Fundamentals of Xlib Programming
by Examples

by

Ross Maloney

Contents

1

Introduction
1.1 Critic of the available literature
1.2 ThePlace of the X Protocol
1.3 X Window Programming gotchas
Getting started
2.1 Basic Xlib programming steps
22 Creatingasinglewindow o L.
22.1 Openconnectiontotheserver
222 Top-levelwindow
223 EXxercises
2.3 Smallest Xlib program to produceawindow
231 EXercises
2.4 Asimple but useful X Window program
2401 EXEerciseso
25 Amovingwindow
251 EXercises
2.6 Parts of windows can disappear fromview
2.6.1 Testing overlay services available from an Xserver
2.6.2 Consequences of no server overlay services
263 Exercises
2.7 Changing a window’s properties L.
28 Contentsummary
Windows and events produce menus

3.1 Colour e e

311 EXercises e e e e e

10

10

10

11

12

12

15

16

17

17

23

23

25

26

26

27

CONTENTS

A button to click

3.4.2 Exercises
Some events of the mouse

A mouse behaviour application

Implementing hierarchical menus

Content summary

41 The pixmap resource
Pattern patches

Bitmap patterns

A bitmap cursor

A partially transparent pixmap

Using Postscript to create labels

Changing the colour of a pixmap

Reducing server-client interaction by images

Creating menus by using the image format

Forming text messages from bitmap glyphs

4.10.1 Accessing X11 standard bitmap fonts

ii

CONTENTS

4.10.2 How to used the bitmap fonts
4.10.3 Exercises
4.11 Using pixmaps to colour a window’s background
4.11.1 Exercises

4.12 Content summary

Keyboard eniry and displaying text

5.1 Elementary X keyboard text entry

What fonts are available

Keyboard echoing on windows

Putting text in a window

Insertion cursor

Moving between text input windows using keys

A slider bar

Scrolling text
Scrolling horizontally
5.8.2 Scrolling vertically
5.8.3 Exercises

5.9 Contents Summary

Classic drawing
6.1 Limit on multiple objects in a request

6.2 Drawing lines, circles, and a coloured-in square

iii

CONTENTS

6.3 A symbol composed fromcircleparts L o oL L 156
631 Exercises e 159
6.4 A circle bouncing off plainedges L o L. 160
6.41 EXercises 163
6.5 Displaying the multi colours of a photograph 163
6.5.1 EXxercises 168
6.6 Contentsummary 168
Extras 169
71 Multi-colour XPM pixmaps 169
7010 EXercises 175
7.2 Using the X Protocol directly 175

iv

Chapter]

Intfroduction

1.1 Ciritic of the available literature

1.2 The Place of the X Protocol

The X Protocol is the information that is exchanged between the client and the server of the X Win-
dow system. It is the protocol that enables X to work. It is the existence of this protocol for such an
information interchange that enables the client and the server of X Window to be network connected
in contrast to being on the one computer. The client program exchanges these protocol packets with
the server program, using whatever networking software is available on the computers which are
executing the client and server programs. The more general this networking software, the more gen-
eral can be the distribution of the client and server programs across the network. If the networking
software communicates across a local area network (LAN) then the X Window clients and servers
used in any one particular X Window program must be within the computers licked by that LAN. If
the networking software is capabled of accessing the Internet, then the X Window clients and servers
can be distributed across the Internet.

The association of the X Protocol and Xlib is analogous to the association between computer
machine language and assembler language, and toolkits and compiler languages, as indicated by:

Toolkits <= compiler language

!

Xlib <= assembler language

!

X Protocol <= machine language

This arrangement shows an increasing complexity in progressing from top to bottom layer along
each leg of this stack. Each layer embodies a level of removal from the detail of the implementation.

Knowing the X Protocol of X Window is analoguous to knowing the combination of Os and 1s that
control the operation of the hardware of a particular computer (its machine language). It is the most
complex to understand, but it also leads to the most complete, understanding of way in which the
required execution is to be performed. Xlib provides a means of obtaining a particular combination
of Os and 1s to produce a particular X Window function, just as an assembler language produces
the combination of Os and 1s which implements the instruction set of a particular computer. Just as a
particular instruction given in an assembler language program generates the bytes that represent that
corresponding instruction in relation to computer hardware, so a particular Xlib function produces
the bytes which implement its correspondence in the X protocol. The least complexity is associated
with toolkits, such as GTK, Athena, Motif, etc. These correspond to compiled languages such as C,

1.3. X Window Programming gotchas

Fortran, Ada, etc. in that they provide a high-level of abstraction of the computing process. However,
in both the toolkit and compiled language case, the programs created in them are converted by
software to the lowest level elements of their particular leg of this stack.

Xlib is the C language binding to the X Protocol. Xlib is used in combination with programs
written in the C programming language. When writing C programs, the functions of Xlib are used
in the same manner as is used with inline assembler. Xlib is a library of functions.

Although it is possible to create an X protocol packet by hand, for practical programming purposes
that is not a good idea. The disadvantage of using the by hand approach includes:

e non-standard approach making program maintenance more difficult

e most programmers are not interested in, nor understand, the protocol to the level required

1.3 X Window Programming gotchas

When programming with X Window, the following need to be kept in mind:

1. All windows are contained within the root window;
A sub-window must be contained within its parent or be truncated;
A parent window always has a title bar;

Menus, buttons, and dialog boxes are all treated as windows;

S

All length measurements are in screen pixels;

6. Each window has its own coordinate system

The display screen of the X Window server is the root window. Every window created under X
Window is contained within it. The server does not attempt to change the dimensions of a window
or change its position so as a window is contained within the root window. The server if requested
to show a window will do as requested, but parts of the window exceeding the expanse of the root
window will be cut off.

All sub windows must be displayed within the confines of the window which is its parent. An
example of such a sub window is be a menu. If that sub window exceeds the screen extent of its
parent window, then the part of that sub window in excess will be removed by the X Window screen
manager.

When a window is created which is created with the root window as its parent will have a title.
The contents of this title can be explicitly assigned in the programming which sets up that window.

To X Window, everything is a window. The is no such special entities as menus, buttons, dialogue
boxes, slider bars, high-lights, or 3D effects, of ay kind. However, there are a few execptions. One is
the cursor used to mark the mouse pointer’s position on the screen. Also, neither a line, a character
in a font, nor a icon, is a window. However, in all those exception cases, each must be drawn in a
window.

Dimensions of windows and their position on the screen are always in the dimension of screen
pixels. The physical appearance on the screen of a window is determined by the pixel distribution

1.3. X Window Programming gotchas

on the screen being used. So, it is possible that the appearance of a window can change when viewed
on different screens.

Each window carries its own coordinate system. The origin of that coordinate system is in the
top left-hand corner of the window. The x-coordinate increases from left to right. The y-coordinates
increases from top to bottom of the window. There are no negative coordinates. All coordinates are
in screen pixels.

Getting started

Programming in the X Window System is centred on a window. In the creation of a final displayed
image, many windows can be involved with the final effect being influenced by the overlapping, ap-
pearance, disappearance, and adjacency of a number of such windows, and their contents. Therefore
mastery of X Windows programming starts by mastering the programming of a single window. Such
programming consists of four principal parts:

1. creation of a window;
making that window visible;

drawing into that window; and

= W N

handling input on that window.

Each of these parts will be discussed and demonstrated by examples in this and following chapters.
Each of these parts has a number of sub-parts. The complexity, and the resulting power and flexi-
bility, of X Window programming results from important interactions between those principal parts,
and their sub-parts.

The X Window System is defined by its protocol. That protocol is a series of messages that are
passed between the client and the server. The client is the program, such as those which will be
written in this book, that contain the Xlib function calls. Those function call generate the protocol
messages that are sent to the server. The server is a piece of X Window code that performs the requests
sent to it via the protocol messages. So, the client program, for example, setups the details of a
window and request that it appear on the display. The server actually produces the window on the
display.

The Xlib function calls are part of a library that provide a programmer access to the protocol
messages. As such, they might be considered as the assembly language of the X Window System. As
in programming in general, higher order languages exist. In the context of the X Window System
these are known as toolkits. The use of toolkits distances the programmer from much (but not all)
of the detail involved in programming the X Window System protocol. In a lot of cases this is done
by providing a policy, which becomes characteristic of the toolkit, for interlinking the underlying
protocol requests. But as stated in ? (page xxii), an aim in creating the X Window System was to
provide mechanism rather than policy. As a result, Xlib provides the most practical means of exploring
what can be achieved by using the X Window System. A cost of that understanding is that more is
required from the programmer. The source programs become longer than those using toolkits and
the chance of oversights increase. A means of asisting the programmer in using Xlib is provided in
the following by the use of complete, working examples.

In this chapter the creation of a window and displaying it on a X Window screen is considered.

2.2. Creating a single window

2.1 Basic Xlib programming steps

The approach to Xlib programming proposed here is to follow a series of steps. In some instances
all these steps are not required as will be shown in the examples that follow in this book. There is
nothing new in this step prccess. ? proposes the use of eight such steps, these being:

1. open a connection to the server with XOpenDisplay

create a top-level withdown with XCreateWindow

set standard properties for the top-level window, including hints for the window manager
create window resources such as graphic contexts

create any other windows needed

select the desired events for these windows

map the windows

© N o G oE W N

enter the event loop

for creating an Xlib program. He then gives the code of an interesting and practical Xlib program

which unfortunately does not use the XCreateWindow () functionbutinstead uses XCreateSimpleWindow ()
But that code does fit on one printed page. However, that code needs to be changed and additional

steps added to fulfil the requirements current X Window 11 release 7 over that of release 2 used in

that article. Those changes are in the administration and initialisation of the X Window application;

the calls to produce the action contained in the program are unchanged.

The nine steps to produce a Xlib application program using Xlib are:

—_

open connection to the server

create a top-level window

give the Window Manager hints
establish window resources

create all the other windows needed
select events for each windows

map the windows

enter the event loop

© ©® N o g o= » N

clean up before exiting

2.2 Creadting a single window

One of the difficulties with X Window programming is a lot has to be done before anything ap-
pears on the display screen. If all those steps are not done correctly nothing appears, even though
it is nearly correct. Here a simple example is used to demonstrate the programming steps that are
necessary to produce a visible result from X Window.

2.2. Creating a single window

Figure 2.1: The window produced by the Xlib code of Figure 2.2

The first example is trivial, but it demonstrates the basic processes that need to be follow in
programming using Xlib. The example produces a blank window of a given size in the default
colour on the default display screen. Figure 2.1 shows the output produced. Although this example
is trival in its result, it does clearly show the steps involved in producing a functioning X Window
program using Xlib. It will be seen that such steps are not trival in themselves. Because those steps
are repeated with all the Xlib programs in this book, first a template for writing Xlib programs will
be introduced before applying it to the specific example. As a result, this chapter is important for it
sets the tone for the approach used throughout this book.

2.2.1 Open connection to the server

As described on page 126 of ?, each X client application contains a part of Xlib built into it at compile
time. The application code calls this code to convert Xlib function calls contained in the application
program into X protocol requests for the management part of this Xlib component to send across
the network to the server. This management part buffers the X protocol requests so as to make
most efficient use of the network between this client and the required server. This Xlib component
also provides data structures that represent locally each remote server with which the client requires
access. The application can then access this local representation to obtain information about a server
without making requests across the network to the server itself. It also buffers X events pertaining
to that application received from all servers. Each X application contains an individual copy of the
description of each server to which it is connected.

The structures Display, Screen, and Visual are established in the Xlib portion on a X11 client’s code
when the connection to the server is made. The Visual structure contains information about how
colours are represented for a screen. The Screen structure contains information both of the physical
nature (such as its height, width, black and white pixel patterns, bits per pixel (depth), etc.) and how
that physical screen falls in the X11 model (for example, its root window, default colour map, GC
for the root, etc). The Display structure contains information relating to the formation of X protocol
packets that are to be transmitted and received between the client and the server. Examples of such

2.2. Creating a single window

informations as the maximum number of 32 bit words in a request, screen byte order, host:display
string used, default screen number, and number of screens on the server. These three structures are
defined in the Xlib.h header file.

The members of the Display, Screen, and Visual structures are not accessed directly by application
codes. In the instances where default values set in these structures are required by application codes,
X11 makes eleven XDefault* functions available for accessing such values. These functions are also
available as Default* macros.

To use X Window, a client program first requests a connection to be made to a server. This will es-
tablish in the client’s Xlib component a representation of the server in the form of a Display structure.
To do this, the function XOpenDisplay() is used. It returns a pointer to the application of the Display
structure stored in the Xlib component of the client program. This structure describes detail config-
uration information of the server. The XOpenDisplay() is implementented by a CreateGC protocol
request (STRANGE). Information contained in these structures are accessed by the client application
via Default macros.

2.2.2 Top-level window

An X Window application is composed only of windows. X Window only provides one type of win-
dow, but it can be fitted out differently for different uses. There are no specialised buttons, scroll
bars, text entry fields, etc. that exist in other windowing systems. Each of these elements can be cre-
ated from a window or a combination of more than one window, in X Window. X Window provides
freedom of combination within the restriction of hierarchical relationship among the windows. By
so doing, X Window is said to provide mechanism without imposing policy. It is that generality that
makes X Window both powerful, and difficult for the programmer in that there are a large number
of options available for use.

All windows in X Window form a hierarchy. A parent window can contain sub-windows, and
those sub-windows can contain sub-window, etc. This relationship forms a hierarchy, with the par-
ent at the root of its hierarchical tree. The screen surface occupied by such sub-windows must fall
inside the surface area defined for its parent. These parents can result from independently or inter-
dependent running programs, and their screen surface area allocation could be separated or overlap-
ping, overlapping fully or partially. Consistent with the window hierarchy, those parent windows are
themselves sub-windows of a master window, called the root window. This root window is controlled
by the Window Manager.

When a window is initialised, it needs to specify its parent. In the case of a top-level window,
this parent is the root window. As described in Section2.2.1, the first action a client program does
is to use a call to XOpenDisplay() to create a Display, Screen, and Visual data structures in the Xlib
portion of the client’s executable code. These structures support the hierarchical window structure
that the client program then builds, and subsequently uses.

There are two Xlib calls available for creating a window; XCreateSimpleWindow() and XCre-
ateWindow(). The XCreateWindow/() call has greater generality and is used here.

Say the code of Figure 2.2 is contained in a file called basic.c. On a Linux system using gcc
version 4.1.1 and X11 version 7.1.0, this code is compiled and linked with the shell command:

gcc —-o basic —-I /usr/include/X11 -L /usr/X11R6/1lib -1X11 basic.c
The resulting executable basic is then executed via a shell command:

./basic &

2.2. Creating a single window

/+ This program creates and displays a basic window. The window has a

* default white background.
sk

* Coded by: Ross Maloney
* Date: August 2006
*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv[])

{

Display xmydisplay;
XSetWindowAttributes myat;

Window mywindow ;

XSizeHints wmsize;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent myevent;

char xwindow_name = "Basic";

char *xicon_name = "Ba";

int screen_num , done;

unsigned long valuemask;

/% 1. open connection to the server x/
mydisplay = XOpenDisplay("");

/% 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel (mydisplay, screen_num);
myat.event_mask = ButtonPressMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

/% 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources x*/
/¥ 5. create all the other windows needed =/
/* 6. select events for each window =/

/% 7. map the windows x/
XMapWindow (mydisplay , mywindow);

Figure 2.2: Placing a basic window onto the screen (Continued ...)

2.2. Creating a single window

/+ 8. enter the event loop =/
done = 0;
while (done ==)
XNextEvent(mydisplay , &myevent);
switch (myevent.type) {
case ButtonPress:
break;

}
}

/* 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Figure 2.2: Placing a basic window onto the screen

With respect to the X Window example of Figure 2.2, the following should be noted:

o It is possibly the simplest example possible;

e The example has no way in it of terminating its execution. This, on a Unix system would be
done via using ps from the shell to find the process ID of the executing code, and using that ID
in a kill command from the shell to terminate this process.

o The 9 steps are shown as comments, but only 5 are used;

e Because of the manner in which the program has to be terminated, step 9 is not necessary
because it is never going to be executed;

o The use of the maximum number of defaults has been used to reduce the size of the example
to a minimum;

o The event loop of step 8 is necessary otherwise no window will appear on the server’s screen.
Try removing that loop to verify this statement. The loop is required to provide event process-
ing which is necessary to make Xlib function.

o Important. The same variable of type XEvent must be used in the XNextEvent () function
call and all subsequent processing of that event. In this example that only occurs in the switch
statement.

Figure 2.1 shows what appears on the screen when the program of Figure 2.2 is executed. This
example only creates a window and places it on the screen. That window is blank. Notice: When
creating a window there is no graphic context (GC) involved (see later). A graphic context is only
involved when drawing on that window — the graphic context is associated with drawing operations.

Figure 2.1 shows some additions. These includes window decoration and surrounding black and
white stipple pattern of the root window used on the computer from where the screen-shot was
taken. These will appear in all screen-shots on the following pages. They are a property of the X11
Window Manager, which is a subject beyond the scope of this current work.

Note: Most X Window applications start out as a wireframe attached to the pointer on a screen.
When a mouse button is pressed, the Window Manager draws the window contained in the coded,
such as that of Figure 2.1. This does not occur when the code of Figure 2.2, or any of the other pro-
grams contained in this work. Instead, the initial window is drawn on the screen at the position nomi-
nated in the XCreateWindow () call. This change in behaviour is due to the XSetWMNormalHints ()

2.3. Smallest Xlib program to produce a window

call. This call supplies the Window Manager on the computer executing the code, additional infor-
mation without which the user is asked to supply via the mouse pointer.

2.2.3 Exercises

1. Modify the code of Figure 2.2 so error checking is implemented.

2. What simple change can be introduced into the code of Figure 2.2 so that clicking the mouse
anywhere in the limits of the white window will cause the program to terminate?

3. What simple change can be made in the code of Figure 2.2 so that clicking the mouse inside the
limits of the white window will give a bell sound every time the mouse is clicked?

4. Change the code of Figure 2.2 so that the white window is coloured yellow.

5. Find a selection of Window Managers where the use of the XSetWMNormalHints () call do,
and do not, have the effect indicated above. For example the hints have an effect in twm but not
in dwm. Why does this occur and how does it influence use of code implemented in X Window?

2.3 Smallest Xlib program to produce a window

The code of Figure 2.2 includes all of the parts recommended for inclusion when writing an Xlib
program. This approach will be used in all subsequent examples. But it also implements policy
in providing support for the underlying window manager. However, X Window was designed to
provide mechanism rather than policy. So, what is the smallest amount of Xlib code required to produce
a window on the screen? The code in Figure 2.3 is an answer.

When executed, the code of Figure 2.3 produces a window on the screen the same as shown
in Figure 2.1. In the code a number of parameters are left unspecified, for example, the colour of
the window’s border. Default values are supplied to these parameters either by the X server or the
window manager in use. Because the code does not provide a title, the window is titled Untitled
by the window manager. No hints are given to the window manager to assist it in displaying the
window, but the window manager does it’s job. In the program there are four basic Xlib calls used
with four auxilliary calls. Although no events are linked to the window, the Xlib call XNextEvent ()
is required for the window to appear. Because no events are specified in the myevent variable, the
XNextEvent () call generates an indefinite wait. Without this call nothing appears on the screen.

2.3.1 Exercises

1. List the Xlib and auxilliary call in the program of Figure 2.3.
2. Change the code of Figure 2.3 so the window is coloured green.
3. What parts of the code in Figure 2.2 which are not include in the Figure 2.3 implement policy?

4. What is the purpose of the XNextEvent () call in the program of Figure 2.3? What happens
when that call is removed?

10

2.4. A simple but useful X Window program

/* The simplest Xlib program possible which produces a window. A Window
* coloured white is placed on the screen.

*

* Coded by: Ross Maloney
* Date: April 2012
*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes myat;
Window mywindow ;

XEvent myevent;

int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server =/

mydisplay = XOpenDisplay("");

/* 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
valuemask = CWBackPixel;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

[3. give the Window Manager hints x/

/* 4. establish window resources x*/

/* 5. create all the other windows needed x*/
/¥ 6. select events for each window =/

/+ 7. map the windows x/
XMapWindow (mydisplay , mywindow);

/+ 8. enter the event loop =/
XNextEvent(mydisplay , &myevent);

/¥ 9. clean up before exiting =/

Figure 2.3: Small Xlib program which yields a window
2.4 A simple but useful X Window program

The program of Figure 2.4 is offered as a counter to the argument that Xlib programs are complex
and lengthy if they are to do anything useful. It would be nice if such a program could also be useful.
The program here sounds the computer’s bell. No window is created nor displayed. The program
needs to open a connection with a display, and in this program the default display of the system is
used. The bell is associated with the display.

The bell is one of a number of services made available by the server. The client program sends
X protocol requests to the server, which then initiates the requested function. For the magority of

11

2.5. A moving window

/* An elementary X Window program. A display is linked to this porgram, the
keyboard bell is then sounded, then the program terminates.

*

*
* Coded by: Ross Maloney
* Date: January 2012
*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv[])

{
Display xmydisplay;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay("");

[x 2. create a top—level window =x/

/x 3. give the Window Manager hints =/

/¥ 4. establish window resources =/

/¥ 5. create all the other windows needed x*/
/* 6. select events for each window x*/

/% 7. map the windows =/

I/« 8. enter the event loop =*/

XBell (mydisplay, 0);
/¥ 9. clean up before exiting =/
XCloseDisplay (mydisplay);
}

Figure 2.4: A program to ring the system’s bell

such requests the server uses the kernel of the underlying computer’s operating system to fulfil the
request. Other examples of such requests are drawing on the display, mouse handling, and keyboard
operations. Each of these request types are considered in the following chapters. The size of the client
program using such requests increases as the complexity available in such requests increase.

2.4.1 Exercises

1. Modify the program of Figure 2.4 so the loudest bell ring is produced by the program.
2. Add to the program of Figure 2.4 so the user gives the level of loudness of the bell ring.

3. List 5 instances where the program of Figure 2.4 could be applied.

2.5 A moving window

As the following work will show, a Graphical User Interface (GUI) is composed of many parts and
those parts are implemented as separate, but related, windows. This window orientation is stronger
using Xlib than when using toolkits such as Xt, Motif, and Gtk which use the X Window System,
and the Application Programming Interface (API) of Microsoft Windows. Few programs employing
windows consist of a single window.

In this Section a second window is added to the window created by the program of Figure 2.2.

12

2.5. A moving window

This shows that one additional window does require programming effort but less than what is
needed to form the first/background window although that background window is also required.
A similar amount of effort is required for each subsequent window added to form the collective of a
GUL Figure 2.5 shows two samples from the result produced.

(a) Initially (b) A number of seconds later

Figure 2.5: A black window moving across a white window

A window named rover of 50 pixels horizontal by 70 pixels vertical and black in colour is cre-
ated. This window is a child of the background window named mywindow which is white in colour.
The child window is made to walk across the parent window. This is done by changing the position
where the child window is to be displayed. When a window is created using the XCreateWindow ()
(or the XCreateSimpleWindow ()) Xlib call, a position for displaying that window must be given.
This position is relative to a coordinate system (in units of screen pixels) attached to the parent of
the window being created. It is fixed once the window is created. However, a XWindowChanges
structure which is handled by the XConfigureWindow () Xlib call can be used to change that posi-
tion. The new position is where the window will appear on the screen the next time it is displayed.
But a window can only appear on the screen once. So, if after a call to XMapWindow () has been
made to display a window at the original position, a subsequent call to XMapWindow () with un-
map (delete) the window from the screen and display it at the new position. An intervening call
to XUnmapWindow () is not needed. This is different to the way that X Window handles bitmap
patterns, which is discussed in Section 4.2.

As when creating a window using the XCreateWindow () Xlib function call, a value mask is
used to indicate the parameters in the XWindowChanges structure which XConfigureWindow ()
is to change. In this case, both the position coordinates are to be changed which is indicated by
logically ORing the CWX and CWY bit specifiers. The required values of those coordinates is assigned
to the corresponding record in the variable of type XWindowChanges before using it in the call to
XConfigureWindow (). Thisis seen in the program in Figure 2.6 which produced the screen display
show in Figure 2.5.

This program is driven by events which the code in the program creates. Events are central
to X Window and are discussed in Section 3.3: Most X Window programs use events. To indicate
a change in the configuration (in this case position) of the window, a StructureNotifyMask is
inserted in the event mask used when the two windows of the program are created. The event
loop of the program contains a ConfigureNotify case to perform processing when the call to
XConfigureWindow makes a change to the window’s position. That pprocessing is to map (display)
the window with its new coordinates, wait 3 seconds before selecting the next position of the window.
The delay of 3 seconds is to enable individual position changes of the window to be observed on
the screen. The delay is created by the sleep () system call which requires the unistd.h header
file. The exposure event used in the program of Figure 2.6 is not really necessary in this particular
instance.

13

2.5. A moving window

/+ First a basic window with a white background is created. Then another

* window, a child of the first is created with a black background. This

* second window is repeatedly mapped onto its parent window and then removed
* after 3 seconds. Each mapping is at different location.

3

* Coded by: Ross Maloney

* Date: March 2011

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <unistd.h>

int main(int argc, char xargv[])

{

Display smydisplay;
XSetWindowAttributes myat;
Window mywindow, rover;
XWindowChanges alter ;

XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent;

char *window_name = "Walking";
char *xicon_name = "WK";

int screen_num , done;
unsigned long valuemask;

int X, V;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel (mydisplay, screen_num);
myat. event_mask = ExposureMask | StructureNotifyMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
200, 300, 350, 250, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

I« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/% 4. establish window resources x/
myat.background_pixel = BlackPixel (mydisplay, screen_num);

Figure 2.6: To walk one window across another (Continued ...)

14

2.5. A moving window

I« 5. create all the other windows needed =/
rover = XCreateWindow (mydisplay, mywindow,
100, 30, 50, 70, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

/¥ 6. select events for each window =x/
valuemask = CWX | CWY;

/% 7. map the windows x/
XMapWindow (mydisplay , mywindow);

I/« 8. enter the event loop =/
done = 0;
x =11, y = 12;
while (done == 0) {
alter .x = x;
alter.y =vy;
XConfigureWindow (mydisplay, rover, valuemask, &alter);
XFlush (mydisplay);
XNextEvent (mydisplay, &myevent);
switch (myevent.type) {
case Expose:
break;
case ConfigureNotify:
XMapWindow (mydisplay , rover);
sleep (3);
X +=5; y += 6;
}
}

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow) ;
XCloseDisplay (mydisplay) ;
}

Figure 2.6: Program to walk one window across another

X Window tries to optimize sending of messages between the client program and the server which
is responsible for handling windows, events, etc. A client message request queue is provided by Xlib
as part of the client program, and the server maintains a received request queue. When an event
occurs, the server immediately (except when grabs are involved) sends an event message to an event
queue maintained by Xlib within the client program. A XNextEvent () call in the event loop of the
client program processes the next event on that client event queue. If the queue is empty, the client
flushes its request queue and waits for an event message from the server. So an XNextEvent ()
call will only immediately sent a request to the server if the client event queue is empty. To force
an immediate server request to be sent, a XFlush () call can be used. This is done in the code of
Figure 2.6 to ensure the server acts immediately upon the window position change contained in the
XConfigureWindow () call. Any events the server may sent to the client program’s event queue as
a result of the flushed request are processed after events already on the client’s event queue.

2.5.1 Exercises

1. Insert additional code into the program of Figure 2.6 to check for errors.

15

2.6. Parts of windows can disappear from view

2. What parameters for a created window can be changed other than the position where it is to be
displayed?

3. What events are brought into considerations associated with a window when St ructureNotifyMask
is include in the event mask specified at its creation?

4. Give three instances of exposure events detectable by the X Window server which would re-
quire processing by the client program.

5. The black window produced by the program of Figure 2.6 eventually disappears from the
screen. Why does this happen? Describe the X Window System mechanism involved.

2.6 Parts of windows can disappear from view

A window is the building block from which all X Window applications are made. Each window is
a rectangular area on a screen. These windows have the property of forming a hierarchy such that
all windows are related to one another by a repeating parent/child pairing in which one parent can
have one or more children. On the screen, the window of a child is clipped by the X Window server
so it is contained withing the window of its parent. This family grouping makes it highly likely that
two or more windows will occupy the same location on a screen. But the X Window server places
all window on the screen one after another. So, if two or more windows occupy the same screen
location, a window, or part of a window, could be obscured from view on the screen by another
window. The art of X Window programming is to ensure relevant information for the human user
which is in different windows is simultaneously available on the screen given the contraints on the
X Window System.

What happens when a window obscuring one or more other windows, or parts of windows, is
removed from the screen? Addressing that question requires knowing the component parts of X,
together with how they interact. This question is a consequence of having more than one window
on a screen. Most Graphical User Interfaces (GUISs) are built from multiple windows. As a result the
answer is of practical importance. The greater the number of windows present on screen, the more
likely will be the need to deal with the conseqnences of the answer.

Each window is rectangular in shape, has a border, and a foreground and background. All draw-
ing on to a window is down using that window’s foreground. Drawing on a window’s foreground
is done using a Graphics Context (GC) which has a number of parameters itself, including a
foreground and a background. The background of a window can be set to contain a visual pattern
without using a GC. Memory for Xlib structures declared in a client program does not (in most cases)
become part of the client program, but is part of the server. Such server memory is referenced by the
protocol requests which result from Xlib calls contained in the code of the client program.

