

Pro Git
Scott Chacon, Ben Straub

Version 2.1.353-2-gf71ba55, 2022-09-13

Table of Contents
Licence . Ê1

Preface by Scott Chacon . Ê2

Preface by Ben Straub . Ê3

Dedications . Ê4

Contributors . Ê5

Introduction . Ê6

Getting Started . Ê8

About Version Control . Ê8

A Short History of Git . Ê12

What is Git? . Ê12

The Command Line . Ê16

Installing Git . Ê16

First-Time Git Setup . Ê19

Getting Help . Ê22

Summary . Ê23

Git Basics. Ê24

Getting a Git Repository . Ê24

Recording Changes to the Repository . Ê26

Viewing the Commit History . Ê38

Undoing Things . Ê44

Working with Remotes . Ê48

Tagging . Ê53

Git Aliases . Ê58

Summary . Ê60

Git Branching . Ê61

Branches in a Nutshell . Ê61

Basic Branching and Merging . Ê68

Branch Management . Ê77

Branching Workflows . Ê80

Remote Branches . Ê83

Rebasing . Ê93

Summary . Ê102

Git on the Server . Ê103

The Protocols . Ê103

Getting Git on a Server . Ê108

Generating Your SSH Public Key . Ê110

Setting Up the Server . Ê111

Git Daemon . Ê114

Smart HTTP . Ê115

GitWeb . Ê117

GitLab . Ê118

Third Party Hosted Options . Ê122

Summary . Ê123

Distributed Git . Ê124

Distributed Workflows . Ê124

Contributing to a Project . Ê127

Maintaining a Project . Ê148

Summary . Ê163

GitHub . Ê164

Account Setup and Configuration . Ê164

Contributing to a Project . Ê169

Maintaining a Project . Ê189

Managing an organization . Ê203

Scripting GitHub . Ê206

Summary . Ê215

Git Tools . Ê216

Revision Selection . Ê216

Interactive Staging . Ê224

Stashing and Cleaning . Ê228

Signing Your Work . Ê234

Searching . Ê237

Rewriting History . Ê241

Reset Demystified . Ê249

Advanced Merging . Ê268

Rerere . Ê285

Debugging with Git . Ê291

Submodules . Ê294

Bundling . Ê315

Replace . Ê318

Credential Storage . Ê327

Summary . Ê332

Customizing Git . Ê333

Git Configuration . Ê333

Git Attributes . Ê343

Git Hooks . Ê351

An Example Git-Enforced Policy . Ê354

Summary . Ê363

Git and Other Systems . Ê364

Git as a Client . Ê364

Migrating to Git . Ê399

Summary . Ê415

Git Internals . Ê416

Plumbing and Porcelain . Ê416

Git Objects . Ê417

Git References . Ê427

Packfiles . Ê431

The Refspec . Ê434

Transfer Protocols . Ê437

Maintenance and Data Recovery . Ê442

Environment Variables . Ê449

Summary . Ê454

Appendix A: Git in Other Environments . Ê455

Graphical Interfaces . Ê455

Git in Visual Studio . Ê460

Git in Visual Studio Code . Ê461

Git in IntelliJ / PyCharm / WebStorm / PhpStorm / RubyMine . Ê461

Git in Sublime Text . Ê462

Git in Bash . Ê462

Git in Zsh . Ê463

Git in PowerShell . Ê465

Summary . Ê467

Appendix B: Embedding Git in your Applications . Ê468

Command-line Git . Ê468

Libgit2 . Ê468

JGit. Ê473

go-git . Ê476

Dulwich . Ê478

Appendix C: Git Commands . Ê480

Setup and Config . Ê480

Getting and Creating Projects . Ê482

Basic Snapshotting . Ê483

Branching and Merging . Ê485

Sharing and Updating Projects . Ê487

Inspection and Comparison . Ê489

Debugging . Ê490

Patching . Ê491

Email . Ê491

External Systems . Ê493

Administration . Ê493

Plumbing Commands . Ê494

Index . Ê495

Licence
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-
sa/3.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1

https://creativecommons.org/licenses/by-nc-sa/3.0
https://creativecommons.org/licenses/by-nc-sa/3.0

Preface by Scott Chacon
Welcome to the second edition of Pro Git. The first edition was published over four years ago now.
Since then a lot has changed and yet many important things have not. While most of the core
commands and concepts are still valid today as the Git core team is pretty fantastic at keeping
things backward compatible, there have been some significant additions and changes in the
community surrounding Git. The second edition of this book is meant to address those changes and
update the book so it can be more helpful to the new user.

When I wrote the first edition, Git was still a relatively difficult to use and barely adopted tool for
the harder core hacker. It was starting to gain steam in certain communities, but had not reached
anywhere near the ubiquity it has today. Since then, nearly every open source community has
adopted it. Git has made incredible progress on Windows, in the explosion of graphical user
interfaces to it for all platforms, in IDE support and in business use. The Pro Git of four years ago
knows about none of that. One of the main aims of this new edition is to touch on all of those new
frontiers in the Git community.

The Open Source community using Git has also exploded. When I originally sat down to write the
book nearly five years ago (it took me a while to get the first version out), I had just started working
at a very little known company developing a Git hosting website called GitHub. At the time of
publishing there were maybe a few thousand people using the site and just four of us working on it.
As I write this introduction, GitHub is announcing our 10 millionth hosted project, with nearly 5
million registered developer accounts and over 230 employees. Love it or hate it, GitHub has
heavily changed large swaths of the Open Source community in a way that was barely conceivable
when I sat down to write the first edition.

I wrote a small section in the original version of Pro Git about GitHub as an example of hosted Git
which I was never very comfortable with. I didnÕt much like that I was writing what I felt was
essentially a community resource and also talking about my company in it. While I still donÕt love
that conflict of interests, the importance of GitHub in the Git community is unavoidable. Instead of
an example of Git hosting, I have decided to turn that part of the book into more deeply describing
what GitHub is and how to effectively use it. If you are going to learn how to use Git then knowing
how to use GitHub will help you take part in a huge community, which is valuable no matter which
Git host you decide to use for your own code.

The other large change in the time since the last publishing has been the development and rise of
the HTTP protocol for Git network transactions. Most of the examples in the book have been
changed to HTTP from SSH because itÕs so much simpler.

ItÕs been amazing to watch Git grow over the past few years from a relatively obscure version
control system to basically dominating commercial and open source version control. IÕm happy that
Pro Git has done so well and has also been able to be one of the few technical books on the market
that is both quite successful and fully open source.

I hope you enjoy this updated edition of Pro Git.

2

Preface by Ben Straub
The first edition of this book is what got me hooked on Git. This was my introduction to a style of
making software that felt more natural than anything I had seen before. I had been a developer for
several years by then, but this was the right turn that sent me down a much more interesting path
than the one I was on.

Now, years later, IÕm a contributor to a major Git implementation, IÕve worked for the largest Git
hosting company, and IÕve traveled the world teaching people about Git. When Scott asked if IÕd be
interested in working on the second edition, I didnÕt even have to think.

ItÕs been a great pleasure and privilege to work on this book. I hope it helps you as much as it did
me.

3

Dedications
To my wife, Becky, without whom this adventure never would have begun. Ñ Ben

This edition is dedicated to my girls. To my wife Jessica who has supported me for all of these years
and to my daughter Josephine, who will support me when IÕm too old to know whatÕs going on. Ñ
Scott

4

Contributors
Since this is an Open Source book, we have gotten several errata and content changes donated over
the years. Here are all the people who have contributed to the English version of Pro Git as an open
source project. Thank you everyone for helping make this a better book for everyone.

Contributors as of f71ba55:

5

Introduction
YouÕre about to spend several hours of your life reading about Git. LetÕs take a minute to explain
what we have in store for you. Here is a quick summary of the ten chapters and three appendices of
this book.

In Chapter 1 , weÕre going to cover Version Control Systems (VCSs) and Git basics!Ñ!no technical
stuff, just what Git is, why it came about in a land full of VCSs, what sets it apart, and why so many
people are using it. Then, weÕll explain how to download Git and set it up for the first time if you
donÕt already have it on your system.

In Chapter 2 , we will go over basic Git usage!Ñ!how to use Git in the 80% of cases youÕll encounter
most often. After reading this chapter, you should be able to clone a repository, see what has
happened in the history of the project, modify files, and contribute changes. If the book
spontaneously combusts at this point, you should already be pretty useful wielding Git in the time it
takes you to go pick up another copy.

Chapter 3 is about the branching model in Git, often described as GitÕs killer feature. Here youÕll
learn what truly sets Git apart from the pack. When youÕre done, you may feel the need to spend a
quiet moment pondering how you lived before Git branching was part of your life.

Chapter 4 will cover Git on the server. This chapter is for those of you who want to set up Git inside
your organization or on your own personal server for collaboration. We will also explore various
hosted options if you prefer to let someone else handle that for you.

Chapter 5 will go over in full detail various distributed workflows and how to accomplish them
with Git. When you are done with this chapter, you should be able to work expertly with multiple
remote repositories, use Git over email and deftly juggle numerous remote branches and
contributed patches.

Chapter 6 covers the GitHub hosting service and tooling in depth. We cover signing up for and
managing an account, creating and using Git repositories, common workflows to contribute to
projects and to accept contributions to yours, GitHubÕs programmatic interface and lots of little tips
to make your life easier in general.

Chapter 7 is about advanced Git commands. Here you will learn about topics like mastering the
scary 'reset' command, using binary search to identify bugs, editing history, revision selection in
detail, and a lot more. This chapter will round out your knowledge of Git so that you are truly a
master.

Chapter 8 is about configuring your custom Git environment. This includes setting up hook scripts
to enforce or encourage customized policies and using environment configuration settings so you
can work the way you want to. We will also cover building your own set of scripts to enforce a
custom committing policy.

Chapter 9 deals with Git and other VCSs. This includes using Git in a Subversion (SVN) world and
converting projects from other VCSs to Git. A lot of organizations still use SVN and are not about to
change, but by this point youÕll have learned the incredible power of Git!Ñ!and this chapter shows
you how to cope if you still have to use a SVN server. We also cover how to import projects from

6

several different systems in case you do convince everyone to make the plunge.

Chapter 10 delves into the murky yet beautiful depths of Git internals. Now that you know all
about Git and can wield it with power and grace, you can move on to discuss how Git stores its
objects, what the object model is, details of packfiles, server protocols, and more. Throughout the
book, we will refer to sections of this chapter in case you feel like diving deep at that point; but if
you are like us and want to dive into the technical details, you may want to read Chapter 10 first.
We leave that up to you.

In Appendix A , we look at a number of examples of using Git in various specific environments. We
cover a number of different GUIs and IDE programming environments that you may want to use
Git in and what is available for you. If youÕre interested in an overview of using Git in your shell,
your IDE, or your text editor, take a look here.

In Appendix B , we explore scripting and extending Git through tools like libgit2 and JGit. If youÕre
interested in writing complex and fast custom tools and need low-level Git access, this is where you
can see what that landscape looks like.

Finally, in Appendix C , we go through all the major Git commands one at a time and review where
in the book we covered them and what we did with them. If you want to know where in the book
we used any specific Git command you can look that up here.

LetÕs get started.

7

Getting Started
This chapter will be about getting started with Git. We will begin by explaining some background
on version control tools, then move on to how to get Git running on your system and finally how to
get it set up to start working with. At the end of this chapter you should understand why Git is
around, why you should use it and you should be all set up to do so.

About Version Control
What is Òversion controlÓ, and why should you care? Version control is a system that records
changes to a file or set of files over time so that you can recall specific versions later. For the
examples in this book, you will use software source code as the files being version controlled,
though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you would most certainly want to), a Version Control System (VCS) is a very wise thing to use. It
allows you to revert selected files back to a previous state, revert the entire project back to a
previous state, compare changes over time, see who last modified something that might be causing
a problem, who introduced an issue and when, and more. Using a VCS also generally means that if
you screw things up or lose files, you can easily recover. In addition, you get all this for very little
overhead.

Local Version Control Systems

Many peopleÕs version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if theyÕre clever). This approach is very common because it is so simple, but
it is also incredibly error prone. It is easy to forget which directory youÕre in and accidentally write
to the wrong file or copy over files you donÕt mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database that
kept all the changes to files under revision control.

8

Figure 1. Local version control

One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a special
format on disk; it can then re-create what any file looked like at any point in time by adding up all
the patches.

Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that contains
all the versioned files, and a number of clients that check out files from that central place. For many
years, this has been the standard for version control.

9

https://www.gnu.org/software/rcs/

Figure 2. Centralized version control

This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and itÕs far easier to administer a CVCS than it is to deal with local databases
on every client.

However, this setup also has some serious downsides. The most obvious is the single point of failure
that the centralized server represents. If that server goes down for an hour, then during that hour
nobody can collaborate at all or save versioned changes to anything theyÕre working on. If the hard
disk the central database is on becomes corrupted, and proper backups havenÕt been kept, you lose
absolutely everything!Ñ!the entire history of the project except whatever single snapshots people
happen to have on their local machines. Local VCSs suffer from this same problem!Ñ!whenever you
have the entire history of the project in a single place, you risk losing everything.

Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git, Mercurial,
Bazaar or Darcs), clients donÕt just check out the latest snapshot of the files; rather, they fully
mirror the repository, including its full history. Thus, if any server dies, and these systems were
collaborating via that server, any of the client repositories can be copied back up to the server to
restore it. Every clone is really a full backup of all the data.

10

Figure 3. Distributed version control

Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
arenÕt possible in centralized systems, such as hierarchical models.

11

A Short History of Git
As with many great things in life, Git began with a bit of creative destruction and fiery controversy.

The Linux kernel is an open source software project of fairly large scope. During the early years of
the Linux kernel maintenance (1991Ð2002), changes to the software were passed around as patches
and archived files. In 2002, the Linux kernel project began using a proprietary DVCS called
BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the
commercial company that developed BitKeeper broke down, and the toolÕs free-of-charge status
was revoked. This prompted the Linux development community (and in particular Linus Torvalds,
the creator of Linux) to develop their own tool based on some of the lessons they learned while
using BitKeeper. Some of the goals of the new system were as follows:

¥ Speed

¥ Simple design

¥ Strong support for non-linear development (thousands of parallel branches)

¥ Fully distributed

¥ Able to handle large projects like the Linux kernel efficiently (speed and data size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. ItÕs amazingly fast, itÕs very efficient with large projects, and it has an incredible
branching system for non-linear development (See Git Branching).

