (my_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary hames to the columns of the table, aswell asthetable
itself:

116

Queries

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an dias is applied to the output of a JO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JO N your_table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your_table AS b ON...) AS c

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_nane. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (' anne', 'smith'), ('bob', 'jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisrequired. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columns returned by table functions can beincluded in SELECT, JA N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the ROANS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[. .- DII

ROAS FROM function_call [, ...]) [WTH ORD NALI TY]

[[AS] table_ alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)
By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

117

Queries

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ...])]1]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid I'N (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

)
CREATE VI EW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending
on how they are invoked. To support this, the table function can be declared as returning the pseudo-
type r ecor d with no OUT parameters. When such a function is used in a query, the expected row
structure must be specified in the query itself, so that the system can know how to parse and plan the
guery. This syntax looks like:

function_call [AS] alias (columm_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the RONS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, a col umm_def i ni ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

SELECT *

118

Queries

FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM
pg_proc’)
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

This example uses ROAS FROM

SELECT *
FROM ROAS FROM

(
json_to recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, d, s)

ORDER BY p;
p | a | s
_____ e E
40 | foo | 1
100 | bar | 2

I | 3

It joins two functions into a single FROMtarget.] son_t o_recor dset () isinstructed to return
two columns, thefirsti nt eger andthesecondt ext . Theresultof gener at e_seri es() isused
directly. The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them
to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is
evaluated independently and so cannot cross-reference any other FROMitem.)

Tablefunctions appearing in FROMcan also be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or withinaJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is
SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisisnot especially useful since it has exactly the same result as the more conventional

119

Queries

1.2.2.

SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is
unnecessary in this example, but we useit for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _nanes() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m name

FROM nmanufacturers m LEFT JO N LATERAL get product _names(m i d)
pname ON true

VWHERE pnane |'S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE search_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e, if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; thisis not required, but otherwise the
VWHERE clause will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or inthe JO N
clause. For example, these table expressions are equivalent:

120

Queries

7.2.3.

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you useis mainly amatter of style. The JO N syntax in the FROMclause
is probably not as portable to other SQL database management systems, even though it isin
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because
it results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT cl1 FROM t2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rowsthat do not meet the search condition of the WHERE
clauseare eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col umm_r ef erence
[, grouping_colum_reference]...

The GROUP BY clause is used to group together those rows in a table that have the same valuesin
al the columns listed. The order in which the columns are listed does not matter. The effect is to

121

Queries

combine each set of rows having common values into one group row that represents all rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
[
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableisgrouped, columnsthat are not listed in GROUP BY cannot be referenced except

in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sunm(y) FROM test1l GROUP BY x;
X | sum

c |
(3 rows

o
~ N oA

Here s umisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a
column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product _id, p.nanme, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sal es s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sum . . .)),

122

Queries

which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun(y) > 3;
X | sum

e
a | 4
b | 5
(2 rows)

=> SELECT x, sunm(y) FROMtest1l GROUP BY x HAVING x < 'c';
X | sum

e
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product_id, p.name, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sales s USI NG (product _id)
VWHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the last four weeks), while the HAVI NG clause restricts the
output to groupswith total grosssalesover 5000. Notethat the aggregate expressionsdo not necessarily
need to be the samein al parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

123

Queries

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ e
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.61.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thusit is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(e, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division,
and company-wide total.

A clause of the form

124

Queries

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a),
(b, ¢c),
(b),
(c),
()

)

Theindividual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
isequivalent to
GROUPI NG SETS (
(a b, c, d),
(a b)
(c, d),
)

(
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c),
(a)
()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsisthe cross product of the individual items. For example:

125

Queries

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

When specifying multiple grouping items together, the final set of grouping sets might contain
duplicates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, b),
(a, c),
(a),
(a),
(a, c),
(a),
()

)

If these duplicates are undesirable, they can be removed using the DI STI NCT clause directly on the
GROUP BY. Therefore:

GROUP BY DI STINCT ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, ¢,
(a),
()
)

This is not the same as using SELECT DI STI NCT because the output rows may still contain
duplicates. If any of the ungrouped columns contains NULL, it will be indistinguishable from the
NULL used when that same column is grouped.