When a window is created by the client program, the window’s size, the position it is to occupy
on the screen, appearance of it’s border, and contents of its background are stored as an image in the
memory of the server. The client program can then request the server to display (map) that image on
the screen. The client program can also request the server ot remove (unmap) that image from the
screen. Unmapping an image does not necessarily destroy the image of the window on the server.

It is natural to expect when a window is unmapped, any windows it partial obscured will become
fully visible. After all, the information about all windows is already in the server. The server should
look after restoration. A window can request by the XCreateWindow () (or XCreateSimpleWindow ())
call in the client program for creation of a window for the server to provide such service. There are
two such services: save under and backing store. A program showing how such service re-
quests are made will be given shortly. However, the server may not provide such services. This is
particularly true of servers from later releases of the X Window System. If a client program requires

16

2.6. Parts of windows can disappear from view

such services and they are not available, the performance quality of the client program is adversely
affected.

In an introductory chapter on Xlib programming it might appear inappropriate to consider server
behaviour, particularly that associated with recovery from overlaying of windows. But server and
client program interaction are at the heart of X. Simplisticly, the client requests the server to perform
operations. The server has functions it can perform but they may not align with what is expected.
All Xlib program needs to be performed withing the client-server environment which X provides.
The elements which are introduced here for considering this topic are used and expanded upon in
everything which follows.

2.6.1 Testing overlay services available from an X server

No X server is guaranteed to provide save under or backing store services. So any particular X server
either will or will not provide such services. The program of Figure 2.7 checks whether such services
are provided. The results of the checking are sent to standard output.

The save under and backing store services differ slightly. In save under the contents of the screen
onto which a window is mapped is save by the server at the instance the window is mapped, us-
ing the memory of the server. When that window is unmapped, the server moves its copy of the
original contents of the screen occupied by the removed window back onto the screen. These are
generally small areas of screen, say those resulting from a window forming a menu item. How-
ever, that restored content many be from more than one window. With backing store the contents of
a whole window is saved in the server’s memory. The server detects that a window is going to be
totally or partially obscured, and knowing that window has backing store enabled, the total contents
of that window are saved. When the window which caused the saving to occur is unmapped, the
total contents of the window having the backing store is redrawn by the server to the screen. The
client program, after defining which windows are to have save under and backing store attributes is
not be involved in the implementation of these services. The client program can, however, request
the server to notify it when such actions are performed.

2.6.2 Consequences of no server overlay services

To demonstrate overlaying windows and what can follow when one or more are removed from the
screen, a program controlling four windows is used. Four windows (mywindow, winl, win2,
and ontop are created using the window attributes of the myat structure with the valuemask vari-
able indicating which window attributes have been requested. Windows winl, win2 and ontop
are children of the mywindow window. The program considers the foreground and background of
each window separately.

The background of windows mywindow, winl, and win2 are set to be white in colour. The
background of the fourth window, ontop is set to be coloured black.

The background of the base window (mywindow) is tiled with a black and white checker-board
pattern which had been created externally, using the utility program bitmap. This pattern is stored
as a bitmap in the array backing_bit, which has associated variables backing_widthand backing_height
The tiling property of a window repeats this 16x16 pixel across the 350x250 pixel background of the
mywindow window. Firest the bitmap is converted into a pixmap named back by the Xlib func-
tion call XCreatePixmapFromBitmapData (). This pixmap is inserted into the background of
mywindow by the XSetWindowBackgroundPixmap () Xlib function call.

The foreground of windows winl, win2, and ontop are to be coloured black. Such colour-

17

2.6. Parts of windows can disappear from view

/x A program to check whether the X server provides Backing store and
* Save under.

*
* Writtem by: Ross Maloney
* Date: February 2011
*/

#include <X11/Xlib.h>
#include <stdio.h>

int main(int argc, char *xargv)

{

Display xe6display;
Screen xscreenptr;
int screen_num;

e6display = XOpenDisplay("");
screen_num = DefaultScreen(e6display);
screenptr = ScreenOfDisplay (e6display, screen_num);

printf ("Macro_=_%d\n", DoesSaveUnders(screenptr));
if (DoesSaveUnders(screenptr))

printf ("Does_screen_unders\n");
else

printf ("Does NOT_provide, _screen unders\n");

switch (DoesBackingStore(screenptr)) {

case WhenMapped:
printf ("Backing, store _provided_when_window _is _mapped\n");
break;

case Always:
printf ("Backing, store_is_always_provided\n");
break;

case NotUseful:
printf ("Does_NOTI_provide_backing,_store\n");
break;

default:

printf ("Something_wrong_with _DoesBackingStore () _call\n");
}

XCloseDisplay (e6display);

Figure 2.7: Program to check which overlay services a server provides

ing is performed as a specific case of drawing on the foreground. X Window requires a Graphics
Context (GC) to be used when performing any drawing operations on a window’s foreground. A
GC itself has both a foreground and a background the colouring of both is required to be speci-
fied. This is done in the program of Figure 2.8 using the Xlib functions XSetForeground () and
XSetBackground (), respectively.

Once the windows have been created, they are shown (mapped) on to the screen using the
XMapWindow () Xlib function. Figure 2.9 shows four snapshots of the actions of the program of Fig-
ure 2.8. Initially the parent window mywindow and two of its children winl and win2 are on screen
as shown in Figure 2.9(a). The checker-board pixmap on the background of the parent window is a
dominate feature.

18

2.6. Parts of windows can disappear from view

/+ First a window with a blach and white checker—board pattern is drawn. Two
* rectangles are then drawn on that window. The background of each of these
* two windows is white in colour. A GC is then created having a foreground

* colour of black. This GC is used to paint the foreground of the two windows
* black in colour. A third is created with a black backgound and is displayed
* overlaying the two windows. This overlaying window is then removed. This
* process is event driven with a 2 second delay in the event loop.

3

* Coded by: Ross Maloney

* Date: March 2011

*/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <unistd.h>

#define backing_width 16
#define backing_height 16

static unsigned char backing_bits[] = {
Oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff, O0x00, Oxff, 0x00, Oxff, 0x00,
Oxff, 0x00, Oxff, 0x00, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff,
0x00, Oxff, 0x00, Oxff, 0x00, Oxff, Ox00, Oxff};

int main(int argc, char xargv[])

{

Display

xmydisplay;

XSetWindowAttributes myat;

Window

mywindow, winl, win2, ontop;

XWindowChanges alter ;

XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent myevent;

GC gc;

char xwindow_name = "Uncover";
char xicon_name = "Uc";

int screen_num , done;
unsigned long valuemask;
Pixmap back;

int count;

/+ 1. open connection to the server =/

mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat. border_pixel = BlackPixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;

myat.save_under = True;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask | CWSaveUnder;

Figure 2.8: Program creating four windows then removing two (Continues...)

19

2.6. Parts of windows can disappear from view

mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
200, 300, 350, 250, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);
back = XCreatePixmapFromBitmapData (mydisplay , mywindow,
backing_bits , backing_width, backing_height,
BlackPixel (mydisplay, screen_num),
WhitePixel (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num));
XSetWindowBackgroundPixmap (mydisplay , mywindow, back);

/x 3. give the Window Manager hints =/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

I/« 4. establish window resources =/
gc = XCreateGC (mydisplay , mywindow, 0, NULL);
XSetForeground (mydisplay, gc, BlackPixel(mydisplay, screen_num));
XSetBackground (mydisplay, gc, WhitePixel (mydisplay, screen_num));

/% 5. create all the other windows needed =/
winl = XCreateWindow (mydisplay, mywindow,
100, 30, 50, 70, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);
win2 = XCreateWindow (mydisplay, mywindow,
100, 150, 150, 30, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);
myat. background_pixel = BlackPixel (mydisplay, screen_num);
ontop = XCreateWindow (mydisplay , mywindow,
120, 40, 80, 130, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);

I 6. select events for each window =/
/+ 7. map the windows x/

XMapWindow (mydisplay , mywindow);

XMapWindow (mydisplay , winl);

XMapWindow (mydisplay , win2);

Figure 2.8: Program creating four windows then removing two (Continues...)

20

2.6. Parts of windows can disappear from view

/+ 8. enter the event loop =/
done = 0;
count = 0;
while (done == 0) {
XFlush (mydisplay);
XNextEvent(mydisplay , &myevent);
sleep (2);
switch (myevent.type) {
case Expose:
count++;
switch (count) {
case 1:
XFillRectangle (mydisplay, winl, gc, 0, 0, 50, 70);
XFillRectangle (mydisplay, win2, gc, 0, 0, 150, 30);
break;
case 3:
XMapWindow (mydisplay , ontop);
break;
case 6:
XUnmapWindow (mydisplay, ontop);
break;
case 9:
XUnmapWindow (mydisplay , win2);
break;
default:
break;
}
break;

I« 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);
}

Figure 2.8: Program creating four windows then removing two

When a window becomes visible, the server will issue an exposure event notification if such an
event type has been set into the attribute structure of the window. In the program of Figure 2.8 this
is done with the myat .event_mask = ExposureMask statement and the inclusion of myat in all
the XCreateWindow () Xlib functions used to create the four windows. A property of X Window
System is that only after the server has issued the first exposure event for a X program can any
drawing occur on the foreground of any window of that program. In most X programs that first
exposure will result from the program’s parent window. In the program of Figure 2.8 the parent
window is mywindow.

As with all X programs, the event loop controls the operation of the program after initialisation
and creation of windows and other resources such as GCs, etc. In this loop of the program in Fig-
ure 2.8 a 2 second delay has been introduced by the sleep () system call to enable the sequence of
changes on the screen to be observed. After the occurrence of the first exposure event, the foreground
of windows winl and win2 are coloured black using the Xlib function XFillRectangle (). When
these windows first appear on the screen they are coloured white (that is not shown in Figure 2.9.
When the third exposure event is processed, window ontop is mapped to the screen as shown in
Figure 2.9(b). On the sixth exposure event, this most recently displayed window (ontop) is removed
from the screen. The effect is shown in Figure 2.9(c). Finally, the bottom window (win2 is removed

21

2.6. Parts of windows can disappear from view

from the screen with the result shown in Figure 2.9(d).

Uncover

(a) Before overlaying window appears (b) Overlaying window in place

[®] Uncover

(c) Overlaying window removed (d) Bottom window removed

Figure 2.9: Effect of removing an overlaying window

Although this program requested the server to use save under on all windows, it was not pro-
vided. Figure 2.9(c) and (d) show this not happening. In these figures, the white areas are the back-
grounds of windows winl and win2. These window portions were overlayed by window ontop
in Figure 2.9(b). Removing that window, destroyed the portion of the foreground of the windows
covered. The background of those windows become visible. This is further shown in Figure 2.9
where window win2 is removed but the check-board background pattern of the parent window is
undistrubed.

If the requested save under service had been available, then Figure 2.9(c) would have been the
same as (a). The white portion in Figure 2.9 would be black.

The principle here is window foreground content is lost when that foreground is overlayed by
another window. The background content of a window is not changed.

In the program of Figure 2.8 exposure events were only counted to perform different operations
of the program. However, exposure event notifications contain a lot of information about the cause
of the event. This information can be used to redraw all, or part, of a window which has become
uncovered.

22

2.7. Changing a window’s properties

2.6.3 Exercises

1. Implement checking for errors in the code of Figure 2.8.

2. Extend the program of Figure 2.8 to check whether the server being used provides all standard
server services.

3. Execute the program of Figure 2.8 on a server which does have save under support and note the
difference in behaviour to that depicted in Figure 2.9.

4. How can the occurrence of exposure events be monitored (as a debugging aid) in programs
such as that in Figure 2.8?

5. If the contents of a window’s foreground can be lost by overlaying, how can information being
shown in a window be protected from occurrence of such events?

6. Modify the program of Figure 2.8 so the server is at one fixed address on a network and the
client is at another.

7. Use the bitmap utility program to create two additional bitmaps then modify the program
of Figure 2.8 so one bitmap is tiled on the background of window winl and the other on the
background of win2. How does that modification affect the mapping and unmapping of those
respective windows?

8. Rewrite the program of Figure 2.8 in a X Window toolkit of your choice. All facits of the pro-
gram must be implemented. What is the difference in length of the original and toolkit versions
of the program?

9. Modify the program of Figure 2.8 such that the windows winl, win2, and ontop overlay
each other. Then remove each of these windows in different several difference orders. Does the
same foreground /background retention by the server apply in all such removal orders?

10. Rewrite the code of Figure 2.8 using XSetWindowBackgroundPixmap () and XClearWindow ()
Xlib functions calls. What advantages are derived by such a approach (Hint: Consider the ex-
posure event which are generated)? Where would this approach be advantageous?

11. Implement the operation of the program of Figure 2.8 using something else than the event
mechanism used in that program.

12. Using Figure 2.8 as a model, write a program which generates 10 windows of different size and
position on screen produced by an algorithm of your choice. Your program should then map
all those windows onto a parent window, and then remove (unmap) each window in different
order to that in which they were mapped to the screen.

2.7 Changing a window’s properties

When a window is created in the server by the XCreateWindow() or XCreateSimpleWindow () state-
ments, properties are associated with that window. Such properties can be explicitly assigned by
parameters passed in the statement or implicitly mainly due to inheritance from that window’s par-
ent. Most practical X Window programs consist of multiple windows. Individual windows are used
for displaying text, for keyboard entry, for implementing buttons, for implementing menus, for pro-
viding tablets for drawing graphics, etc. It is not unreasonable to expect windows created for each
of these tasks will need to change their properties after they are created to match changing circum-
stances in the overall execution of the program of which they are a part.

A selection of functions available to change window properties is shown in Table 2.1. Parameters
used with each function call is contained in Nye (volume 2).

23

2.7. Changing a window’s properties

Table 2.1: Xlib functions available to change an existing window’s properties

Xlib function Description
XSetWindowBackground() | change the background colour of a window
XResizeWindow() change the horizontal and vertical size of a window
XReparentWindow() relink a window to a different parent
XMoveWindow() move a window relative to its parent
XSetWindowBorder() change the colour of a window’s border
XSetWindowAttributes() reset a window’s attributes
XWarpPointer() program controlled moving the pointer to a different window

Once a window is displayed on the screen, its properties are fixed. Changed properties will take
effect when the window is next mapped to the screen using a XMapWindow() call. So additional
comments on some of those property changing library calls follow.

The XReparentWindow() statement is useful to reuse a window. For example, if a window has
been set up as a cancel button, it can be used on different windows to serve that function. First
this button is created with one window as its parent as required with the XCreateWindow() state-
ment. When use of that window combination is no longer required, the button can be reused with
a different window, with the button window being relinked the new window as parent by using
XReparentWindow(). A window can only have one parent at a time. So relinking a window auto-
maticly destroys the previous parent-child relationship. An advantage of reparenting is unmapping
the parent also removes any of its child windows currently mapped to the screen.

The user of a X Window program can only interact with one window at a time. That window is
the one on which the mouse pointer lies. For example, keyboard entry will be directed to the window
on which the pointer lies. If the program requires windows to be accessed in a sequence in respose to
keyboard entry, then the XWarpPointer() call can be used to position the pointer to the next window
in response to characters typed into the current window.

Situations occur when a window is too small in some situations. It is also inappropriate to size
that window for the largest possible size when it is created. The XResizeWindow() call can be used
to change the size of a window as a program detects appropriate.

XSetWindowBackground() can be used to change the single colour of a window’s background.
There is no corresponding function to change the foreground colour. If a pixmap has previously
applied to the window’s background, it is overwritten by a single colour as a consequence of this
call. There is also a XSetWindowBackgroundPixmap() call to apply a pixmap to the background of
a window. Such a pixmap is tiled on to the background, repeating itself so as to completely cover the
background if the pixmap is of smaller dimension than the window’s background. The foreground
and background of a pixmap cannot be changed once the pixmap is created.

Sometimes it is convenient to reposition a window on the screen. This done using the XMoveWin-
dow() call. The position is specified in coordinates defined relative to the parent of the window being
moved. All windows have a parent. The root window, which covers a whole screen, is the parent for
at least the first window in any X Window program.

XSetWindowAttributes() can be used to change the properties of a window to be different from
those with which the window was created. This call changes all the attributes of the window. Those
attributes not mentioned in this call are set to default values. An example where this call can be
used is to set a window to generate an exposure event after it is first mapped to the screen, when
that initial mapping to the screen is not to produce an exposure event. In this situation the window
would have been created without exposure events set.

24

2.8. Content summary

Xlib provides other window property changing functions all of which are documented in Nye
(colume 2). Xlib also provides functions to change the characteristics of a Graphic Context (GC) after
it is created.

2.8 Content summary

This chapter was concerned with the basics of creation and display one, two, and four windows. All
X11 programs have a base window. The chapter also established a framework for the steps that can
be used to build a Xlib program. Both of these aspects will be continually used through the remainder
of this work. The previous section gave a quick summary of some Xlib functions available to change
properties of a window after it is created.

The examples in this chapter give rise to the important principles:

e Server memory stores Xlib data structures associated with windows, GCs, pixmaps, etc.;
o The background of a window is not lost when another window overlays it;
o The foreground of a window is lost when a window is overlayed.

e The name of Xlib functions calls commence with an X and all significant sub-words in the name
commence with a capital.

o A window has both a foreground and a background.
o A Graphics Context has both a foreground and a background.
o A drawing operations on the foreground of a window has to be done using a Graphics Context.

e Nothing can be drawn into the foregound of any window before the first occurrence of an
exposure event of the containing program.

o The server is separate from the client program and the two pass messages to perform their
cooperation and that message passing can be across a network.

Since Xlib became available there has been a number of additions to its capabilities and a few
revisions to existing approaches. Most of those revisions relate to creation of the environment in
which the X11 program operates. Window manager hint functions are examples. This chapter used
those latest revisions. Those revisions lengthen this creation process but add flexibility. As with
the examples here, all X11 program contain at least a base window. As will be show in subsequent
chapters, X11 programs generally consist of multiple windows which build upon that base. As has
been indicated here, the use of additional windows does not proportional lengthening the source
code that appeared in this chapter. X Window toolkits generally work in reduced length of source
code but do so by imposing their look and feel which inhibits flexibility of choice by the programmer
of the resulting program.

25

Chapter 3

Windows and events produce
menus

This chapter shows how to program the production of a menu. A menu is a way of presenting
options to the program user on demand. A so called pull down menu will be used here whereby such
a menu drops down, or appears on the screen below a selection window, called a button. A button is
a particular case of a window. Implementing a pop up menu whereby a menu appears at the mouse
pointer which is positioned anywhere on the screen, after a mouse button is pressed, follows the
same development considered here.

Events are produced when something associated with a X Window program occurs. The pro-
grammer of that program specifies what such occurrences are to be and also links a consequence to
the occurrence of that event. Such events are asynchronous in that they can occur at anytime and, if
there are more can one event type specified in the program, in any sequence. The X Window System
stores each such event in a list in the order of their occurrence. The program then takes the events
present and processes them. This mechanism enables the events to occur at a frequency which is
greater than what the program can process them which simplifies the programming of their han-
dling. In the context of menus, the events of interest are those associated with pressing of a mouse
button.

Events are central to the operation of a X program. They have already been used in the program
of Figure 2.2. This chapter will show how that use is extended.

The ideas presented in this chapter are fundamental to X programming. Here, only simple in-
stances of buttons and events will be demonstrated in the context of creating and manipulation of
menus. These concepts are also be used in following chapters.

3.1 Colour

Use of colour in graphics increases the quality of their appearance and their utility. X Window sup-
ports colour in both a simple and more complex manner.

In its simplest form, an X Wibdow program presents a series of bits which are passed to the graph-
ics hardware to generate colour. Today a True Colour model is commonly used on basic hardware.
It consists of using 8 bits, or two hexidecimal digits, to represent each of the primary colours of red,
green, and blue. In such a True Colour model, the colour white would be represented by giving each
of red, green, and blue their maximum value of ff (hex). Black would be produced by assigning each
of red, green, and blue their minimum values of 0. In X Window, the value of the colour is passed
as a single variable composed of the red, green, and blue values concatinated together. For example,

26

3.1. Colour

the value £4c016 contains the value £4 for red, c0 for green, and 16 for blue.

In the more complex colour system called Color Characterization Convention or CCS, the X Color
Management System or Xcms is used to represent colour as a colour space. This representation can
be in a device dependent or a device independent form. The device independent form complies
with the international standard on colour and takes the properties of the human visual system into
consideration. Several such models exist, such as CIEXYZ, CIExyY, and CIELab , but the TekHVC
model developed by Tektronix is popular. In the Tektronix model, colour is described in terms of
hue (or colour), value (or intensity), and chroma (or saturation) and is denoted as the TekHVC model.
No matter which of the device independent models are used to denote a colour, that description has
to be converted to red, green, and blue values for represention on a screen.

The XcmsLookupColor () is a useful function provided in Xcms. It enables a colour definition in
one colour space to be connverted to another. The program in Figure 3.1 shows conversion of a RGB
colour definition (the device dependent definition) to a TekHVC definition, and then performing the
conversion the other way. In the TekHVC model, hue (H) has the range 0 to 360 degrees, while value
(V) and chroma (C) have the range 0 to 100 percent. Each of heu, value, and chroma are stored as
double length floating point quantities while red, green, and blue are stored as short integers by the
XemsColor structure used by XcmsLookupColor (). This structure is defined in the X11/Xcms . h
header file. In the program of Figure 3.1 the results of the conversions are printed on the terminal
with no window appearing on the screen.

Xcms makes allowance for RGB values of 16 bits in contrast to the 8 bits used with True Colour.
For use in True Colour, the high order two hex digits of the 16 bit red, green, and blue values are
used. For backward compatibility, XcmsLookupColor () function can use the #rrggbb manner of
specifying an RGB value for conversion. In most cases the default colourmap for the computer can
be used with this accessed through the DefaultColormap () function.

As shown in Figure 3.1, there can be three outcomes to a call to XcmsLookuoColor (). A
XcmsSuccess is returned if the conversion was successful, while XcmsFailure is returned if un-
successful. With a XcmsSuccessWithCompression, the converted colour was outside of the colours
that the current computer can display but a colour of closest fit which can be displayed has been re-
turned.

The printing out of the value returned by the WhitePixel () call gives an indication of the
number of bits being used on that computers colour graphics hardware. The follows from as white
iis generated by having red, green, and blue at their maximum values, and WhitePixel () returns
that maximum value.

The use of RGB values to colour different parts of windows, standard graphics, and text will be
demonstrated in a number of the example program which follow from here.

3.1.1 Exercises

1. Modify the program of Figure 3.1 so that the given RGB value is converted to its corresponding
representation in the CIEXYZ, CIExyY, CIEuvY, CIEuv, and CIELab colour spaces.

2. Modify the program of Figure 3.1 so that the RGB value results in a XcmsFailure status being
returned.

3. Modify the program of Figure 3.1 so that the RGB value results in a XcmsSuccessWithCompression

status being returned.

4. Although the program of Figure 3.1 does not generate a window on the screen, the X11 header
files Xx1ib.h and Xutil.h are required. Why?

27

3.1. Colour

/* This program converts colours between different Xcms colour spaces.
RGB colour is converted to its representation in the TekHVC colour space.
Then a colour defined in the TekHVC colour space is converted to RGB.
results of each conversion are printed on the terminal.

Coded by: Ross Maloney
Date: 13 September 2012

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xcms.h>

#include <stdio.

h>

int main(int argc, char xargv[])

{

Display xmydisplay;
XcmsColor xexact, xavailable;
Status status;
int screen_num ;
int red, green, blue;
char rgb[10], tekcolour[40];
XcmsFloat h, v, c;
/+ 1. open connection to the server =/

mydisplay = XOpenDisplay("");

/% 2.

create a top—level window =/

screen_num = DefaultScreen (mydisplay);
exact = malloc(sizeof (XcmsColor));

available = malloc(sizeof (XcmsColor));
/% 3. give the Window Manager hints x/
/+ 4. establish window resources =/
/+ 5. create all the other windows needed =/
/+ 6. select events for each window =/
/+ 7. map the windows x/
[/« 8. enter the event loop =*/
printf ("default_white_=_%x\n", WhitePixel (mydisplay, screen_num));
red = 0Xc4;
green = Oxde;
blue = 0x12;

sprintf (rgb, "#%02x%02x%02x", red, green, blue);
printf ("rgb, = %s\n", rgb);
status = XcmsLookupColor (mydisplay, XDefaultColormap (mydisplay, screen_num),

h exact—>spec
v exact—>spec
c = exact—>spec
switch (status

rgb, exact, available, XcmsTekHVCFormat);

.TekHVC .H;
.TekHVC.V;
.TekHVC.C;

)

case XcmsSuccess:
printf ("Success:_h_= %If_ v _= %lf__c = %lf\n", h, v, v);

break;

{

(RTINS QI [ENTI GUIF I

case XcmsSuccessWithCompression:
printf ("Compressed: _h = %lf_ v = %If__c_= %lf\n", h, v, v);

break;
case XcmsFailur

e:

[ESTE U [ESTE) JUrp—

printf ("Xcms_failure\n");

break;
default:

printf ("This_should_never_happen\n");

}

First a

The

28

Figure 3.1: A program to convert colours between Xcms colour spaces (Continues ...)

3.2. A button to click

h = 192.4;
v = 82.6;
c = 56.1;

sprintf (tekcolour , "TekHVC:%5.1f/%4.2f/%4.2f", h, v, c);
printf (" tekcolour = %s\n", tekcolour);
status = XcmsLookupColor(mydisplay, XDefaultColormap (mydisplay, screen_num),
rgb, exact, available, XcmsTekHVCFormat);
red = exact—>spec.RGB.red;
green = exact—>spec.RGB.green;
blue = exact—>spec.RGB.blue;
switch (status) {
case XcmsSuccess:
printf ("Success: red = %x green = %x blue = %x\n", red, green, blue);
break;
case XcmsSuccessWithCompression:
printf ("Compressed: red = %x green = %x blue = %x\n", red, green, blue);
break;
case XcmsFailure:
printf ("Xcms failure\n");
break;
default:
printf (" This should never happen\n");

)

/* 9. «clean up before exiting x/
XCloseDisplay (mydisplay);

Figure 3.1: A program to convert colours between Xcms colour spaces

3.2 A button to click

In this example, the simple window of Figure 2.2 is extended to contain a button. That button is to
have a background coloured red and to be labelled quit in a yellow font. Clicking a mouse button on
this window button will terminated the program.

This example introduces the creation of a sub-window to the main window and how to link
the mouse button click to this window alone. This event is then processed in an event loop to quit
the program. Also, the foreground and background of the window are changed from their default
colours of black and white, respectively. Figure 3.2 shows what appears on the screen.

Because the button window has the main window specified as its parent in its XCreateWindow()
call, the location of this window specified by the third and fourth parameters of this call are relative
to the parent window.

There are two means of controlling the colour used for a window. Foreground and background
pixel values are available for this purpose. They are available in the window attribute data structure
XSetWindowAttributes used with the XCreateWindow () call which creates a window. They are
also available in the XGCValues data structure which is used with the XCreateGC () call to create
a Graphics Context (GC). In both cases, the foreground and background members are of type long
which indicates that they are 32 bit values. In both cases, the values set in the data structures remain
on the screen after the respective data structure is used. In the case of the XSetWindowAttributes
data structure, the values set there remain on the screen for the duration of existence of the window
created using them. Since a GC is used with each drawing operation on a window, and there can

29

3.2. A button to click

be many drawing operations on a window (as will be shown subsequently here), values set into a
XGCValues data structure tend to be localized in their affect. The rule is, once the values in either
data structure are used, they remain fixed in the outcome of that use.

Figure 3.2: A window with a quit button

Any number of GCs can be created, however, since they are stored in the server, care should be ex-
ercised to not overload the server’s capacity. Only one GC can be used at anyone time with a window,
but which GC is associated with any window at the time of any drawing operation can be changed
prior to that drawing operation. Manipulation of GCs will be considered in Example 3. In the present
example (Figure 3.3), the foreground and background members of the XSetWindowAttributes are
used.

The foreground and background remembers of each GC and window should always be set (nye1(1992)
page 120). In the example in Figure 2.2, the BlackPixel() and WhitePixel() macros were used to set
contrasting values for the forground and background, respectively. These macros (being linked to
the screen in use) are guaranteed to give contrast of the foreground from the background. But in this
example, the background is to be set to red. The 32 bits of the background pixel value is divided
into 8 bits to represent the respective red, green, and blue components of the required colour. As
opposed to using these red, greeen, and blue values directly, in X Window they are used as indices
to a colourmap for the screen in use.

X Window favours the use of a colour-name database to obtain the red, green, and blue values
for any colour to be shown on a screen. Those values are accessed by naming the colour. On Unix
systems, the file which shows all the available colour names and their red, green, and blue component
colours is /usr/X11R6/1ib/X11/rgb.txt. For fast access, this information is compiled into a X
Window server. It is a two step process to obtain the value for use as the foreground or background of
a window or GC. First the red, green, and blue values corresponding to the colour name is extracted,
together with the corresponding values of the nearest colour that the server can provide. This can
be done using a XLookupColor () call to obtain the red, green, and blue component colours, then
using a XAllocColor () call to form the required value to assign to the foreground or background
pixel value. Alternatively, both steps can be done using a XAllocNamedColor () call. This latter
approach is used in the example in Figure 3.3.