What is Git?
So, what is Git in a nutshell? This is an important section to absorb, because if you understand what
Git is and the fundamentals of how it works, then using Git effectively will probably be much easier
for you. As you learn Git, try to clear your mind of the things you may know about other VCSs, such
as CVS, Subversion or Perforce!Ñ!doing so will help you avoid subtle confusion when using the tool.
Even though GitÕs user interface is fairly similar to these other VCSs, Git stores and thinks about
information in a very different way, and understanding these differences will help you avoid
becoming confused while using it.

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the
information they store as a set of files and the changes made to each file over time (this is
commonly described as delta-based version control).

12

Figure 4. Storing data as changes to a base version of each file

Git doesnÕt think of or store its data this way. Instead, Git thinks of its data more like a series of
snapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesnÕt store the file again,
just a link to the previous identical file it has already stored. Git thinks about its data more like a
stream of snapshots .

Figure 5. Storing data as snapshots of the project over time

This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. WeÕll explore some of the benefits you gain by thinking of your
data this way when we cover Git branching in Git Branching .

Nearly Every Operation Is Local

Most operations in Git need only local files and resources to operate!Ñ!generally no information is
needed from another computer on your network. If youÕre used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

13

For example, to browse the history of the project, Git doesnÕt need to go out to the server to get the
history and display it for you!Ñ!it simply reads it directly from your local database. This means you
see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a local
difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you canÕt do if youÕre offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily (to your local copy,
remember?) until you get to a network connection to upload. If you go home and canÕt get your VPN
client working properly, you can still work. In many other systems, doing so is either impossible or
painful. In Perforce, for example, you canÕt do much when you arenÕt connected to the server; in
Subversion and CVS, you can edit files, but you canÕt commit changes to your database (because
your database is offline). This may not seem like a huge deal, but you may be surprised what a big
difference it can make.

Git Has Integrity

Everything in Git is checksummed before it is stored and is then referred to by that checksum. This
means itÕs impossible to change the contents of any file or directory without Git knowing about it.
This functionality is built into Git at the lowest levels and is integral to its philosophy. You canÕt lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0Ð9 and aÐf) and calculated based on the contents of a
file or directory structure in Git. A SHA-1 hash looks something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything in its database not by file name but by the hash value of its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is hard to get the
system to do anything that is not undoable or to make it erase data in any way. As with any VCS, you
can lose or mess up changes you havenÕt committed yet, but after you commit a snapshot into Git, it
is very difficult to lose, especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover
data that seems lost, see Undoing Things .

The Three States

Pay attention now!Ñ!here is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: modified ,
staged, and committed :

14

¥ Modified means that you have changed the file but have not committed it to your database yet.

¥ Staged means that you have marked a modified file in its current version to go into your next
commit snapshot.

¥ Committed means that the data is safely stored in your local database.

This leads us to the three main sections of a Git project: the working tree, the staging area, and the
Git directory.

Figure 6. Working tree, staging area, and Git directory

The working tree is a single checkout of one version of the project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that stores information about
what will go into your next commit. Its technical name in Git parlance is the ÒindexÓ, but the phrase
Òstaging areaÓ works just as well.

The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another
computer.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage just those changes you want to be part of your next commit, which adds
only those changes to the staging area.

3. You do a commit, which takes the files as they are in the staging area and stores that snapshot
permanently to your Git directory.

If a particular version of a file is in the Git directory, itÕs considered committed . If it has been

15

modified and was added to the staging area, it is staged. And if it was changed since it was checked
out but has not been staged, it is modified . In Git Basics, youÕll learn more about these states and
how you can either take advantage of them or skip the staged part entirely.

The Command Line
There are a lot of different ways to use Git. There are the original command-line tools, and there
are many graphical user interfaces of varying capabilities. For this book, we will be using Git on the
command line. For one, the command line is the only place you can run all Git commands!Ñ!most
of the GUIs implement only a partial subset of Git functionality for simplicity. If you know how to
run the command-line version, you can probably also figure out how to run the GUI version, while
the opposite is not necessarily true. Also, while your choice of graphical client is a matter of
personal taste, all users will have the command-line tools installed and available.

So we will expect you to know how to open Terminal in macOS or Command Prompt or PowerShell
in Windows. If you donÕt know what weÕre talking about here, you may need to stop and research
that quickly so that you can follow the rest of the examples and descriptions in this book.

Installing Git
Before you start using Git, you have to make it available on your computer. Even if itÕs already
installed, itÕs probably a good idea to update to the latest version. You can either install it as a
package or via another installer, or download the source code and compile it yourself.

!
This book was written using Git version 2.8.0. Though most of the commands we
use should work even in ancient versions of Git, some of them might not or might
act slightly differently if youÕre using an older version. Since Git is quite excellent
at preserving backwards compatibility, any version after 2.8 should work just fine.

Installing on Linux

If you want to install the basic Git tools on Linux via a binary installer, you can generally do so
through the package management tool that comes with your distribution. If youÕre on Fedora (or
any closely-related RPM-based distribution, such as RHEL or CentOS), you can use dnf :

$ sudo dnf install git-all

If youÕre on a Debian-based distribution, such as Ubuntu, try apt :

$ sudo apt install git-all

For more options, there are instructions for installing on several different Unix distributions on the
Git website, at https://git-scm.com/download/linux .

16

https://git-scm.com/download/linux

Installing on macOS

There are several ways to install Git on a Mac. The easiest is probably to install the Xcode Command
Line Tools. On Mavericks (10.9) or above you can do this simply by trying to run git from the
Terminal the very first time.

$ git --version

If you donÕt have it installed already, it will prompt you to install it.

If you want a more up to date version, you can also install it via a binary installer. A macOS Git
installer is maintained and available for download at the Git website, at https://git-scm.com/
download/mac .

Figure 7. Git macOS Installer

Installing on Windows

There are also a few ways to install Git on Windows. The most official build is available for
download on the Git website. Just go to https://git-scm.com/download/win and the download will
start automatically. Note that this is a project called Git for Windows, which is separate from Git
itself; for more information on it, go to https://gitforwindows.org .

To get an automated installation you can use the Git Chocolatey package . Note that the Chocolatey
package is community maintained.

17

https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/win
https://gitforwindows.org
https://chocolatey.org/packages/git

Installing from Source

Some people may instead find it useful to install Git from source, because youÕll get the most recent
version. The binary installers tend to be a bit behind, though as Git has matured in recent years,
this has made less of a difference.

If you do want to install Git from source, you need to have the following libraries that Git depends
on: autotools, curl, zlib, openssl, expat, and libiconv. For example, if youÕre on a system that has dnf
(such as Fedora) or apt-get (such as a Debian-based system), you can use one of these commands to
install the minimal dependencies for compiling and installing the Git binaries:

$ sudo dnf install dh-autoreconf curl-devel expat-devel gettext-devel \
Ê openssl-devel perl-devel zlib-devel
$ sudo apt-get install dh-autoreconf libcurl4-gnutls-dev libexpat1-dev \
Ê gettext libz-dev libssl-dev

In order to be able to add the documentation in various formats (doc, html, info), these additional
dependencies are required:

$ sudo dnf install asciidoc xmlto docbook2X
$ sudo apt-get install asciidoc xmlto docbook2x

! Users of RHEL and RHEL-derivatives like CentOS and Scientific Linux will have to
enable the EPEL repository to download the docbook2X package.

If youÕre using a Debian-based distribution (Debian/Ubuntu/Ubuntu-derivatives), you also need the
install-info package:

$ sudo apt-get install install-info

If youÕre using a RPM-based distribution (Fedora/RHEL/RHEL-derivatives), you also need the getopt
package (which is already installed on a Debian-based distro):

$ sudo dnf install getopt

Additionally, if youÕre using Fedora/RHEL/RHEL-derivatives, you need to do this:

$ sudo ln -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

due to binary name differences.

When you have all the necessary dependencies, you can go ahead and grab the latest tagged release
tarball from several places. You can get it via the kernel.org site, at https://www.kernel.org/pub/
software/scm/git , or the mirror on the GitHub website, at https://github.com/git/git/releases . ItÕs

18

https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F
https://www.kernel.org/pub/software/scm/git
https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/releases

generally a little clearer what the latest version is on the GitHub page, but the kernel.org page also
has release signatures if you want to verify your download.

Then, compile and install:

$ tar -zxf git-2.8.0.tar.gz
$ cd git-2.8.0
$ make configure
$./configure --prefix=/usr
$ make all doc info
$ sudo make install install-doc install-html install-info

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

First-Time Git Setup
Now that you have Git on your system, youÕll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; theyÕll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that control
all aspects of how Git looks and operates. These variables can be stored in three different places:

1. [path]/etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config , it reads and writes from this file
specifically. Because this is a system configuration file, you would need administrative or
superuser privilege to make changes to it.

2. ~/.gitconfig or ~/.config/git/config file: Values specific personally to you, the user. You can
make Git read and write to this file specifically by passing the --global option, and this affects
all of the repositories you work with on your system.

3. config file in the Git directory (that is, .git/config) of whatever repository youÕre currently
using: Specific to that single repository. You can force Git to read from and write to this file with
the --local option, but that is in fact the default. Unsurprisingly, you need to be located
somewhere in a Git repository for this option to work properly.

Each level overrides values in the previous level, so values in .git/config trump those in
[path]/etc/gitconfig .

On Windows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Users\$USER for
most people). It also still looks for [path]/etc/gitconfig , although itÕs relative to the MSys root,
which is wherever you decide to install Git on your Windows system when you run the installer. If
you are using version 2.x or later of Git for Windows, there is also a system-level config file at
C:\Documents and Settings\All Users\Application Data\Git\config on Windows XP, and in

19

C:\ProgramData\Git\config on Windows Vista and newer. This config file can only be changed by git
config -f <file> as an admin.

You can view all of your settings and where they are coming from using:

$ git config --list --show-origin

Your Identity

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and itÕs immutably baked into the
commits you start creating:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or email address for specific projects, you can run the command without the
--global option when youÕre in that project.

Many of the GUI tools will help you do this when you first run them.

Your Editor

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your systemÕs default editor.

If you want to use a different text editor, such as Emacs, you can do the following:

$ git config --global core.editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to its
executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesnÕt support all plug-ins. If you are on a
32-bit Windows system, or you have a 64-bit editor on a 64-bit system, youÕll type something like
this:

$ git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe'
-multiInst -notabbar -nosession -noPlugin"

! Vim, Emacs and Notepad++ are popular text editors often used by developers on
Unix-based systems like Linux and macOS or a Windows system. If you are using

20

another editor, or a 32-bit version, please find specific instructions for how to set
up your favorite editor with Git in git config core.editor commands .

"
You may find, if you donÕt setup your editor like this, you get into a really
confusing state when Git attempts to launch it. An example on a Windows system
may include a prematurely terminated Git operation during a Git initiated edit.

Your default branch name

By default Git will create a branch called master when you create a new repository with git init .
From Git version 2.28 onwards, you can set a different name for the initial branch.

To set main as the default branch name do:

$ git config --global init.defaultBranch main

Checking Your Settings

If you want to check your configuration settings, you can use the git config --list command to list
all the settings Git can find at that point:

$ git config --list
user.name=John Doe
user.email=johndoe@example.com
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto
...

You may see keys more than once, because Git reads the same key from different files
([path]/etc/gitconfig and ~/.gitconfig , for example). In this case, Git uses the last value for each
unique key it sees.

You can also check what Git thinks a specific keyÕs value is by typing git config <key> :

$ git config user.name
John Doe

!

Since Git might read the same configuration variable value from more than one
file, itÕs possible that you have an unexpected value for one of these values and
you donÕt know why. In cases like that, you can query Git as to the origin for that
value, and it will tell you which configuration file had the final say in setting that
value:

21

$ git config --show-origin rerere.autoUpdate
file:/home/johndoe/.gitconfig false

Getting Help
If you ever need help while using Git, there are three equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the git config command by running this:

$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book arenÕt enough and you need in-person help, you can try the #git , #github , or #gitlab
channels on the Libera Chat IRC server, which can be found at https://libera.chat/ . These channels
are regularly filled with hundreds of people who are all very knowledgeable about Git and are
often willing to help.

In addition, if you donÕt need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise ÒhelpÓ output with the -h
option, as in:

$ git add -h
usage: git add [<options>] [--] <pathspec>...

Ê -n, --dry-run dry run
Ê -v, --verbose be verbose

Ê -i, --interactive interactive picking
Ê -p, --patch select hunks interactively
Ê -e, --edit edit current diff and apply
Ê -f, --force allow adding otherwise ignored files
Ê -u, --update update tracked files
Ê --renormalize renormalize EOL of tracked files (implies -u)
Ê -N, --intent-to-add record only the fact that the path will be added later
Ê -A, --all add changes from all tracked and untracked files
Ê --ignore-removal ignore paths removed in the working tree (same as --no
-all)
Ê --refresh don't add, only refresh the index
Ê --ignore-errors just skip files which cannot be added because of
errors

22

https://libera.chat/

Ê --ignore-missing check if - even missing - files are ignored in dry run
Ê --chmod (+|-)x override the executable bit of the listed files
Ê --pathspec-from-file <file> read pathspec from file
Ê --pathspec-file-nul with --pathspec-from-file, pathspec elements are
separated with NUL character

Summary
You should have a basic understanding of what Git is and how itÕs different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system thatÕs set up with your personal identity. ItÕs now time to learn some
Git basics.

23

Git Basics
If you can read only one chapter to get going with Git, this is it. This chapter covers every basic
command you need to do the vast majority of the things youÕll eventually spend your time doing
with Git. By the end of the chapter, you should be able to configure and initialize a repository, begin
and stop tracking files, and stage and commit changes. WeÕll also show you how to set up Git to
ignore certain files and file patterns, how to undo mistakes quickly and easily, how to browse the
history of your project and view changes between commits, and how to push and pull from remote
repositories.

Getting a Git Repository
You typically obtain a Git repository in one of two ways:

1. You can take a local directory that is currently not under version control, and turn it into a Git
repository, or

2. You can clone an existing Git repository from elsewhere.

In either case, you end up with a Git repository on your local machine, ready for work.