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within the
GROUP BY clause, this does not apply at thetop levels of expressions, and (a, b) isparsed

126

Queries

as alist of expressions as described above. If for some reason you need a row constructor in
agrouping expression, use RON a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG then the rows seen by the window functions
are the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated
in asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTI TI ON BY or ORDER BY specifications. (In such casesasort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clauseif you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
tableisfinally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually outpuit.

Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, aselect list isacomma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, tbl2.a, tbll.b FROM...

When working with multipletables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbhl2.a FROM. ..
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values

127

Queries

7.3.2.

7.3.3.

substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entriesin the select list can be assigned names for subsequent processing, such as for use in an
CORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS key word is usualy optional, but in some cases where the desired column name matches
a PostgreSQL key word, you must write AS or double-quote the column name in order to avoid
ambiguity. (Appendix C shows which key words require AS to be used as a column label.) For
example, FROMis one such key word, so this does not work:

SELECT a from b + ¢ AS sum FROM . ..
but either of these do:

SELECT a AS from b + ¢ AS sum FROM . ..
SELECT a "from', b + ¢ AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always
either write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values

are considered egual in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

128

Queries

SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on is an arbitrary value expression that is evaluated for al rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqgueriesin FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNI ON, | NTERSECT,
EXCEPT)

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNION [ALL] query?2
gueryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appends the result of query2 to the result of quer y1 (athough there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
duplicate rows from its result, in the same way as DI STI NCT, unlessUNI ON ALL is used.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of quer y2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (This
is sometimes called the difference between two queries.) Again, duplicates are eliminated unless
EXCEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

which isequivalent to

(queryl UNI ON query?2) EXCEPT query3

As shown here, you can use parentheses to control the order of evauation. Without parentheses,
UNI ON and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two
operators. Thus

queryl UNI ON query2 | NTERSECT query3

means

129

Queries

gueryl UNI ON (query2 | NTERSECT query3)

You can also surround an individual quer y with parentheses. This isimportant if the quer y needs
to use any of the clauses discussed in following sections, such asLI M T. Without parentheses, you'll
get a syntax error, or el se the clause will be understood as applying to the output of the set operation
rather than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not berelied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” isdefined in terms of the < operator. Similarly, descending order
is determined with the > operator. 1

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null valuesin the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

130

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; - -
wWr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT sel ect _|i st
FROM t abl e_expressi on
[ORDER BY ...]
[LIMT { nunmber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET O is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rowsinto a
unique order. Otherwise you will get an unpredictabl e subset of the query’'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LI M T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

131

Queries

VALUES provides away to generate a“ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, '"two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col utm1, col uim2, ete. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, soit's usually better to override the default names with atable aliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS't
(numletter);
num| letter

1]

2| two

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can useit as part of aUNI ON, or attach a
sort _specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can also be a SELECT, | NSERT, UPDATE, or DELETE.

132

Queries

7.8.1.

7.8.2.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_regi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines
two auxiliary statements named r egi onal _sal es and t op_r egi ons, where the output of
regi onal _sal es isused intop_regi ons and the output of t op_r egi ons is used in the
primary SELECT query. This example could have been written without W TH, but we'd have needed
two levels of nested sub-SELECTS. It's a bit easier to follow this way.

Recursive Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sunm(n) FROM t;

The general form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain areference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include al remaining rowsin theresult of the recursive query, and al so place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and

133

Queries

rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries aretypically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

7.8.2.1. Search Order

When computing atree traversal using arecursive query, you might want to order the resultsin either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the
other datacolumns and using that to sort theresults at the end. Note that thisdoesnot actually control in
which order the query evaluation visits the rows; that is as alwaysin SQL implementati on-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create adepth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searchesatablet r ee usingal i nk field:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

134

Queries

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, path || t.id
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

In the general case where more than one field needs to be used to identify arow, use an array of rows.
For example, if we needed to track fieldsf 1 and f 2:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[ROWNt.f1, t.f2)]
FROM tree t

UNI ON ALL
SELECT t.id, t.link, t.data, path || RONt.f1l, t.f2)
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

Tip

Omit the ROA() syntax in the common case where only one field needs to be tracked. This
allows asimple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

W TH RECURSI VE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, depth + 1
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY dept h;

To get a stable sort, add data columns as secondary sorting columns.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order.
However, thisis an implementation detail and it is perhaps unsound to rely on it. The order of
the rows within each level is certainly undefined, so some explicit ordering might be desired
in any case.