This example calls for the button to contain the label quit. The text for this label will be drawn

into the button window. Text is drawn in the currently loaded font in the foreground colour. But
a window has no foreground colour, so a GC is necessary for drawing text. However, when a is

30

3.2. A button to click

/* This program creates a button, labelled "quit’ located in a window. Clicking
* the mouse on this button terminates the execution of this program. The
* button has a red background and the labelling is in a yellow font. The
* window itself has a default white background.
*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv|[])

{

Display *mydisplay ;
XSetWindowAttributes myat, buttonat;
Window mywindow, button;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent myevent;

XColor exact, closest;

GC mygc;

XGCValues myvalues;

char xwindow_name = "Quit";

char xicon_name = "Qt";

int screen_num , done;

unsigned long valuemask;

/+ 1. open connection to the server =x/
mydisplay = XOpenDisplay("");

[+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat. border_pixel = BlackPixel (mydisplay, screen_num);
valuemask = CWBackPixel | CWBorderPixel;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

/% 3. giv the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/% 4. establish window resources x/

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num), "yellow",
&exact, &closest);

myvalues. foreground = exact.pixel;

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num), "red",
&exact, &closest);

myvalues.background = exact.pixel;

valuemask = GCForeground | GCBackground;

myge = XCreateGC (mydisplay, mywindow, valuemask, &myvalues);

Figure 3.3: Code which creates a window with a coloured button for quitting (Continuing ...) 31

3.2. A button to click

/+* 5. create all the other windows needed x*/

valuemask = CWBackPixel | CWBorderPixel | CWEventMask ;
buttonat.border_pixel = BlackPixel (mydisplay, screen_num);
buttonat.background_pixel = myvalues.background;
buttonat.event_mask = ButtonPressMask | ExposureMask;
button = XCreateWindow (mydisplay , mywindow,

10, 10, 100, 20, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),

valuemask, &buttonat);

/* 6. select events for each windows x/
/+ 7. map the windows x/

XMapWindow (mydisplay , mywindow);

XMapWindow (mydisplay , button);

/* 8. enter the event loop */
done = 0;
while (done == 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawlmageString (mydisplay , button, myge, 35, 15, "quit", strlen("quit"));
break;
case ButtonPress:
XBell (mydisplay, 100);
done = 1;
break;
}
}

/% 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);
}

Figure 3.3: Code which creates a window with a coloured button for quitting

started a default GC is created. As described in nyel(1995) (page 146) contrasting foreground and
background colours (usually black and white, respectively) are provided by a default GC but meme-
bers of it must not be changed. Since the text is to be in a yellow colour, it is necessary to create a GC
for drawing of this text.

A GC is created from a XGCValues data structure. When a GC is created, members in the XGC-
Values data structure that are not assignment values, are given default values. One member of that
data structure is the font to be used when text operations are performed using the corresponding
GC. That default font is implementation dependent, but for simplicity, it is used in this example.

Operations using a GC, such as drawing lines or displaying text, are event driven. The event used
in this example is the exposure event which occurs when a window becomes visible. This event, plus
that of the mouse click, must be associated with the button window when it is created as is expressed
via the event mask applied. As a result, in the event loop of the code in Figure 3.3, when the window
first appears, the Exposure case of the switch statement in which the text in the button is drawn.

Because clicking of any mouse button on the button causes the program to exit, a button event
must be set for the button window when it is created. That same mouse button click, outside of the

32

3.3. Events

button window but inside the main window, is not to have an effect. Thus the button click event
is included in the XSetWindowAttributes data structure (member event_mask) of the button
window, but not that of the main window. The main window has no events associated with it so no
events are set in its XSetWindowAtt ributes data structure. As a result, a mouse click on this main
window but outside of the button, has no effect. The XMapWindow () calls for the main and button
windows results in both windows appearing when the program starts.

3.3 Evenis

Events are a means of human interaction with the X Window System. When a button is pressed by
placing the mouse pointer above a button that appears on a window and then physically pressing
a button on the mouse, an event is sent to the X Window System. Determining what the event is
and how to process it’s occurrence is performed by the X Window application, i.e. by your computer
code.

When an event occurs, a notifiation message is sent by the X Window System. There are six
overall things to remember about events. They are:

e events are centrally captured by the X Window System;

o X then notifies the program in which the event occurred;

e asingle event results in a single notification message;

o the event notification message indicates what type of event it is;

e depending on what type of event, different additional information is passed in the notification
message;

o the window in which the event occurred is contained in the notification message.

Appendix E of ? is the reference on all events that can occur and the information that is contained in
each notification message.

An example to demonstrate processing of a mouse click event is given in Figure 3.4 with the
screen output shown in Figure 3.5. A mouse click is a very commonly used event for communication
from a human to a windows-based program. For example, selecting items from a menu list is done
through a mouse click. In this example, the program starts by showing a yellow window. When a
mouse click occurs, the coordinates of the position of the mouse pointer is printed on the console
display and a red window containing a green window inside it is positioned at that point. This
happens no matter what mouse button is clicked. However, when the left-hand mouse button is
pressed, the computer also beeps. If the right-hand button is used and the mouse pointer is over the
green window contained in the red window, the text ouch! is typed on the control console window
from which the program as launched. The program is terminated by means outside of this particular
program.

In this program the red and green windows are created using the XCreateSimpleWindow ()
function. This is a simpler call to setup in a program in comparison to the XCreateWindow () that
is used for the yellow window, and most of the other examples meet to this point. But associated
with that simplification comes restrictions. A window created using XCreateSimpleWindow ()
inherits its depth, class, visual, and its cursor from its parent, and all its properties are undefined
which includes events. It is wise to know how to use both forms for setting up a window so that
the appropriate selection can be made for each situation that may occur. Notice that the placement
of the red and green windows differ relative to their respective parents. Because the red window is

33

3.3. Events

/+ This program consists of a base window coloured yellow. When the mouse

% pointer is over this window and a mouse button is pressed, the coordinates
% of the pointer relative to the window is printed on the console window and a
* red window containing a green window is drawn at that point. If tbe mouse
* button pressed is the left—hand mouse button, then the beep of the computer
* is also sounded. If the right—hand mouse button is clicked over the green
* window, the text ‘ouch!’ is also printed on the display console window.

*

* Coded by: Ross Maloney

* Date: June 2008

*/

#include <X11/Xlib .h>
#include <X11/Xutil .h>
#include <stdio.h>

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes baseat, redat, greenat;
Window baseW, redW, greenW;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent abc, myevent;

XColor exact, closest;

GC baseGC;

XGCValues myGCValues;

char xwindow_name = "Events";

char *xicon_name = "Ev";

int screen_num , done;

int X, y;

unsigned long valuemask, red, green;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

[* 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"yellow", &exact, &closest);
baseat.background_pixel = closest.pixel;
baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = ButtonPressMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

Figure 3.4: A program processing mouse button click events (Continues .. .)

34

3.3. Events

/x 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

I/« 4. establish window resources =/
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"red", &exact, &closest);
red = closest.pixel;
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"green", &exact, &closest);
green = closest.pixel;

/¥ 5. create all the other windows needed x*/
/I« 6. select events for each window =/
/% 7. map the windows x/

XMapWindow (mydisplay , baseW);

/x 8. enter the event loop =/
done = 0;
while (done ==) |
XNextEvent(mydisplay, &abc);
switch (abc.type) {
case ButtonPress:
if (abc.xbutton.button == Buttonl) XBell(mydisplay, 100);
if (abc.xbutton.button == Button3 && abc.xbutton.window == greenW)
printf ("ouch!\n");
x = abc.xbutton.x;
y = abc.xbutton.y;

if (abc.xbutton.window == baseW) printf("Yellow _window:_");
if (abc.xbutton.window == redW) printf("Red_window: _");
if (abc.xbutton.window == greenW) printf("Green window: ");

printf ("x_=%d__y = %d\n", x, y);

redW = XCreateSimpleWindow (mydisplay, baseW, x, y, 100, 50, 1,
BlackPixel (mydisplay, screen_num), red);

XMapWindow (mydisplay , redW);

XSelectInput (mydisplay, redW, ButtonPressMask);

greenW = XCreateSimpleWindow (mydisplay, redW, 10, 20, 40, 20, 1,
BlackPixel (mydisplay, screen_num), green);

XMapWindow (mydisplay , greenW);

XSelectInput (mydisplay, greenW, ButtonPressMask);

break;

I« 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

Figure 3.4: A program processing mouse button click events

35

3.3. Events

dynamically placed on the yellow window, the x and y coordinates for the pointer at the moment the
mouse button is pressed is used for that positioning. The coordinates of such a mouse position are
relative to the window over which the mouse pointer is located. In the case of the green window, its
position is fixed relative to it’s red window parent.

Figure 3.5: Dynamic window placement following a mouse click

The program of Figure 3.4 also prints the window (yellow, red, or green) in which the mouse
pointer was located when its button was pressed. This was implemented using three i f statements
as opposed to a single switch statements which would not work as required. Can you think of the
reason why the switch statement is inappropriate in this situation?

Hardware bit patterns to produce the required colours are set using the XA1locNamedColor ()
function. The result is stored in variables of type XColor. The pixel field of such a structure is then
used in the function calls that invoke that colour.

It is necessary to specify certain properties for the base window. In the program example, the
colour of the window’s background, the colour of the window’s border, and what events the window
is interested are specified. Only events which are specified in the properties of the window are
notified by the X Window System as occurring in that window. In the example, events are defined
for the base (yellow) window but not the red and green windows. This is overcome by using the
XSelectInput () function. Without the use of this function call the desired result is not obtained.

All events are captured and queued by the X Window System for processing by the application
program. The program takes the next event from that queue by using the XNextEvent () call as
show in the code of Figure 3.4. Since events are added at the opposite end of the queue from that
where they are taken for processing by the application program, events do not get lost if the applica-
tion does not process them faster than the arrival time of successive events.

Figure 3.5 shows what appears on the screen when the program of Figure 3.4 is operating. Notice
that the red window is contained entirely within the yellow window and is truncated if it would

36

3.4. Menus

otherwise extend outside that window. This results from the dynamic placement of the red window.
The coordinates printed are relative to the window over which the mouse pointer is located. In this
particular example with three windows, there are three coordinate systems, each with the same unit,
that of pixels. The program of Figure 3.4 takes those coordinates and then uses them as the position
for locating the red /green window on the yellow window. So, repeated clicking of the mouse buttons
on red or green windows, gives small numbers (as the coordinates) in comparison to the size of the
yellow window. This accounts for the clustering of the red/green windows in the top left corner of
the yellow window. Remember, the origin of the coordinate system of each window is at the top left
hand corner of that window. No graphics context (GC) is needed in any of the three windows.

Printing the name (colour) of the window in which the mouse button was clicked while operating
the program showed that windows loose their name. When the mouse is first clicked on the yellow
window, the coordinates printed are given as relating to the yellow window. A red/green window
is then displayed at that point. If the mouse is moved over the red or green window and clicked, the
coordinates printed are identified (by the printf statements in the program) as belonging to the red
or green window. If the mouse is then moved to the red or green window and the button pressed,
the correct window is identified. However, if the mouse betton is not clicked over the last red/green
window that has last appeared, then the coordinates are printed correctly, but the identification of
the window does not appear. The X Window System event mechanism appears only to have a single
depth of window identification tracking. Is this a bug in the X Window System, or a feature? Despite
this apparent lost of identification, the coordinates are still relative to the window which is visiably
under the mouse pointer when the button is pressed.

3.3.1 Exercises

1. Modify the program of Figure 3.4 so that a different mouse pointer pixmap is used when the
mouse is in the yellow, red, and green windows.

2. Modify the program of Figure 3.4 to include the label Cancel centerally located in black char-
acters on the green (button)

3. Remove the XSelectInput () function calls in the program of Figure 3.4 and explain the
resulting behaviour of the program.

4. Using the program of Figure 3.4 as a model, write a program with the same yellow, red, and
green windows which prints on the control console window the x and y coordinates of the
position of the mouse pointer when the left-hand mouse button is clicked. What do you notice
about those coordinates in each window?

3.4 Menus

Menus are a basic means of enabling a program user to make control the operation of the program.
This is done by presenting the user with buttons, and the user clicks the mouse pointer on the appro-
priate button. Such buttons are collected together, and selection of one button from a menu can lead
to another menu which provides further selections. By using such nesting of menu selections, a tree
of decisions can be presented to the program’s user, succeeding selections (menus) presented appro-
priate to selections previously made. The programmer is responsible for the creation of such decision
trees, collecting together appropriate decisions, linking one decision to the next, and presenting each
to the program user.

Because menus are composed of buttons, they present a source of binary input to the program. A
particular selection is made or it is not made.

37

3.4. Menus

Menus generally are handled using toolkits. But this is not necessary, for Xlib has the generality
to enable the creation of menus. When toolkits (such as Xt) are used to create a menu they impose
certain characteristics which the programmer works with, and which are visible in the final program.
For example, the appearance of the menu buttons, how they are decorated individually and collec-
tively, how they pop-up on the screen, etc. are determined by the toolkit with limited control by
the programmer. The programmer accepts these constraints as a trade-off against ease of creating a
menu structure for the program. By using Xlib directly to create menus, the freedom of Xlib can be
used to generate the menu with exactly the characteristics desired by the programmer.

In the following two examples, the use of Xlib to create simple menus is demonstrated. Each
example uses different techniques. Although each example is complete, each could be extended to
encompass more complex selection situations. Each starts with a single button and thus builds upon
the button creation example of Figure 3.3.

3.4.1 Textlabelled menu buttons

The program output shown in Figure 3.6 consists of a main window and a selection button. The
selection button is green in colour with the label selection in pink characters. By clicking the left hand
mouse button on this selection button an option menu of flowers, pets, and quit appears, each option
labelled in blue with a pink background. On moving the mouse pointer to each option the background
changes to red. Clicking the right hand mouse button on the quit option terminates the program. The
implementation code is in Figure 3.7.

Nye(1995) (page 528) discusses three manners of creating menus. The approach adopted here
is to create a single pop-up window to contain all the selections that are to be made available. The
individual selections are them inserted into this window using the XDrawImageString () call. A
property of the XDrawImageString () call is that the characters of the string are written into a
window using the foreground colour of the specified GC. A bounding box for that string is written
to the window in the background colour specified in that GC. By appropriate placement of those
strings, the foreground colour of the containing window can be used to separate each option. When
the mouse pointer is in proximity to a string (and hence that option), the string can be re-drawn using
a GC with contrasting background (and foreground) colour assignments. From the coordinates of the
mouse pointer within the option containment window, the option being selected can be determined
by a simple calculation.

In this case, three GCs are required; one for the selection button, another for each option, and
the third for when the mouse pointer is over a menu option. Three windows are to be created.
One window is the top-level window in which the selection button is to be positioned. Another
is the window which forms the button itself, and the third is the window to contain the selection
options available. Although a separate XSetWindowAttributes structure could be used for each
of the three windows which compose this problem, only one is used here for efficiency in writing the
program and for subsequent memory usage when the program is executing.

The mouse gives the user control of the operation of this program. The mouse generates events.
It is the events that really control this program. Some of those events are generated by the mouse.
Another event, an exposure event, is also used. The design of the program must consider how these
events are to be generated to provide the required level of user control.

To program starts with the top-level window and the selection button on screen. An Expose
event is used to provide a label on that button. But clicking the left hand button of the mouse when
the mouse is above the button, the selection menu is to appear on screen. That button click means
that the button window will needs to accept a ButtonPress event. The selection window with its
three options should then appear on screen. But that window is not permanent; it should be present
while a selection is being made, and up to the time when a selection is made. This can be achieved

38

3.4. Menus

Figure 3.6: A selection menu

by having the selection window accept a ButtonRelease event. In the program, upon receiving
this event, the selection window would be unmapped (from the screen). This would mean that the
left button would be pressed over the button, the selection menu would appear, the mouse would be
moved over the selection menu while holding down that left mouse button, and the mouse button
released when the pointer is over the required selection option.

How should the program be constructed so as to accept the selection option? A Mot ionNotify
event could be assigned to the selection window. Then, with each movement of the mouse while
the mouse button is depressed, an event is transmitted from the server to the client. That event
is transmitted together with its x and y coordinate of occurrence, relative to a window, which in
this case is the selection window. If the selection options were arranged as lines of text saying flowers,
pets, and quit the program could calculate which line of text (option) the mouse pointer was over. The
ButtonRelease event is also transmitted with the x and y coordinate of the mouse pointer when
the mouse button is released. From this position information, the line of text (option) over which
the mouse pointer was positioned at the time of the release could be calculated, thus determining
the option selected, and the selection window could then be unmapped. But the MotionNotify
and the ButtonRelease both give the same coordinate information. The reason for considering
these two events is that the Mot ionNot ify event indicates the currently proposed option, and the
problem statement that this option (text) should be shown on a red coloured background as opposed
to the unselected background of pink. The ButtonRelease is necessary to indicate that a selection
has finally been made.

The approach of having different options as lines in a selection window appears to be the simplist.
The problem is the need for the use of the Mot ionNotify event. This event floods the connection
(network) between the client and the server with Mot ionNot i fy event packets with each movement
of the mouse pointer. For each of these events, the program has to determine over which selection
option the mouse pointer is positioned. If that option is different from that determined from the
previous MMotionNotify event, then current option needs to have its background coloured red,

39

3.4. Menus

/+* This program consists of a main window on which is placed a selection

* button. The selection button is green in colour with the label ’“selection’
* in pink characters. By clicking the left mouse button on this selection

* button an option menu of ’flowers’, ’'pets’, and 'quit’ appears, each option
*+ labelled in blue with a pink background. On moving the mouse pointer to

* each option, the pink background of the option changes to red. Clicking the
% right mouse button on the 'quit’ option terminates the program.

*

* Coded by: Ross Maloney

* Date: July 2006

*/

#include <X11/Xlib .h>

#include <X11/Xutil .h>

#include <string .h>

static char xlabels[] = {"Selection", "flowers", "pets", "quit"};

static char xcolours[] = {"green", "pink", "blue", "red"};

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes myat, buttonat, popat;
Window mywindow, button, optAl, panes[3];
XSizeHints wmsize ;

XWMHints wmbhints ;

XTextProperty windowName, iconName;

XEvent myevent;

XColor exact, closest;

GC myGCl, myGC2, myGC3;
XGCValues myGCvalues;

char *window_name = "Select";

char *xicon_name = "Sel";

int screen_num , done, i;

unsigned long valuemask;

int labelLength[4], currentWindow ;

unsigned long colourBits[6];

/% 1. open connection to the server =/
mydisplay = XOpenDisplay("");

[x 2. create a top—level window =x/

screen_num = DefaultScreen (mydisplay);

for (i=0; i<4; i++) labelLength[i] = strlen(labels[i]);

colourBits [0] = WhitePixel (mydisplay, screen_num);

colourBits[1] = BlackPixel (mydisplay, screen_num);

myat. background_pixel = colourBits[0];

myat.border_pixel = colourBits[1];

valuemask = CWBackPixel | CWBorderPixel;

mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

Figure 3.7: A window with a coloured button with a menu option for quitting (Continuing ...)

40

3.4. Menus

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources x/
for (i=0; i<4; i++) {
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
colours[i], &exact, &closest);
colourBits[i+2] = exact.pixel;
}
myGCvalues.background = colourBits[2]; /% green x/
myGCvalues. foreground = colourBits [3]; /% pink =/
valuemask = GCForeground | GCBackground;
myGCl = XCreateGC (mydisplay, mywindow, valuemask, &myGCvalues);
myGCvalues. background = colourBits [3]; /% pink =/
myGCvalues. foreground = colourBits [4]; /% blue x/
myGC2 = XCreateGC (mydisplay, mywindow, valuemask, &myGCvalues);
myGCvalues. background = colourBits[5]; /xred =/
myGC3 = XCreateGC (mydisplay , mywindow, valuemask, &myGCvalues);

/+* 5. create all the other windows needed x/
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
buttonat.background_pixel = colourBits[2]; /* green x/
buttonat.border_pixel = colourBits[1];
buttonat.event_mask = ButtonPressMask | ExposureMask | ButtonlMotionMask;
button = XCreateWindow (mydisplay , mywindow,
20, 50, 70, 30, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &buttonat);
popat.border_pixel = colourBits[1];
popat.background_pixel = colourBits[3]; /x pink x/
popat.event_mask = 0;
optAl = XCreateWindow (mydisplay, mywindow,
50, 60, 100, 150, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &popat);
popat.event_mask =
ButtonPressMask | EnterWindowMask | LeaveWindowMask | ExposureMask;
for (i=0; i<3; i++4)
panes[i] = XCreateWindow (mydisplay, optAl,
0, ix50, 100, 50, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &popat);

/* 6. select events for each window */
/* 7. map the windows x/

XMapWindow (mydisplay , mywindow);
XMapWindow (mydisplay , button);

Figure 3.7: A window with a coloured button with a menu option for quitting (Continuing ...)

41

3.4. Menus

/* 8. enter the event loop x*/
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawlmageString (mydisplay, button, myGCl, 10, 17, labels[0],
labelLength [0]);
break;
case ButtonPress:
XMapWindow (mydisplay , optAl);
currentWindow = 0;
for (i=0; i<3; i++) {
XMapWindow (mydisplay , panes[i]);
XDrawlImageString (mydisplay , panes[i],
myGC2, 0, 10, labels[i+1], labelLength[i+1]);
}
if (myevent.xbutton.window == panes[2]) done = 1;
break;
case EnterNotify:
XSetWindowBackground (mydisplay, panes[currentWindow],
colourBits [3]);
XClearWindow (mydisplay , panes[currentWindow]);
XDrawlImageString (mydisplay , panes[currentWindow],
myGC2, 0, 10, labels[currentWindow+1],
labelLength [currentWindow +1]);
for (i=0; i<3; i++)

if (panes[i] == myevent.xcrossing .window) {
currentWindow = 1i;
break;

}
XSetWindowBackground (mydisplay , myevent. xcrossing .window,
colourBits [5]);

XClearWindow (mydisplay , myevent. xcrossing .window);

XDrawlImageString (mydisplay , panes[currentWindow],
myGC3, 0, 10, labels[currentWindow+1],
labelLength [currentWindow +1]);

break;

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow) ;
XCloseDisplay (mydisplay);

Figure 3.7: A window with a coloured button with a menu option for quitting

42

3.4. Menus

and the previous option needs to be coloured pink. Such determinations and network activity make
this option unattractive for this particular visual selection process.

An alternative is to create a window for each of the three selection options together with a window
to contain those three component windows. The three selection option windows are positioned to
be contained inside of the containing window. In place of the Mot ionNotify event for the single
selection window, each of the three selection windows of this approach is given a EntryNotify
and a LeaveNotify event. Only when the mouse pointer moves out-from, or in-to an option, will
an event be transmitted. This reduces event activity. Further, the out-from, or the in-to, selection
window is identified by the event generated making the program’s task of setting the background
colour of the corresponding option straight forward. However, this approach uses four windows
instead of the one used in the above approach. But X Window excels in using multiple windows.

The identification of the window which is currently under the mouse pointer in the selection
pane, and thus should have its background colour set to red, is included in the EnterNotify event
packet. Similarly, the mouse pointer has just left the window identified in the LeaveNotify event
packet, should have its background set to pink. The setting of background colours is by using call to
XSetWindowBackground (). However, changing the background of a window structure does not
change the background of the window on the screen. This is important as it is a general principle:
Any change to a window definition or a GC content only effects subsequent usage. To make that
change, a XClearWindow () call can be used. One problem with XClearWindow () is thatit remove
everything inside of a window. In the case of a window used as a button, the button label is removed,
and this has to be replaced.

In using different conbinations of the same colours and repeated need to access the labelling of
buttons, it is advantageous in a program to store information related to these objects once. Then
these stored values can be used repeatedly. This is done in the listing of Figure 3.7 by the use of the
array labels, the lengths of those label strings in the array labelLength, and the array colours
to store the pixel values for each of the four colours use in this example. The three windows that
form the selection menu are held in the array panes. Care must be exercised in the programming to
select the appropriate combination of the stored values.

X Window generates a separate event when a mouse pointer enters or leaves a window. Both
these entry and exit events can be used in the event loop of an X Window program. However, in the
program listed in Figure 3.7 only the window entry event is used in relation to selection from the
pop-up menu. The program keeps track of the menu item (window) that was previously under the
mouse pointer. When the mouse pointer enters a window corresponding to a menu item, the state-
ment of the problem requires that window to change colour to a red background. Correspondingly,
the menu item that the pointer has left needs to be changed back to a pink background. Not only the
background of the windows corresponding to the menu items need to be changed, but also the back-
ground of the labels of those windows need to be changed. Figure 3.7 performs those requirements.
A button press event is used both to activate the selection menu and also to obtain that selection.

Notice how this approach, although lengthy, enables a X Window program to be written using
whatever policy is thought appropriate. Compare the colouring technique for button selection used
in the example of Figure 3.7 to that availble using the button widgets of toolkits such at Athena,
Motif (LessTif), Gtk, Qt, etc. This approach adheres closer to the design philsophy of X Window of
providing mechanism without imposing policy.

3.4.2 Exercises
1. Change the single button of Figure 3.7 to a menu bar composed of three button, arranged

horizontally across the top-level window. Label those buttons left, centre, and right. Each of
those buttons is to activate the selection menu of Figure 3.7.

43

3.5. Some events of the mouse

2. Change the font used in labelling the button and the selections in Figure 3.7. Use the same font
for the three selection options which is different from that used for labelling the button.

3. Rewrite the program of Figure 3.7 such that the selection under the mouse pointer does not
change colour.

4. Change the background colour of the selection windows to a colour with RGB values of 50:205:50.
Hint: Look at the file rgb . txt which is included in all systems which run X Window.

5. Rewrite the example of Figure 3.7 without using storage such as arrays labels, labelLength,
and colours. Compare the length of that program with the line count of Figure 3.7.

6. Rewrite the example of Figure 3.7 using XDrawString () in place of XDrawImageString()
calls. What effect does that have on the program and its performance? (The program will be
shorter since XDrawString () does not change that background around the string it draws.
One fewer GC is necessary. This reduces the size and complexity of this program.)

3.5 Some events of the mouse

A mouse is an event generating device which the user can control. It can be moved to positions on
the screen, and its buttons can be clicked. This section considers events which are triggered by a
pressing a mouse button, releasing of that mouse button, and when the mouse pointer enters and
leaves a window.

The program of Figure 3.8 was written for this exploration. It consists of a 200x200 pixel win-
dow (called baseW) into which two 100x100 pixel windows (called £ileW and editW) are placed.
Bitmaps are useful in this application. Further information on handling and use of bitmaps is given
in Section 4.1. Here they are used to display patterns in a window. The £ileW window is filled with
a bitmap F using an image format where the pattern has a black foreground and a white background.
The editW window is filled with a E using a bitmap also held in image format. This is displayed
with a white foreground and a black background. The same F and E images are displayed in an
overlapping configuration in the base window using opposite foreground and background colour
assignments of grey and white. This combination of letters is partially obscured by the contents of
the filew and editW windows. Each of the three windows is initialised to generate button press
events, exposure events, a event when the mouse pointer enters the window, and when the mouse
pointer leaves the window.

The bitmaps here are handled using the X11 image format. One advantage of image format is
that the data is held in the client program allowing that data to be manipulated by the client program
without use of communication via the X Protocol between the client and the server. To display the
contents of the image, a XPut Image () call is used. Another advantage is that storage on a server
can be more limited than that in the client program. By appropriate design of the client program,
the same server pixmap storage could be shared by multiple images, using it to display different
bitmaps. No matter whether image or bitmap format is used, the pattern of bits that produce the
picture on the screen have to be transmitted from client to server. In the program in Figure 3.8
these advantages of image format are used in a limited manner through the pattern variable of
type Pixmap. This variable is used to create each of the pixmaps used from the bitmap data by
XCreatePixmapFromBitmapData () calls. Image format is useful in this purpose and in display-
ing general pictures as shown in Section 6.5.

The F and E character bitmaps used in the program were generated via a Encapsulated Postscript
program. The program used to create the E character was:

%!PS-Adobe-2.0 EPSF-1.3

44

3.5. Some events of the mouse

~
*

This program examines the use of mouse generated events in relation to
windows. A 100x100 pixel window contains two 50x50 pixel windows side by
side. The left of those windows is labelled File and the right window is
labelled Edit. Each of the three windows is enabled to generate an event
when the mouse pointer enters or leaves the window, and also if the

left —hand button on the mouse is clicked or released. Each of the File and
Edit windows change their combination of foreground and background grey
colouring when each of these four events occur in them.