Initializing a Repository in an Existing Directory

If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that projectÕs directory. If youÕve never done this, it
looks a little different depending on which system youÕre running:

for Linux:

$ cd /home/user/my_project

for macOS:

$ cd /Users/user/my_project

for Windows:

$ cd C:/Users/user/my_project

and type:

$ git init

This creates a new subdirectory named .git that contains all of your necessary repository files!Ñ!a
Git repository skeleton. At this point, nothing in your project is tracked yet. See Git Internals for

24

more information about exactly what files are contained in the .git directory you just created.

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. You can accomplish that with a few
git add commands that specify the files you want to track, followed by a git commit :

$ git add *.c
$ git add LICENSE
$ git commit -m 'Initial project version'

WeÕll go over what these commands do in just a minute. At this point, you have a Git repository
with tracked files and an initial commit.

Cloning an Existing Repository

If you want to get a copy of an existing Git repository!Ñ!for example, a project youÕd like to
contribute to!Ñ!the command you need is git clone . If youÕre familiar with other VCSs such as
Subversion, youÕll notice that the command is "clone" and not "checkout". This is an important
distinction!Ñ!instead of getting just a working copy, Git receives a full copy of nearly all data that
the server has. Every version of every file for the history of the project is pulled down by default
when you run git clone . In fact, if your server disk gets corrupted, you can often use nearly any of
the clones on any client to set the server back to the state it was in when it was cloned (you may
lose some server-side hooks and such, but all the versioned data would be there!Ñ!see Getting Git
on a Server for more details).

You clone a repository with git clone <url> . For example, if you want to clone the Git linkable
library called libgit2 , you can do so like this:

$ git clone https://github.com/libgit2/libgit2

That creates a directory named libgit2 , initializes a .git directory inside it, pulls down all the data
for that repository, and checks out a working copy of the latest version. If you go into the new
libgit2 directory that was just created, youÕll see the project files in there, ready to be worked on or
used.

If you want to clone the repository into a directory named something other than libgit2 , you can
specify the new directory name as an additional argument:

$ git clone https://github.com/libgit2/libgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called mylibgit .

Git has a number of different transfer protocols you can use. The previous example uses the
https:// protocol, but you may also see git:// or user@server:path/to/repo.git , which uses the SSH
transfer protocol. Getting Git on a Server will introduce all of the available options the server can
set up to access your Git repository and the pros and cons of each.

25

Recording Changes to the Repository
At this point, you should have a bona fide Git repository on your local machine, and a checkout or
working copy of all of its files in front of you. Typically, youÕll want to start making changes and
committing snapshots of those changes into your repository each time the project reaches a state
you want to record.

Remember that each file in your working directory can be in one of two states: tracked or
untracked . Tracked files are files that were in the last snapshot, as well as any newly staged files;
they can be unmodified, modified, or staged. In short, tracked files are files that Git knows about.

Untracked files are everything else!Ñ!any files in your working directory that were not in your last
snapshot and are not in your staging area. When you first clone a repository, all of your files will be
tracked and unmodified because Git just checked them out and you havenÕt edited anything.

As you edit files, Git sees them as modified, because youÕve changed them since your last commit.
As you work, you selectively stage these modified files and then commit all those staged changes,
and the cycle repeats.

Figure 8. The lifecycle of the status of your files

Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status command. If you
run this command directly after a clone, you should see something like this:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working tree clean

This means you have a clean working directory; in other words, none of your tracked files are
modified. Git also doesnÕt see any untracked files, or they would be listed here. Finally, the
command tells you which branch youÕre on and informs you that it has not diverged from the same

26

branch on the server. For now, that branch is always master, which is the default; you wonÕt worry
about it here. Git Branching will go over branches and references in detail.

LetÕs say you add a new file to your project, a simple README file. If the file didnÕt exist before, and
you run git status , you see your untracked file like so:

$ echo 'My Project' > README
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
Ê (use "git add <file>..." to include in what will be committed)

Ê README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because itÕs under the ÒUntracked filesÓ heading
in your status output. Untracked basically means that Git sees a file you didnÕt have in the previous
snapshot (commit), and which hasnÕt yet been staged; Git wonÕt start including it in your commit
snapshots until you explicitly tell it to do so. It does this so you donÕt accidentally begin including
generated binary files or other files that you did not mean to include. You do want to start including
README, so letÕs start tracking the file.

Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking the README
file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged
to be committed:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git restore --staged <file>..." to unstage)

Ê new file: README

You can tell that itÕs staged because itÕs under the ÒChanges to be committedÓ heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the
subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran git
add <files> !Ñ!that was to begin tracking files in your directory. The git add command takes a path

27

name for either a file or a directory; if itÕs a directory, the command adds all the files in that
directory recursively.

Staging Modified Files

LetÕs change a file that was already tracked. If you change a previously tracked file called
CONTRIBUTING.md and then run your git status command again, you get something that looks like
this:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê new file: README

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

The CONTRIBUTING.md file appears under a section named ÒChanges not staged for commitÓ!Ñ!which
means that a file that is tracked has been modified in the working directory but not yet staged. To
stage it, you run the git add command. git add is a multipurpose command!Ñ!you use it to begin
tracking new files, to stage files, and to do other things like marking merge-conflicted files as
resolved. It may be helpful to think of it more as Òadd precisely this content to the next commitÓ
rather than Òadd this file to the projectÓ. LetÕs run git add now to stage the CONTRIBUTING.md file, and
then run git status again:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê new file: README
Ê modified: CONTRIBUTING.md

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and
make that change, and youÕre ready to commit. However, letÕs run git status one more time:

$ vim CONTRIBUTING.md
$ git status

28

On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê new file: README
Ê modified: CONTRIBUTING.md

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It
turns out that Git stages a file exactly as it is when you run the git add command. If you commit
now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it will
go into the commit, not the version of the file as it looks in your working directory when you run
git commit . If you modify a file after you run git add , you have to run git add again to stage the
latest version of the file:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê new file: README
Ê modified: CONTRIBUTING.md

Short Status

While the git status output is pretty comprehensive, itÕs also quite wordy. Git also has a short
status flag so you can see your changes in a more compact way. If you run git status -s or git
status --short you get a far more simplified output from the command:

$ git status -s
ÊM README
MM Rakefile
A lib/git.rb
M lib/simplegit.rb
?? LICENSE.txt

New files that arenÕt tracked have a ?? next to them, new files that have been added to the staging
area have an A, modified files have an M and so on. There are two columns to the output!Ñ!the left-
hand column indicates the status of the staging area and the right-hand column indicates the status

29

of the working tree. So for example in that output, the README file is modified in the working
directory but not yet staged, while the lib/simplegit.rb file is modified and staged. The Rakefile
was modified, staged and then modified again, so there are changes to it that are both staged and
unstaged.

Ignoring Files

Often, youÕll have a class of files that you donÕt want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore . Here is an example .gitignore file:

$ cat .gitignore
*.[oa]
*~

The first line tells Git to ignore any files ending in Ò.oÓ or Ò.aÓ!Ñ!object and archive files that may be
the product of building your code. The second line tells Git to ignore all files whose names end with
a tilde (~), which is used by many text editors such as Emacs to mark temporary files. You may also
include a log, tmp, or pid directory; automatically generated documentation; and so on. Setting up a
.gitignore file for your new repository before you get going is generally a good idea so you donÕt
accidentally commit files that you really donÕt want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

¥ Blank lines or lines starting with # are ignored.

¥ Standard glob patterns work, and will be applied recursively throughout the entire working
tree.

¥ You can start patterns with a forward slash (/) to avoid recursivity.

¥ You can end patterns with a forward slash (/) to specify a directory.

¥ You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or
more characters; [abc] matches any character inside the brackets (in this case a, b, or c); a question
mark (?) matches a single character; and brackets enclosing characters separated by a hyphen ([0-
9]) matches any character between them (in this case 0 through 9). You can also use two asterisks to
match nested directories; a/**/z would match a/z , a/b/z , a/b/c/z , and so on.

Here is another example .gitignore file:

ignore all .a files
*.a

but do track lib.a, even though you're ignoring .a files above
!lib.a

30

only ignore the TODO file in the current directory, not subdir/TODO
/TODO

ignore all files in any directory named build
build/

ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

!
GitHub maintains a fairly comprehensive list of good .gitignore file examples for
dozens of projects and languages at https://github.com/github/gitignore if you want
a starting point for your project.

!

In the simple case, a repository might have a single .gitignore file in its root
directory, which applies recursively to the entire repository. However, it is also
possible to have additional .gitignore files in subdirectories. The rules in these
nested .gitignore files apply only to the files under the directory where they are
located. The Linux kernel source repository has 206 .gitignore files.

It is beyond the scope of this book to get into the details of multiple .gitignore
files; see man gitignore for the details.

Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you!Ñ!you want to know exactly what you changed, not
just which files were changed!Ñ!you can use the git diff command. WeÕll cover git diff in more
detail later, but youÕll probably use it most often to answer these two questions: What have you
changed but not yet staged? And what have you staged that you are about to commit? Although git
status answers those questions very generally by listing the file names, git diff shows you the
exact lines added and removed!Ñ!the patch, as it were.

LetÕs say you edit and stage the README file again and then edit the CONTRIBUTING.md file without
staging it. If you run your git status command, you once again see something like this:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê modified: README

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

31

https://github.com/github/gitignore

Ê modified: CONTRIBUTING.md

To see what youÕve changed but not yet staged, type git diff with no other arguments:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
ÊPlease include a nice description of your changes when you submit your PR;
Êif we have to read the whole diff to figure out why you're contributing
Êin the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

ÊIf you are starting to work on a particular area, feel free to submit a PR
Êthat highlights your work in progress (and note in the PR title that it's

That command compares what is in your working directory with what is in your staging area. The
result tells you the changes youÕve made that you havenÕt yet staged.

If you want to see what youÕve staged that will go into your next commit, you can use git diff
--staged . This command compares your staged changes to your last commit:

$ git diff --staged
diff --git a/README b/README
new file mode 100644
index 0000000..03902a1
--- /dev/null
+++ b/README
@@ -0,0 +1 @@
+My Project

ItÕs important to note that git diff by itself doesnÕt show all changes made since your last
commit!Ñ!only changes that are still unstaged. If youÕve staged all of your changes, git diff will
give you no output.

For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to
see the changes in the file that are staged and the changes that are unstaged. If our environment
looks like this:

$ git add CONTRIBUTING.md
$ echo '# test line' >> CONTRIBUTING.md
$ git status

32

On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê modified: CONTRIBUTING.md

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

Now you can use git diff to see what is still unstaged:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 643e24f..87f08c8 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -119,3 +119,4 @@ at the
Ê## Starter Projects

ÊSee our [projects
list](https://github.com/libgit2/libgit2/blob/development/PROJECTS.md).
+# test line

and git diff --cached to see what youÕve staged so far (--staged and --cached are synonyms):

$ git diff --cached
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
ÊPlease include a nice description of your changes when you submit your PR;
Êif we have to read the whole diff to figure out why you're contributing
Êin the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

ÊIf you are starting to work on a particular area, feel free to submit a PR
Êthat highlights your work in progress (and note in the PR title that it's

!
Git Diff in an External Tool

We will continue to use the git diff command in various ways throughout the rest

33

of the book. There is another way to look at these diffs if you prefer a graphical or
external diff viewing program instead. If you run git difftool instead of git diff ,
you can view any of these diffs in software like emerge, vimdiff and many more
(including commercial products). Run git difftool --tool-help to see what is
available on your system.

Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes. Remember
that anything that is still unstaged!Ñ!any files you have created or modified that you havenÕt run
git add on since you edited them!Ñ!wonÕt go into this commit. They will stay as modified files on
your disk. In this case, letÕs say that the last time you ran git status , you saw that everything was
staged, so youÕre ready to commit your changes. The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice.

!
This is set by your shellÕs EDITOR environment variable!Ñ!usually vim or emacs,
although you can configure it with whatever you want using the git config
--global core.editor command as you saw in Getting Started .

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Your branch is up-to-date with 'origin/master'.
#
Changes to be committed:
new file: README
modified: CONTRIBUTING.md
#
~
~
~
".git/COMMIT_EDITMSG" 9L, 283C

You can see that the default commit message contains the latest output of the git status command
commented out and one empty line on top. You can remove these comments and type your commit
message, or you can leave them there to help you remember what youÕre committing.

!
For an even more explicit reminder of what youÕve modified, you can pass the -v
option to git commit . Doing so also puts the diff of your change in the editor so you
can see exactly what changes youÕre committing.

34

When you exit the editor, Git creates your commit with that commit message (with the comments
and diff stripped out).

Alternatively, you can type your commit message inline with the commit command by specifying it
after a -m flag, like this:

$ git commit -m "Story 182: fix benchmarks for speed"
[master 463dc4f] Story 182: fix benchmarks for speed
Ê2 files changed, 2 insertions(+)
Êcreate mode 100644 README

Now youÕve created your first commit! You can see that the commit has given you some output
about itself: which branch you committed to (master), what SHA-1 checksum the commit has
(463dc4f), how many files were changed, and statistics about lines added and removed in the
commit.

Remember that the commit records the snapshot you set up in your staging area. Anything you
didnÕt stage is still sitting there modified; you can do another commit to add it to your history. Every
time you perform a commit, youÕre recording a snapshot of your project that you can revert to or
compare to later.

Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them, the staging
area is sometimes a bit more complex than you need in your workflow. If you want to skip the
staging area, Git provides a simple shortcut. Adding the -a option to the git commit command makes
Git automatically stage every file that is already tracked before doing the commit, letting you skip
the git add part:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

no changes added to commit (use "git add" and/or "git commit -a")
$ git commit -a -m 'Add new benchmarks'
[master 83e38c7] Add new benchmarks
Ê1 file changed, 5 insertions(+), 0 deletions(-)

Notice how you donÕt have to run git add on the CONTRIBUTING.md file in this case before you commit.
ThatÕs because the -a flag includes all changed files. This is convenient, but be careful; sometimes
this flag will cause you to include unwanted changes.