Thereis built-in syntax to compute a depth- or breadth-first sort column. For example:

W TH RECURSI VE search_tree(id, link, data) AS (

135

Queries

SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH DEPTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

W TH RECURSI VE search_tree(id, link, data) AS (

SELECT t.id, t.link, t.data

FROM tree t

UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH BREADTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

Thissyntax isinternally expanded to something similar to the above hand-written forms. The SEARCH
clause specifieswhether depth- or breadth first search iswanted, thelist of columnsto track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or afew fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
again the following query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, |ink, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a “depth” output,
just changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnsi s_cycl e and pat h to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)

AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[g. i d]
FROM gr aph g
UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,

136

Queries

g.id = ANY(path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Asidefrom preventing cycles, the array valueis often useful in its own right as representing the “ path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)
AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[RON(g. f1, g.f2)]
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
RONg.f1, g.f2) = ANY(path),
path || RONg.f1, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM sear ch_graph;

Tip

Omit the RON) syntax in the common case where only one field needs to be checked to
recognhize a cycle. This alows a simple array rather than a composite-type array to be used,
gaining efficiency.

Thereis built-in syntax to simplify cycle detection. The above query can also be written like this:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM sear ch_gr aph;

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of
columns to track for cycle detection, then a column name that will show whether a cycle has been
detected, and finally the name of another column that will track the path. The cycle and path columns
will implicitly be added to the output rows of the CTE.

Tip

Thecycle path columniscomputed in the sameway asthe depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but adepth-first

137

Queries

7.8.3.

search specification and a cycle detection specification would create redundant computations,
so it's more efficient to just use the CYCLE clause and order by the path column. If breadth-
first ordering is wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

Common Table Expression Materialization

A useful property of W TH queriesis that they are normally evaluated only once per execution of the
parent query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is not able to
push restrictions from the parent query down into a multiply-referenced W TH query, since that might
affect al uses of the W TH query's output when it should affect only one. The multiply-referenced
W TH query will be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
guery demand only alimited number of rows.)

However, if aW TH query is non-recursive and side-effect-free (that is, it is a SELECT containing
no volatile functions) then it can be folded into the parent query, allowing joint optimization of
the two query levels. By default, this happens if the parent query references the W TH query just
once, but not if it references the W TH query more than once. You can override that decision by
specifying MATERI ALI ZED to force separate calculation of the W TH query, or by specifying NOT
MATERI ALI ZED to force it to be merged into the parent query. The latter choice risks duplicate
computation of the W TH query, but it can still give a net savings if each usage of the W TH query
needs only asmall part of the W TH query's full output.

A simple example of theserulesis
WTH w AS (

SELECT * FROM big_table
)

SELECT * FROM w WHERE key = 1283;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key
= 123. Onthe other hand, in

138

Queries

7.8.4.

WTH w AS (
SELECT * FROM bi g_tabl e
)
SELECT * FROMw AS wl JO N w AS w2 ON wl. key = w2.ref
WHERE W2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthen joined
with itself — without benefit of any index. This query will be executed much more efficiently if
written as

W TH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_tabl e
)

SELECT * FROMw AS w1 JO N w AS w2 ON wl. key = w2.ref
VWHERE w2. key = 123;

so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_t abl e

)
SELECT * FROMw AS w1 JON w AS w2 ON wl.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_functi on isevauated
only once per table row, not twice.

The examples above only show W TH being used with SELECT, but it can be attached in the same
way to | NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. Thisallows you
to perform several different operationsin the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01"
RETURNI NG *
)
I NSERT | NTO pr