Coded by: Ross Maloney
Date: August 2008

¥ K ¥ X X ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

/% The big F bitmap x*/

#define f_width 100

#define f_height 100

static char f_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00, OxfO, Oxff, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Ox3f, 0x00, Ox00, 0x00, OxfO, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox3f, 0x00, 0x00, 0x00, Oxf0, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00, 0xf0,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox3f, 0x00, 0x00, 0x00,
0x00, Oxfc, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x3f, 0x00, 0x00,
0x00, 0x00, Oxe0, Oxff, Oxff, Oxff, 0x00, 0x00, Oxff, Oxff, Ox3f, 0x00,
0x00, 0x00, 0x00, OxcO, Oxff, Oxff, Ox3f, 0x00, 0x00, Oxf0, Oxff, Ox3f,
0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x80, Oxff,
0x3f, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00,
Oxfe, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, Oxfc, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x00, 0xf8, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, 0x00, 0x00, Oxf0, 0x3f, 0x00, 0x00, O0x00, 0x00, 0x00, Oxff, Oxff,
0Ox1f, 0x00, 0x00, 0x00, Oxe0, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Oxff, Ox1f, 0x00, 0x00, 0x00, OxcO, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, O0x00, 0x00, 0x00, OxcO, O0x3f, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x3f, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, Ox00, 0x00, 0x00, 0x00, 0Ox3f,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00,
0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00, 0x00, 0xO00,
0x00, O0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x0f, 0x00, 0x3e, 0x00, 0x00, 0x00, 0x00, Ox00, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x0f, 0x00, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, 0x00, 0x0f, 0x00, Ox3c, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x1f, 0x00, 0x80, 0x0f, 0x00, 0Ox3c, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Oxff, Ox1f, 0x00, 0x80, 0x0f, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x00, 0xO00,

Figure 3.8: A program for tracing the occurrence of mouse events (Continues...)

45

3.5. Some events of the mouse

0Oxff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x0f,
0xf0,
0x00,
0Ox1f,
0xff,
Oxff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x0f,
Oxff,
0x80,
0x1f,
Oxff,
0Oxff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x0f,
0x80,
0x00,
0Ox1f,
0Oxff,
0xff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0Ox1f,
0xff,
0xff,
0x00,
0x00,
0x00,
0x00,
0x00,

Oxff, Ox1f, 0x00, 0x80, 0x0f, 0x00, O0x3c, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x80, O0x0f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, 0x0f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, 0x0f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, Ox0f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, Oxe0, O0x0f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, Oxe0, 0xOf,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00,
0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00, 0x00, Oxff, Oxff, Ox1f,
0xf8, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, Oxfc, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0Ox1f, 0x00, Oxfe, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Ox1f, 0x80, Oxff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
Oxff, Oxff, Ox1f, Oxf0, Oxff, Ox0f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Oxff, Oxff, Oxff, 0x0f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, 0x0f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Ox0f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, 0x0f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, O0xOf,
0x00, 0x00, 0x00, 0x00, 0x00, O0x00, Oxff, Oxff, Oxdf, Oxff, Oxff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00, Oxff, Oxff, Ox1f, OxeO,
0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, Oxfe, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0Ox1f, 0x00, Oxfc, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Ox1f, 0x00, Oxf8, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, OxfO0, Ox0f, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, Oxff, Oxff, Ox1f, 0x00, Oxf0, O0x0f, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, Oxe0, 0x0f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, Ox0f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, O0x0f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00, OxcO, OxOf,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxl1lf, 0x00,
0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00, Oxff, Oxff, Ox1f,
0x80, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, 0x80, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0x1f, 0x00, 0x00, Ox0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, Ox1f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x00, Ox0f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
Oxff, 0Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x80, Oxff, Oxff, O0x3f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00, 0x00,

Figure 3.8: A program for tracing the occurrence of mouse events (Continues .. .)

46

3.5. Some events of the mouse

0x00, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxcO, Oxff, Oxff, 0x7f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxf0, Oxff, Oxff, Oxff, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, Oxff,
0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxfO, Oxff, Oxff, Oxff,
Oxff, Oxff, 0x07, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, OxfO, Oxff, Oxff,
Oxff, Oxff, Oxff, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxf0, Oxff,
Oxff, Oxff, Oxff, Oxff, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0,
Oxff, Oxff, Oxff, Oxff, Oxff, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00};

/% The big E bitmap =/

#define e_width 100

#define e_height 100

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxf0, Oxff, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, O0x7f, 0x00, 0x00, 0x00, OxfO, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, Ox00, 0x00, 0x00, OxfO0, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, 0x00, 0x00, 0x00, 0xf0,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, 0x00, 0x00, 0x00,
0x00, Oxfc, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, 0x00, 0x00,
0x00, 0x00, Oxf0, Oxff, Oxff, Oxff, 0x00, 0x00, Oxfc, Oxff, 0x7f, 0x00,
0x00, 0x00, 0x00, OxcO, Oxff, Oxff, Ox3f, Ox00, 0x00, OxcO, Oxff, Ox7f,
0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, Ox3f, 0x00, 0x00, 0x00, Oxff,
0x7f, 0x00, 0x00, 0x00, 0Ox00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00,
Oxfc, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, 0Oxf8, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x00, Oxe0, Ox7f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, 0x00, 0x00, OxcO, O0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
Ox1f, 0x00, 0x00, 0x00, OxcO, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Oxff, Ox1f, 0x00, 0x00, 0x00, 0x80, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, Ox7f, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, O0x00, 0x7f, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, Ox00, 0x00, 0x00, Ox7e, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x7e,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00,
0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00, 0x00, 0x00,
0x00, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0xO00,
Oxle, 0x00, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00,
0x00, Oxle, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, 0x00, Oxle, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
Ox1f, 0x00, 0x00, Oxle, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Oxff, Ox1f, 0x00, 0x00, Oxle, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x00, Ox1f, 0x00, 0x78, 0x00, 0x00, 0x00, 0xO00,

Figure 3.8: A program for tracing the occurrence of mouse events (Continues...)

47

3.5. Some events of the mouse

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0Ox1f,
0xe0,
0x00,
0Ox1f,
0xff,
0xff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x1f,
Oxff,
0x00,
0x1f,
Oxff,
0Oxff,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0Ox1f,
0x00,
0x00,
0x1f,
0Oxff,
0xff,
0x00,
0x00,
0x00,
0x00,
0Ox1f,
0xc0,
0x00,
0x00,
0x00,
0x00,
0Ox1f,
0xff,
0Oxff,
0x00,
0x00,
0x00,
0x00,

Oxff, Oxff, Ox1f, 0x00, 0x00, Ox1f, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, Ox1f, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80, Ox1f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80, Ox1lf, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00, OxcO, Ox1f,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0OxcO,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00,
Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0xf0, Ox1f, 0x00, 0x00, 0x00, 0x00, O0x00, 0x00, 0x00, Oxff, Oxff,
0x00, 0xf8, O0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0Ox1f, 0x00, Oxfc, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Ox1f, 0x00, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
Oxff, Oxff, Ox1f, Oxe0, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxff, Oxff, Oxff, Oxl1f,
0x00, 0x00, 0x00, 0x00, 0x00, O0x00, Oxff, Oxff, Oxdf, Oxff, Oxff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00, Oxff, Oxff, Ox1f, OxeO,
0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxl1f,
Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, Oxfc, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Ox1f, 0x00, 0xf8, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
Oxff, Ox1f, 0x00, Oxf0, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, Oxe0, Ox1f, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, Ox1f, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, OxcO, Ox1lf, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x80, Ox1f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1lf, 0x00, 0x00, Ox1f,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00, Oxff, Oxff, Ox1f, 0x00,
0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f,
0x00, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxle, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
Ox1f, 0x00, 0x00, Oxle, 0x00, 0x00, Ox3e, 0x00, 0x00, 0x00, 0x00,
Oxff, Ox1f, 0x00, 0x00, Oxle, 0x00, 0x00, Ox1f, 0x00, 0x00, 0xO00,
Oxff, Oxff, Ox1f, 0x00, 0x00, Oxle, 0x00, 0x00, Ox1f, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, Oxle, 0x00, 0x80, Ox1f, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, Oxle, 0x00, 0x80, Ox1f,
0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, 0xcO,
0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00,
0Ox1f, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0xO00,
Oxe0, O0x0f, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, 0x00,
0x00, Oxe0, 0x0f, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Ox1f, 0x00,
0x00, 0x00, 0xf0o, O0x0f, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff, Oxl1f,
0x00, 0x00, 0x00, Oxf8, 0x0f, 0x00, 0x00, 0x00, 0x00, Oxff, Oxff,
0x00, 0x00, 0x00, 0x00, Oxfc, Ox0f, 0x00, 0x00, 0x00, O0x00, Oxff,
0x1f, 0x00, 0x00, 0x00, 0x00, Oxfc, 0x07, 0x00, 0x00, 0x00, 0xO00,
Oxff, 0Ox1f, 0x00, 0x00, 0x00, 0x00, Oxfe, 0x07, 0x00, 0x00, 0x00,
Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, 0x00, Oxff, 0x07, 0x00, 0x00,
0x00, Oxff, Oxff, Ox1f, 0x00, 0x00, 0x00, OxcO, Oxff, 0x07, 0x00,
0x00, 0x00, Oxff, Oxff, Ox1f, 0x00, Ox00, 0x00, Oxe0, Oxff, 0x07,
0x00, 0x00, 0x80, Oxff, Oxff, Ox3f, 0x00, 0x00, 0x00, Oxf0, Oxff,

Figure 3.8: A program for tracing the occurrence of mouse events (Continues...)

48

3.5. Some events of the mouse

0x03, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00, Oxfc,
Oxff, 0x03, 0x00, 0x00, 0x00, 0x80, Oxff, Oxff, 0x3f, 0x00, 0x00, 0x00,
Oxff, Oxff, 0x03, 0x00, 0x00, 0x00, OxcO, Oxff, Oxff, Ox7f, 0x00, 0x00,
OxcO0, Oxff, Oxff, 0x03, 0x00, 0x00, 0x00, Oxf0, Oxff, Oxff, Oxff, 0x00,
0x00, Oxfc, Oxff, Oxff, 0x03, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, Oxff,
Ox1f, Oxf8, Oxff, Oxff, Oxff, 0x01, 0x00, Ox00, Oxf0, Oxff, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x01, Ox00, 0x00, OxfO, Oxff, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x01, 0x00, 0x00, Oxf0, Oxff,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x01, 0x00, 0x00, 0xf0,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};

Window baseW, fileW , editW;

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes Dbaseat;
XSizeHints wmsize;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent;

GC GC1, GC2, GC3, GC4;
Pixmap pattern;

XImage *f, xe;

char xwindow_name = "Triggering";
char xicon_name = "Trig";

int screen_num, done, count;

unsigned long valuemask;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
baseat.background_pixel = WhitePixel (mydisplay, screen_num);
baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = ButtonPressMask | EnterWindowMask | LeaveWindowMask
| ExposureMask | ButtonReleaseMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 204, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

Figure 3.8: A program for tracing the occurrence of mouse events (Continues .. .)

49

3.5. Some events of the mouse

I« 3. give the Window Manager hints =x/

wmsize. flags = USPosition | USSize;

XSetWMNormalHints (mydisplay , baseW, &wmsize);

wmhints. initial_state = NormalState;

wmhints. flags = StateHint;

XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay, baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMlIconName (mydisplay , baseW, &iconName);

GCl =

/¥ 4. establish window resources =/
XCreateGC (mydisplay, baseW, 0, NULL); /% white — black=*/

XSetForeground (mydisplay , GC1, BlackPixel (mydisplay, screen_num));
XSetBackground (mydisplay , GC1, WhitePixel (mydisplay, screen_num));

GC2 =

XCreateGC (mydisplay, baseW, 0, NULL); /% black — white=x/

XSetForeground (mydisplay , GC2, WhitePixel (mydisplay, screen_num));
XSetBackground (mydisplay , GC2, BlackPixel (mydisplay, screen_num));

GC3 =

XCreateGC (mydisplay, baseW, 0, NULL); /% white — grey=x/

XSetForeground (mydisplay , GC3, 0x9e9e93);
XSetBackground (mydisplay , GC3, WhitePixel (mydisplay, screen_num));

G4 =

XCreateGC (mydisplay, baseW, 0, NULL); /% grey — whitex/

XSetForeground (mydisplay , GC4, WhitePixel (mydisplay, screen_num));
XSetBackground (mydisplay , GC4, 0x9e9e93);

pattern = XCreateBitmapFromData(mydisplay, baseW, f_bits, f_width, f_height);

f = XGetlmage (mydisplay, pattern, 0, 0, f_width, f_height, 1, XYPixmap);
f—>format = XYBitmap;

pattern = XCreateBitmapFromData(mydisplay, baseW, e_bits, e_width, e_height);

e = XGetlmage(mydisplay, pattern, 0, 0, e_width, e_height, 1, XYPixmap);
e—>format = XYBitmap;

fileW

editW

/x 5. create all the other windows needed =/

= XCreateWindow (mydisplay, baseW,
0, 0, 100, 100, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

= XCreateWindow (mydisplay, baseW,
100, 0, 100, 100, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

/[« 6. select events for each window x*/
/% 7. map the windows x/

XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , fileW);
XMapWindow (mydisplay , editW);

Figure 3.8: A program for tracing the occurrence of mouse events (Continues .. .)

50

3.5. Some events of the mouse

/+ 8. enter the event loop =/
done = 0;

count = 0;

while (done ==)
XNextEvent(mydisplay , &myevent);
count++;

switch (myevent.type) {
case Expose:
printf ("%2d_", count);
printf ("+++Exposure_of_Window_"); name_window (myevent.xbutton.window);
printf (" _occurred\n");
if (myevent.xbutton.window == fileW)
XPutlmage (mydisplay, fileW, GC1, f, 0, 0, 0, 0, f_width, f_height);
if (myevent.xbutton.window == editW)
XPutlmage (mydisplay, editW, GC2, e, O,
if (myevent.xbutton.window == baseW) {
XPutIlmage (mydisplay , baseW, GC3, e, 0, 0, 25, 75, e_width, e_height);
XPutlmage (mydisplay , baseW, GC4, f, 0, 0, 75, 85, f_width, f_height);
}
break;
case EnterNotify:
printf ("%2d_", count);
printf ("+++Window_"); name_ window (myevent.xbutton.window);
printf (" _entered\n");
if (myevent.xbutton.window == fileW)
XPutlmage (mydisplay, fileW, GC3, f, 0, 0, 0, 0, f_width, f_height);
if (myevent.xbutton.window == editW)
XPutlmage (mydisplay, editW, GC3, e, 0, 0, 0, 0, e_width, e_height);
break;
case LeaveNotify:
printf ("%2d_", count);

0, 0, 0, e_width, e_height);

printf ("——Leaving,_Window_"); mname_window (myevent.xbutton .window);
printf("\n");
if (myevent.xbutton.window == fileW)

XPutlmage (mydisplay, fileW, GC1, f, 0, 0, 0, 0, f_width, f_height);
if (myevent.xbutton.window == editW)

XPutlmage (mydisplay, editW, GC2, e, 0, 0, 0, 0, e_width, e_height);
break;

case ButtonPress:
printf ("%2d_", count);
printf ("Button_pressed _in_Window_");
name_window (myevent. xbutton . window) ;
printf("\n");
break;

case ButtonRelease:
printf ("%2d_", count);
printf ("Button_released, in_Window_");
name_window (myevent. xbutton . window) ;
printf("\n");
break;

Figure 3.8: A program for tracing the occurrence of mouse events (Continues ...)

51

3.5. Some events of the mouse

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

name_window (int window)

{
extern Window baseW, fileW, editW;

if (window == baseW) printf("baseW");
if (window == fileW) printf("fileW");
if (window == editW) printf("editW");
return;

Figure 3.8: A program for tracing the occurrence of mouse events

$%BoundingBox: 5 0 105 100

/Times-Bold findfont
130 scalefont
setfont

15 15 moveto

(E) show

showpage

This program was then processed by the convert program, which is part of the ImageMagick
open source package. It produced an X-bitmap (xbm) file that was then included in the program’s
source code. Before such inclusion, the upper-case characters in the X-bitmap were converted to
their lower-case equivalents using the standard utility t r. These X-bitmaps (structures £_bits and
e_bits) in the source code of Figure 3.8 are reasonably large in the space that their definitions take
up in the code. This space consumption is made worse as a consequence of using an X-bitmap
representation for a reasonably large character. This contrasts to the size of the size of the Postscript
program which generated each of these characters. Despite this, bitmaps are the standard means of
drawing characters in X. The resulting screen display in shown in Figure 3.9.

Notification of entry and leaving a window, as well as the window where the mouse button is
pressed or released, is done by printing a message to a terminal window. The printing of a counter
(count) is used to track events which are gathered by the X function XNextEvent (). As expected
from the arrangement of the three windows, leaving and entry of windows occur in pairs. Also, when
the mouse pointer enters either the £ileW or editW windows, the letter shown in that window is
changed so that the foreground is grey and the background is white.

Figure 3.9 shows the intital displayed image before the mouse pointer enters the displayed win-
dows. Four trial runs were performed. In each the mouse moves in a circuit which is composed of the
following. After the program is started the mouse pointer enters the editW window from the right
edge. It then moves into the fileW window on the left, then moves to the baseW window showing
across the total width of the image, then up through the bottom edge of the editW window. What
differs in the three situations is the occurrence of button press and release.

In the first trial, the mouse pointer moves about the circuit without a button press. The follow
trace of those events is generated by the program:

52

3.5. Some events of the mouse

P O W o Joy Ul b WP

=

Figure 3.9: Initial window colouring of event experimentation program

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred

+++Window baseW entered
+++Window editW entered
—-——Leaving Window editW
+++Window fileW entered
——-Leaving Window fileW
+++WindowbaseW entered
———Leaving Window baseW
+++Window editW entered

When the mouse pointer enters the editW window, the editW window’s foreground changes to grey
and the background changes to white. When the mouse pointer moves to the fileW window, the ed-
itW window changes back to it’s original colouring, but the foreground of the fileW window changes
to grey. When the mouse pointer enters the baseW window, the original colouring of the fileW win-
dow is restored, with no change in the colouring of the baseW window. When the mouse pointer
finally enters the editW window, it’s foreground changes to grey and the background goes to white.

In the second trial, the mouse follows the same circuit. But in this case, the left-hand mouse

button is pressed and then released in the editW window before the mouse pointer moves into the

fileW window. The trace of events produced by the program is:

O ~J o U b w N

e
W NP oW

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred

+++Window baseW entered
+++Window editW entered

Button pressed in Window editW
Button releaseed in Window editW

——-Leaving Window editW
+++Window fileW entered
———Leaving Window fileW
+++Window baseW entered
—-——Leaving Window baseW
+++Window editW entered

53

3.5. Some events of the mouse

When the mouse pointer enters the editW window, it’s foreground changes to grey and it’s back-
ground changes to white. Pressing and releasing the left-hand mouse button does not change any
window colours. When the mouse pointer moves to the fileW window, it" foreground changes to
grey and it’s background remains white. Together with these changes, the foreground of the editW
window reverts to the initial white and the background to black. Moving the mouse pointer to the
baseW window, does not change the colouring of the baseW window. However, the foreground of
the fileW window changes back to black and the background to white. When the mouse pointer
moves from the baseW window into the editW window, the colouring of the baseW window re-
mains unchanged white the foreground of the editW window changes to grey while it’s background
remains white.

In the third trial, the left-hand mouse button is pressed while the mouse pointer is in the editW
window, but is not released until that pointer has moved into the baseW window. The trace of events
produced by the program is:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

Button pressed in Window editW
———-Leaving Window editW

Button released in Window editW
—-——-Leaving Window editW

+++Window baseW entered

——-Leaving Window baseW

+++Window editW entered

O J o U w N

o e
N P O W

Upon the mouse pointer entering into the editW window, the foreground of that window changes to
grey, and the background changes to white. Pressing of the lef-hand mouse button does not change
any window colouring. Moving the mouse pointer into the fileW window, and then the baseW
window does not change the original colouring of those windows - all three window (editW, fileW,
and baseW) have their original colours. Releasing the button in the baseW window produces no
colour change. When the mouse pointer is moved into the editW window, the foreground of editW
changes colour to grey, and the background changes to white.

In the fourth trial, the left-hand mouse button is pressed while the mouse pointer is in the editW
window, but is not released until that pointer returns to the editW window after completing the
circuit. The trace of events produced by the progrm is:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

Button pressed in Window editW
——-Leaving Window editW

+++Window editW entered

Button released in Window editW

W 0 J o U b W

Then the mouse pointer enters the editW window;, it’s foreground changes to grey. Upon moving to
the fileW window, the fileW window does not change colour, but the editW window reverts to it’s
initial colour. Movement of the mouse pointer into the baseW window results in no colour change

54

3.6. A mouse behaviour application

to either the fileW or baseW windows. When the mouse pointer enters the editW window, it’s fore-
ground changes to grey, but the colouring of the baseW window remains unchanges.

In the final trial, the left-hand mouse button is pressed in the editW window and release in the
fileW window while the mouse pointer performs the circuit of movements. The trace of events
produced by the program is:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

Button pressed in Window editW
—-——Leaving Window editW

Button released in Window editW
——-Leaving Window editW

+++Window fileW entered

———Leaving Window fileW

+++Window baseW entered

——-Leaving Window baseW

+++Window editW entered

O ~J o U b w N

e
S wW DR oW

When the mouse pointer enters the editW window, it’s foreground changes to grey while it’s back-
ground remains white. Pressing the left-hand mouse button has no effect on the colouring of any
window. As the mouse pointer moves into the fileW window, there is no change in colour of that
window, however, the foreground and background colours of the editW revert to their initial colours.
When the left-hand mouse button is released in the fileW window, the foreground of that window
changes to grey (the background remains white). When the mouse button moves into the baseW
window, the colours of the baseW window remain unchanged, but the foreground and background
of the editW window revert to their initial colours. Movement of the mouse pointer into the editW
window changes it’s foreground colour to grey (background remains white).

This program shows that pressing the mouse button in a window makes that window the subject
of all future events, until that button is released. When the mouse button is pressed in a window, only
mouse pointer entry and leaving of that window generates events - the opposite leaving and entry
of the associated window in each window pair does not generate an event. The entry and leaving
event of windows other than that of the window in while the mouse button was pressed (and thus
selected) is only restored upon release of the mouse button. That releasing also generates an event.

3.6 A mouse behaviour application

A new mouse can present a problem in knownng what buttons are available. Such allocations can
be determined by the program in Figure 3.10 which uses the mouse generated events produced by
the X Window System server in response to pressing buttons on the mouse, and moving the mouse
while those buttons are depressed. The same program can be used to work through the mouse button
assignments that have been made using such utilities as xmodmap in the current X11 session, or those
stored in the $Home/ . Xmodmap file which was possibly loaded when the current session begun.

The program draws a 200x200 pixel window having a white background on the screen. The
mouse pointer is positioned over this window which acts as the target for the mouse generated
events. Three mouse events are recognised: a mouse button press, a mouse button release, and a
movement of the mouse while the mouse button is repressed. The other mouse event which occurs

55

3.6. A mouse behaviour application

/+ This utility program responds to all mouse generated events under the X

* Window System. A message indicating the nature of each mouse event received
* 1is sent to the console from where this program was started. However, the

* motion event without a button depressed is not used. This can be used

* to determine the suitability and usefulness of the mouse under X which is

* plugged into the box running the X Window System.

K

* Coded by: Ross Maloney

* Date: March 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xargv)

{

Display +mydisplay;

Window baseW;
XSetWindowAttributes baseat;
XSizeHints wmsize;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevents;

char sxwindow_name = "Xclick";

char xicon_name = "Xc";

int screen_num, done;

unsigned long valuemask;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

I/« 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
baseat.background_pixel = WhitePixel (mydisplay, screen_num);

baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = ExposureMask | ButtonPressMask | ButtonReleaseMask |
ButtonMotionMask ;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 200, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

I« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x*/

Figure 3.10: A program to print all mouse events (Continues...)

56

3.6. A mouse behaviour application

/* 5. create all the other windows needed x*/
/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop */
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &myevents);
switch (myevents.type) {
case Expose:
break;
case ButtonPress:
printf ("Button pressed: button = %d state = %o\n",
myevents . xbutton.button, myevents.xbutton.state);
break;
case ButtonRelease:
printf ("Button released: button = %d state = %o\n",
myevents. xbutton.button, myevents.xbutton.state);
break;
case MotionNotify:
printf ("Motion event: state = %o\n", myevents.xmotion.state);
break;
default:
printf (" This should not happen\n");
}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);
}

Figure 3.10: A program to print all mouse events

when the pointer is moved without a button depressed is not used. An event relating message is
printed relating on the terminal window which launched the program. The button press and release
events indicate the number of the button involved, together with the state of all the buttons and
modifier keys immediately before the occurrence of that event. By contrast, motion events indicate
the state of all the buttons and modifier keys before the occurrence of the motion reported. To help
identifying the parts of the state, this value is printed in octal notation in each case.

The program was used to monitor the behaviour of a LogiTech Trackman Marble trackball used
as a mouse. This device has a left and right large button, and a smaller left and right button, with a
trackball used to position the pointer. A sample of the output obtained is:

Button pressed: button =1 state = 0
Button released: button = 1 state = 400
Button pressed: button = 3 state = 0
Button released: button = 3 state = 2000
Button pressed: button = 8 state = 0
Button released: button = 8 state = 0
Button pressed: button = 9 state = 0
Button released: button = 9 state = 0
Button pressed: button =1 state = 0

57

3.7. Implementing hierarchical menus

Motion event: state = 400
Motion event: state = 400
Motion event: state = 400
Motion event: state = 400

Button released: button 1 state 400
Button pressed: button = 3 state = 0

Motion event: state = 2000
Motion event: state = 2000
Motion event: state = 2000
Motion event: state = 2000

Button released: button = 3 state = 2000

From this output together with observing the button used when that part of the output was pro-
duced: the large left button is 1, the large right button is 3, the small left button is 8, and the small
right button is 9. The bottom part of this output was produced when button 1 and then button 2 was
held down while the trackball was moved. Notice that the state values during the motions are the
same as that reported when the button is released. Additional output produced while holding down
the small left button and moving the trackball indicated that this button implemented a scrolling
action.

3.6.1 Exercises

1. Each button and modifier key has a bit assigned to it in the value of the state variable that is
printed by the program of Figure 3.10. Experiment and determine those bit assignments.

3.7 Implementing hierarchical menus

In Section 3.4 menus where shown to be combinations of windows which interact with both the
mouse pointer and its buttons. Also, one menu can be setup to lead into another. The manner in
which one menu leads into another and under what conditions of the mouse that occurs, together
with which menus items remain on the screen, gives rise to the feel of the graphics application. A
graphics application has both a look and a feel. But as stated on page xxii of ?, one of the principles of
the X Window System is that it provide mechanism rather than policy. The mechanism provided by Xlib
is shown in this Section which enables implementation of policy in relation to behaviour of menus.

The policy adopted presents itself as the look and feel of the resulting application. Toolkits for cre-
ating graphics applications impose their own look and feel on the resulting application in exchange
for simplification in the programming effort required in creating that application. The look is the
decoration associated with an item such as a menu button. The feel is the manner in which, say, a
menu item is selected, how one menu is positioned on the screen relative to the button which led to
its appearance, and how successive menu entries remain on the screen once selected. Xlib allows,
in fact requires, the programmer to create all look and feel. This Section demonstrates creating look
and feel of how one menu relates and appears in relation to the menu item which selected it, that
is, handling of menus hierarchies. Section 4.3 and Section 7.1 deal with techniques that can further
assist in generating the look of a menu.

Hierarchical menus impose relationships between individual menu items. A single menu consists
of one or more menu items that can be selected. Each of those menu items can select a different
menu which itself contains one or more selection items. This process can continue to any require
level, but a practical limit is generally introduced due to human factor issues that come into play.
The relationship of menu items in one menu to the next menu can be show pictorially as a menu tree.

58

3.7. Implementing hierarchical menus

How such relationships is managed is the important issue.

A menu tree is useful for both displaying and removing menus. Proceeding from the root of
the menu tree to the leaves results in corresponding menus being displayed on the screen. Each
menu is composed of menu items, and each of those menu items is implemented as a window in the
context of Xlib. So the displaying of a menu containing five menu items, is achieved by displaying,
or more correctly mapping, five windows to the screen. When that menu is no longer required, those
five windows are removed from the screen, or unmapped. To assist this to occur, all the windows
representing the menu items need to be created, and then mapped and unmapped to the screen
according to menu activity. Not only those windows need to be created, but also their grouping into
a menu and the window (menu item) that follows on from it when it is selected must be specified.

The example in Figure 3.11 shows the implementation of a simplified menu hierarchy. Each menu
contains one or more menu items. Those menu items can be either connected, or not connected, to
other menu items later in the menu tree. A simplification of not connecting many of those possible
connections is used to reduce the size of the code. But this menu configuration could still be metin a
practical program. Here, its purpose is to show the management of displaying and removing menus.

The feel of the program of Figure 3.11 results from the manner of handling a menu, which is the
following. When the mouse pointer enters a menu item, it is highlighted and if a menu leds from it,
that menu of menu items is displayed. When the mouse button leaves a menu item, that menu item
is no longer highlighted. If there was a menu leading from that vacated menu item, then that menu
of menu items is removed from the screen. A menu item is selected when the left-mouse button is
pressed while the mouse pointer is over the menu item (as thus highlighted).