35

Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accurately, remove it
from your staging area) and then commit. The git rm command does that, and also removes the file
from your working directory so you donÕt see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the ÒChanges not
staged for commitÓ (that is, unstaged) area of your git status output:

$ rm PROJECTS.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
Ê (use "git add/rm <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

Then, if you run git rm , it stages the fileÕs removal:

$ git rm PROJECTS.md
rm 'PROJECTS.md'
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê deleted: PROJECTS.md

The next time you commit, the file will be gone and no longer tracked. If you modified the file or
had already added it to the staging area, you must force the removal with the -f option. This is a
safety feature to prevent accidental removal of data that hasnÕt yet been recorded in a snapshot and
that canÕt be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have
Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore
file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use the
--cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can do

36

things such as:

$ git rm log/*.log

Note the backslash (\) in front of the * . This is necessary because Git does its own filename
expansion in addition to your shellÕs filename expansion. This command removes all files that have
the .log extension in the log/ directory. Or, you can do something like this:

$ git rm *~

This command removes all files whose names end with a ~.

Moving Files

Unlike many other VCSs, Git doesnÕt explicitly track file movement. If you rename a file in Git, no
metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart about
figuring that out after the fact!Ñ!weÕll deal with detecting file movement a bit later.

Thus itÕs a bit confusing that Git has a mv command. If you want to rename a file in Git, you can run
something like:

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status, youÕll see that Git
considers it a renamed file:

$ git mv README.md README
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê renamed: README.md -> README

However, this is equivalent to running something like this:

$ mv README.md README
$ git rm README.md
$ git add README

Git figures out that itÕs a rename implicitly, so it doesnÕt matter if you rename a file that way or with
the mv command. The only real difference is that git mv is one command instead of three!Ñ!itÕs a
convenience function. More importantly, you can use any tool you like to rename a file, and address

37

the add/rm later, before you commit.

Viewing the Commit History
After you have created several commits, or if you have cloned a repository with an existing commit
history, youÕll probably want to look back to see what has happened. The most basic and powerful
tool to do this is the git log command.

These examples use a very simple project called ÒsimplegitÓ. To get the project, run:

$ git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

$ git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Ê Change version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Ê Remove unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

Ê Initial commit

By default, with no arguments, git log lists the commits made in that repository in reverse
chronological order; that is, the most recent commits show up first. As you can see, this command
lists each commit with its SHA-1 checksum, the authorÕs name and email, the date written, and the
commit message.

A huge number and variety of options to the git log command are available to show you exactly
what youÕre looking for. Here, weÕll show you some of the most popular.

One of the more helpful options is -p or --patch , which shows the difference (the patch output)
introduced in each commit. You can also limit the number of log entries displayed, such as using -2
to show only the last two entries.

$ git log -p -2
commit ca82a6dff817ec66f44342007202690a93763949

38

Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Ê Change version number

diff --git a/Rakefile b/Rakefile
index a874b73..8f94139 100644
--- a/Rakefile
+++ b/Rakefile
@@ -5,7 +5,7 @@ require 'rake/gempackagetask'
Êspec = Gem::Specification.new do |s|
Ê s.platform = Gem::Platform::RUBY
Ê s.name = "simplegit"
- s.version = "0.1.0"
+ s.version = "0.1.1"
Ê s.author = "Scott Chacon"
Ê s.email = "schacon@gee-mail.com"
Ê s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Ê Remove unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb
index a0a60ae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/lib/simplegit.rb
@@ -18,8 +18,3 @@ class SimpleGit
Ê end

Êend
-
-if $0 == __FILE__
- git = SimpleGit.new
- puts git.show
-end

This option displays the same information but with a diff directly following each entry. This is very
helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. You can also use a series of summarizing options with git log . For
example, if you want to see some abbreviated stats for each commit, you can use the --stat option:

$ git log --stat
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Ê Change version number

39

ÊRakefile | 2 +-
Ê1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Ê Remove unnecessary test

Êlib/simplegit.rb | 5 -----
Ê1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

Ê Initial commit

ÊREADME | 6 ++++++
ÊRakefile | 23 +++++++++++++++++++++++
Êlib/simplegit.rb | 25 +++++++++++++++++++++++++
Ê3 files changed, 54 insertions(+)

As you can see, the --stat option prints below each commit entry a list of modified files, how many
files were changed, and how many lines in those files were added and removed. It also puts a
summary of the information at the end.

Another really useful option is --pretty . This option changes the log output to formats other than
the default. A few prebuilt option values are available for you to use. The oneline value for this
option prints each commit on a single line, which is useful if youÕre looking at a lot of commits. In
addition, the short , full , and fuller values show the output in roughly the same format but with
less or more information, respectively:

$ git log --pretty=oneline
ca82a6dff817ec66f44342007202690a93763949 Change version number
085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 Remove unnecessary test
a11bef06a3f659402fe7563abf99ad00de2209e6 Initial commit

The most interesting option value is format , which allows you to specify your own log output
format. This is especially useful when youÕre generating output for machine parsing!Ñ!because you
specify the format explicitly, you know it wonÕt change with updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"
ca82a6d - Scott Chacon, 6 years ago : Change version number
085bb3b - Scott Chacon, 6 years ago : Remove unnecessary test
a11bef0 - Scott Chacon, 6 years ago : Initial commit

40

Useful specifiers for git log --pretty=format lists some of the more useful specifiers that format
takes.

Table 1. Useful specifiers for git log --pretty=format

Specifier Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author email

%ad Author date (format respects the --date=option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

You may be wondering what the difference is between author and committer . The author is the
person who originally wrote the work, whereas the committer is the person who last applied the
work. So, if you send in a patch to a project and one of the core members applies the patch, both of
you get credit!Ñ!you as the author, and the core member as the committer. WeÕll cover this
distinction a bit more in Distributed Git .

The oneline and format option values are particularly useful with another log option called --graph .
This option adds a nice little ASCII graph showing your branch and merge history:

$ git log --pretty=format:"%h %s" --graph
* 2d3acf9 Ignore errors from SIGCHLD on trap
* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit
|\
| * 420eac9 Add method for getting the current branch
* | 30e367c Timeout code and tests
* | 5a09431 Add timeout protection to grit
* | e1193f8 Support for heads with slashes in them
|/
* d6016bc Require time for xmlschema
* 11d191e Merge branch 'defunkt' into local

41

This type of output will become more interesting as we go through branching and merging in the
next chapter.

Those are only some simple output-formatting options to git log !Ñ!there are many more. Common
options to git log lists the options weÕve covered so far, as well as some other common formatting
options that may be useful, along with how they change the output of the log command.

Table 2. Common options to git log

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the --stat command.

--name-only Show the list of files modified after the commit information.

--name-status Show the list of files affected with added/modified/deleted information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum instead of all 40.

--relative-date Display the date in a relative format (for example, Ò2 weeks agoÓ) instead of
using the full date format.

--graph Display an ASCII graph of the branch and merge history beside the log output.

--pretty Show commits in an alternate format. Option values include oneline, short,
full, fuller, and format (where you specify your own format).

--oneline Shorthand for --pretty=oneline --abbrev-commit used together.

Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting options; that is,
options that let you show only a subset of commits. YouÕve seen one such option already!Ñ!the -2
option, which displays only the last two commits. In fact, you can do -<n>, where n is any integer to
show the last n commits. In reality, youÕre unlikely to use that often, because Git by default pipes all
output through a pager so you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful. For example, this
command gets the list of commits made in the last two weeks:

$ git log --since=2.weeks

This command works with lots of formats!Ñ!you can specify a specific date like "2008-01-15" , or a
relative date such as "2 years 1 day 3 minutes ago" .

You can also filter the list to commits that match some search criteria. The --author option allows
you to filter on a specific author, and the --grep option lets you search for keywords in the commit
messages.

! You can specify more than one instance of both the --author and --grep search

42

criteria, which will limit the commit output to commits that match any of the
--author patterns and any of the --grep patterns; however, adding the --all-match
option further limits the output to just those commits that match all --grep
patterns.

Another really helpful filter is the -S option (colloquially referred to as GitÕs ÒpickaxeÓ option),
which takes a string and shows only those commits that changed the number of occurrences of that
string. For instance, if you wanted to find the last commit that added or removed a reference to a
specific function, you could call:

$ git log -S function_name

The last really useful option to pass to git log as a filter is a path. If you specify a directory or file
name, you can limit the log output to commits that introduced a change to those files. This is always
the last option and is generally preceded by double dashes (--) to separate the paths from the
options:

$ git log -- path/to/file

In Options to limit the output of git log weÕll list these and a few other common options for your
reference.

Table 3. Options to limit the output of git log

Option Description

-<n> Show only the last n commits

--since , --after Limit the commits to those made after the specified date.

--until , --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the
specified string.

--committer Only show commits in which the committer entry matches the
specified string.

--grep Only show commits with a commit message containing the string

-S Only show commits adding or removing code matching the string

For example, if you want to see which commits modifying test files in the Git source code history
were committed by Junio Hamano in the month of October 2008 and are not merge commits, you
can run something like this:

$ git log --pretty="%h - %s" --author='Junio C Hamano' --since="2008-10-01" \
Ê --before="2008-11-01" --no-merges -- t/
5610e3b - Fix testcase failure when extended attributes are in use
acd3b9e - Enhance hold_lock_file_for_{update,append}() API
f563754 - demonstrate breakage of detached checkout with symbolic link HEAD

43

d1a43f2 - reset --hard/read-tree --reset -u: remove unmerged new paths
51a94af - Fix "checkout --track -b newbranch" on detached HEAD
b0ad11e - pull: allow "git pull origin $something:$current_branch" into an unborn
branch

Of the nearly 40,000 commits in the Git source code history, this command shows the 6 that match
those criteria.

!

Preventing the display of merge commits

Depending on the workflow used in your repository, itÕs possible that a sizable
percentage of the commits in your log history are just merge commits, which
typically arenÕt very informative. To prevent the display of merge commits
cluttering up your log history, simply add the log option --no-merges.

Undoing Things
At any stage, you may want to undo something. Here, weÕll review a few basic tools for undoing
changes that youÕve made. Be careful, because you canÕt always undo some of these undos. This is
one of the few areas in Git where you may lose some work if you do it wrong.

One of the common undos takes place when you commit too early and possibly forget to add some
files, or you mess up your commit message. If you want to redo that commit, make the additional
changes you forgot, stage them, and commit again using the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If youÕve made no changes since
your last commit (for instance, you run this command immediately after your previous commit),
then your snapshot will look exactly the same, and all youÕll change is your commit message.

The same commit-message editor fires up, but it already contains the message of your previous
commit. You can edit the message the same as always, but it overwrites your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a file you wanted
to add to this commit, you can do something like this:

$ git commit -m 'Initial commit'
$ git add forgotten_file
$ git commit --amend

You end up with a single commit!Ñ!the second commit replaces the results of the first.

!
ItÕs important to understand that when youÕre amending your last commit, youÕre
not so much fixing it as replacing it entirely with a new, improved commit that
pushes the old commit out of the way and puts the new commit in its place.
Effectively, itÕs as if the previous commit never happened, and it wonÕt show up in

44

your repository history.

The obvious value to amending commits is to make minor improvements to your
last commit, without cluttering your repository history with commit messages of
the form, ÒOops, forgot to add a fileÓ or ÒDarn, fixing a typo in last commitÓ.

!
Only amend commits that are still local and have not been pushed somewhere.
Amending previously pushed commits and force pushing the branch will cause
problems for your collaborators. For more on what happens when you do this and
how to recover if youÕre on the receiving end read The Perils of Rebasing .

Unstaging a Staged File

The next two sections demonstrate how to work with your staging area and working directory
changes. The nice part is that the command you use to determine the state of those two areas also
reminds you how to undo changes to them. For example, letÕs say youÕve changed two files and
want to commit them as two separate changes, but you accidentally type git add * and stage them
both. How can you unstage one of the two? The git status command reminds you:

$ git add *
$ git status
On branch master
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê renamed: README.md -> README
Ê modified: CONTRIBUTING.md

Right below the ÒChanges to be committedÓ text, it says use git reset HEAD <file>É to unstage. So,
letÕs use that advice to unstage the CONTRIBUTING.md file:

$ git reset HEAD CONTRIBUTING.md
Unstaged changes after reset:
M CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê renamed: README.md -> README

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

45

The command is a bit strange, but it works. The CONTRIBUTING.md file is modified but once again
unstaged.

!
ItÕs true that git reset can be a dangerous command, especially if you provide the
--hard flag. However, in the scenario described above, the file in your working
directory is not touched, so itÕs relatively safe.

For now this magic invocation is all you need to know about the git reset command. WeÕll go into
much more detail about what reset does and how to master it to do really interesting things in
Reset Demystified .

Unmodifying a Modified File

What if you realize that you donÕt want to keep your changes to the CONTRIBUTING.md file? How can
you easily unmodify it!Ñ!revert it back to what it looked like when you last committed (or initially
cloned, or however you got it into your working directory)? Luckily, git status tells you how to do
that, too. In the last example output, the unstaged area looks like this:

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git checkout -- <file>..." to discard changes in working directory)

Ê modified: CONTRIBUTING.md

It tells you pretty explicitly how to discard the changes youÕve made. LetÕs do what it says:

$ git checkout -- CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
Ê (use "git reset HEAD <file>..." to unstage)

Ê renamed: README.md -> README

You can see that the changes have been reverted.

#
ItÕs important to understand that git checkout -- <file> is a dangerous command.
Any local changes you made to that file are gone!Ñ!Git just replaced that file with
the last staged or committed version. DonÕt ever use this command unless you
absolutely know that you donÕt want those unsaved local changes.

If you would like to keep the changes youÕve made to that file but still need to get it out of the way
for now, weÕll go over stashing and branching in Git Branching ; these are generally better ways to
go.

Remember, anything that is committed in Git can almost always be recovered. Even commits that
were on branches that were deleted or commits that were overwritten with an --amend commit can

46

be recovered (see Data Recovery for data recovery). However, anything you lose that was never
committed is likely never to be seen again.

Undoing things with git restore

Git version 2.23.0 introduced a new command: git restore . ItÕs basically an alternative to git reset
which we just covered. From Git version 2.23.0 onwards, Git will use git restore instead of git
reset for many undo operations.

LetÕs retrace our steps, and undo things with git restore instead of git reset .