The program of Figure 3.11, which is shown operating in Figure 3.12, consists of two buttons
located on a 400x400 pixel base window which is navajo white colour. These two buttons form a menu
bar. They are not shown adjacent to one another on the screen to demonstrate that this is not required
in the implementation; having them adjacent is a visual convention. Figure 3.13 gives a menu tree of
the grouping of menu items and the connections between them. This shows only one, the left hand,
menu-bar button is connected to a menu, which in turn contains three menu items. In the menu tree
of Figure 3.13, each menu item is shown as a small circle, menus are shown as rectangles enclosing
their contained menu items, and the lead between a menu item and a menu is depicted by a solid
line. All menus are shown rooted on the base window, with the dashed vertical lines indicating
the depth of each menu. In the program of Figure 3.11, if a menu item is not connected to another
menu, it is set to sound the keyboard bell when the item is clicked. No lettering, which is a form
of decoration, is used on any menu items in the program as that would lengthen the program code
by introducing look without affecting the feel of the program’s operation. The resulting program is
composed of 13 windows (12 menu items and the base window).

Each of the 13 windows are created individually. This allows adjusting the position parameters
of each XCreateWindow () call to take into consideration size of the other windows with which
that window is associated. Correct positioning can be tested by mapping all the created windows
to the display. The identification number of each window together with its associated relationship
information is stored in the array W[] where each element, corresponding to one menu item, is of
the data structure:

struct {
Window id;
int homemenu;
int menudepth
int shown;
int action;

59

3.7. Implementing hierarchical menus

~
*

This program

connected to
connected to
connected to

contains two menu-bar buttons.

implements hierarchical menus. The base 400x400 pixel window
The button on the left hand side is

a menu of three menu items. The bottom item of that menu is
a menu of two items, and the top one of those menu items is
another three item menu. Each menu item is a blank window

which changes colour when the mouse pointer moves over it.

As the mouse pointer enters a menu item window, it is highlighted and if a
menu leads from it, that is displayed. When the mouse pointer leaves a
menu item, it ceases to be highlighted and any menu of menu items leading
from it are removed from the display. The left—hand mouse button is used to
select a menu item.

Coded by:
Date:

Ross Maloney
June 2009

¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib .h>
#include <X11/Xutil .h>

int main(int argc, char xargv)

{

Display xmydisplay;
Window baseW ;
struct {
Window id;
int homemenu ;
int menudepth;
int shown ;
int action;
} W[13] = {
{o, 1, 1, 0, 2},
{1, 1, 1, 0, 1100},
{2, 2, 2, 0, 1000},
{3, 2, 2, 0, 3},
{4, 2, 2, 0, 4},
{5, 3, 3, 0, 1000},
{6, 3, 3, 0, 1000},
{7, 4, 3, 0, 5},
{8, 4, 3, 0, 1100},
{9, 5, 4, 0, 1000},
{10, 5, 4, 0, 1000},
{11, 5, 4, 0, 1000},
{12, 0, 0, 0, 0}
¥
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;
GC mygc;
char xwindow_name = "Hierarchy";
char *xicon_name = "Hie";
int screen_num , done, status, i, window;

unsigned long mymask;

Figure 3.11: A program demonstrating hierarchical menus (Continues ...)

60

3.7. Implementing hierarchical menus

/* 1. open connection to the server x/
mydisplay = XOpenDisplay ("");

/* 2. create a top—level window x*/
screen_num = DefaultScreen (mydisplay);
myat.border_pixel = 0xFF0000; /* red x/
myat.background_pixel = OXFFDEAD; /* navajo white x/
myat.event_mask = ExposureMask | EnterWindowMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
350, 400, 400, 400, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmbhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources */

/* 5. create all the other windows needed x/
myat. background_pixel = OXFFFFFF; /% white x/
myat.event_mask = ButtonPressMask | ButtonReleaseMask | ExposureMask

| EnterWindowMask | LeaveWindowMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
W[0].id = XCreateWindow (mydisplay, baseW,
50, 50, 90, 20, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[1].id = XCreateWindow (mydisplay, baseW,
250, 100, 70, 30, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[2].id = XCreateWindow (mydisplay, baseW,
70, 60, 90, 20, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[3].id = XCreateWindow (mydisplay, baseW,
70, 80, 90, 20, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 3.11: A program demonstrating hierarchical menus (Continues ...)

61

3.7. Implementing hierarchical menus

W[6].id

W[10].id

W[11].id

W[12].id

XCreateWindow (mydisplay, baseW,
70, 100, 90, 20, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
140, 90, 60, 10, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
140, 100, 60, 10, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
140, 110, 60, 10, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
140, 120, 60, 10, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
200, 110, 100, 30, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
200, 140, 100, 30, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

XCreateWindow (mydisplay, baseW,
200, 170, 100, 30, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);
baseW ;

/* 6. select events for each window x*/
/+* 7. map the windows x/

XMapWindow (mydisplay , baseW);

for (i=0; i<2; i++) |
XMapWindow (mydisplay , W[i].id);
W[i].shown = 1;

}

Figure 3.11: A program demonstrating hierarchical menus (Continues ...

62

3.7. Implementing hierarchical menus

/* 8. enter the event loop */
done = 0;

while (done == 0) {
XNextEvent (mydisplay, &baseEvent);

window = —1;
for (i=0; i<13; i++)
if (W[i].id == baseEvent.xany.window) {
window = i;
break;

}
switch (baseEvent.type) {
case Expose:
XMapWindow (mydisplay , baseW);
for (i=0; i<12; i++)
if (W[i].shown == 1) XMapWindow(mydisplay, W[i].id);
break;
case ButtonPress:
XUngrabPointer (mydisplay , CurrentTime);
switch (W[window |]. action) {
case 1000:
XBell (mydisplay, 50);
break;
case 1100:
done = 1;
break;
}
break;
case ButtonRelease:
break;
case EnterNotify:
if (i==12)
for (i=2; i<12; i++) W[i].shown = 0;
else {
XSetWindowBackground (mydisplay , W[window].id , 0xFF0000);
XClearWindow (mydisplay , W[window].id);
for (i=0; i<12; i++) |
if (W[i].menudepth > W[window |. menudepth) W[1i].shown = 0;
if (W[i].homemenu == W[window]. action) W[i].shown = 1;
}
}
for (i=0; i<12; i++)
if (W[i].shown == 1) XMapWindow(mydisplay, W[i].id);
else XUnmapWindow (mydisplay, W[i].id);
XFlush (mydisplay);
break;
case LeaveNotify:
XSetWindowBackground (mydisplay , W[window].id , OxFFFFFF);
XClearWindow (mydisplay , W[window].id);
break;
}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

Figure 3.11: A program demonstrating hierarchical menus

63

3.7. Implementing hierarchical menus

The identification number of each menu item window is computed during the program’s execution.
But the other relationship information is constant. There are five menus which are number 1 through
5, starting at the menu bar. These menus are assigned a depth, as shown in Figure 3.13. The menu
item is assigned membership of one of those menus together with the depth of that menu. The
window identification number is inserted when the window representing that menu item is created
by the corresponding XCreateWindow () call. Initially each menu item is indicated as not being
displayed by assigning a value of 0 to the shown member of the menu item structure. The action
member is a label which shows what happens when the menu item is selected. In this program
there are three possible actions that can be performed. If there is a following menu, then it can be
displayed, in which case the act ion value is the number of that menu. Another action is to ring the
bell, which is indicated by a 1000 value. The remaining action is to quit execution of the program
which is indicated by a 1100 action value.

Figure 3.12: Selection by using a hierarchy of menus

Displaying and removing menus of menu items is algorithmic in nature. That algorithm uses the
pre-defined relationships between menu items, the menu in which each menu item exists, and the
action to be performed when that menu item is selected, stored in the menu item relationship data
structure. The number of both menu items and menus of this example were selected as a compromise
between simplicity and being sufficient to show general functioning of the algorithm for handling
menu display and removal. This algorithm has two parts: when the mouse pointer enters a menu
item, and when the pointer leaves a menu item. The algorithm is:

pointer enters a menu item (window) :
colour the menu item as selected;
find the menu in which this menu item resides;
unmap all menu items in menus of higher depth;
if a menu is linked to this menu item:
display all menu items in that menu;

64

3.7. Implementing hierarchical menus

pointer leaves a menu item (window) :
colour the menu item as unselected;

The implementation of the menu display algorithm in the program of Figure 3.11 proceeds as
follows. The index in the W[] array corresponding to the window in which the pointer enters
or leaves is determined by matching the .xany.window member of the event received (in the
baseEvent variable). The background colour of each button window is changed to red using a
XSetWindowBackground () call when the pointer enters the window, and back to white when the
pointer leaves that window. For the change to take effect immediately, a call to XClearWindow () is
made followed by XFlush () which forces the server to send the window changes immediately to
the client program.

The program operates by using to events. Entering and leaving events, together with the button
press event (there is only one button press event which is generated by pressing any mouse button,
but in the event message the actual button used is identified), are enabled for each of the menu
item windows. When the mouse pointer enters one of these windows, an entering window event is
generated identifying the window. Similarly when the mouse pointer leaves one of these windows,
a leaving window event is generated, identifying that window.

1
! :
! 1
1
' |
/Iﬁ 1
1
Oy |
1
Al |
1 /_h
,7' |
- | : 9
| ! ! |
: | 1 E :
| X X ©10
1
| Ol1 ! |
| - | |
1 1
1
E = X !
| -
13 o 1
I = < !
3 | 2l
| | g
1 =
| g !
EI
! |
1
1

menudepth 2

menu depth 3

Figure 3.13: Menu tree of the example program

A problem can arise due to positioning of menu item windows, giving rise a race condition. A
race condition exists when one menu item window overlays a menu item window which has leads to
that menu item being displayed. If the mouse pointer entering the top menu item window is used to
indicate that window should be unmapped, then the mouse pointer immediately falls on the menu
item immediately below it. But the mouse pointer entering that menu item window leads to the top
menu item window being mapped to the display. The exposure/deletion cycle then occurs in rapid
succession - a race condition.

This overlapping arrangement of menu item windows occurs in the code of Figure 3.11. To
void the occurrence of the race condition in the code of Figure 3.11, use is made of EntryNotify
events in collaboration with the know menu configuration on screen at any instance of time by
use of the shown member of the W[] array that holds the menu item information. The generated

65

3.7. Implementing hierarchical menus

LeaveNotify events are only used to change the menu item window’s background colour indicat-
ing that item is no longer selected.

The program starts with two menu items shown. As the mouse pointer enters the left menu item,
another menu appears. Moving the mouse pointer into each menu item colours that item red to
indicate it to be selected. If another menu leads on from that menu item (as stored in the W[] array),
that menu of menu items is bought onto the screen. Moving the mouse pointer to menu items in
menu previously bought to screen removes the excess menus from the screen. Another positioning
of the mouse pointer also must be considered.

How should the chain of displayed menus behave if the pointer is moved out of the menu item
windows currently being displayed? The easist strategy to implement is to leave the menu items
unchanged. The pointer can then be returned to the menu list where it was left.

An alternative strategy if the pointer moves out of the stack of menu items displayed is to collapse
the menu stack back to the situation where the menu bar buttons at the base (or root) of the menu
structure alone appear. In that case, none of the menu bar buttons are selected by default. This is the
strategy implemented in the code of Figure 3.11.

As with most X Window programs, the operation of the code in Figure 3.11 is centred upon the
handling of events. To simplify that handling, the base window is first configured to generate events
if that window is exposed, and when the mouse pointer enters that window. That window is then
added to the menu item window list (W[]), and subsequently handled as a special case within that
list. The moving in, or moving out from, a menu item by the mouse pointer results in changing the
shown member of the associated menu item window. The manner of that change is determined by
the relationships between the homemenu, menudepth, and action of each menu item window
and the window which raised the most recent entry or leaving event. Whether to display, or remove
from the display, a menu item window is controlled by the value present in the shown member of
each menu items structure in the menu item list. Entry and leaving a menu item window also changes
the background colour of that window using a XSetWindowBackground () and XClearWindow ()
pair of calls. It is necessary to ensure that the base window is mapped to the display before any of
the menu item windows so that they are not obscured by that base window.

The handling of the Expose event in the code of Figure 3.11 takes care of preserving the state of
the operating program if it were to be obscured by another program on the screen.

One limitation of the code as is in Figure 3.11 is that the number of windows must be less than
the action code which indicates a mouse button event, in this code 1000. This is easily changed.

As an aside, X Window handling of mouse events can impose a challenging problem if the mouse
pointer is moved into or out of a window while any mouse button is held down. In that situation en-
tering and leaving events are only produced for the window in which the mouse pointer was located
when the mouse button was pressed. This results from the automatic grab of the pointer by the X
Window server, as described on page 314 of ?. This grabbed state is removed by releasing the mouse
button, but between the pressing and releasing of the button, window entry and leaving events are
not generated. One way to overcome this is by issuing a XUngrapPointer () call. Although re-
leasing the button will remove the grabbed state, the client program will only receive a release button
event if a ButtonReleaseMask is included in the event structure of the window involved. No-
tice, that with the mouse movement specified for the program of Figure 3.11 these conditions do not
apply. However, this the movement philosophy was that used on the original Apple Macintosh.

66

3.8. Content summary

3.7.1 Exercises

1. By using the technique of Section 7.1, create labels for the menu items used in the program of
Figure 3.11. Modify the program so that the program can use those labels without diminishing
the overall behaviour of the original program. Hint: A different pixmap will be reqired to
indicate when the mouse pointer is over, and not over, each menu item window.

2. Modify the code in Figure 3.11 so that the original Macintosh manner of menu traversing is
obtained. In that, menu traversing was performed with the mouse button pressed. As the
mouse button entered a menu item, that item changed colour and the menu leading from it
was displayed. Moving to a different menu item, deleted the visible menu chain linked to
the previous highlighted menu item. Use the left-hand mouse button in this traversal process.
Notice this produces a different feel than that in the original program.

3. Write a program, using the code of Figure 3.11 as a guide, which shows and identifies the menu
item window in which the mouse button is depressed.

4. Modify the code of Figure 3.11 such that the mouse philosopy of the old Apple Macintosh is
implemented, i.e. menus are only displayed when they are traversed while the mouse button
is depressed, and the menu item is selected when the mouse button is released over that menu
item. Use the left-hand mouse button as the subject mouse button.

5. A window which forms a menu item has a pattern in it’s foreground that partially covers that
entire window. What happens to that foreground pattern when the background colour of that
window is changed? Prove your answer by appropriate modification to the code of Figure 3.11.
The answer to this question is linked to implementing labelled menu items.

6. Design, implement, and test a menu display algorithm that does not use the shown member of
the menu item relationship structure of Figure 3.11. Is this algorithm more efficient than that
used in the code of Figure 3.11?

7. Modify the code of Figure 3.11 so that it follows the leave unchanged menu selection strategy
when the mouse pointer is moved outside of the menu items that are currently being displayed.

3.8 Content summary

The pre-requisites for this chapter is how to create a window using Xlib. This chapter groups multiple
windows to form menus. Events are introduced in this chapter. A result of this chapter is to be able
to construct menus, together with an appreciation of X11 events.

Menus are shown in this chapter to be formed from windows, and events which are linked to
those windows. Each of the items in a menu, whether it be a button on the root window or a member
of a menu list that appears as a transient on the screen, is implemented as a window. Different menu
behaviour and looks follow from modification of the properties of those windows. The selection of
events, linking of them to a window, and processing their occurrence underlies most X11 programs.
Each of these aspects of events is developed by example, using calls from Xlib to implement the
required interface to services provided by the X Window System. All X11 programs contain an
event processing loop with events either assigned explicitly or implicitly. Most stand-alone graphics
programs contain buttons and menus. These observations make this chapter fundamental. As more
familarity with the services provided by X11 is obtained, these fundamentals can be built upon.

67

Chapter 4
Pixmaps

Most, if not all, computer based windowing systems have a means of displaying a fixed pattern on a
window in such a way that it requires minimal processing. This is the generic pattern format of that
windowing system. For the X Window System that format is a Pixmap. There are two sub-categories
of Pixmap: the single bit (or black and white) bitmap and the more general PixMap that is capable
of represnting general colour. A further complication is that X Window System refers to the analogue
of a window as a Pixmal.

A Pixmap is analogous to a window, but is not associated with a screen. As a consequence, it is
off-line and invisible. What can be done in a window can also be done in such a Pixmap, but it is
not visible from the Pixmap. Just as in the case of a window to which Xlib gives the storage type as
Window, a Pixmap has the storage type Pixmap.

A further complication is that the X Window System also has an image type which has the Xlib
storage type XImage. An image is similar to a Pixmap. It differs in that it is stored in the client
program as opposed to being stored in the server as in the case of a Pixmap. As a consequence, an
imaged does not take up server memory and their manipulation does not required the generate X
Protocol request as is the case with a Pixmap.

The pattern handling offered by a Pixmap can assist the production of buttons and menus, while
increasing their visual appeal. Two techniques for creating patterns for incorporating in a program
for Pixmap use will be shown.

4.1 The pixmap resource

Pixmaps are a significant resource of the X Windows System. Pixmaps are used as both a cursor
marker and as a tile pattern on a window. That tile pattern is repeated over the face of the window.
But if the tile is the same size as the as the window, then the tile is repeated once, and the pixmap can
be used as a resource of wide scope. Modern X Window distributions are more flexible in handling
pixmaps than earlier versions of X11. However, pixmaps do have more limitations than do windows.

When a pixmap is used as a tile on a window, then it takes on the following properties:

o A pixmap has both a foreground and background colour;
o In reality, the pixmap is a bitmap;

e Once a pixmap is created by a XCreatePixmapFromBitmapData (), the foreground and
background colours cannot be changed;

e A pixmap only becomes visible on the screen when it is linked to a window;

68

4.3. Bitmap patterns

o A pixmap can only be placed on the background of a window;
o A pixmap is linked to a window by a XXSetWindowBackgroundPixmap () call;

e Once linked to a window, any drawing operations performed on that pixmap before or after
the linking will be visible in the window;

o A pixmap background does not have to be redrawn after a window is exposed;
o A pixmap linked to a window is stored in the server, not the client;

o A XSetWindowBackground () call sets the background colour of a window and if a pixmap
had been linked to that window it is overwritten by that plane colour - the pixmap link to the
window is lost;

e XCopyArea () and XFillRectangle () calls can be used to draw into a pixmap;

e A pixmap can be drawn into at any time while a window can only be drawn on when it is
visible on the screen;

o If a pixmap is created using a XCreatePixmap () call, then the initial contents of the pixmap
are undefined;

e A window can only have a single pixmap linked to it at any one time;

o The one pixmap can be linked to more than one window at any one time;

Some of these properties are shared with pixmaps used as cursor markers.

4.2 Pattern patches

Patterns can be used for many things. One of those uses is as a decoration of a button, whether that
button occur on its own, or in combination with others in the form of menus. Section 3.4 considered
creating such menus using buttons of a uniform colour, and maybe including text. By using patterns,
visually more complex button can be created. Another application is for display of a logo. While an-
other use is to indicate the position of the mouse pointer (or cursor) on a window. Patterns, whether
they be small in on-screen appearance or large, warrant consideration.

Patterns in the X Window System are described as Pixmaps and they come in two varieties. One
variety is the bitmap, or XBM format, which is composed of two colours. The two colours are the
foreground and backbround colours that are active in the graphics context (GC) at the moment when
it is used to display that bitmap. Bitmaps are commonly used as cursors. The other variety is called
a PixMap, or XPM format, which is composed of multiple colours that are encoded in the format of
the Pixmap. These are explored in Section 4.7.

4.3 Bitmap patterns

During the development of the X Window System a need was seen for bitmaps. A result is that
library functions to handle such maps are included in the X Window System distribution. They can
be used both to create buttons, and as cursors to indicate the position of the pointer on a window.

Although, a bitmap can be created by hand using an editor, the program bitmap which is part of

the X Window System distribution is generally used. When this program is run using the command
line:

69

4.3. Bitmap patterns

bitmap -size 50x25 shapes.bmp &

a grid of 50 pixel cells horizontally and 25 pixel cells vertically is presented for containing the draw-
ing which is to be saved in a file called shapes . bmp upon exiting the bitmap program. A drawing
consisting of one open, three filled circles, and a filled triangle was drawn and the contents of the
resulting shapes . bmp file was:

#define shapes_width 50

#define shapes_height 25

static unsigned char shapes_bits[] = {
0x00, 0x00, 0x00, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0Ox00, 0Ox00, 0x00, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0xcO,
0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, OxeO, Oxff, 0x00, Ox0e, 0x00, 0x00,
Ox1f, 0Oxe0, Oxff, OxcO, 0x7f, 0x00, OxcO, 0Ox60, 0xf0, Oxff, Oxel, Oxff,
0x00, 0x30, 0x80, Oxfl, Oxff, Oxfl, Oxff, 0x01, 0x08, 0x00, Oxf2, Oxff,
0xf9, Oxff, 0x03, 0x08, 0x00, Oxf2, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00,
Oxf4, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00, Oxe4, Oxff, Oxfc, Oxff, 0x03,
Oxfa, 0x03, 0xe8, Oxff, Oxfe, Oxff, 0x03, Oxfe, 0x07, O0xc8, 0x7f, Oxfe,
Oxff, 0x03, Oxfe, 0x0f, 0x08, Ox1lf, Oxfe, Oxff, 0x03, Oxfe, 0x0f, 0x08,
0x00, Oxfc, Oxff, 0x03, Oxfe, 0x0f, 0x08, 0x18, Oxfc, Oxff, 0x03, Oxfe,
0x0f, 0x04, 0x3c, Oxfc, Oxff, 0x03, Oxfe, 0x0f, 0x04, 0Ox3e, 0xf8, Oxff,
0x03, Oxfe, 0x0f, 0x02, 0x7f, O0xf0, Oxff, 0x01l, Oxfe, 0x0f, 0x02, Oxff,
Oxe0, Oxff, 0x00, Oxfc, 0x87, 0x81, Oxff, OxcO, 0x7f, 0x00, O0xf8, 0x63,
Oxc0O0, Oxff, 0x01, Ox0e, 0x00, 0x00, Ox1f, Oxe0, Oxff, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, O0xf0O, 0x03, 0x00, 0x00};

This bitmap is the screen pattern that is to be used in the following program example. It is an
array of 0 or 1 values which represent each pixel in the 50 by 25 block of cells (pixels) that the array
defines.

This array of data is converted into the internal X Window System form of a pixmap by the
Xlib function XCreatePixmapFromBitmapData (). This internal Pixmap form is an analogue of
a Window, with the same attributes as a Window, but having an invisible existence in the X Win-
dow server’s memory. This pixmap can be made visible in a window by use of the Xlib function
XCopyPlane ().

Important: The pixmap created by the XCreatePixmapFromData () call is composed only of a
foreground and a background. The distribution of 1 and 0 bits in the bit pattern gives the required ap-
pearance distribution of the foreground and background over the extent of the bit pattern. Internally
in the server, the foreground is interpreted as being black and the background as white. Whether
black or white is specified as the foreground (argument 6) in the XCreatePixmapFromData ()
call defines whether the 1’s in the pixmap represents the foreground or background, respectively. The
complement to that selection is then applied to the background (arguement 7) of the XCreatePixmapFromData ()
call. The colours for the appearance of the foreground and the background of that pattern is set by
the foreground and background colours assigned in the GC that is used to copy that pixmap to a
window. Specifying whether a 1 in a pixmap represents the foreground or background is done once,
when the pixmap is created. So one set of pixmap data could be used to create two pixmaps with op-
posite foreground /background combinations. The visual colour of the foreground and background
can be changed by the colours specified in the GC used to move the pixmap to the screen.

The program in Figure 4.1 shows application of the bitmap processing capacity of the X Window
System. A window coloured red is first created. A bitmap that has been previously prepared is stored
in the program and the graphics context that is to be used to display it is set so that the foreground
is black and the background is white. This pattern is drawn on the red window when the left-hand

70

4.3. Bitmap patterns

/* The program displays a window coloured red. When the left—hand mouse button

% 1is pressed while the pointer is in that window, a pattern patch is displayed
% at the location of the pointer. The pattern is recorded as a bitmap in the
% program and is displayed with a black foreground and a white background.

*

* Coded by: Ross Maloney

% Date: May 2008

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define shapes_width 50

#define shapes_height 25

static unsigned char shapes_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, Ox1f, 0x00, 0x00, 0x00, 0x00, 0x00, OxcO,
0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, Oxe0, Oxff, 0x00, OxOe, 0x00, 0x00,
0Ox1f, Oxe0, Oxff, OxcO, O0x7f, 0x00, OxcO, 0x60, Oxf0O, Oxff, Oxel, Oxff,
0x00, 0x30, 0x80, Oxfl, Oxff, Oxfl, Oxff, Ox01, 0x08, 0x00, Oxf2, Oxff,
0xf9, Oxff, 0x03, 0x08, 0x00, Oxf2, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00,
0xf4, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00, Oxed4, Oxff, Oxfc, Oxff, 0x03,
Oxfa, 0x03, O0xe8, Oxff, Oxfe, Oxff, 0x03, Oxfe, 0x07, Oxc8, 0x7f, Oxfe,
Oxff, 0x03, Oxfe, 0x0f, 0x08, Ox1f, Oxfe, Oxff, 0x03, Oxfe, 0x0f, 0x08,
0x00, Oxfc, Oxff, 0x03, Oxfe, Ox0f, 0x08, 0x18, Oxfc, Oxff, 0x03, Oxfe,
0x0f, 0x04, 0x3c, Oxfc, Oxff, 0x03, Oxfe, Ox0f, O0x04, Ox3e, O0xf8, Oxff,
0x03, Oxfe, 0x0f, 0x02, 0x7f, Oxf0, Oxff, 0x01, Oxfe, 0Ox0f, 0x02, Oxff,
Oxe0, Oxff, 0x00, Oxfc, 0x87, 0x81, Oxff, OxcO, O0x7f, 0x00, Oxf8, 0x63,
Oxc0, Oxff, 0x01, OxO0e, 0x00, 0x00, Ox1f, Oxe0, Oxff, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0Oxf0, 0x03, 0x00, 0x00};

int main(int argc, char xargv)

{

Display xmydisplay;
Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc;

Pixmap pattern;

char sxwindow_name = "BWclick";
char *xicon_name = "BW";

int screen_num, done;
unsigned long mymask;

int X, V;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

Figure 4.1: A red coloured window showing image pattern placements

71

4.3. Bitmap patterns

/+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.border_pixel = BlackPixel (mydisplay, screen_num);
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"red", &exact, &closest);
myat.background_pixel = closest.pixel;
myat.event_mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),

300, 300, 350, 400, 3,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/% 3. give the Window Manager hints =/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMlIconName (mydisplay , baseWindow, &iconName);

/¥ 4. establish window resources =/

pattern = XCreatePixmapFromBitmapData (mydisplay, baseWindow,
shapes_bits , shapes_width, shapes_height,
BlackPixel (mydisplay, screen_num),
WhitePixel (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num));

myge = XCreateGC (mydisplay, baseWindow, 0, NULL);

XSetForeground (mydisplay, mygc, WhitePixel (mydisplay, screen_num));

XSetBackground (mydisplay , mygc, BlackPixel (mydisplay, screen_num));

/¥ 5. create all the other windows needed x*/
/[« 6. select events for each window x*/

/% 7. map the windows x/
XMapWindow (mydisplay , baseWindow);

I/« 8. enter the event loop =*/
done = 0;
while (done == 0) {
XNextEvent(mydisplay, &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
if (baseEvent.xbutton.button == Buttonl) {
x = baseEvent.xbutton.x;
y = baseEvent.xbutton.y;
XCopyPlane (mydisplay, pattern, baseWindow, mygc, 0, 0,
shapes_width, shapes_height, x, y, 1);
}
break;
}
}

Figure 4.1: A red coloured window showing bit pattern placements (Continued ...

72

4.3. Bitmap patterns

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay, baseWindow);
XDestroyWindow (mydisplay, baseWindow);
XCloseDisplay (mydisplay);
}

Figure 4.1: A red coloured window showing bit pattern placements (Continued ...)

button of the mouse is pressed, with the pattern positioned at the position of the mouse pointer when
the button is pressed. The program execution must be terminated separate from the program.

In coding this example default values of the GC mygc are set using the XCreateGC () call.
White and black colours are then assigned to the foreground and background of that GC using the
XSetForeground () and XSetBackground () calls, respectively. The function XCopyPlane ()
copies the pixmap created by the XCreatePixmapFrom BitmapData () call to the screen in the
window at the point required for as many times that are required. In Section 7.1 this code is used as
the basis for producing multi-colour patterns using the XPM library.

Figure 4.2 shows the screen display produced when executing the program of Figure 4.1.

BWclick

Figure 4.2: A distribution of black and white patches at mouse points

Notice:

1. The red background colour of the base window was applied when the window was first created
as opposed to later through its graphics context (GC).

2. An event awareness (by setting the CWEventMask) is set into the top-level window when it is
created.

73

4.4. A bitmap cursor

3. The program is driven by such events, notifibly the ButtonPress event that occurs when a but-
ton on the mouse is pressed.

4. The colours set as the foreground and background in the graphics context (GC) of the top-level
window when an image is put to the screen determines the colours in which the pattern is
displayed.

4.3.1 Exercises

1. Modify the program so that it uses the right-hand mouse button to performed the function
originally performed by the left-hand mouse button.

2. Extend the program so that the colours green, yellow, and black are used to display the pattern.
Group the colours in all possible combinations of two colours. At each click of the mouse
button, rotate the group of colours used to display the pattern.

3. Modify the program of Figure 4.1 so that is uses a XCopyArea () function in place of the
XCopyPlane () call. What advantages and disadvantages result from that modification?

4.4 A bitmap cursor

A pixmap in general, or a bitmap to be more specific, can be used to indicate the position of the mouse
pointer. Unlike other bitmaps, cursor bixmaps are transient as the pointer passes over a window; as
the pointer moves so does the associated bitmap, with automatic reinstatement of what the cursor
obscured. Such bitmaps are generall of 16x16 pixels in size. They are created using two bitmap each
containing a similar pattern, but with one pattern slightly larger than the other. This is described in ?
(page 183). An additional attribute of these bitmaps is that they contain a hot point which is the single
pixel which is to precisely represent the pointer on the screen. This is nominated when the bitmap is
created and its position within the map is stored as part fo the bitmap data structure.

The code in Figure 4.3 shows this process. First the bitmaps were created using the bitmap
program and the resulting bitmap data structures loaded into the file which contained the rest of
the program’s code. A window coloured red is used to contain a black and a white window. A
cursor, in the form of a double-arrowhead is created externally to the program. The data associated
with this arrowhead are stored in the arrow_bits array, with the associated outline bitmap with
a foreground arrowhead shape slightly larger than that on the shape contained in the arrow_bits
array, being stored in the arrowmask_bits array. The foreground colour of the arrowhead is set to
black and its outline set to white, via the shape stored in the arrowmask_bits array.

The example in Figure 4.3 shows why a cursor is created with a shape, and with an outline of
that shape. The black and white colours used in creating the cursor corresponds to the background
colours of two of the windows. Without the outline, the cursor would be lost when the mouse pointer
enters the black window. Moving the cursor over each of the three windows in this example demon-
strates the visability of the cursor being used. This particular design of a cursor is not good: Can you
think of reasons for this observation? The program is terminated externally from this program.

Notice:

1. The size of the border pixels for the black and white windows has been decrease to 1 pixel as
opposed to the 3 pixel size for the containing read window. This is only for esthetics.

74

4.4. A bitmap cursor

/* This program creates a window coloured red a then two other windows

* contained inside it. One of those additional windows is coloured white and
% the other is coloured black. A cursor shaped, defined by two bitmaps

* created externally to this program are then linked to the mouse pointer

* which it is over the white window.
*
sk
*

Coded by: Ross Maloney
Date: May 2008

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define arrow_width 16

#define arrow_height 16

static unsigned char arrow_bits[] = {
0x00, 0x00, 0x06, 0x00, OxOe, 0x00, O0x3c, 0x00, Oxf8, 0x00, O0xf8, 0x01,
0xf0, 0x07, O0xfO0, Ox0f, OxfO, Ox1f, Oxe0, 0x7f, Oxe0, 0x7f, OxcO, O0x7f,
0x80, 0x7f, 0x80, 0x7f, 0x00, Ox7f, 0x00, 0x00};

#define arrowmask_width 16

#define arrowmask_height 16

#define arrowmask_x_hot 0

#define arrowmask_y_hot 0

static unsigned char arrowmask_bits[] = {
0x1f, 0x00, 0x3f, 0x00, Oxff, 0x00, Oxff, 0x03, Oxff, 0x07, Oxfe, O0xOf,
Oxfc, Ox1f, Oxfc, Ox3f, Oxf8, Ox7f, Oxf8, Oxff, Oxf0, Oxff, Oxf0, Oxff,
Oxe0, Oxff, OxcO, Oxff, 0x80, Oxff, 0x80, Oxff};

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow , wWindow, bWindow;
XSetWindowAttributes myat, wat, bat;
XSizeHints wmsize ;

XWMHints wmbhints ;

XTextProperty windowName, iconName;

XEvent baseEvent;

XColor exact, closest, front, backing;
Pixmap backArrow , foreArrow;

Cursor cursor;

char xwindow_name = "CursorPlay";

char *xicon_name = "Play";

int screen_num , done;

unsigned long mymask;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/x 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
myat. border_pixel = BlackPixel (mydisplay, screen_num);
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"red", &exact, &closest);
myat.background_pixel = closest.pixel;
myat.event_mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
400, 500, 600, 340, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

75
Figure 4.3: Three windows demonstrating cursor visability

4.4. A bitmap cursor

I« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/[« 4. establish window resources x*/

backArrow = XCreatePixmapFromBitmapData(mydisplay, baseWindow,

arrowmask_bits, arrowmask_width, arrowmask_height,

1, 0, 1);

foreArrow = XCreatePixmapFromBitmapData(mydisplay, baseWindow,

arrow_bits , arrow_width, arrow_height,
1, 0, 1);

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),

"black", &exact, &front);

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),

"white", &exact, &backing);
cursor = XCreatePixmapCursor (mydisplay, foreArrow, backArrow,
&front , &backing,
arrowmask_x_hot, arrowmask_y_hot);
XDefineCursor (mydisplay , baseWindow, cursor);

/% 5. create all the other windows needed =x/
wat.event_mask = ButtonPressMask | ExposureMask;
wat.background_pixel = WhitePixel (mydisplay, screen_num);
bat.event_mask = ButtonPressMask | ExposureMask;
bat.background_pixel = BlackPixel (mydisplay, screen_num);
wWindow = XCreateWindow (mydisplay , baseWindow,

100, 50, 200, 200, 1,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &wat);

bWindow = XCreateWindow (mydisplay, baseWindow,
400, 50, 100, 100, 1,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &bat);

/* 6. select events for each window %/

/% 7. map the windows x/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , wWindow) ;
XMapWindow (mydisplay , bWindow);

Figure 4.3: Three windows demonstrating cursor visability (Continued ...)

76

4.4. A bitmap cursor

/+ 8. enter the event loop =/
done = 0;
while (done ==)

XNextEvent(mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
break;
}
}

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay, baseWindow);
XCloseDisplay (mydisplay);

Figure 4.3: Three windows demonstrating cursor visability

2. The colour of the cursor is assigned when the cursor is made using the XCreatePixmapCursor ()
function, not when the associated bitmaps are created. As a result, dummy values can be used
when such bitmaps are created using the XCreatePixmapFromData () function.

3. The depth of the cursor bitmaps (pixmaps) are unity (1).

CursorPlay

Figure 4.4: A user designed cursor pointer on a window

Figure 4.4 shows the displayed output of the program of Figure 4.3 at an instant of time. As
the mouse pointer is moved over the read, white, and black windows the pointer indicator (which
looks like two arrow-head facing in opposite diagonal directions) shows it’s position. A close look
at that cursor indicates a white border around the black centre. That border is created by the appro-
priate colouring and sizing of the two bitmaps that make up the cursor indicator. Without the white
boorder, the black cursor would disappear when over a black window.

77

4.5. A partially transparent pixmap

44.1 Exercises

1. Modify the background and foreground colours so that they are different than red, black, or
white.

2. Extend the program of Figure 4.3 so that there is a second cursor that is associated only with
the black coloured window.

3. Modify the shape of the cursor so that it is significantly different from that shown in the pro-
gram of Figure 4.3.

4.5 A partially transparent pixmap

The previously considered pixmaps when displayed on the screen had a rectangular footprint. There
are situations where that footprint is not desirable. A cursor is such a situation. The cursor pattern is
a pixmap but the footprint on the screen is generally not rectangular in that a portion of the rectangle
containing the cursor pattern is transparent allowing the underlying screen around the pattern to be
visible. Cursors are considered a particular situation in X and are handled in a unique manner. But
the idea of transparency in a portion of a pixmap has application beyond cursors. One example of
this is drawing the arrow of a cursor on a window as an indicator of a previous pointer position for
taking of a screen-shot. This is necessary when using the xv program to take a screen-shot because
the pointer is needed to control that application, and cannot be concurrently used to control the
application being screen-shot. To overcome this problem, the code which is to be screen-shot can be
modified to show a transparent pixmap identical to that used on a cursor to indicate the appropriate
positioning of the pointer pertinent to the screen-shot.

Transparent

Figure 4.5: A red screen covered by transparent arrows

Figure 4.5 is an example screen output of a program that places a partially transparent pixmap
on the screen where the pointer is positioned when the right-handle mouse button is pressed. The

78

4.6. Using Postscript to create labels

pixmap is of a black arrow with a narrow white boarder around it. A hole is located in the centre of
the arrow. The red colour of the screen is seen to surround the outer white border of the arrow and
fill the hole insider the arrow. Figure 4.6 contains the code used to produced this result.

In the code of Figure 4.6 note the following. The arrow is drawn from a pixmap with a black
foreground and a white background. If this pixmap was displayed on the screen, the black figure
of the arrow would appear in a white square. A mask is loaded into the GC used for drawing this
pixmap. That mask is a pixmap with 1’s positioned above pixels of the arrow pixmap that are to
be shown on the screen. This means that the shape contained in this mask pixmap is slightly larger
than the arrow so that some of the arrow pixmap’s background is covered by the mask bits. The
hole that appears in the arrow on the screen is also set in this pixmap and not in the pixmap of the
original arrow. The mask is positioned relative to the destination drawable, not with respect to the
bitmap that is to be filtered. This requires the use of the XSetClipOrigin () call in the event loop
to adjust the position of the mask to align to where the arrow pixmap is copied to the screen. Thus
the coordinates of the pointer are used with both the XSetClipOrigin () and XCopyPlane () calls
correctly position the arrow shape.

This code indicates that it is not necessary to specify in the value mask when the GC is cre-
ated that the clipping mask is going to change. However, if it is included by adding GCClipMask
to the bit mask used when creating the GC (that mask contains as a minimum GCForeground |
GCBackground), then a mask must be ssigned to the c1ip_mask member of the XGCValues passed
to the XCreateGC () call.

4.6 Using Postscript to create labels

The example in Figure 3.7 is one way of creating a menu of labelled entries. That was done by creating
amenu item as a window and then drawing a string into that window using the XDrawImageString ()
call. An alternate approach is considered here in which pixmaps which were considered in Section 4.1
are used. This approach has the advantages over the string drawing approach of:

e the transmission cost for displaying the label letters in reduced; and

e labels containing more than characters can be used;

One of the difficulties of this technique is forming labels which are composed from combining
letters together with other symbols which look correct when the label appears on the display. Such
letter combinations could be created by hand by using an editor. That technique is reasonably time
consuming and the results can be uncertain. An alternative is the use a bitmap program as was
done in Section 4.1. However, the program bitmap used there provides no assistance in creating
characters. The technique used here is to create the label using a small Encapsulated Postscript (EPS)
program. Then that program is transformed into a bitmap using the convert program, whcih is
part of the ImageMagic open software package.

As an example of this label generation progess, the EPS program:

%!PS—Adobe—2.0 EPSF—1.2
%%BoundingBox: 0 5 50 25

/Times—Bold findfont
18 scalefont

setfont

10 10 moveto

(View) show

79

4.6. Using Postscript to create labels

/+ The program displays a window coloured red. When the right—hand mouse

* button is pressed while the pointer is in that window, a pattern patch is
* displayed at the location of the pointer. The pattern is of an arrow

% pointing to the top—left which is coloured black, surrounded by a thin white
* border. This pattern is recorded as a bitmap in the program and is

* displayed using a clipping mask which also is stored as a pixmap. A

% transparent pixmap pattern results.

*

* Coded by: Ross Maloney

* Date: March 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define arrow_width 16

#define arrow_height 16

static unsigned char arrow_bits[] = {
0x00, 0x00, 0x06, 0x00, Oxle, 0x00, 0x7c, 0x00, Oxfc, 0Ox01, Oxf8, 0x07,
0xf8, Ox1f, O0xf8, 0Ox7f, O0xfO0, O0x7f, OxfO, 0x03, Oxe0, 0x07, Oxe0, 0x06,
0xcO0, O0x0c, OxcO, 0x18, 0x80, 0x30, 0x00, 0x00};

#define mask_width 16

#define mask_height 16

static unsigned char mask_bits[] = {
0x07, 0x00, Ox1f, 0x00, O0x7f, 0x00, Oxf6, 0x01, Oxc6, 0x07, O0x8e, O0xl1f,
0x0c, 0x3e, Oxlc, Oxfc, 0x38, Oxfc, 0x38, Oxfc, 0x78, 0x0f, Oxf0, Ox1f,
0xf0, 0x3f, Oxe0, 0x7d, Oxe0, 0x79, OxcO, 0x71};

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;

XColor exact, closest;

GC mygc;

XGCValues myGCValues ;

Pixmap pattern, mask;

char xwindow_name = "Transparent”;
char *xicon_name = "Tr";

int screen_num, done;
unsigned long mymask;

int X, ¥y,

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

[* 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
myat.border_pixel = BlackPixel (mydisplay, screen_num);
XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"red", &exact, &closest);

Figure 4.6: A program while draws transparent arrow at each pointer click (Continues ...)

80

4.6. Using Postscript to create labels

myat.background_pixel = closest.pixel;

myat.event_mask = ButtonPressMask | ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 350, 400, 3,

DefaultDepth (mydisplay, screen_num), InputOutput,

DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window reqources x/

pattern = XCreatePixmapFromBitmapData(mydisplay, baseWindow,
arrow_bits , arrow_width, arrow_height,
WhitePixel (mydisplay, screen_num),
BlackPixel (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num));

mask = XCreatePixmapFromBitmapData(mydisplay, baseWindow,
mask_bits, mask_width, mask_height, 1, 0, 1);

mymask = GCForeground | GCBackground | GCClipMask;

myGCValues . background = WhitePixel (mydisplay, screen_num);

myGCValues. foreground = BlackPixel (mydisplay, screen_num);

myGCValues. clip_mask = mask;

mygc = XCreateGC(mydisplay, baseWindow, mymask, &myGCValues);

/* 5. create all the other windows needed x*/
/* 6. select events for each window x*/

/* 7. map the windows x/
XMapWindow (mydisplay , baseWindow);

/* 8. enter the event loop */
done = 0;
while (done ==) |
XNextEvent(mydisplay, &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
if (baseEvent.xbutton.button == Button3) ({
x = baseEvent.xbutton.x;
y = baseEvent.xbutton.y;
XSetClipOrigin (mydisplay, myge, x, y);
XCopyPlane (mydisplay, pattern, baseWindow, mygc, 0, 0,
arrow_width, arrow_height, x, y, 1);
}
break;
}
}

Figure 4.6: A program while draws transparent arrow at each pointer click (Continues ...

81

4.6. Using Postscript to create labels

/% 9. clean up before exiting x/
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay, baseWindow);
XCloseDisplay (mydisplay);
}

Figure 4.6: A program while draws transparent arrow at each pointer click

showpage

which produces the label View was created using an editor. Assume this program is stored in the
file string.eps. Since this program is an EPS program, it can be executed on a Postscript printer or
the programs ghostscript or display (another component of the ImageMagic package) could
be used to inspect what the label will look like. Then the required bitmap form of the label would be
obtained in the file view.xbm by the command:

convert string.eps view.xbm

An advantage of this technique comes from the flexibility of Postscript. The BoundingBox state-
ment specifies the coordinates of the lower left hand corner (x and y values, respectively) and the
upper right hand coordinates in which the label is to be drawn; anything outside of that box will
disappear. The /Times-Bold statement selects the font in which the label is to be drawn while
the 18 scalefont statement indicates that font is to be 18 points in height. The characters in the
required label are specified in the (View) show statement, which produce View as output. By
changing these four statements, different labels, composed from different sized fonts, can be gener-
ated.

But Postscript is designed to use fine divisions in coordinates. This results in smooth representa-
tion of geometric shapes, in particular curves. Postscript generates all character shapes by drawing
them as a series of (Bézier) curves. Such curves a designed to perform well on the printed page. By
contrast, X uses a bitmap display in which the coordinates are fixed by the screen hardware’s pixel
density which are generally less dense than Printer’s points for which Postscript is designed. As a
result, a graphic or string of characters which Postscript generates on a printed page may be less
viable on a screen. This is particularly the case if Postscript is converted to bitmap representation
as proposed in the above procedure. But it from bitmaps (in the form of pixmaps) that X produces
menu labels.

Postscript is supplied with 35 standard fonts. Two of those fonts are for symbols and standard
small patterns, leaving 33 for creating text. Those standard fonts, or typefaces, for crreating text are
listed in Table 4.1. The name of the font is used with the findfont Postscript language construct, as
in the example EPS program above.

A bitmap is transformed to a pixmap, and it is the pixmap which X uses. There is no loss in
precision or accuracy in going from a bitmap to a pixmap. A pixmap is a generalised version of
a bitmap (from version 11 of X, bitmaps are no longer directly handled by X). Once a pixmap is
created, it is a one to one mapping between a bit of the pixmap and a pixel on the screen. This is
the reason for their use as menu labels. Xlib provides the XCreatePixmapFromBitmapData ()
function to convert a bitmap created externally into a pixmap for use by X. However, the conversion
of Postscript output to a bitmap can result is precision loss; what appears clear and precise from
Postscript be less so in the corresponding bitmap representation.

To assist selection of Postscript fonts for use in creating bitmap labels a program was written to
display all 33 standard Postscript text fonts. The output of that program is in Figure 4.7. Each of the

82

4.7. Changing the colour of a pixmap

Table 4.1: Names of the 33 standard Postscript text fonts

No. Font name No. Font name
1 | AvantGrade-Book 2 | AvantGrade-BookOblique
3 | AvantGrade-Demi 4 | AvantGrade-DemiOblique
5 | Bookman-Demi 6 | Bookman-Demiltalic
7 | Bookman-Light 8 | Bookman-Lightltalic
9 | Courier 10 | Courier-Bold
11 | Courier-BoldOblique 12 | Courier-Oblique
13 | Helvetica 14 | Helvetica-Bold
15 | Helvetica-BoldOblique 16 | Helvetica-Narrow
17 | Helvetica-Narrow-Bold 18 | Helvetica-Narrow-BoldOblique
19 | Helvetica-Narrow-Oblique 20 | Helvetica-Oblique
21 | NewCenturySchlbk-Bold 22 | NewCenturySchlbk-BoldItalic
23 | NewCenturySchlbk-Italic 24 | NewCenturySchlbk-Roman
25 | Palatino-Bold 26 | Palatino-BoldlItalic
27 | Palatino-Italic 28 | Palatino-Roman
29 | Times-Bold 30 | Times-Boldltalic
31 | Times-Italic 32 | Times-Roman
33 | ZapfChancery-Mediumltalic

33 fonts are shown displaying the same sentence at 12, 14, and 18 point sizes in consecutive columns
of Figure 4.7. The numbers in the left column of Figure 4.7 correspond to the number against each of
the fonts shown in Table 4.1. The most common font size for menu labels is 12 point.

External to the X Window program, Postscript programs each similar to that above, were written
for each of the 33 fonts, and their 3 font sizes separately. A bitmap equivalent was obtained by
applying the convert program to each Postscript program. The resulting bitmap was brought into
the X window program using a #include for ach bitmap. The Xlib function used to create a pixmap
from the bitmap was XCreatePixmapFromBitmapData () . A XCopyArea () Xlib call was used
to place the pixmap on the display.

Inspection of Figure 4.7 indicates properties of the standard Postscript text fonts relevant to their
selection for use in creating menu labels. Font 33 (ZapfChancery-Mediumltalic) appears the most
imappropriate due to its compactness. The Courier fonts (number 9 to 12) are too spaced out. Font
1 (AvantGrade-Book), 16 (Helvetica-Narrow), 28 (Palatino-Roman) and 32 (Times-Roman) appear to
retain their clarify across the three point sizes of the tabulation, and particularly at 12 point. These
fonts might be used as first choices in obtaining the font thought most appropriate for menu items.
Such selection is inexact and is subject to the opinion of whom is making the selection. For example,
should bold or normal weight fonts be used?

4.7 Changing the colour of a pixmap

One means of indicating to the program user what selection is about to be made is to change the
colour of a button on which the mouse button currently rests. This gives a more positive indication
of the mouse pointer’s position than finding the the mouse cursor. This can be implemented using
the pixmap handling idea contained in the example of Figure 4.1. The pixmap used for the label is
created by the Postscript conversion technique given above.

The program in Figure 4.8 shows the basis of this process. It uses bitmap data of a 36 point E
character. This is converted to a pixmap in the program and then placed in two fixed positions on a

83

4.7. Changing the colour of a pixmap

1 The quick brown fox jumped. The gulck brown fox jumped. The quick brown fox jumped.

2 The guick brown fox mped. The quick brown fox jumped. The guick brown fox jumped.

3 The quick brown fox umped. The quick brown fox jumped. The quick brown fox jumped.

4 The quick brown fox jumpod. The quick brown fox Jumped. The quick brown fox jumped.

5 The quick brows fox htped, The guick brown fox jonped, The quick brown fox jumpesd.
§ The quick brown fix fomped, The guick brows fox jumped. The quick brown _fox jumped.
7 The quick brown fox jumped, The quick brown fox jumped. The quick brown fox jumped.

8 The quick brown fox pumped. The quick brown fox furmped, The quick brown fox jurnped,

10
11
12

The quick brown faox jumped.
The guick browm fox Junped.
Thka guick brown fax jaspad.

The guick brown fox jumped.

The quick brawn faox jumped.
Tha quick brown fox Jjumped.
Tha quick brosm fox jumped.
The guick brown fox jumped.

The guick brown fox Jjumped.
The gquick brown fox Jjumped.
The guick brown fox jummped.
The guick brown fox jumped.

13 The guick bown fox jumped. The quick brown fox jumped. The quick brown faox jumped.
14 The quick brown fox jumped. The quick brown fox |umpad. The quick brown fox jumped.
15 The quick brown fox juntiped. Tha quick brown fox fumpaed. The quick brown fox jumped.

1E
17

The guick brown foo jumped.
The quick brmwn jox jumped.

The guizk Brown fox jurmped.
Tha guick brown fox jumpad.

The quick brown fox jumped.
The qulck brown fox |umped.

18 The quick brown fax futtped. The quick brown fox jumped. The quick brown fox jumped.

19 The quick brown fox jumped Tha quick bown fox jumped. The quick brown fox jumped.

20 The quick brown fax jumped. The quick brown fox furnped. The quick brown fox jumped.

21 The quick hrown fox jumped, The guick brown fox jumped. The quick brown fox jumped.
2 Thequich broum fos jumped, The guick brown fox fumped, The quick brown fox jumped,
23 Tha quich brown fox jumped, The quick brown fox jumped, The quick brown fox jumped,

24 The quick brown fux jumped, The quick brewn fox jumped. The quick brown fox jumped.

25 The quick brown fox jumped, The quick brown fox jumped. The quick brown fox jumped.

2% The quick brown fox jumped, The quick brown fox jumped. The quick brown fox jumped.

27 The quick brown fox fmped. The quick bromm fox jumped. The quick brown fox jumped.

98 The quick browm fov jumpad. The quick brawn fox jumped. The quick brown fox jumped.

29 The quick hrown fox fumped, The quick hrown fox Junped, The guick brown fox jumped,

30 The quick brown fox fumped, The quick brown fox jumped. The guick brown fox fjumped.

3 The quick brown fiox fumpad. The quick brown fox jumped, The quick brown fox jumped.

32 The quick brown fox furmped. The quick brown fox jumped, The quick brown fox jumped.

i3 TR il frome iy fimped Tha guiek Frowm frfamped. <Thie spuick, bromm for fumped.

Figure 4.7: Bitmap rendering in 12, 14, and 18 point of 33 standard Postscript text fonts

window coloured white. The black and green coloours of the respective foreground and background
are swapped over between the two positionings. As with all X11 programs it is event driven, and
in this case the exposure event is used. Notice in Figure 4.8 that this exposure event is linked to the
base window when it is created.

Notice in the program of Figure 4.8 that the XCopyPlane () is use to move the pixmap to the
window so as to make it visible. The function XCopyArea () cannot be used for that purpose as it
does not make reference to the foreground and background members of the GC included in the call.
The XCopyArea () does use that GC, but not the foreground and background members. It is those
members that are used to colour the pixmap on the window.

Figure 4.9 shows the screen display produced when executing the program of Figure 4.8.

84

4.7. Changing the colour of a pixmap

/x This program draws a 100 by 200 pixel base window. An image is created from
* a bitmap pattern of the character E that had been created externally to this
* program. That bitmap pattern is stored in this program. The program

* converts that pattern to the X Window System pixmap format and that pixmap
% format is written onto the base window using two different sets of

* foreground and background colours.

sk

* Coded by: Ross Maloney

* Date: July 2008

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define e_width 45

#define e_height 35

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxfc, Oxff, Oxff, 0x00, 0x00, 0x00, Oxf8, Oxff, Oxff, 0x00, 0x00,
0x00, Oxe0, O0x0f, Oxf8, 0x00, 0x00, 0x00, OxcO, 0xO0f, Oxe0, 0x00, 0x00,
0x00, OxcO, 0x0f, Oxe0, 0x00, 0x00, 0x00, OxcO, OxO0f, Oxc6, 0x00, 0x00,
0x00, OxcO, 0x0f, Oxc6, 0x00, 0x00, 0x00, OxcO, 0xO0f, 0x06, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, 0xO0f, 0x07, 0x00, 0x00,
0x00, OxcO, Oxcf, 0x07, 0x00, 0x00, 0x00, OxcO, Oxff, 0x07, 0x00, 0x00,
0x00, OxcO, Oxff, 0x07, 0x00, 0x00, 0x00, OxcO, 0x8f, 0x07, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, 0xO0f, 0x06, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x06, 0x01, 0x00, 0x00, OxcO, OxO0f, 0x86, 0x01, 0x00,
0x00, OxcO, 0x0f, OxcO, 0x01, 0x00, 0x00, OxcO, 0x0f, OxcO, 0x01, 0xO00,
0x00, OxcO, 0x0f, Oxe0, 0x01, 0x00, 0x00, Oxe0, 0xO0f, 0xf8, 0x01, 0x00,
0x00, 0xf8, Oxff, Oxff, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes myat;

Window mywindow ;

XSizeHints wmsize;

XWMHints wmhints ;
XTextProperty windowName, iconName;
char sxwindow_name = "Image";

char xicon_name = "Im";

XEvent myevent;

XGCValues myGCvalues;

GC imageGC;

Pixmap pattern;

XImage xlocal;

int screen_num, done, X, y;

unsigned long valuemask;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay("");

Figure 4.8: Inverting the foreground and background of a pixmap (Continued ...)

85

4.7. Changing the colour of a pixmap

/* 2. create a top—level window =/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel (mydisplay, screen_num);
myat.event_mask = ButtonPressMask | ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 50, 100, 200, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &myat);

/x 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMlIconName (mydisplay , mywindow, &iconName);

/+ 4. establish window reqources s/
pattern = XCreatePixmapFromBitmapData (mydisplay , mywindow,
e_bits , e_width, e_height,
WhitePixel (mydisplay, screen_num),
BlackPixel (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num));
imageGC = XCreateGC (mydisplay, mywindow, 0, NULL);

/¥ 5. create all the other windows needed x*/
/* 6. select events for each window x*/

/+ 7. map the windows x/
XMapWindow (mydisplay , mywindow);

/+ 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent (mydisplay, &myevent);
switch (myevent.type) {
case Expose:
XSetBackground (mydisplay , imageGC, 0xff00);
XSetForeground (mydisplay , imageGC, BlackPixel (mydisplay, screen_num));
XCopyPlane (mydisplay, pattern, mywindow, imageGC, 0, O,
e_width, e_height, 10, 10, 1);
XSetForeground (mydisplay , imageGC, 0xff00);
XSetBackground (mydisplay, imageGC, BlackPixel(mydisplay, screen_num));
XCopyPlane (mydisplay, pattern, mywindow, imageGC, 0, O,
e_width, e_height, 10, 100, 1);
break;
case ButtonPress:
break;
}
}

Figure 4.8: Inverting the foreground and background of a pixmap (Continued ...)

86

4.8. Reducing server-client interaction by images

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow) ;
XCloseDisplay (mydisplay);
}

Figure 4.8: Inverting the foreground and background of a pixmap

Figure 4.9: Inverted pixmaps on a window

4.8 Reducing server-client interaction by images

An image is a modification of the pixmap provided by the X Window System. Where as a pixmap is
stored on the server, an image is stored in the client program. This (at least) reduces the possibility
of resource limitations on a X program due to the server. Another consequence of this is that any
manipulation of an image by a program does not require the exchange of protocol messages between
the client and the server, and as a result, the program should run faster. Interaction by the program
user with menus formed from pixmaps is an example of such a manipulation. Advantage can be
gained by using image format for formulating menus.

To indicate the basic technique, the example from Figure 4.8 of screen displaying two versions
of the one pixmap is redone in Figure 4.10. In this instance, the pixmap is changed to image format
which is then sent to the screen. The use of red (0x££0000) and yellow (0xf£££00) in the fore-
ground and background of those image dumps to screen is applicable to both the pixmap and image
format techniques.