Unstaging a Staged File with git restore

The next two sections demonstrate how to work with your staging area and working directory
changes with git restore . The nice part is that the command you use to determine the state of those
two areas also reminds you how to undo changes to them. For example, letÕs say youÕve changed
two files and want to commit them as two separate changes, but you accidentally type git add *
and stage them both. How can you unstage one of the two? The git status command reminds you:

$ git add *
$ git status
On branch master
Changes to be committed:
Ê (use "git restore --staged <file>..." to unstage)
Ê modified: CONTRIBUTING.md
Ê renamed: README.md -> README

Right below the ÒChanges to be committedÓ text, it says use git restore --staged <file>É to
unstage. So, letÕs use that advice to unstage the CONTRIBUTING.md file:

$ git restore --staged CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
Ê (use "git restore --staged <file>..." to unstage)
Ê renamed: README.md -> README

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git restore <file>..." to discard changes in working directory)
Ê modified: CONTRIBUTING.md

The CONTRIBUTING.md file is modified but once again unstaged.

Unmodifying a Modified File with git restore

What if you realize that you donÕt want to keep your changes to the CONTRIBUTING.md file? How can
you easily unmodify it!Ñ!revert it back to what it looked like when you last committed (or initially

47

cloned, or however you got it into your working directory)? Luckily, git status tells you how to do
that, too. In the last example output, the unstaged area looks like this:

Changes not staged for commit:
Ê (use "git add <file>..." to update what will be committed)
Ê (use "git restore <file>..." to discard changes in working directory)
Ê modified: CONTRIBUTING.md

It tells you pretty explicitly how to discard the changes youÕve made. LetÕs do what it says:

$ git restore CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
Ê (use "git restore --staged <file>..." to unstage)
Ê renamed: README.md -> README

#
ItÕs important to understand that git restore <file> is a dangerous command. Any
local changes you made to that file are gone!Ñ!Git just replaced that file with the
last staged or committed version. DonÕt ever use this command unless you
absolutely know that you donÕt want those unsaved local changes.

Working with Remotes
To be able to collaborate on any Git project, you need to know how to manage your remote
repositories. Remote repositories are versions of your project that are hosted on the Internet or
network somewhere. You can have several of them, each of which generally is either read-only or
read/write for you. Collaborating with others involves managing these remote repositories and
pushing and pulling data to and from them when you need to share work. Managing remote
repositories includes knowing how to add remote repositories, remove remotes that are no longer
valid, manage various remote branches and define them as being tracked or not, and more. In this
section, weÕll cover some of these remote-management skills.

!

Remote repositories can be on your local machine.

It is entirely possible that you can be working with a ÒremoteÓ repository that is, in
fact, on the same host you are. The word ÒremoteÓ does not necessarily imply that
the repository is somewhere else on the network or Internet, only that it is
elsewhere. Working with such a remote repository would still involve all the
standard pushing, pulling and fetching operations as with any other remote.

Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command. It lists the
shortnames of each remote handle youÕve specified. If youÕve cloned your repository, you should at
least see origin !Ñ!that is the default name Git gives to the server you cloned from:

48

$ git clone https://github.com/schacon/ticgit
Cloning into 'ticgit'...
remote: Reusing existing pack: 1857, done.
remote: Total 1857 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.
Resolving deltas: 100% (772/772), done.
Checking connectivity... done.
$ cd ticgit
$ git remote
origin

You can also specify -v , which shows you the URLs that Git has stored for the shortname to be used
when reading and writing to that remote:

$ git remote -v
origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

If you have more than one remote, the command lists them all. For example, a repository with
multiple remotes for working with several collaborators might look something like this.

$ cd grit
$ git remote -v
bakkdoor https://github.com/bakkdoor/grit (fetch)
bakkdoor https://github.com/bakkdoor/grit (push)
cho45 https://github.com/cho45/grit (fetch)
cho45 https://github.com/cho45/grit (push)
defunkt https://github.com/defunkt/grit (fetch)
defunkt https://github.com/defunkt/grit (push)
koke git://github.com/koke/grit.git (fetch)
koke git://github.com/koke/grit.git (push)
origin git@github.com:mojombo/grit.git (fetch)
origin git@github.com:mojombo/grit.git (push)

This means we can pull contributions from any of these users pretty easily. We may additionally
have permission to push to one or more of these, though we canÕt tell that here.

Notice that these remotes use a variety of protocols; weÕll cover more about this in Getting Git on a
Server .

Adding Remote Repositories

WeÕve mentioned and given some demonstrations of how the git clone command implicitly adds
the origin remote for you. HereÕs how to add a new remote explicitly. To add a new remote Git
repository as a shortname you can reference easily, run git remote add <shortname> <url> :

49

$ git remote
origin
$ git remote add pb https://github.com/paulboone/ticgit
$ git remote -v
origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)
pb https://github.com/paulboone/ticgit (fetch)
pb https://github.com/paulboone/ticgit (push)

Now you can use the string pb on the command line in lieu of the whole URL. For example, if you
want to fetch all the information that Paul has but that you donÕt yet have in your repository, you
can run git fetch pb :

$ git fetch pb
remote: Counting objects: 43, done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), done.
From https://github.com/paulboone/ticgit
Ê* [new branch] master -> pb/master
Ê* [new branch] ticgit -> pb/ticgit

PaulÕs master branch is now accessible locally as pb/master!Ñ!you can merge it into one of your
branches, or you can check out a local branch at that point if you want to inspect it. WeÕll go over
what branches are and how to use them in much more detail in Git Branching .

Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run:

$ git fetch <remote>

The command goes out to that remote project and pulls down all the data from that remote project
that you donÕt have yet. After you do this, you should have references to all the branches from that
remote, which you can merge in or inspect at any time.

If you clone a repository, the command automatically adds that remote repository under the name
ÒoriginÓ. So, git fetch origin fetches any new work that has been pushed to that server since you
cloned (or last fetched from) it. ItÕs important to note that the git fetch command only downloads
the data to your local repository!Ñ!it doesnÕt automatically merge it with any of your work or
modify what youÕre currently working on. You have to merge it manually into your work when
youÕre ready.

If your current branch is set up to track a remote branch (see the next section and Git Branching for
more information), you can use the git pull command to automatically fetch and then merge that
remote branch into your current branch. This may be an easier or more comfortable workflow for

50

you; and by default, the git clone command automatically sets up your local master branch to track
the remote master branch (or whatever the default branch is called) on the server you cloned from.
Running git pull generally fetches data from the server you originally cloned from and
automatically tries to merge it into the code youÕre currently working on.

!

From git version 2.27 onward, git pull will give a warning if the pull.rebase
variable is not set. Git will keep warning you until you set the variable.

If you want the default behavior of git (fast-forward if possible, else create a merge
commit): git config --global pull.rebase "false"

If you want to rebase when pulling: git config --global pull.rebase "true"

Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it upstream. The
command for this is simple: git push <remote> <branch> . If you want to push your master branch to
your origin server (again, cloning generally sets up both of those names for you automatically),
then you can run this to push any commits youÕve done back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write access and if
nobody has pushed in the meantime. If you and someone else clone at the same time and they push
upstream and then you push upstream, your push will rightly be rejected. YouÕll have to fetch their
work first and incorporate it into yours before youÕll be allowed to push. See Git Branching for
more detailed information on how to push to remote servers.

Inspecting a Remote

If you want to see more information about a particular remote, you can use the git remote show
<remote> command. If you run this command with a particular shortname, such as origin , you get
something like this:

$ git remote show origin
* remote origin
Ê Fetch URL: https://github.com/schacon/ticgit
Ê Push URL: https://github.com/schacon/ticgit
Ê HEAD branch: master
Ê Remote branches:
Ê master tracked
Ê dev-branch tracked
Ê Local branch configured for 'git pull':
Ê master merges with remote master
Ê Local ref configured for 'git push':
Ê master pushes to master (up to date)

51

It lists the URL for the remote repository as well as the tracking branch information. The command
helpfully tells you that if youÕre on the master branch and you run git pull , it will automatically
merge the remoteÕs master branch into the local one after it has been fetched. It also lists all the
remote references it has pulled down.

That is a simple example youÕre likely to encounter. When youÕre using Git more heavily, however,
you may see much more information from git remote show :

$ git remote show origin
* remote origin
Ê URL: https://github.com/my-org/complex-project
Ê Fetch URL: https://github.com/my-org/complex-project
Ê Push URL: https://github.com/my-org/complex-project
Ê HEAD branch: master
Ê Remote branches:
Ê master tracked
Ê dev-branch tracked
Ê markdown-strip tracked
Ê issue-43 new (next fetch will store in remotes/origin)
Ê issue-45 new (next fetch will store in remotes/origin)
Ê refs/remotes/origin/issue-11 stale (use 'git remote prune' to remove)
Ê Local branches configured for 'git pull':
Ê dev-branch merges with remote dev-branch
Ê master merges with remote master
Ê Local refs configured for 'git push':
Ê dev-branch pushes to dev-branch (up to
date)
Ê markdown-strip pushes to markdown-strip (up to
date)
Ê master pushes to master (up to
date)

This command shows which branch is automatically pushed to when you run git push while on
certain branches. It also shows you which remote branches on the server you donÕt yet have, which
remote branches you have that have been removed from the server, and multiple local branches
that are able to merge automatically with their remote-tracking branch when you run git pull .

Renaming and Removing Remotes

You can run git remote rename to change a remoteÕs shortname. For instance, if you want to rename
pb to paul , you can do so with git remote rename :

$ git remote rename pb paul
$ git remote
origin
paul

ItÕs worth mentioning that this changes all your remote-tracking branch names, too. What used to

52

be referenced at pb/master is now at paul/master .

If you want to remove a remote for some reason!Ñ!youÕve moved the server or are no longer using
a particular mirror, or perhaps a contributor isnÕt contributing anymore!Ñ!you can either use git
remote remove or git remote rm :

$ git remote remove paul
$ git remote
origin

Once you delete the reference to a remote this way, all remote-tracking branches and configuration
settings associated with that remote are also deleted.

Tagging
Like most VCSs, Git has the ability to tag specific points in a repositoryÕs history as being important.
Typically, people use this functionality to mark release points (v1.0 , v2.0 and so on). In this section,
youÕll learn how to list existing tags, how to create and delete tags, and what the different types of
tags are.

Listing Your Tags

Listing the existing tags in Git is straightforward. Just type git tag (with optional -l or --list):

$ git tag
v1.0
v2.0

This command lists the tags in alphabetical order; the order in which they are displayed has no real
importance.

You can also search for tags that match a particular pattern. The Git source repo, for instance,
contains more than 500 tags. If youÕre interested only in looking at the 1.8.5 series, you can run this:

$ git tag -l "v1.8.5*"
v1.8.5
v1.8.5-rc0
v1.8.5-rc1
v1.8.5-rc2
v1.8.5-rc3
v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5

53

!

Listing tag wildcards requires -l or --list option

If you want just the entire list of tags, running the command git tag implicitly
assumes you want a listing and provides one; the use of -l or --list in this case is
optional.

If, however, youÕre supplying a wildcard pattern to match tag names, the use of -l
or --list is mandatory.

Creating Tags

Git supports two types of tags: lightweight and annotated .

A lightweight tag is very much like a branch that doesnÕt change!Ñ!itÕs just a pointer to a specific
commit.

Annotated tags, however, are stored as full objects in the Git database. TheyÕre checksummed;
contain the tagger name, email, and date; have a tagging message; and can be signed and verified
with GNU Privacy Guard (GPG). ItÕs generally recommended that you create annotated tags so you
can have all this information; but if you want a temporary tag or for some reason donÕt want to
keep the other information, lightweight tags are available too.

Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you run the tag
command:

$ git tag -a v1.4 -m "my version 1.4"
$ git tag
v0.1
v1.3
v1.4

The -m specifies a tagging message, which is stored with the tag. If you donÕt specify a message for
an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git show command:

$ git show v1.4
tag v1.4
Tagger: Ben Straub <ben@straub.cc>
Date: Sat May 3 20:19:12 2014 -0700

my version 1.4

commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

54

Ê Change version number

That shows the tagger information, the date the commit was tagged, and the annotation message
before showing the commit information.

Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit checksum stored
in a file!Ñ!no other information is kept. To create a lightweight tag, donÕt supply any of the -a , -s , or
-m options, just provide a tag name:

$ git tag v1.4-lw
$ git tag
v0.1
v1.3
v1.4
v1.4-lw
v1.5

This time, if you run git show on the tag, you donÕt see the extra tag information. The command just
shows the commit:

$ git show v1.4-lw
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Ê Change version number

Tagging Later

You can also tag commits after youÕve moved past them. Suppose your commit history looks like
this:

$ git log --pretty=oneline
15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch 'experiment'
a6b4c97498bd301d84096da251c98a07c7723e65 Create write support
0d52aaab4479697da7686c15f77a3d64d9165190 One more thing
6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch 'experiment'
0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc Add commit function
4682c3261057305bdd616e23b64b0857d832627b Add todo file
166ae0c4d3f420721acbb115cc33848dfcc2121a Create write support
9fceb02d0ae598e95dc970b74767f19372d61af8 Update rakefile
964f16d36dfccde844893cac5b347e7b3d44abbc Commit the todo
8a5cbc430f1a9c3d00faaeffd07798508422908a Update readme

55

Now, suppose you forgot to tag the project at v1.2, which was at the ÒUpdate rakefileÓ commit. You
can add it after the fact. To tag that commit, you specify the commit checksum (or part of it) at the
end of the command:

$ git tag -a v1.2 9fceb02

You can see that youÕve tagged the commit:

$ git tag
v0.1
v1.2
v1.3
v1.4
v1.4-lw
v1.5

$ git show v1.2
tag v1.2
Tagger: Scott Chacon <schacon@gee-mail.com>
Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2
commit 9fceb02d0ae598e95dc970b74767f19372d61af8
Author: Magnus Chacon <mchacon@gee-mail.com>
Date: Sun Apr 27 20:43:35 2008 -0700

Ê Update rakefile
...

Sharing Tags

By default, the git push command doesnÕt transfer tags to remote servers. You will have to explicitly
push tags to a shared server after you have created them. This process is just like sharing remote
branches!Ñ!you can run git push origin <tagname> .

$ git push origin v1.5
Counting objects: 14, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (12/12), done.
Writing objects: 100% (14/14), 2.05 KiB | 0 bytes/s, done.
Total 14 (delta 3), reused 0 (delta 0)
To git@github.com:schacon/simplegit.git
Ê* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the --tags option to the
git push command. This will transfer all of your tags to the remote server that are not already
there.