There are some importance differences in how a pixmap is used directly, as in the program of
Figure 4.8, and indirectly using the image format. The starting point in both cases is the pattern of
bits indicating the foreground and background which is then converted to a Pixmap structure by the
XCreatePixmapBitmapData () call. The pixmap can then be made visible on a window using a
XCopyPlane () call. For the image approach, an image in the form of a XImage structure is created
from that pixmap using the XGet Image () call. That image s made visible on a window by uses the
XPutImage () function. Now the XPutImage () function will only use the colours in the GC that
is included in the call, if the image is of XYBitmap format. But the XYBitmap format is not one of
the two formats that the XGet Image () function recognises. This is overcome by explicitly setting
the format member of the image created by the XGetImage () to be XYBitmap after setting the
depth parameter of the XCreatePixmapFromBitmapData () to unity (1) to indicate the pixmap

87

4.8. Reducing server-client interaction by images

~
*

format is written onto the base window using two different sets
foreground and background colours.

Coded by: Ross Maloney
Date: July 2008

¥ ¥ X ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

#define e_width 45

#define e_height 35

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxfc, Oxff, Oxff, 0x00, 0x00, 0x00, Oxf8, Oxff, Oxff, 0x00,
0x00, Oxe0, 0x0f, Oxf8, 0x00, 0x00, 0x00, OxcO, Ox0f, Oxe0, 0x00,
0x00, OxcO, 0Ox0f, Oxe0, 0x00, 0x00, 0x00, OxcO, 0x0f, Oxcé6, 0x00,
0x00, OxcO, 0x0f, Oxc6, 0x00, 0x00, 0x00, OxcO, OxO0f, 0x06, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, OxO0f, 0x07, 0x00,
0x00, OxcO, Oxcf, 0x07, 0x00, 0x00, 0x00, OxcO, Oxff, 0x07, 0x00,
0x00, OxcO, Oxff, 0x07, 0x00, 0x00, 0x00, OxcO, Ox8f, 0x07, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, Ox0f, 0x06, 0x00,
0x00, OxcO, Ox0f, 0Ox06, 0x01, 0x00, 0x00, OxcO, 0x0f, 0x86, 0x01,
0x00, OxcO, 0x0f, OxcO, 0x01, 0x00, 0x00, OxcO, OxO0f, OxcO, 0x01,
0x00, OxcO, 0x0f, Oxe0, 0x01, 0x00, 0x00, Oxe0, OxO0f, Oxf8, 0x01,
0x00, O0xf8, Oxff, Oxff, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

int main(int argc, char xargv)

{

Display xrmydisplay;
XSetWindowAttributes myat;
Window mywindow ;
XSizeHints wmsize;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
char *window_name = "Image";
char *xicon_name = "Im";

XEvent myevent;
XGCValues myGCvalues;

GC imageGC;

Pixmap pattern;

XImage xlocal;

int screen_num , done;

unsigned long valuemask;

Figure 4.10: Two versions of a pixmap handled in image format

of

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,

This program draws a 100 by 200 pixel base window. An image is created from
a bitmap pattern of the character E that had been created externally to this
program. That bitmap pattern is stored in this program. The program
converts that pattern to the X Window System image format and that image

88

4.8. Reducing server-client interaction by images

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel(mydisplay, screen_num);
myat.event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 50, 100, 200, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);

I« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

I/« 4. establish window reqources =/

pattern = XCreatePixmapFromBitmapData(mydisplay , mywindow,
e_bits , e_width, e_height,
WhitePixel (mydisplay, screen_num),
BlackPixel (mydisplay, screen_num),
1);

local = XGetlmage(mydisplay, pattern, 0, 0, e_width, e_height,

1, XYPixmap);
local >format = XYBitmap;
imageGC = XCreateGC(mydisplay, mywindow, 0, NULL);

/* 5. «create all the other windows needed =/
/I« 6. select events for each window =/

/% 7. map the windows x/
XMapWindow (mydisplay , mywindow);

I/« 8. enter the event loop =*/
done = 0;
while (done ==)
XNextEvent(mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XSetBackground (mydisplay, imageGC, BlackPixel(mydisplay, screen_num));
XSetForeground (mydisplay , imageGC, 0xff0000);
XPutIlmage (mydisplay , mywindow, imageGC, local, 0, 0, 10, 10,
e_width, e_height);
XSetBackground (mydisplay , imageGC, 0xffff00);
XSetForeground (mydisplay , imageGC, BlackPixel (mydisplay, screen_num));
XPutIlmage (mydisplay , mywindow, imageGC, local, 0, 0, 10, 100,
e_width, e_height);

Figure 4.10: Two versions of a pixmap handled in image format

89

4.9. Creating menus by using the image format

break;

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Figure 4.10: Two versions of a pixmap handled in image format (Continued ...)

is infact to be a bitmap. The alternative to this would be to use the XCreateBitmapFromData ()
call inplace of the XCreatePixmapFromBitmapdata () call. That approach would require fewer
parameters in the call, but that call could not be used if the direct use of the pixmap was being used.

Figure 4.11: Two pixmaps handled in image format dumped on a window

The screen output of the program in Figure 4.10 is shown in Figure 4.11. This output is very
similar to that in Figure 4.9 (aside from colour differences) which was produced by the program in
Figure 4.1.

4.8.1 Exercises

1. Why would be use of the XBitmapFromData () call be inapplicable to the direct use of the
bitmap data as in the program of Figure 4.8?

2. Design and perform an experiment to determine whether using pixmap format or image format
as the implementation media for labels leads to a performance advantage. Such performace
measurement should include both execution/response time as well as memory usage.

4.9 Creating menus by using the image format

Menu-bars, pull-down-menus, and pop-up-menu are collections of labels. In most instances, actions
are associated with selections from those labels, and this selection process is dynamic. That dynamic
is rapidity of appearance and disappearance, and providing visual indication that an individually
label is receiving attention. A blend of group and individual behaviours is required from the labels

90

4.9. Creating menus by using the image format

that form such menus. Labels formed from pixmaps are ideal for this application. This is particularly
the case if the image format is used for it also adds potential performance advantages over pixmaps
following from the labels being stored complete within the client program. How this can be done is
the purpose of this Section.

Figure 4.12: Menus implemented by labels in image format in use

The program in Figure 4.13 uses menus formed from labels which are built in the X11 image
format. Figure 4.12 shows the resulting screen output. This menu has the same operation as the
program of Figure 3.7. A single selection button coloured green is located on a background window.
On that selection button is the word Selection in pink characters. By clicking the left mouse button
on this selection button an option menu then appears containing the options flowers, pets, and
quit. Each options is labelled in blue with a pink background. On moving the mouse pointer to
each option, the pick background of the options changes to red. Clicking the right mouse button
on the quit options terminates the program. All menu labels in this program are implemented
using image format created from pixmaps which were created externally to this program by the
Encapsulated Postscript process outlined above. All labels are made up of 18 point characters of the
Times Roman bold font type. So in their creation, only the BoundingBox and show statements in the
above Encapsulated Postscript program needed to be changed between each run to generated each
required label. The colours are applied through the the graphic context (GC) used to map the labels
to the screen.

Since the XCreateSimpleWindow () callis used to create the menu window, the events that this
window is to be sensitive to is established via the XChangeWindowAttributes () call. With the
XCreateSimpleWindow () call, the attributes of the parent window are inherited by the window
being created. In this program, that parent is the base window which does not have any event
sensitivity set. But the menu window needs such sensitivity. In the case of the options window which
has the menu window as a parent, a change in attributes is not necessary as the options window
needs the same attributes.

Other points worthy of note in the code of Figure 4.13 are:

91

4.9. Creating menus by using the image format

~
*

¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

This program creates a main window on which is a selection button. That
button is green in colour with the label "Selection’ in pink characters. By
clicking the left mouse button on this button an option menu of ’flowers’,
"pets’, and “quit’ appears. Each option is labelled in blue with a pink
background. On moving the mouse pointer over each option, the pink
background changes to red. Clicking the right—hand mouse button over the
“quit’ option terminates the program.

Coded by: Ross Maloney
Date: July 2008

#include <X11/Xlib .h>

#include <X11/Xutil .h>

#include <stdio.h>

#include "labels.h" /* bitmap representation of all the labels used =*/

int main(int argc, char xarcv)

{

Display xmydisplay;

XSetWindowAttributes myat, buttonat, popat;
Window baseW, buttonW, optionW, panelsW[3];
XSizeHints wmsize ;

XWMHints wmbhints ;

XTextProperty windowName, iconName;

XEvent myevent;

XColor exact, closest;

GC myGCl, myGC2, myGC3;

Pixmap pattern;

XImage xbuttonL , *image2panels[3];
unsigned long valuemask;

char xwindow_name = "Select";

char *xicon_name = "Sel";

int screen_num, done, i;

char xcolours[] = {"white", "black", "green", "pink", "blue", "red"};

unsigned long colourBits[6];

/+ 1. open connection to the server =/

mydisplay = XOpenDisplay("");

I/« 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);
for (i=0; i<6; i++) {

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
colours[i], &exact, &closest);
colourBits[i] = exact.pixel;

myat. background_pixel = colourBits[0];
myat.border_pixel = colourBits[1];

valuemask = CWBackPixel | CWBorderPixel;

baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),

300, 300, 350, 400, 3,

DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),

valuemask, &myat);

Figure 4.13: Menu selection implemented using image format

92

4.9. Creating menus by using the image format

I« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

I/« 4. establish window resources =/
myGCl = XCreateGC (mydisplay, baseW, 0, NULL);
XSetBackground (mydisplay , myGCl, colourBits[2]);
XSetForeground (mydisplay , myGCl, colourBits[3]);
myGC2 = XCreateGC (mydisplay, baseW, 0, NULL);
XSetBackground (mydisplay , myGC2, colourBits[3]);
XSetForeground (mydisplay , myGC2, colourBits[4])
myGC3 = XCreateGC (mydisplay, baseW, 0, NULL);
XSetBackground (mydisplay , myGC3, colourBits[5]);
XSetForeground (mydisplay , myGC3, colourBits[4])

7

7

/* 5. create all the other windows needed =/
buttonW = XCreateSimpleWindow (mydisplay, baseW, 20, 50,
selection_width , selection_height, 3,
colourBits[1], colourBits[0]);
pattern = XCreateBitmapFromData (mydisplay, buttonW, selection_bits,
selection_width , selection_height);
buttonL = XGetlmage(mydisplay, pattern, 0, O,
selection_width , selection_height, 1, XYPixmap);
buttonL—>format = XYBitmap;
optionW = XCreateSimpleWindow (mydisplay, baseW, 70, 80,
quit_width , 3xquit_height, 1,
colourBits[1], colourBits[1]);
for (i=0; i<3; i++)
panelsW[i] = XCreateSimpleWindow (mydisplay, optionW, 0, ixquit_height,
quit_width , quit_height, 1,
colourBits[1], colourBits[0]);
pattern = XCreateBitmapFromData(mydisplay, buttonW, flowers_bits,
flowers_width, flowers_height);
image2panels[0] = XGetlmage(mydisplay, pattern, 0, O,
flowers_width, flowers_height, 1, XYPixmap);
image2panels[0] —>format = XYBitmap;
pattern = XCreateBitmapFromData (mydisplay, buttonW, pets_bits,
pets_width, pets_height);
image2panels[1] = XGetlmage(mydisplay, pattern, 0, O,
pets_width, pets_height, 1, XYPixmap);
image2panels[1]—>format = XYBitmap;
pattern = XCreateBitmapFromData (mydisplay, buttonW, quit_bits,
quit_width , quit_height);
image2panels[2] = XGetlmage (mydisplay, pattern, 0, O,
quit_width, quit_height, 1, XYPixmap);
image2panels[2]—>format = XYBitmap;

Figure 4.13: Menu selection implemented using image format (Continued ...)

93

4.9. Creating menus by using the image format

/% 6. select events for each window =/
myat.event_mask = ButtonPressMask | ExposureMask;
valuemask = CWEventMask;
XChangeWindowAttributes (mydisplay , buttonW, valuemask, &myat);
myat.event_mask = ButtonPressMask | EnterWindowMask | LeaveWindowMask;
for (i=0; i<3; i++)
XChangeWindowAttributes (mydisplay , panelsW[i], valuemask, &myat);

/+ 7. map the windows x/
XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , buttonW);

/x 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XPutlmage (mydisplay , buttonW, myGCl, buttonL, 0, 0, 0, O,
selection_width , selection_height);

break;
case ButtonPress:
if (myevent.xbutton.button == Buttonl
&& myevent. xbutton.window == buttonW) {

printf ("that_is_the_button\n");
XMapWindow (mydisplay , optionW);
for (i=0; i<3; i++) {
XMapWindow (mydisplay, panelsW[i]);
XPutIlmage (mydisplay, panelsW[i], myGC2, image2panels[i], 0, 0, 0, O,
quit_width , quit_height);
}
}

if (myevent.xbutton.button == Button3
&& myevent.xbutton.window == panelsW[2]) done = 1; [+ exit =/
break;

case EnterNotify:
printf ("window_entered\n");
for (i=0; i<3; i++) {
if (myevent.xcrossing.window == panelsW[i]) {
XPutIlmage (mydisplay , panelsW[i], myGC3, image2panels[i], 0, 0, 0, O,
quit_width , quit_height);
break;
J
}
break;
case LeaveNotify:
printf ("window,_just_left\n");
for (i=0; i<3; i++) {
if (myevent.xcrossing .window == panelsW[i]) {
XPutlmage (mydisplay , panelsW[i], myGC2, image2panels[i], 0, 0, 0, O,
quit_width, quit_height);
break;
}
}
break;
}
}

Figure 4.13: Menu selection implemented using image format (Continued ...)

94

4.10. Forming text messages from bitmap glyphs

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);

Figure 4.13: Menu selection implemented using image format (Continued ...)

1. The three labels (flowers, pets, quit) are but into their own window so that the mouse pointer
entering and leaving them can be detected and the colouring of that label can be changed.

2. Each of the three labels in the menu are assembled into a container window (optionsW) so
that they can all be remove together by unmapping that parent window.

3. Each of the three lebels have the same width and height, therefore, the container window is
three times the height of each label and the same width as each label since together the labels
are to cover the container window completely on the screen.

4. Both the identifiers of the label containing windows and the identifiers of the images forms
from the labels are stored in an array such that there is a one-to-one correspondence across the
array index.

5. As much of the setup associated with the production of the different windows is done before
the event loop is entered so as to maximise the response time to the program user’s actions.

6. The background colour specified for a window in its attribute structure overrides that given in
the XCreateSimpleWindow () call.

7. The pixmap patterns from which the four labels used in the program are not reproduced here
as they are the same form as that used in Figures 4.9 and 4.11.

8. Although the pixmap is created for a particular window, it, and the image derived from it, can
be applied to other windows as well.

49.1 Exercises

1. Modify the proogram of Figure refpixmap so that it uses the pixmap format only in place of the
image format.

2. Compare and contrast the programs in Figure 4.13 and Figure 3.7 which esentually do the same
thing. Provide experimental evidence to support the points that you use.

4.10 Forming text messages from bitmap glyphs

Bitmaps are considered in Section 4.2 as specific examples of pixmap patterns. In such patterns, each
pixel on the screen is either coloured or left blank. In the case of a bitmap that colouring is black. Stan-
dard bitmap editors such as bitmap, which is contained in a standard X Window distribution, are
available for manually creating such patterns. However, using a bitmap editor to combine characters
for creating text messages is difficult and needs a different approach. This difficulty is magnified
by the variations which occur across the fonts available today. Each font is built up from glyphs and
there is one glyph for each character in a font. A glyph is a graphical representation of a character in
a font. To assemble a combination of characters which look pictorially correct requires knowing the

95

4.10. Forming text messages from bitmap glyphs

properties of glyphs and how those properties determine how one glyph can be packed adjacent to
another.

In Section 4.6 creating of bitmap representation of text for use in labels was approached using
Postscript. This has the advantage of simplicify. It uses Type 1 fonts initially created by Adobe
Systems. A larger variety of font styles are available as TrueType Fonts, a fonts specification initially
created by Apple Inc. TrueType Fonts are widely used, with http://www.dafont .com being one
of many web sites containing freely downloadable archives of such fonts. Such TrueType Fonts can be
converted to Type 1 fonts by programs such as tt £2pt 1 which is available as open source from the
http://ttf2ptl.sourceforge.net web site. By downloading TrueType fonts, then converting
them to Type 1 fonts, the range of fonts which can be used with the approach of Section 4.6 increases
significantly then by using the standard Type 1 fonts.

There is a problem with Type 1 and TrueType fonts. Each are matematical fonts defined with
points and connecting mathematical equations. The pattern which represents an individual charac-
ter in a font is called a glyph. The shape of each glyph in each of these fonts is defined by Bézier
(cubic) and B-spline (quadratic) equations, respectively. These curves have to be rendered onto pix-
els on the screen. Algorithmic mapping of a continuous curve onto a fixed, discrete grid can led to
complications resulting in an unattractive or indistinct characters. To overcome this problem, fonts
which are created/defined only on such a fixed grid are also available. Because of this grid defini-
tion, these fonts are size specific. In most cases the sizes are multiples of 8pt (8, 16, 24, etc.), other
sizes being less common. Such fonts are know as pixel or bitmap fonts. They are also available from
such archive sites as http://www.dafont .com.

X Window comes with a large set of bitmap fonts. Each glyph of these bitmap fonts in the point
sizes available can be viewed using the xfontsel program which is also a standard part of the X
distribution. It is logical to use such available fonts directly. To do that, glyphs are selected from
such a font and arrange adjacent to one another to form words. This is known as glyph packing. The
assembled glyphs are then formed into a bitmap which can then by used for such things as menu
items or labelling of items such as a text entry window.

4.10.1 Accessing X11 standard bitmap fonts

The font files of X Window are stored in subdirectories 100dpi, 75dpi, misc, encoding and
Typel of the /usr/share/fonts/X11 directory. Subdirectories 100dpi, 75dpi and misc con-
tain bitmap font files in Portable Compiled Format (PCF) which is then compressed using gzip.
Each subdirectory contains a file font s . dir which tabulates the correspondence between the name
of the file and the name of the font as specified using the X Logical Font Description (XLFD). Subdi-
rectories 100dpi and 75dp1i contain the same number and font types, but at different pixel densities.
A summary of the types of fonts contained in those two subdirectories is contained in Table 4.2.

Each file in subdirectories 100dpi and 75dp1i contain a single size font. Font compliance with In-
ternational Standards ISO8859-1 and 1SO10646-1 varied (the -1 part of each standard number denotes
the part associated with the Latin 1 character set). If a file contains a font complying to 1SO10646-1,
it is larger than the corresponding ISO8859-1 compliant font file due to it containing approximately
4 times as many glyphs/characters. This means all the glyphs/characters in the ISO8859-1 file are
contained in the ISO10646-1 file, plus more. ISO10644-1, or the Universal Character Set, is a later stan-
dard than ISO8859-1. When a font is present in files complying to both ISO standard, then ISO8859-1
is appended to the name of the file complying to ISO8859-1. As an example of this, the file con-
taining font courB (courier bold) at 14 point size is called courB14-1508859-1.pcf.qgz, while the
1SO10646-1 conpliant font is stored in file courB14.pcf.gz. Providing ISO8859-1 compliant ver-
sion of a font when 1SO10646-1 is also provided is for backward compatibility of the X11 distribution.

As indicated in Table 4.2, most fonts available from subdirectories 100dpi and 75dpi are in

96

4.10. Forming text messages from bitmap glyphs

Table 4.2: Representation of bitmap font files in the X11 dpi subdirectories

o
o
—_
(@]
—_
N
—_
S
—_
Qo

19

N
=

is08859-1 | is010646-1 extra

*

name
charB
charBI
charl
charR
courB
courBO
courO
helvB
helvBO
helvO
helvR
luBIS
luBS
IulS
IuRS
lubB
lubBI
lubl
IubR
lutBS
IutRS
ncenB
ncenBI
ncenl
ncenR
symb
tech
techB
term
termB
timB * *
timBI * *
timR * *

X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ x
X X X X X ¥ % % % ¥
¥ OOX X X X X X X ¥ ¥ ¥ ¥ ¥ X X X X X ¥ ¥ %

¥ X X X X ¥ X ¥ X X ¥ X ¥ X X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
X X X X X ¥ X ¥ X X X X ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
X% % X % X % X % %X X % X % ¥ X ¥ X ¥ ¥ ¥ ¥ X % % x
¥OO® X X X X F X X X X X X X ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
X% X X X X % X ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ % %

fontspecific
dectech
dectech

¥OOX X X X X X X X X ¥ ¥ ¥ ¥ ¥ X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X X ¥ ¥

*
*
*

¥ X X % %
X

sizes from 8 to 24 point. With the exception of the courier and some of the lucidatypewriter fonts
(respectively indicated as cour and lut in Table 4.2) which are monospaced fonts, all others are pro-
portionally spaced fonts.

Subdirectory misc contains fonts designed specifically for use on computer displays. Several of
these fonts are proportional spaced fonts, but most are character cell fonts, which is a form of mono-
spacing. The numbers heading the columns of Table 4.3 indicates a font complying to different parts
of ISO8859, with those parts pertaining to chracter of the different print languages of the world.
Part 1 of ISO8859 relates to characters of Western European languages. Some fonts are provided to
comply with the later ISO10646-1 standard, while others to the earlier ISO646 standard.

In each of these fonts, each glyph is contained withing a cell size which is generally contained
within it’s name, for example, the glyphs of a 10x20 font are contained within a 10x20 pixel cell.
These fonts tend to be smaller when displayed on the screen than those in subdirectories 100dpi
and 75dpi.

97

4.10. Forming text messages from bitmap glyphs

Table 4.3: Representation of selected bitmap font files in the X11 misc subdirectories

name 1121314578910 |11 |13 |14 |15 | 16 | KOI8 | is010646-1 | is0646

10X20 * * * * * * * * * * * * * * * *

12x13ja
12x24
12x24rk
18x18ja
18x18ko
4x6

5x7

5x8
6x10
6x12
6x13
6x13B
6x130
6x9
7x13
7x13B
7x130
7x14
7x14B
8x13
8x13B
8x130
8x16
8x16rk
9x15
9x15B
9x18
9x18B
arabic24
clB6x10
cIB8x12
clB8x10
clB8x12
cIB8x13
clB8x14
cIB8x16
c1B8x8
clB9x15
cll6x12
cIB8x8
cIR4x6
cIR5x10
cIR5x6
cIR5x8
cIR6x10
cIR6x12
cIR6x10
cIR6x10
C1R6X 1 2 * * * * * * * * * * * * * * *
cu-paul2 *

¥ ox X X X % %
¥ X X X % X

¥ % X % X % % X % X ¥ ¥ ¥ ¥ X % %
¥ ox %X ¥ % ¥ %

¥ OO X F X ¥ X X ¥ X ¥ ¥ ¥ X X ¥ ¥
¥ % X % X * X X ¥ X ¥ X ¥ ¥ ¥ % %
¥ % X ¥ X ¥ X X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ %
¥ O% X X X X X X X X X X ¥ X X % ¥
¥ % X % X ¥ % X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ %
¥ % X % X % ¥ X % X ¥ ¥ ¥ % X% % %
¥ % X % X % % X % X ¥ ¥ ¥ ¥ ¥ % %
¥ OO% X ¥ X ¥ X X ¥ X ¥ ¥ ¥ X ¥ ¥ ¥
¥ % X % X ¥ ¥ X % X ¥ ¥ ¥ % ¥ % %
¥ % X X X X X X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ %
¥ O% X F X X X X X X ¥ ¥ ¥ X X ¥ ¥
*

* % % %
¥ ¥ ¥ %
* % % %
¥ ¥ ¥ %
* % x %
¥ % % %
* % x %
* % % %
* % % %
%
¥ ¥ ¥ %
* % % %
* % x %

¥ ¥ ¥ %
*
X% X % X X % X ¥ X X X X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ %

¥ X X X ¥ X ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥

98

4.10. Forming text messages from bitmap glyphs

4.10.2 How to used the bitmap fonts

To use an X11 bitmap font, it first needs to be decompressed, the resulting binary bitmap file con-
verted into another format, and then the glyphys contained in that file need to be composed into the
required label using a program such as that in Figure 4.14. Decompressing the font file is done using
the gzip program.

The resulting file is a binary file in Portable Compiled Format (PCF) which represents a font’s
glyphs in a manner efficiently handled by the X Window server together with needing less disk stor-
age than the Bitmap Distribution Format (BDF) file from which it was generated. Such BDF files are
defined in the specification available from http: //partners.adobe.com/public/developer/
en/font/5005.BDF_Spec.pdf and are themselves text files. The program pcf2bdf, available
from http://www.tsg.ne. jp/GANA/S/pcf2bdf, is a de-compiler for PCF files, producing BDF
files. Conversely, the program bdftopcf is the corresponding compiler, available from http:
//xorg.freedesktop.org/releases/individual/app.

Table 4.4: Keywords defined in the BDF specification

Level | Keyword Level | Keyword

1 STARTFONT * VVECTOR

3 COMMENT 3 METRICSSET
3 CONTENTVERSION 2 STARTCHAR
3 FONT 1 ENCODING
3 SIZE 2 SWIDTH

1 FONTBOUNDINGBOX || 1 DWIDTH

2 STARTPROPERTIES 1 BBX

2 ENDPROPERTIES 1 BITMAP

2 CHARS 2 ENDCHAR

* SWIDTH1 2 ENDFONT

* DWIDTH1

The BDF file contains not only the detail of each defined glyph in the font, but also how those
glyphs can be put together to construct a composition. Keywords are contained in the file to iden-
tify, or tag, such information. The BDF specification defines the keywords shown in Table 4.4. In
Table 4.4 a Level is assigned to each of those keywords. A Level of 1 indicates the data associated
with that keyword goes directly into forming the glyph. A Level of 2 indicates a delimiting key-
word which introduces some structure into the resulting file enabling checking for completeness. A
Level 3 indicates an information additives, while a Level of * indicates keywords associated with
glyph assembly in other than left-to-right ordering on a page (which are not considered here). The
pcf2bdf program when acting on a bitmap file in a standard X Window distribution/server pro-
duces a BDF containing keywords of levels 1, 2, and 3. Addition non-standard keywords are also
generated between STARTPROPERTIES and ENDPROPERTIES keywords. These are surplus to the
need for generating the glyphs. Each BDF file defines a fonts, and each STARTCHAR keyword in
that file specifies a character in that font. Consecutive lines in that file following that STARTCHAR
keyword, up to the closing ENDCHAR keyword, defines all the details of the glyph representing
that character.

Joining glyphs into a composition is done via attachment points. Each glyph has a left attachment
point defined on it’s left side where it’s pattern is to be connected to the glyph on it’s left (i.e. the glyph
it follows). The position of this point is defined by the parameters on the BBX keyword. Defined in
the paramters of a DWIDTH keyword is a right attachment point where the next glyph is to be attached
to it (on the right). This is specified relative to the left-hand attachment point of the glyph, relative to
the glyph. Each of these two points are specified relative to the individual glyph.

99

4.10. Forming text messages from bitmap glyphs

Within each Bitmap Distribution Format font file a bounding box is defined for all the glyphs
there contained. This is FONTBOOUNDINGBOX keyword. The FBBy parameter gives the total height
in pixels needed to contain all glyphs of the fonts. The starting point in that box where the first glyph is
to be located is also specified in that statement, relative to the bottom left-hand pixel of the bounding
box. This is the first attachment point.

The composing algorithm for representing a given sequence of characters, using a specified BDF
font file is:

zeroarray to contain composition
select start position of glyph attachment point in composition array
for each character to be composed
calculate location of left attachment point in this glyph’s pattern
calculate of location of top-left glyph pattern in composition array
map glyph onto composition array
recalculate glyph attachment point in composition array

The program of Figure 4.14 implements this algorithm.

The program of Figure 4.14 needs a little assistance by first editing the BDF file with which it is
used. The program matches a character in the string being composed with a character in the BDF
file. But in a lot of instances, the STARTCHAR keyword has a word, containing multiple characters,
following it. For example, STARTCHAR one. Those multiple words need to be replaced with their
single character equivalent, in the example, one by 1. Most BDF files also contain more characters
than are going to be used in composing, and typically these contain multiple character words in
their corresponding STARTCHAR keyword. These surpluses should also be eliminated. Of special
interest is the STARTCHAR space keyword. Replacing the space word with a space keyboard entry
would result in the STARTCHAR not denoting any character. Another keyboard character, which is
not going to be use in any coposing using this BDF file is needed. One possible replacement is to
use the \ character. If this is done, then a space character in a string presented to the program of
Figure 4.14 to be composed would have the \ replacement used in that string.

The procedure for processing a X11 bitmap font is as follows. A PCF file is selected from either
the 100dpi, 75dpi ormisc subdirectories of the directory /usr/share/fonts/X11/75dpi for
use in creating a label. That file is copied into the directory where the work is to be done. That file is
then processed by the following steps:

e decompress using gzip
o convert the pcf file to a bdf file by using the pcf2bdf program

o replace the single paramter, a string which names the character, on each STARTCHAR line by
the keyboard character it represents, e.g. parentleft is replace by).

e the character/glyph name space was replaced with a non-white character such as \ for mes-
sages containing space characters but where replacement character is not present in the mes-
sages.

o characters/glyphs whose names cannot be replaced by a single keyboard character are deleted
from the file since all messages are assumed to be composed from collections of single charac-
ters.