56

$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 160 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To git@github.com:schacon/simplegit.git
Ê* [new tag] v1.4 -> v1.4
Ê* [new tag] v1.4-lw -> v1.4-lw

Now, when someone else clones or pulls from your repository, they will get all your tags as well.

!
git push pushes both types of tags

git push <remote> --tags will push both lightweight and annotated tags. There is
currently no option to push only lightweight tags, but if you use git push <remote>
--follow-tags only annotated tags will be pushed to the remote.

Deleting Tags

To delete a tag on your local repository, you can use git tag -d <tagname> . For example, we could
remove our lightweight tag above as follows:

$ git tag -d v1.4-lw
Deleted tag 'v1.4-lw' (was e7d5add)

Note that this does not remove the tag from any remote servers. There are two common variations
for deleting a tag from a remote server.

The first variation is git push <remote> :refs/tags/<tagname> :

$ git push origin :refs/tags/v1.4-lw
To /git@github.com:schacon/simplegit.git
Ê- [deleted] v1.4-lw

The way to interpret the above is to read it as the null value before the colon is being pushed to the
remote tag name, effectively deleting it.

The second (and more intuitive) way to delete a remote tag is with:

$ git push origin --delete <tagname>

Checking out Tags

If you want to view the versions of files a tag is pointing to, you can do a git checkout of that tag,
although this puts your repository in Òdetached HEADÓ state, which has some ill side effects:

57

$ git checkout v2.0.0
Note: switching to 'v2.0.0'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

Ê git switch -c <new-branch-name>

Or undo this operation with:

Ê git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at 99ada87... Merge pull request #89 from schacon/appendix-final

$ git checkout v2.0-beta-0.1
Previous HEAD position was 99ada87... Merge pull request #89 from schacon/appendix-
final
HEAD is now at df3f601... Add atlas.json and cover image

In Òdetached HEADÓ state, if you make changes and then create a commit, the tag will stay the same,
but your new commit wonÕt belong to any branch and will be unreachable, except by the exact
commit hash. Thus, if you need to make changes!Ñ!say youÕre fixing a bug on an older version, for
instance!Ñ!you will generally want to create a branch:

$ git checkout -b version2 v2.0.0
Switched to a new branch 'version2'

If you do this and make a commit, your version2 branch will be slightly different than your v2.0.0
tag since it will move forward with your new changes, so do be careful.

Git Aliases
Before we move on to the next chapter, we want to introduce a feature that can make your Git
experience simpler, easier, and more familiar: aliases. For clarityÕs sake, we wonÕt be using them
anywhere else in this book, but if you go on to use Git with any regularity, aliases are something
you should know about.

Git doesnÕt automatically infer your command if you type it in partially. If you donÕt want to type
the entire text of each of the Git commands, you can easily set up an alias for each command using
git config . Here are a couple of examples you may want to set up:

58

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commit
$ git config --global alias.st status

This means that, for example, instead of typing git commit , you just need to type git ci . As you go
on using Git, youÕll probably use other commands frequently as well; donÕt hesitate to create new
aliases.

This technique can also be very useful in creating commands that you think should exist. For
example, to correct the usability problem you encountered with unstaging a file, you can add your
own unstage alias to Git:

$ git config --global alias.unstage 'reset HEAD --'

This makes the following two commands equivalent:

$ git unstage fileA
$ git reset HEAD -- fileA

This seems a bit clearer. ItÕs also common to add a last command, like this:

$ git config --global alias.last 'log -1 HEAD'

This way, you can see the last commit easily:

$ git last
commit 66938dae3329c7aebe598c2246a8e6af90d04646
Author: Josh Goebel <dreamer3@example.com>
Date: Tue Aug 26 19:48:51 2008 +0800

Ê Test for current head

Ê Signed-off-by: Scott Chacon <schacon@example.com>

As you can tell, Git simply replaces the new command with whatever you alias it for. However,
maybe you want to run an external command, rather than a Git subcommand. In that case, you
start the command with a ! character. This is useful if you write your own tools that work with a
Git repository. We can demonstrate by aliasing git visual to run gitk :

$ git config --global alias.visual '!gitk'

59

Summary
At this point, you can do all the basic local Git operations!Ñ!creating or cloning a repository, making
changes, staging and committing those changes, and viewing the history of all the changes the
repository has been through. Next, weÕll cover GitÕs killer feature: its branching model.

60

Git Branching
Nearly every VCS has some form of branching support. Branching means you diverge from the
main line of development and continue to do work without messing with that main line. In many
VCS tools, this is a somewhat expensive process, often requiring you to create a new copy of your
source code directory, which can take a long time for large projects.

Some people refer to GitÕs branching model as its Òkiller feature,Ó and it certainly sets Git apart in
the VCS community. Why is it so special? The way Git branches is incredibly lightweight, making
branching operations nearly instantaneous, and switching back and forth between branches
generally just as fast. Unlike many other VCSs, Git encourages workflows that branch and merge
often, even multiple times in a day. Understanding and mastering this feature gives you a powerful
and unique tool and can entirely change the way that you develop.

Branches in a Nutshell
To really understand the way Git does branching, we need to take a step back and examine how Git
stores its data.

As you may remember from What is Git? , Git doesnÕt store data as a series of changesets or
differences, but instead as a series of snapshots .

When you make a commit, Git stores a commit object that contains a pointer to the snapshot of the
content you staged. This object also contains the authorÕs name and email address, the message that
you typed, and pointers to the commit or commits that directly came before this commit (its parent
or parents): zero parents for the initial commit, one parent for a normal commit, and multiple
parents for a commit that results from a merge of two or more branches.

To visualize this, letÕs assume that you have a directory containing three files, and you stage them
all and commit. Staging the files computes a checksum for each one (the SHA-1 hash we mentioned
in What is Git?), stores that version of the file in the Git repository (Git refers to them as blobs), and
adds that checksum to the staging area:

$ git add README test.rb LICENSE
$ git commit -m 'Initial commit'

When you create the commit by running git commit , Git checksums each subdirectory (in this case,
just the root project directory) and stores them as a tree object in the Git repository. Git then creates
a commit object that has the metadata and a pointer to the root project tree so it can re-create that
snapshot when needed.

Your Git repository now contains five objects: three blobs (each representing the contents of one of
the three files), one tree that lists the contents of the directory and specifies which file names are
stored as which blobs, and one commit with the pointer to that root tree and all the commit
metadata.

61

Figure 9. A commit and its tree

If you make some changes and commit again, the next commit stores a pointer to the commit that
came immediately before it.

Figure 10. Commits and their parents

A branch in Git is simply a lightweight movable pointer to one of these commits. The default branch
name in Git is master. As you start making commits, youÕre given a master branch that points to the
last commit you made. Every time you commit, the master branch pointer moves forward
automatically.

!
The ÒmasterÓ branch in Git is not a special branch. It is exactly like any other
branch. The only reason nearly every repository has one is that the git init
command creates it by default and most people donÕt bother to change it.

62

Figure 11. A branch and its commit history

Creating a New Branch

What happens when you create a new branch? Well, doing so creates a new pointer for you to
move around. LetÕs say you want to create a new branch called testing . You do this with the git
branch command:

$ git branch testing

This creates a new pointer to the same commit youÕre currently on.

Figure 12. Two branches pointing into the same series of commits

How does Git know what branch youÕre currently on? It keeps a special pointer called HEAD. Note
that this is a lot different than the concept of HEAD in other VCSs you may be used to, such as
Subversion or CVS. In Git, this is a pointer to the local branch youÕre currently on. In this case,
youÕre still on master. The git branch command only created a new branch!Ñ!it didnÕt switch to that

63

branch.

Figure 13. HEAD pointing to a branch

You can easily see this by running a simple git log command that shows you where the branch
pointers are pointing. This option is called --decorate .

$ git log --oneline --decorate
f30ab (HEAD -> master, testing) Add feature #32 - ability to add new formats to the
central interface
34ac2 Fix bug #1328 - stack overflow under certain conditions
98ca9 Initial commit

You can see the master and testing branches that are right there next to the f30ab commit.

Switching Branches

To switch to an existing branch, you run the git checkout command. LetÕs switch to the new testing
branch:

$ git checkout testing

This moves HEAD to point to the testing branch.

64

Figure 14. HEAD points to the current branch

What is the significance of that? Well, letÕs do another commit:

$ vim test.rb
$ git commit -a -m 'made a change'

Figure 15. The HEAD branch moves forward when a commit is made

This is interesting, because now your testing branch has moved forward, but your master branch
still points to the commit you were on when you ran git checkout to switch branches. LetÕs switch
back to the master branch:

$ git checkout master

! git log doesnÕt show all the branches all the time

65

If you were to run git log right now, you might wonder where the "testing"
branch you just created went, as it would not appear in the output.

The branch hasnÕt disappeared; Git just doesnÕt know that youÕre interested in that
branch and it is trying to show you what it thinks youÕre interested in. In other
words, by default, git log will only show commit history below the branch youÕve
checked out.

To show commit history for the desired branch you have to explicitly specify it: git
log testing . To show all of the branches, add --all to your git log command.

Figure 16. HEAD moves when you checkout

That command did two things. It moved the HEAD pointer back to point to the master branch, and it
reverted the files in your working directory back to the snapshot that master points to. This also
means the changes you make from this point forward will diverge from an older version of the
project. It essentially rewinds the work youÕve done in your testing branch so you can go in a
different direction.

!

Switching branches changes files in your working directory

ItÕs important to note that when you switch branches in Git, files in your working
directory will change. If you switch to an older branch, your working directory
will be reverted to look like it did the last time you committed on that branch. If Git
cannot do it cleanly, it will not let you switch at all.

LetÕs make a few changes and commit again:

$ vim test.rb
$ git commit -a -m 'made other changes'

Now your project history has diverged (see Divergent history). You created and switched to a
branch, did some work on it, and then switched back to your main branch and did other work. Both
of those changes are isolated in separate branches: you can switch back and forth between the
branches and merge them together when youÕre ready. And you did all that with simple branch,

66

checkout, and commit commands.

Figure 17. Divergent history

You can also see this easily with the git log command. If you run git log --oneline --decorate
--graph --all it will print out the history of your commits, showing where your branch pointers are
and how your history has diverged.

$ git log --oneline --decorate --graph --all
* c2b9e (HEAD, master) Made other changes
| * 87ab2 (testing) Made a change
|/
* f30ab Add feature #32 - ability to add new formats to the central interface
* 34ac2 Fix bug #1328 - stack overflow under certain conditions
* 98ca9 initial commit of my project

Because a branch in Git is actually a simple file that contains the 40 character SHA-1 checksum of
the commit it points to, branches are cheap to create and destroy. Creating a new branch is as quick
and simple as writing 41 bytes to a file (40 characters and a newline).

This is in sharp contrast to the way most older VCS tools branch, which involves copying all of the
projectÕs files into a second directory. This can take several seconds or even minutes, depending on
the size of the project, whereas in Git the process is always instantaneous. Also, because weÕre
recording the parents when we commit, finding a proper merge base for merging is automatically
done for us and is generally very easy to do. These features help encourage developers to create
and use branches often.

LetÕs see why you should do so.

67

!
Creating a new branch and switching to it at the same time

ItÕs typical to create a new branch and want to switch to that new branch at the
same time!Ñ!this can be done in one operation with git checkout -b
<newbranchname>.

!

From Git version 2.23 onwards you can use git switch instead of git checkout to:

¥ Switch to an existing branch: git switch testing-branch .

¥ Create a new branch and switch to it: git switch -c new-branch . The -c flag
stands for create, you can also use the full flag: --create .

¥ Return to your previously checked out branch: git switch - .

Basic Branching and Merging
LetÕs go through a simple example of branching and merging with a workflow that you might use in
the real world. YouÕll follow these steps:

1. Do some work on a website.

2. Create a branch for a new user story youÕre working on.

3. Do some work in that branch.

At this stage, youÕll receive a call that another issue is critical and you need a hotfix. YouÕll do the
following:

1. Switch to your production branch.

2. Create a branch to add the hotfix.

3. After itÕs tested, merge the hotfix branch, and push to production.

4. Switch back to your original user story and continue working.

Basic Branching

First, letÕs say youÕre working on your project and have a couple of commits already on the master
branch.

Figure 18. A simple commit history

68

YouÕve decided that youÕre going to work on issue #53 in whatever issue-tracking system your
company uses. To create a new branch and switch to it at the same time, you can run the git
checkout command with the -b switch:

$ git checkout -b iss53
Switched to a new branch "iss53"

This is shorthand for:

$ git branch iss53
$ git checkout iss53

Figure 19. Creating a new branch pointer

You work on your website and do some commits. Doing so moves the iss53 branch forward,
because you have it checked out (that is, your HEAD is pointing to it):

$ vim index.html
$ git commit -a -m 'Create new footer [issue 53]'

69

Figure 20. The iss53 branch has moved forward with your work

Now you get the call that there is an issue with the website, and you need to fix it immediately. With
Git, you donÕt have to deploy your fix along with the iss53 changes youÕve made, and you donÕt
have to put a lot of effort into reverting those changes before you can work on applying your fix to
what is in production. All you have to do is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has uncommitted
changes that conflict with the branch youÕre checking out, Git wonÕt let you switch branches. ItÕs
best to have a clean working state when you switch branches. There are ways to get around this
(namely, stashing and commit amending) that weÕll cover later on, in Stashing and Cleaning . For
now, letÕs assume youÕve committed all your changes, so you can switch back to your master branch:

$ git checkout master
Switched to branch 'master'

At this point, your project working directory is exactly the way it was before you started working
on issue #53, and you can concentrate on your hotfix. This is an important point to remember:
when you switch branches, Git resets your working directory to look like it did the last time you
committed on that branch. It adds, removes, and modifies files automatically to make sure your
working copy is what the branch looked like on your last commit to it.

Next, you have a hotfix to make. LetÕs create a hotfix branch on which to work until itÕs completed:

$ git checkout -b hotfix
Switched to a new branch 'hotfix'
$ vim index.html
$ git commit -a -m 'Fix broken email address'
[hotfix 1fb7853] Fix broken email address
Ê1 file changed, 2 insertions(+)

70

Figure 21. Hotfix branch based on master

You can run your tests, make sure the hotfix is what you want, and finally merge the hotfix branch
back into your master branch to deploy to production. You do this with the git merge command:

$ git checkout master
$ git merge hotfix
Updating f42c576..3a0874c
Fast-forward
Êindex.html | 2 ++
Ê1 file changed, 2 insertions(+)

YouÕll notice the phrase Òfast-forwardÓ in that merge. Because the commit C4 pointed to by the
branch hotfix you merged in was directly ahead of the commit C2 youÕre on, Git simply moves the
pointer forward. To phrase that another way, when you try to merge one commit with a commit
that can be reached by following the first commitÕs history, Git simplifies things by moving the
pointer forward because there is no divergent work to merge together!Ñ!this is called a Òfast-
forward.Ó

Your change is now in the snapshot of the commit pointed to by the master branch, and you can
deploy the fix.

71

Figure 22. master is fast-forwarded to hotfix

After your super-important fix is deployed, youÕre ready to switch back to the work you were doing
before you were interrupted. However, first youÕll delete the hotfix branch, because you no longer
need it!Ñ!the master branch points at the same place. You can delete it with the -d option to git
branch:

$ git branch -d hotfix
Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and continue working on it.

$ git checkout iss53
Switched to branch "iss53"
$ vim index.html
$ git commit -a -m 'Finish the new footer [issue 53]'
[iss53 ad82d7a] Finish the new footer [issue 53]
1 file changed, 1 insertion(+)

72

Figure 23. Work continues on iss53

ItÕs worth noting here that the work you did in your hotfix branch is not contained in the files in
your iss53 branch. If you need to pull it in, you can merge your master branch into your iss53
branch by running git merge master , or you can wait to integrate those changes until you decide to
pull the iss53 branch back into master later.

Basic Merging

Suppose youÕve decided that your issue #53 work is complete and ready to be merged into your
master branch. In order to do that, youÕll merge your iss53 branch into master, much like you
merged your hotfix branch earlier. All you have to do is check out the branch you wish to merge
into and then run the git merge command:

$ git checkout master
Switched to branch 'master'
$ git merge iss53
Merge made by the 'recursive' strategy.
index.html | 1 +
1 file changed, 1 insertion(+)

This looks a bit different than the hotfix merge you did earlier. In this case, your development
history has diverged from some older point. Because the commit on the branch youÕre on isnÕt a
direct ancestor of the branch youÕre merging in, Git has to do some work. In this case, Git does a
simple three-way merge, using the two snapshots pointed to by the branch tips and the common
ancestor of the two.

73

Figure 24. Three snapshots used in a typical merge

Instead of just moving the branch pointer forward, Git creates a new snapshot that results from this
three-way merge and automatically creates a new commit that points to it. This is referred to as a
merge commit, and is special in that it has more than one parent.

Figure 25. A merge commit

Now that your work is merged in, you have no further need for the iss53 branch. You can close the
issue in your issue-tracking system, and delete the branch:

$ git branch -d iss53

Basic Merge Conflicts

Occasionally, this process doesnÕt go smoothly. If you changed the same part of the same file
differently in the two branches youÕre merging, Git wonÕt be able to merge them cleanly. If your fix
for issue #53 modified the same part of a file as the hotfix branch, youÕll get a merge conflict that
looks something like this:

74

$ git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

Git hasnÕt automatically created a new merge commit. It has paused the process while you resolve
the conflict. If you want to see which files are unmerged at any point after a merge conflict, you can
run git status :

$ git status
On branch master
You have unmerged paths.
Ê (fix conflicts and run "git commit")

Unmerged paths:
Ê (use "git add <file>..." to mark resolution)

Ê both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

Anything that has merge conflicts and hasnÕt been resolved is listed as unmerged. Git adds standard
conflict-resolution markers to the files that have conflicts, so you can open them manually and
resolve those conflicts. Your file contains a section that looks something like this:

<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
=======
<div id="footer">
Êplease contact us at support@github.com
</div>
>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you had checked out
when you ran your merge command) is the top part of that block (everything above the =======),
while the version in your iss53 branch looks like everything in the bottom part. In order to resolve
the conflict, you have to either choose one side or the other or merge the contents yourself. For
instance, you might resolve this conflict by replacing the entire block with this:

<div id="footer">
please contact us at email.support@github.com
</div>

This resolution has a little of each section, and the <<<<<<<, =======, and >>>>>>> lines have been
completely removed. After youÕve resolved each of these sections in each conflicted file, run git add

75

on each file to mark it as resolved. Staging the file marks it as resolved in Git.

If you want to use a graphical tool to resolve these issues, you can run git mergetool , which fires up
an appropriate visual merge tool and walks you through the conflicts:

$ git mergetool

This message is displayed because 'merge.tool' is not configured.
See 'git mergetool --tool-help' or 'git help config' for more details.
'git mergetool' will now attempt to use one of the following tools:
opendiff kdiff3 tkdiff xxdiff meld tortoisemerge gvimdiff diffuse diffmerge ecmerge
p4merge araxis bc3 codecompare vimdiff emerge
Merging:
index.html

Normal merge conflict for 'index.html':
Ê {local}: modified file
Ê {remote}: modified file
Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff in this case because the
command was run on a Mac), you can see all the supported tools listed at the top after Òone of the
following tools.Ó Just type the name of the tool youÕd rather use.

! If you need more advanced tools for resolving tricky merge conflicts, we cover
more on merging in Advanced Merging .

After you exit the merge tool, Git asks you if the merge was successful. If you tell the script that it
was, it stages the file to mark it as resolved for you. You can run git status again to verify that all
conflicts have been resolved:

$ git status
On branch master
All conflicts fixed but you are still merging.
Ê (use "git commit" to conclude merge)

Changes to be committed:

Ê modified: index.html

If youÕre happy with that, and you verify that everything that had conflicts has been staged, you can
type git commit to finalize the merge commit. The commit message by default looks something like
this:

Merge branch 'iss53'

Conflicts:

76

Ê index.html
#
It looks like you may be committing a merge.
If this is not correct, please remove the file
.git/MERGE_HEAD
and try again.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
All conflicts fixed but you are still merging.
#
Changes to be committed:
modified: index.html
#

If you think it would be helpful to others looking at this merge in the future, you can modify this
commit message with details about how you resolved the merge and explain why you did the
changes you made if these are not obvious.

Branch Management
Now that youÕve created, merged, and deleted some branches, letÕs look at some branch-
management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you run it with no
arguments, you get a simple listing of your current branches:

$ git branch
Ê iss53
* master
Ê testing

Notice the * character that prefixes the master branch: it indicates the branch that you currently
have checked out (i.e., the branch that HEAD points to). This means that if you commit at this point,
the master branch will be moved forward with your new work. To see the last commit on each
branch, you can run git branch -v :

$ git branch -v
Ê iss53 93b412c Fix javascript issue
* master 7a98805 Merge branch 'iss53'
Ê testing 782fd34 Add scott to the author list in the readme

The useful --merged and --no-merged options can filter this list to branches that you have or have not
yet merged into the branch youÕre currently on. To see which branches are already merged into the
branch youÕre on, you can run git branch --merged :

77

$ git branch --merged
Ê iss53
* master

Because you already merged in iss53 earlier, you see it in your list. Branches on this list without the
* in front of them are generally fine to delete with git branch -d ; youÕve already incorporated their
work into another branch, so youÕre not going to lose anything.

To see all the branches that contain work you havenÕt yet merged in, you can run git branch --no
-merged:

$ git branch --no-merged
Ê testing

This shows your other branch. Because it contains work that isnÕt merged in yet, trying to delete it
with git branch -d will fail:

$ git branch -d testing
error: The branch 'testing' is not fully merged.
If you are sure you want to delete it, run 'git branch -D testing'.

If you really do want to delete the branch and lose that work, you can force it with -D, as the helpful
message points out.

!

The options described above, --merged and --no-merged will, if not given a commit
or branch name as an argument, show you what is, respectively, merged or not
merged into your current branch.

You can always provide an additional argument to ask about the merge state with
respect to some other branch without checking that other branch out first, as in,
what is not merged into the master branch?

$ git checkout testing
$ git branch --no-merged master
Ê topicA
Ê featureB

Changing a branch name

$
Do not rename branches that are still in use by other collaborators. Do not rename
a branch like master/main/mainline without having read the section "Changing the
master branch name".

Suppose you have a branch that is called bad-branch-name and you want to change it to corrected-

78

branch-name, while keeping all history. You also want to change the branch name on the remote
(GitHub, GitLab, other server). How do you do this?

Rename the branch locally with the git branch --move command:

$ git branch --move bad-branch-name corrected-branch-name

This replaces your bad-branch-name with corrected-branch-name , but this change is only local for
now. To let others see the corrected branch on the remote, push it:

$ git push --set-upstream origin corrected-branch-name

Now weÕll take a brief look at where we are now:

$ git branch --all
* corrected-branch-name
Ê main
Ê remotes/origin/bad-branch-name
Ê remotes/origin/corrected-branch-name
Ê remotes/origin/main

Notice that youÕre on the branch corrected-branch-name and itÕs available on the remote. However,
the branch with the bad name is also still present there but you can delete it by executing the
following command:

$ git push origin --delete bad-branch-name

Now the bad branch name is fully replaced with the corrected branch name.

Changing the master branch name

"
Changing the name of a branch like master/main/mainline/default will break the
integrations, services, helper utilities and build/release scripts that your repository
uses. Before you do this, make sure you consult with your collaborators. Also,
make sure you do a thorough search through your repo and update any references
to the old branch name in your code and scripts.

Rename your local master branch into main with the following command:

$ git branch --move master main

ThereÕs no local master branch anymore, because itÕs renamed to the main branch.

To let others see the new main branch, you need to push it to the remote. This makes the renamed

79

branch available on the remote.

$ git push --set-upstream origin main

Now we end up with the following state:

$ git branch --all
* main
Ê remotes/origin/HEAD -> origin/master
Ê remotes/origin/main
Ê remotes/origin/master

Your local master branch is gone, as itÕs replaced with the main branch. The main branch is present on
the remote. However, the old master branch is still present on the remote. Other collaborators will
continue to use the master branch as the base of their work, until you make some further changes.

Now you have a few more tasks in front of you to complete the transition:

¥ Any projects that depend on this one will need to update their code and/or configuration.

¥ Update any test-runner configuration files.

¥ Adjust build and release scripts.

¥ Redirect settings on your repo host for things like the repoÕs default branch, merge rules, and
other things that match branch names.

¥ Update references to the old branch in documentation.

¥ Close or merge any pull requests that target the old branch.

After youÕve done all these tasks, and are certain the main branch performs just as the master
branch, you can delete the master branch:

$ git push origin --delete master

Branching Workflows
Now that you have the basics of branching and merging down, what can or should you do with
them? In this section, weÕll cover some common workflows that this lightweight branching makes
possible, so you can decide if you would like to incorporate them into your own development cycle.

Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another multiple times
over a long period is generally easy to do. This means you can have several branches that are
always open and that you use for different stages of your development cycle; you can merge
regularly from some of them into others.

80

Many Git developers have a workflow that embraces this approach, such as having only code that is
entirely stable in their master branch!Ñ!possibly only code that has been or will be released. They
have another parallel branch named develop or next that they work from or use to test stability!Ñ!it
isnÕt necessarily always stable, but whenever it gets to a stable state, it can be merged into master.
ItÕs used to pull in topic branches (short-lived branches, like your earlier iss53 branch) when
theyÕre ready, to make sure they pass all the tests and donÕt introduce bugs.

In reality, weÕre talking about pointers moving up the line of commits youÕre making. The stable
branches are farther down the line in your commit history, and the bleeding-edge branches are
farther up the history.

Figure 26. A linear view of progressive-stability branching

ItÕs generally easier to think about them as work silos, where sets of commits graduate to a more
stable silo when theyÕre fully tested.

Figure 27. A ÒsiloÓ view of progressive-stability branching

You can keep doing this for several levels of stability. Some larger projects also have a proposed or pu
(proposed updates) branch that has integrated branches that may not be ready to go into the next or
master branch. The idea is that your branches are at various levels of stability; when they reach a
more stable level, theyÕre merged into the branch above them. Again, having multiple long-running
branches isnÕt necessary, but itÕs often helpful, especially when youÕre dealing with very large or
complex projects.

Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-lived branch
that you create and use for a single particular feature or related work. This is something youÕve
likely never done with a VCS before because itÕs generally too expensive to create and merge

81

branches. But in Git itÕs common to create, work on, merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created. You did a few
commits on them and deleted them directly after merging them into your main branch. This
technique allows you to context-switch quickly and completely!Ñ!because your work is separated
into silos where all the changes in that branch have to do with that topic, itÕs easier to see what has
happened during code review and such. You can keep the changes there for minutes, days, or
months, and merge them in when theyÕre ready, regardless of the order in which they were created
or worked on.

Consider an example of doing some work (on master), branching off for an issue (iss91), working on
it for a bit, branching off the second branch to try another way of handling the same thing (
iss91v2), going back to your master branch and working there for a while, and then branching off
there to do some work that youÕre not sure is a good idea (dumbidea branch). Your commit history
will look something like this:

Figure 28. Multiple topic branches

Now, letÕs say you decide you like the second solution to your issue best (iss91v2); and you showed
the dumbidea branch to your coworkers, and it turns out to be genius. You can throw away the
original iss91 branch (losing commits C5 and C6) and merge in the other two. Your history then
looks like this:

82

Figure 29. History after merging dumbidea and iss91v2

We will go into more detail about the various possible workflows for your Git project in Distributed
Git , so before you decide which branching scheme your next project will use, be sure to read that
chapter.

ItÕs important to remember when youÕre doing all this that these branches are completely local.
When youÕre branching and merging, everything is being done only in your Git repository!Ñ!there
is no communication with the server.

Remote Branches
Remote references are references (pointers) in your remote repositories, including branches, tags,
and so on. You can get a full list of remote references explicitly with git ls-remote <remote> , or git
remote show <remote> for remote branches as well as more information. Nevertheless, a more
common way is to take advantage of remote-tracking branches.

83

Remote-tracking branches are references to the state of remote branches. TheyÕre local references
that you canÕt move; Git moves them for you whenever you do any network communication, to
make sure they accurately represent the state of the remote repository. Think of them as
bookmarks, to remind you where the branches in your remote repositories were the last time you
connected to them.

Remote-tracking branch names take the form <remote>/<branch>. For instance, if you wanted to see
what the master branch on your origin remote looked like as of the last time you communicated
with it, you would check the origin/master branch. If you were working on an issue with a partner
and they pushed up an iss53 branch, you might have your own local iss53 branch, but the branch
on the server would be represented by the remote-tracking branch origin/iss53 .

This may be a bit confusing, so letÕs look at an example. LetÕs say you have a Git server on your
network at git.ourcompany.com. If you clone from this, GitÕs clone command automatically names it
origin for you, pulls down all its data, creates a pointer to where its master branch is, and names it
origin/master locally. Git also gives you your own local master branch starting at the same place as
originÕs master branch, so you have something to work from.

!

ÒoriginÓ is not special

Just like the branch name ÒmasterÓ does not have any special meaning in Git,
neither does ÒoriginÓ. While ÒmasterÓ is the default name for a starting branch
when you run git init which is the only reason itÕs widely used, ÒoriginÓ is the
default name for a remote when you run git clone . If you run git clone -o booyah
instead, then you will have booyah/master as your default remote branch.

84

Figure 30. Server and local repositories after cloning

If you do some work on your local master branch, and, in the meantime, someone else pushes to
git.ourcompany.com and updates its master branch, then your histories move forward differently.
Also, as long as you stay out of contact with your origin server, your origin/master pointer doesnÕt
move.

85

Figure 31. Local and remote work can diverge

To synchronize your work with a given remote, you run a git fetch <remote> command (in our
case, git fetch origin). This command looks up which server ÒoriginÓ is (in this case, itÕs
git.ourcompany.com), fetches any data from it that you donÕt yet have, and updates your local
database, moving your origin/master pointer to its new, more up-to-date position.

86

Figure 32. git fetch updates your remote-tracking branches

To demonstrate having multiple remote servers and what remote branches for those remote
projects look like, letÕs assume you have another internal Git server that is used only for
development by one of your sprint teams. This server is at git.team1.ourcompany.com. You can add it
as a new remote reference to the project youÕre currently working on by running the git remote
add command as we covered in Git Basics. Name this remote teamone, which will be your shortname
for that whole URL.

87

Figure 33. Adding another server as a remote

Now, you can run git fetch teamone to fetch everything the remote teamone server has that you
donÕt have yet. Because that server has a subset of the data your origin server has right now, Git
fetches no data but sets a remote-tracking branch called teamone/master to point to the commit that
teamone has as its master branch.

88

Figure 34. Remote-tracking branch for teamone/master

Pushing

When you want to share a branch with the world, you need to push it up to a remote to which you
have write access. Your local branches arenÕt automatically synchronized to the remotes you write
to!Ñ!you have to explicitly push the branches you want to share. That way, you can use private
branches for work you donÕt want to share, and push up only the topic branches you want to
collaborate on.

If you have a branch named serverfix that you want to work on with others, you can push it up the
same way you pushed your first branch. Run git push <remote> <branch> :

$ git push origin serverfix
Counting objects: 24, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (24/24), 1.91 KiB | 0 bytes/s, done.
Total 24 (delta 2), reused 0 (delta 0)
To https://github.com/schacon/simplegit
Ê* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname out to
refs/heads/serverfix:refs/heads/serverfix , which means, ÒTake my serverfix local branch and
push it to update the remoteÕs serverfix branch.Ó WeÕll go over the refs/heads/ part in detail in Git

89

Internals , but you can generally leave it off. You can also do git push origin serverfix:serverfix ,
which does the same thing!Ñ!it says, ÒTake my serverfix and make it the remoteÕs serverfix.Ó You
can use this format to push a local branch into a remote branch that is named differently. If you
didnÕt want it to be called serverfix on the remote, you could instead run git push origin
serverfix:awesomebranch to push your local serverfix branch to the awesomebranch branch on the
remote project.

!

DonÕt type your password every time

If youÕre using an HTTPS URL to push over, the Git server will ask you for your
username and password for authentication. By default it will prompt you on the
terminal for this information so the server can tell if youÕre allowed to push.

If you donÕt want to type it every single time you push, you can set up a Òcredential
cacheÓ. The simplest is just to keep it in memory for a few minutes, which you can
easily set up by running git config --global credential.helper cache .

For more information on the various credential caching options available, see
Credential Storage .

The next time one of your collaborators fetches from the server, they will get a reference to where
the serverÕs version of serverfix is under the remote branch origin/serverfix :

$ git fetch origin
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://github.com/schacon/simplegit
Ê* [new branch] serverfix -> origin/serverfix

ItÕs important to note that when you do a fetch that brings down new remote-tracking branches,
you donÕt automatically have local, editable copies of them. In other words, in this case, you donÕt
have a new serverfix branch!Ñ!you have only an origin/serverfix pointer that you canÕt modify.

To merge this work into your current working branch, you can run git merge origin/serverfix . If
you want your own serverfix branch that you can work on, you can base it off your remote-
tracking branch:

$ git checkout -b serverfix origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

This gives you a local branch that you can work on that starts where origin/serverfix is.

Tracking Branches

Checking out a local branch from a remote-tracking branch automatically creates what is called a

90

Òtracking branchÓ (and the branch it tracks is called an Òupstream branchÓ). Tracking branches are
local branches that have a direct relationship to a remote branch. If youÕre on a tracking branch
and type git pull , Git automatically knows which server to fetch from and which branch to merge
in.

When you clone a repository, it generally automatically creates a master branch that tracks
origin/master . However, you can set up other tracking branches if you wish!Ñ!ones that track
branches on other remotes, or donÕt track the master branch. The simple case is the example you
just saw, running git checkout -b <branch> <remote>/<branch> . This is a common enough operation
that Git provides the --track shorthand:

$ git checkout --track origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

In fact, this is so common that thereÕs even a shortcut for that shortcut. If the branch name youÕre
trying to checkout (a) doesnÕt exist and (b) exactly matches a name on only one remote, Git will
create a tracking branch for you:

$ git checkout serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

To set up a local branch with a different name than the remote branch, you can easily use the first
version with a different local branch name:

$ git checkout -b sf origin/serverfix
Branch sf set up to track remote branch serverfix from origin.
Switched to a new branch 'sf'

Now, your local branch sf will automatically pull from origin/serverfix .

If you already have a local branch and want to set it to a remote branch you just pulled down, or
want to change the upstream branch youÕre tracking, you can use the -u or --set-upstream-to
option to git branch to explicitly set it at any time.

$ git branch -u origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.

!

Upstream shorthand

When you have a tracking branch set up, you can reference its upstream branch
with the @{upstream} or @{u} shorthand. So if youÕre on the master branch and itÕs
tracking origin/master , you can say something like git merge @{u} instead of git
merge origin/master if you wish.

91

If you want to see what tracking branches you have set up, you can use the -vv option to git branch .
This will list out your local branches with more information including what each branch is tracking
and if your local branch is ahead, behind or both.

$ git branch -vv
Ê iss53 7e424c3 [origin/iss53: ahead 2] Add forgotten brackets
Ê master 1ae2a45 [origin/master] Deploy index fix
* serverfix f8674d9 [teamone/server-fix-good: ahead 3, behind 1] This should do it
Ê testing 5ea463a Try something new

So here we can see that our iss53 branch is tracking origin/iss53 and is ÒaheadÓ by two, meaning
that we have two commits locally that are not pushed to the server. We can also see that our master
branch is tracking origin/master and is up to date. Next we can see that our serverfix branch is
tracking the server-fix-good branch on our teamone server and is ahead by three and behind by one,
meaning that there is one commit on the server we havenÕt merged in yet and three commits
locally that we havenÕt pushed. Finally we can see that our testing branch is not tracking any
remote branch.

ItÕs important to note that these numbers are only since the last time you fetched from each server.
This command does not reach out to the servers, itÕs telling you about what it has cached from these
servers locally. If you want totally up to date ahead and behind numbers, youÕll need to fetch from
all your remotes right before running this. You could do that like this:

$ git fetch --all; git branch -vv

Pulling

While the git fetch command will fetch all the changes on the server that you donÕt have yet, it will
not modify your working directory at all. It will simply get the data for you and let you merge it
yourself. However, there is a command called git pull which is essentially a git fetch immediately
followed by a git merge in most cases. If you have a tracking branch set up as demonstrated in the
last section, either by explicitly setting it or by having it created for you by the clone or checkout
commands, git pull will look up what server and branch your current branch is tracking, fetch
from that server and then try to merge in that remote branch.

Generally itÕs better to simply use the fetch and merge commands explicitly as the magic of git pull
can often be confusing.

Deleting Remote Branches

Suppose youÕre done with a remote branch!Ñ!say you and your collaborators are finished with a
feature and have merged it into your remoteÕs master branch (or whatever branch your stable
codeline is in). You can delete a remote branch using the --delete option to git push . If you want to
delete your serverfix branch from the server, you run the following:

$ git push origin --delete serverfix

92

To https://github.com/schacon/simplegit
Ê- [deleted] serverfix

Basically all this does is to remove the pointer from the server. The Git server will generally keep
the data there for a while until a garbage collection runs, so if it was accidentally deleted, itÕs often
easy to recover.

Rebasing
In Git, there are two main ways to integrate changes from one branch into another: the merge and
the rebase. In this section youÕll learn what rebasing is, how to do it, why itÕs a pretty amazing tool,
and in what cases you wonÕt want to use it.

The Basic Rebase

If you go back to an earlier example from Basic Merging , you can see that you diverged your work
and made commits on two different branches.

Figure 35. Simple divergent history

The easiest way to integrate the branches, as weÕve already covered, is the merge command. It
performs a three-way merge between the two latest branch snapshots (C3 and C4) and the most
recent common ancestor of the two (C2), creating a new snapshot (and commit).

93

Figure 36. Merging to integrate diverged work history

However, there is another way: you can take the patch of the change that was introduced in C4 and
reapply it on top of C3. In Git, this is called rebasing . With the rebase command, you can take all the
changes that were committed on one branch and replay them on a different branch.

For this example, you would check out the experiment branch, and then rebase it onto the master
branch as follows:

$ git checkout experiment
$ git rebase master
First, rewinding head to replay your work on top of it...
Applying: added staged command

This operation works by going to the common ancestor of the two branches (the one youÕre on and
the one youÕre rebasing onto), getting the diff introduced by each commit of the branch youÕre on,
saving those diffs to temporary files, resetting the current branch to the same commit as the branch
you are rebasing onto, and finally applying each change in turn.

Figure 37. Rebasing the change introduced in C4 onto C3

At this point, you can go back to the master branch and do a fast-forward merge.

$ git checkout master
$ git merge experiment

94

Figure 38. Fast-forwarding the master branch

Now, the snapshot pointed to by C4' is exactly the same as the one that was pointed to by C5 in the
merge example . There is no difference in the end product of the integration, but rebasing makes for
a cleaner history. If you examine the log of a rebased branch, it looks like a linear history: it
appears that all the work happened in series, even when it originally happened in parallel.

Often, youÕll do this to make sure your commits apply cleanly on a remote branch!Ñ!perhaps in a
project to which youÕre trying to contribute but that you donÕt maintain. In this case, youÕd do your
work in a branch and then rebase your work onto origin/master when you were ready to submit
your patches to the main project. That way, the maintainer doesnÕt have to do any integration
work!Ñ!just a fast-forward or a clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether itÕs the last of the
rebased commits for a rebase or the final merge commit after a merge, is the same snapshot!Ñ!itÕs
only the history that is different. Rebasing replays changes from one line of work onto another in
the order they were introduced, whereas merging takes the endpoints and merges them together.

More Interesting Rebases

You can also have your rebase replay on something other than the rebase target branch. Take a
history like A history with a topic branch off another topic branch , for example. You branched a
topic branch (server) to add some server-side functionality to your project, and made a commit.
Then, you branched off that to make the client-side changes (client) and committed a few times.
Finally, you went back to your server branch and did a few more commits.

95

Figure 39. A history with a topic branch off another topic branch

Suppose you decide that you want to merge your client-side changes into your mainline for a
release, but you want to hold off on the server-side changes until itÕs tested further. You can take
the changes on client that arenÕt on server (C8 and C9) and replay them on your master branch by
using the --onto option of git rebase :

$ git rebase --onto master server client

This basically says, ÒTake the client branch, figure out the patches since it diverged from the server
branch, and replay these patches in the client branch as if it was based directly off the master
branch instead.Ó ItÕs a bit complex, but the result is pretty cool.

Figure 40. Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Fast-forwarding your master branch to include
the client branch changes):

96

$ git checkout master
$ git merge client

Figure 41. Fast-forwarding your master branch to include the client branch changes

LetÕs say you decide to pull in your server branch as well. You can rebase the server branch onto
the master branch without having to check it out first by running git rebase <basebranch>
<topicbranch> !Ñ!which checks out the topic branch (in this case, server) for you and replays it onto
the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Rebasing your server branch
on top of your master branch .

Figure 42. Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master
$ git merge server

You can remove the client and server branches because all the work is integrated and you donÕt
need them anymore, leaving your history for this entire process looking like Final commit history :

$ git branch -d client
$ git branch -d server

97

Figure 43. Final commit history

The Perils of Rebasing

Ahh, but the bliss of rebasing isnÕt without its drawbacks, which can be summed up in a single line:

Do not rebase commits that exist outside your repository and that people may have based
work on.

If you follow that guideline, youÕll be fine. If you donÕt, people will hate you, and youÕll be scorned
by friends and family.

When you rebase stuff, youÕre abandoning existing commits and creating new ones that are similar
but different. If you push commits somewhere and others pull them down and base work on them,
and then you rewrite those commits with git rebase and push them up again, your collaborators
will have to re-merge their work and things will get messy when you try to pull their work back
into yours.

LetÕs look at an example of how rebasing work that youÕve made public can cause problems.
Suppose you clone from a central server and then do some work off that. Your commit history looks
like this:

Figure 44. Clone a repository, and base some work on it

Now, someone else does more work that includes a merge, and pushes that work to the central
server. You fetch it and merge the new remote branch into your work, making your history look
something like this:

98

Figure 45. Fetch more commits, and merge them into your work

Next, the person who pushed the merged work decides to go back and rebase their work instead;
they do a git push --force to overwrite the history on the server. You then fetch from that server,
bringing down the new commits.

Figure 46. Someone pushes rebased commits, abandoning commits youÕve based your work on

99