As an example, consider the BDF font file resulting from applying pc £2bdf isnamed selection.bdf.
This BDF file is edited and in that editing the STARTCHAR space keyword is replaced by STARTCHAR

100

4.10. Forming text messages from bitmap glyphs

/* This program composes a message given on the command line using a font

* described in a Bitmap Distribution Format (BDF) and outputs the resultant
* bitmap.

%

* Coded by: Ross Msloney

% Initial code: August 2011

*/

#include <stdio.h>
#include <stdlib.h> [+ for exit() =/
#include <string.h> [+ for strcat() =/

FILE xfileIn , *fileOut, =fopen();
int count, checkChars, ready, ii, k, attachx, attachy;
int number, value;
int FBBx, FBBy, Xoff, Yoff; /% Boundingbox information of total glyphs =/
struct glyph {
int BBx, BBy, BBxoff, BByoff, dwx, dwy, number, lines;
char name[40], encoding[10], pattern[40][6];
} pallet[200]; /« Storage for information about each glyph in font =*/

char lineoftype[40][400]; /« Storage for the composed message =/

int main(int argc, char xargv[])
{
char ¢, line[300], filename[30];
int i;
void extract (char x);
void compose (char x);
void xbmout(char *, int, int);

/% check the command line, then setup processing x/
if ((fileIn = fopen(argv[argc—1], "r")) == NULL) {
printf ("Name_of, BDF_file _needs_to_be_supplied\n");
exit (1);
}
count = 0;
while (fscanf(fileIn, "%["\n]", line) != EOF) { /x Store the glyphs x/
fscanf(fileIn , "%c", &c);
if (line[0] != ’'\0") extract(line); [/« Skip line if it is 0 length =/
line[0] = "\0’;
}
compose (argv[1]); /% compose the command line message s/
strcat (filename, argv[2]);
strcat (filename, ".xbm");
if ((fileOut = fopen(filename, "w")) == NULL) {
printf ("Could_not_open_file_for_output\n");
exit(1);
}

xbmout(argv[2], FBBy, attachx); /* put the composed message into a file =x/

Figure 4.14: A glyph packing program for creating bitmap messages (Continues ...)

101

4.10. Forming text messages from bitmap glyphs

/% Function to examine a BDF file and recovers required information associated

* with it ’s keywords.

*/

void extract(char xfileLine)

{

char command[40];
int i, j;
void printglyph(char);

sscanf (fileLine , "%s", command);
if (!strcmp (command, "FONTBOUNDINGBOX")) {
sscanf(fileLine , "%s %d %d %d %d", command, &FBBx, &FBBy, &Xoff, &Yoff);
return;
}
if (!stremp(command, "CHARS")) {
sscanf (fileLine , "%s %d", command, &checkChars);
ii = 0;
return;
}
if (!strcmp (command, "STARTCHAR")) {
sscanf(fileLine , "%s %s", command, &pallet[ii].name);
count++;
return;
}
if (!stremp(command, "ENDCHAR")) {
pallet[ii].lines = k;
ii++;
ready = 0;
return;
}
if (!stremp(command, "ENCODING")) {
sscanf (fileLine , "%s %s", command, &pallet[ii].encoding);
ready = 1;
checkChars——;
return;
}
if (!stremp(command, "DWIDTH")) {
sscanf (fileLine , "%s %d %d", command, &pallet[ii].dwx, &pallet[ii].dwy);
if (ready != 1) {
printf ("ENCODING statement required before DWIDIH statement: %s\n",
fileLine);
exit(1);
}
ready = 2;
return;
}
if (!strecmp(command, "BBX")) {
sscanf (fileLine , "%s %d %d %d %d", command,
&pallet[ii].BBx, &pallet[ii].BBy, &pallet[ii].BBxoff,
&pallet[ii].BByoff);
if (ready != 2) |
printf ("DWIDIH statement required before BBX statement: %s\n",
fileLine);
exit(1);
}
ready = 3;

Figure 4.14: A glyph packing program for creating bitmap messages (Continues .. .)

102

4.10. Forming text messages from bitmap glyphs

/* Calculates number of data hex per line x/
pallet[ii].number = pallet[ii].BBx/4;
if (pallet[ii].number+4 != pallet[ii].BBx) pallet[ii].number++;
return;
}
if (!stremp(command, "BITMAP")) {
if (ready !'= 3) |
printf ("No BBX statement for encoding %d\n", pallet[ii].encoding);
exit(1);
}
ready = 4;
k =0;
return;
}
if (ready == 4) |
sscanf (fileLine , "%s", command);
for (j=0; j<pallet[ii].number; j++) pallet[ii].pattern[k][j] = command[j];
k++;
}
return;

}

/% Function to typeset the glyph pattern.
*/

void compose(char xmessage)

{
int i, j, k, n, topx, topy, currentx, currenty;
void putglyph(char, int, int);

for (i=0; i<FBBy; i++)

for (j=0; j<400; j++) lineoftypel[illj]l = ~./;
attachx = —Xoff; /* Calculate location of initial attachment point */
attachy = FBBy + Yoff;
k = 0;

’

lineoftype[attachy][attachx] = 'M’; /x Show initial attachment point x/
while (message[k] !'= '\0") { /% Get each message character in turn x/
for (j=0; j<ii; j++)
if (pallet[j].name[0] == message[k]) break;
topy = attachy — (pallet[j].BBy + pallet[j].BByoff); /+ Attachment point x/
topx = attachx — pallet[j]. BBxoff;
currentx = topx;
currenty = topy;
if (topx < 0) currentx = 0;
lineoftype [topy][topx] = 'T’; /* Show top—left glyph pattern position x*/
for (n=0; n<pallet[j].lines; n++) {
currentx = topx;
for (i=0; i<pallet[j].number; i++) {
putglyph(pallet[j]. pattern[n][i], currenty, currentx);
currentx = currentx + 4;
}

currenty ++;

}

k++;

attachx = attachx + pallet[j].dwx;

attachy = attachy + pallet[j].dwy;

lineoftype[attachy][attachx] = 'M’; /% Show next attachment point x/

Figure 4.14: A glyph packing program for creating bitmap messages (Continues ...)
103

4.10. Forming text messages from bitmap glyphs

/

void

{

}

Function to write the glyph composition as an X Window bitmap (XBM) file
using the naming information supplied on the command line which invoked this

program.

Note with respect to xbm files:
the least significant bit is on the left
the most significant hex digit is on the right of a hex—pair
each row of bits are completely contained in bytes representing that row

xbmout(char *message,

int i, j, result, value,

int copy, swing;

fprintf (fileOut, "#define

fprintf (fileOut,

"#define

int height, int width)

k, bit;

%s_width %d\n", message, width);
%s_height %d\n", message, height);

fprintf (fileOut, "static char %s_bits[] = {\n", message);
/* main test part x/
for (i=0; i<height; i++)

k = 0;

bit = 1;
value = 0;
copy = 0;
swing = 1;

for (j=0; j<width; j++)
if (lineoftype[i][j]

bit = bit*2;
k++;

if ((k==4)
if (swing > 0)

{

{

== 'm’) value = value | bit;

copy = value;

else fprintf(fileOut, " 0x%x%x,", value, copy);
swing = —swing;

value = 0;

bit = 1;
k = 0;

}

}

if (k==20)

if (swing > 0)
else fprintf(fileOut,

else

if (swing > 0)
else fprintf(fileOut,

}
fprintf (fileOut,

/* selecting end of row output */

"An");

fprintf (fileOut, "\n");

" 0x0%x,\n", copy);

fprintf (fileOut, " 0x0%x,\n", value);

" 0x%x%x,\n", value, copy);

Figure 4.14: A glyph packing program for creating bitmap messages (Continues ...)

104

4.10. Forming text messages from bitmap glyphs

/+ Function to insert the black/white bits contained in single glyph into the
* bitmap of the overall composition =/

void putglyph(char hex, int y, int x)

{

int value;

switch (hex) {

’

case '07: lineoftypelyl[x] = "+7; lineoftype[y][x+1] = "+’;
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] = "+’;
break;

case '17: lineoftypel[yl[x] = "+7; lineoftype [y][x+1] +7;
lineoftype[y][x+2] = ’+’; lineoftype[y][x+3] = 'm’;
break;

case '27: lineoftypelyl[x] = "+7; lineoftype[y][x+1] = "+’;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] "+
break;

case ’37: lineoftypelyl[x] = "+7; lineoftype[y][x+1] = "+7;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = 'm’;
break;

case ‘4’: lineoftypel[yl[x] = "+7; lineoftype[y][x+1] m’;
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] = "+’;
break;

case '5’: lineoftypel[yl[x] = "+7; lineoftype[y][x+1] = 'm’;
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] m’;
break;

case '6’: lineoftypel[yl[x] = "+7; lineoftype[y][x+1] = 'm’;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = "+’;
break;

case '7’: lineoftypelyl[x] = "+7; lineoftype [y][x+1] m’;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = 'm’;
break;

case ’8’: lineoftype[yl[x] = 'm’; lineoftype[y][x+1] = "+7;
lineoftype[y][x+2] = "+’; lineoftype[y][x+3] "+
break;

case '97: lineoftype[yl[x] = 'm’; lineoftype[y][x+1] = "+7;
lineoftype[y][x+2] = ’“+’; lineoftype[y][x+3] = 'm’;
break;

case 'A’: lineoftype[y][x] = 'm’; lineoftype[y][x+1] +7;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = "+’;
break;

case 'B’: lineoftypely][x] = 'm’; lineoftype[y][x+1] = "+7;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] m’;
break;

case 'C’: lineoftypely][x] = 'm’; lineoftype[y][x+1] = 'm’;
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] = "+’;
break;

case 'D’: lineoftypely][x] = 'm’; lineoftype[y][x+1] m’;
lineoftype[y][x+2] = ’“+’; lineoftype[y][x+3] = 'm’;
break;

case 'E’: lineoftypely][x] = 'm’; lineoftype[y][x+1] = 'm’;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] "+
break;

case 'F’: lineoftypely][x] = 'm’; lineoftype[y][x+1] = 'm’;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = 'm’;
break;

default: printf ("Error in printing a hex value\n");

}

Figure 4.14: A glyph packing program for creating bitmap messages

4.11. Using pixmaps to colour a window’s background

\. The label to be composed isMary had a little lamb.and the resultingbitmap is to be named
example. If the program of Figure 4.14 has been compiled under the name pack, then it is run as:

pack "Mary\had\a\little\lamb" example selection.bdf

The bitmap representation of the message appears as the file example . xbm. This file can be viewed
using any graphics viewing program, for example xv. The three variables defined in that file are
example_width, example_height, and example_bits.

4.10.3 Exercises

1. Modify the progran of Figure 4.14 so as to remove two pixels from the top of the composed
glyphs so as to make the text more central to the overall height of the block of text.

2. Write a program which displays a single 200x200 window containing a 50x50 button on it which
has the label OK centred in it. When the mouse pointer is over this button and the left button is
pressed down, the program terminates. Construct the label for this button using the program
of Figure 4.14.

4.11 Using pixmaps to colour a window’s background

One of the powerful properties of the X Window System is attributes which can be associated with
individual windows. A window can be linked to particular events and ignore others. When an event
occurs the colour of a window could be changed in response to that event alerting the user of the
program to a particular situation. Pixmaps are another window attribute which can be applied if
needed. A pixmap might be used to label a window. A pixmap has a foreground and a background
each of which can have a colour associated with it. There is also a special form of pixmap called
a bitmap. The advantage of bitmaps over pixmaps is the former takes up less storage due to its set
colouring.

Window labelling and linking to events are considered in Section 3.5 where bitmaps are con-
verted to images. Images are held on the the client machine, processed there, and displayed after
the whole image is retransmitted to the server. So using images introduces network traffic. By con-
trast, a bitmap an pixmaps are held on the server. They are transferred from the client machine to
the server once. However, each bitmap and pixmap consumes memory and other resources on the
server and thus should be used sparingly. So the one pixmap should be reused where possible. The
server can change the colour of the background of a pixmap upon receiving only an instruction from
the client program. Another instruction can place such recoloured pixmap onto a window without
retransmitting the window nor the bitmap.

The program of Figure 4.15 uses colour change in response to the mouse pointer entering and
leaving two windows. A base window with an initial background colour of red contains a sec-
ond window. That second window has a background covered by a checker-board pixmap. Initially
that check-board is coloured with a blue background and a black foreground. When the mouse
pointer enters the first window, its background changes to a yellow colour. When the pointer en-
ters the second window, the background colour of that second window changes to green and the
foreground changes to blue. When the pointer leaves the second window, the checker-board back-
ground changes back to its original blue-black colouring. This mouse movement also means the
mouse pointer has entered the the surrounding base window. This results in the background of the
base window changes back to yellow. Figure 4.16 gives two snap shots of the windows with different
mouse positions produced by the program.

106

4.11. Using pixmaps to colour a window’s background

-~
¥ ¥k K K ¥ K ¥ ¥ ¥ ¥ ¥

*
~

This program consists of a main window on which is placed a second window.
Initially the main window is coloured red. When the mouse pointer enters
this window, that background changes to yellow and then back to red when the
mouse pointer exits this window. Onto this first window a second window is
placed. This second window carries a checker—board bitmap which only covers
the background of the whole window. When the mouse pointer is inside this
window the background of that checker—board is coloured green and blue, and
when outside it is coloured black and blue.

Coded by: Ross Maloney
Date: March 2012

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define b_width 32

#define b_height 32
static char b_bits[] = {
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0xff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0xff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0xff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0xff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0xff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,

}/

0x00, 0x00, Oxff, Oxff

Figure 4.15: A program to change window colouring when mouse enters and leaves (Continues ...)

107

4.11. Using pixmaps to colour a window’s background

int main(int argc, char xargv)

{

Display xmydisplay ;
XSetWindowAttributes baseat, secondat;
Window baseW, secondW;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent myevent;

XColor exact, closest;

GC baseGC;

XGCValues myGCValues;

Pixmap ck_boardl, ck_board2;
char xwindow_name = "Background";
char *icon_name = "Bk";

int screen_num , done;

unsigned long valuemask, red, green, yellow, blue;

/% 1. open connection to the server =/
mydisplay = XOpenDisplay ("");

/% 2. create a top—level window s/
screen_num = DefaultScreen (mydisplay);
baseat.background_pixel = WhitePixel (mydisplay, screen_num);
baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = EnterWindowMask | LeaveWindowMask | ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 350, 200, 3,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

/% 3. give the Window Manager hints =/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x/

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"red", &exact, &closest);

red = closest.pixel;

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"green", &exact, &closest);

green = closest.pixel;

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"yellow ", &exact, &closest);

yellow = closest.pixel;

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),
"blue", &exact, &closest);

blue = closest.pixel;

Figure 4.15: A program to change window colouring when mouse enters and leaves (Continues ...)

108

4.11. Using pixmaps to colour a window’s background

/* 5. create all the other windows needed x/
XSetWindowBackground (mydisplay, baseW, red);
secondat.background_pixel = green;
secondat.border_pixel = BlackPixel (mydisplay, screen_num);
secondat.event_mask = EnterWindowMask | LeaveWindowMask | ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
secondW = XCreateWindow (mydisplay, baseW,
100, 50, 96, 80, 1,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &secondat);
ck_boardl = XCreatePixmapFromBitmapData (mydisplay, secondW, b_bits, b_width,
b_height, BlackPixel(mydisplay, screen_num),
blue, DefaultDepth(mydisplay, screen_num));
XSetWindowBackgroundPixmap (mydisplay , secondW, ck_boardl);
ck_board2 = XCreatePixmapFromBitmapData (mydisplay, secondW, b_bits, b_width,
b_height, blue,
green, DefaultDepth(mydisplay, screen_num));

/* 6. select events for each window x*/

/* 7. map the windows s/
XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , secondW);

/* 8. enter the event loop */
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &myevent);
switch (myevent.type) {
case EnterNotify:
if (myevent.xcrossing.window == baseW) {
XSetWindowBackground (mydisplay, baseW, yellow);
XClearWindow (mydisplay, baseW);
}
if (myevent.xcrossing.window == secondW) {
XSetWindowBackgroundPixmap (mydisplay , secondW, ck_board2);
XClearWindow (mydisplay , secondW);
}
break;
case LeaveNotify:
if (myevent.xcrossing.window == baseW) {
XSetWindowBackground (mydisplay, baseW, red);
XClearWindow (mydisplay , baseW);
}
if (myevent.xcrossing.window == secondW) {
XSetWindowBackgroundPixmap (mydisplay, secondW, ck_boardl);
XClearWindow (mydisplay , secondW);
}
break;
}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);

Figure 4.15: A program to change window colouring when mouse enters and leaves

109

4.11. Using pixmaps to colour a window’s background

This example demonstrates important properties of windows and pixmaps under the X Window
System.

A window and a pixmap are a related pair. A window has a foreground and a background.
Drawing is done on the foreground of a window or onto a pixmap. A window foreground and a
pixmap are collectively called drawables. All Xlib graphics calls require a drawable to be specified and
these can be either a window foreground or a pixmap. However, a drawing can only be done onto
the foreground of a window when that window is exposed to view on a screen, i.e. it is unobscured.
By contrast, a pixmap can aways be drawn upon because they are never obscured. But a pixmap can
only be seen on the screen when it is mapped onto the foreground or the background of a window.
If a pixmap is mapped onto the foreground of a window and that window becomes obscured and
then unobscured, it is necessary to move the pixmap to the window again. If the pixmap is mapped
to the background of the window, this renewal is not required (the server takes care of it).

[®] Background [®] Background

(a) Initially (b) Mouse entered second window

Figure 4.16: Simple and bitmap window colouring following mouse events

A pixmap also has a foreground and a background (ignoring multi-coloured pixmaps considered
in Section 7.1 A pixmap is a pattern which is held in the server’s memory for rapidly mapping
on to a window. A common way of expressing the pixmap pattern is to include it in the source
code as a static array, for example b_bits[]. It is made up from hexidecimal digits. In the binary
representation of each hexidecimal value, a one indicates the corresponding pixel in the pixmap’s
foreground while a zero indicates the corresponding pixmap background. Each value in the array
(for example 0xf2) represents 8 pixels in the bitmap. The pixels are laid out on the screen with
width indicated by the value assigned to b_width measured in pixels and of height indicated by the
corresponding b_height, again measured in pixels. These width and height values are applied to
the given hexidecimal values to produce the bitmap. If there are more hexidecimal values given than
the number of pixels contained in the array formed from the width and height given, then they are
discarded.

A bitmap is a particular type of pixmap. It has a predefined foreground colour of black and
a background colour of white. The Xlib function calls XCreatePixmapFromBitmapData () and
XCreateBitmapFromData () used to generate a general pixmap and a bitmap, respectively, show
this difference; foreground and background colours are required to be specified in the former call.
The data indicating the required pattern used in both calls is the same. A bitmap is also limitted to a
depth of 2.

The foreground and background colour of a pixmap are set when the pixmap is created. In the
particular case of a bitmap, they are set to black and white, respectively, by default. They cannot
be changed. So, if a pattern which is appropriately displayed on a window as a pixmap if re-
quired in more than one colour combination, then a pixmap for each colour combination is required.
Each of these pixmaps can be created from the same data, but using different foreground and back-
ground colour assignments. The program of Figure 4.15 is an example of the contrast in behaviour

110

4.12. Content summary

of pixmaps and window colouring.

A window cannot be created with the background_pixmap attribute set defining a background
pixmap. If this is done, a BadPixmap error is produced when the window creation executes. The
reason for this is the attribute requires the pixmap to exist, but creation of the pixmap needs the
window on which it is to be mapped to exist, i.e. has already been created. Instead, the process used
should be:

o create the window
o create the pixmap which references this window, then

o the pixmap is placed on the window’s background with an Xlib XSetWindowBackgroundPixmap ()
call.

4.11.1 Exercises
Modify the program so that:

1. Verify that covering the second window of the program in Figure 4.15 with another, and then
removing the overlayed window does not destroy the background pattern on the second win-
dow even if the X Window server does not have backing store activated.

2. Modify the code of Figure 4.15 to demonstrate a window cannot be created with a pixmap in
its background (Hint: it is simple).

3. The mouse pointer can be inside or outside of a window. So for two windows, there are four
such states. Why is one of those states missing in the visual produced by the code of Figure 4.15
and what is the consequence?

4. Modify the program of Figure 4.15 so the pixmap pattern is not repeated across the background
of the second window but instead occuppys the top left hand corner of that background.

4.12 Content summary

Given the window creation process, this chapter showed decorating the body of such a window. Such
a pattern could be a (generally simple) picture or a text label prepared outside of the X11 program
and then linked to a window. One application of these techniques is when a window is used as a
button or menu item.

The bitmap approach for creating and using such patterns was used here. This approach has been
standard in X11 since its release. An alternate, later, pixmap technique which builds upon bitmaps
will be used in a later chapter. Generally bitmaps are black and white patches that are applied to a
window. However, as shown by example in this chapter, a transparency can be achieved by using
a mask to enable the underlying window to show through the patch. Creating of such bitmaps
and masks for a simple diagram-type picture is relatively easy compared with a lettered label. In
particular, correctly forming letters at the pixel level is difficult. The use of Postscript programs to
generate a pattern, and conversion of that program’s output into appropriate maps, is demonstrated.

111

Keyboard entry and displaying text

Information entry to a program from a keyboard is a common task. That data entry is one form of
text. In X, each key on a keyboard is considered to be like a mouse button in that they raise events.
Each keyboard key can raise two different types of events; a key press event, and a key release event
(although on some PC keyboards, the key release event may not be implemented). But since each
key is identified uniquely, different patterns for presentation of that key on a screen can be changed
by selection of a different mapping between the key identifier and a pattern. Because a keyboard is a
complex mouse consisting of many buttons, it justifies a chapter of its own. Like a mouse, keyboards
are serviced by the events that they generate. Such events can be linked to achieve a variety of effects.

Each key stroke event is stored in a XKeyEvent structure on the server. That structure contains
a keycode member which is a number in the range 8 to 255. That number is the representation
of the key pressed (or released - they use the same keycode). Although the engravings on keys
from different keyboard manufacturers may be similar, they can result in different keycodes being
produced, for there is no fixed standard. Each keycode is given a symbolic name in the header
file keysym.h. The function XLookupSstring () provides the mapping between the keycode and
the character that it maps to via the mapping table contained in the keysym.h header file. The
corresponding character can then be displayed using the function XDrawText () if the character is
one byte long. If the character is two bytes in length, as when using an international character set,
then XDrawText16 () is used. Notice that characters are being received from the keyboard, not
strings. So a line of text would involved a keycode transmission, translation, and printing for each
character in that text.

All keys on the keyboard have a keycode. Keyboard keys which are considered as modifier keys,
such as the shift key, the Alt key, Ctrl key, etc., themselves generate a keycode when each is pressed.
Also, after the shift key is depressed and held so while an alphabetic character key is pressed, the
keycode produced is different to that if that alphabetic key is pressed without the shift key being
depressed. It would be expected that a different keycode is generated for lower case and upper case
versions of a alphabetic key.

The technique commonly used to determine which keyboard key has been pressed is by using the
XLookupString () function. An alternative is to use the XKeycodeToKeysym () function followed
by the XKeysymToString () function. However, this latter technique does not use the strings that
are assignmed to keys by using the XRebindKeysym () function.

Another form of text is where it is already stored in the computer and it is to be displayed in a
window on the screen. This is similar to the keyboard entry situation, which is the reason that it is
presented here together with the keyboard entry situation. This output presents additional problems,
such as only showing a portion of the text and enabling the program user to scroll through that text.

112

5.1. Elementary X keyboard text entry

5.1 Elementary X keyboard text entry

This example demonstrates the basic use of the X Window System keyboard model. In particular, it
shows that keyboard entry is not automatically echoed, that a sequence of characters can be assigned
in a program to a keyboard key, and the process of recognising which key has been pressed and
associated a meaning to it.

This program displays a plain white 300x300 window which contains two subwindows each of
the same height and width, one under the other. Each of the three windows is activated to receive an
event produced by a button press from a mouse and a keyboard key press. Each of those events leads
to text being printed on the console terminal window (which is not part of this program, but from
which the program is assumed to have been initiated). No matter in which of the three windows the
mouse pointer is positioned, a mouse button click gives rise to the text I got a button press.If
the mouse is positioned in the larger (background) window when a keyboard key is pressed, the text
I got a key press is printed. If the mouse pointer is located in the top window, a keyboard key
press results in the text In top window being printed. However, if the mouse is inside the bottom
window when the keyboard key is pressed, then the text In bottom window is printed, followed
by the value of the keycode, keysym, and character associated with the key pressed.

The program is written to print the keysym value as a hexidecimal number. That value can be
searched for in the keysymdef . h header file which is usually stored in the /usr/include/X11
directory on Unix/Linux systems. This file is called into source code by using the keysym.h header
file, but in the example for Figure 5.2 they are not needed. From either of these two header files, the
keysym XK_ corresponding to the keysym value can be found. It is that keysym that is used with
the XRebindKeysym () function to link a program defined string to a keyboard key. In the program
of Figure 5.2, the Windows key, which has the Keysym value of £fe7 corresponding to Keysym
XK_Meta_L (Left meta), was assigned the character sequence MetaL. The fundamental purpose of
this program is what is printed to the terminal resulting from the keyboard entry directed through
the simple window combination shown in Figure 5.1.

Figure 5.1: The windows of the keyboard explorer

Notice that each of the three windows in this example use the same event structure, for each is to
receive the same inputs. The window that is to receive a keyboard entry or a mouse button click is

113

5.1. Elementary X keyboard text entry

/+ This program consists of a main window on which is placed two text input

* windows. All three windows have white backgrounds with the boundary of each
* text window shown by its border. Each window responses to keyboard key

% presses and mouse button presses. The nature of each press is printed on

* the console screen.

*

* Coded by: Ross Maloney

* Date: October 2008

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

#define BUFFER LENGTH 10

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, textWindowl, textWindow?2;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmhints ;

XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc;

KeySym sym;

char x*window_name = "Inout";

char xicon_name = "I0";

int screen_num, done;
unsigned long mymask;

int X, 1;

char buffer [BUFFER_LENGTH];

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

I/« 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat. event_mask = KeyPressMask | ButtonPressMask | ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 350, 400, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/x 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;

XSetWMHints (mydisplay , baseWindow, &wmhints);

Figure 5.2: A simple program to explore the keyboard (Continues ...)

114

5.1. Elementary X keyboard text entry

XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources x/
XRebindKeysym (mydisplay , XK_Meta_L, NULL, 0, "MetalL", 5);
/* 5. create all the other windows needed x/
textWindowl = XCreateWindow (mydisplay, baseWindow, 30, 80, 200, 20, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
textWindow2 = XCreateWindow (mydisplay, baseWindow, 30, 200, 200, 20, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 6. select events for each window x/
/* 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindowl);

XMapWindow (mydisplay , textWindow2);

/* 8. enter the event loop x/
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
printf ("I got a button press\n");
break;
case KeyPress:
printf ("I got a key press\n");
if (baseEvent.xkey.window == textWindowl) printf("In top window\n");
if (baseEvent.xkey.window == textWindow2) {
printf ("In bottom window\n");
x = XLookupString(&baseEvent.xkey, buffer , BUFFER LENGTH, &sym, NULL);
printf ("Keycode = %d\n", baseEvent.xkey.keycode);
sym = XKeycodeToKeysym(mydisplay, baseEvent.xkey.keycode, 1);
printf ("x = %d\n", x);
printf ("Keysym = %x character = %c", sym, buffer[0]);
for (i=1; i<x; i++) printf("%c", buffer[i]);
printf ("\n");
}
break;

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseWindow);
XUnmapWindow (mydisplay , textWindowl);
XUnmapWindow (mydisplay , textWindow?2);

Figure 5.2: A simple program to explore the keyboard

115

5.2. What fonts are available

that on which the mouse pointer is positioned. But that window is only able to receive such events
if they are encoded into the event structure active in that window. This is usually established (as in
this example) when the window is created. However it can be changed after the window is created
by using the XChangeWindowAttributes () Xlib call using parameters similar to the valuemask
and attributes variables used with a XCreateWindow () call. Alternately, a XSelectInput ()
Xlib call could be used.

This program offers a means for exploring the codes generated by each of the keys on a keyboard
connected to X. For example, by using this program the keycode generated by the Enter keyboard
key was found to be the value 36 on a Linux system running on Intel x686 hardware.

5.1.1 Exercises
Modify the program so that:

1. The text entered in each window is displayed yellow in colour.

5.2 What fonts are available

A font is the pattern that is placed on the screen to represent a character. Thus to display a character
(which is stored in the computer as a particular number) a font needs to be selected. In the case of
the X Window System that pattern is a bitmap and a font is a collection of such patterns that share
a common style across all members contained in that font. The alphabet of the font is the individual
patterns that can be accessed from that collection. When a font is defined it is done so that the
correspondence between the members of its alphabet and a pattern are specificly linked. Thus a
character from an alphabet of a font defines a pattern that would appear on the screen. A graphics
context (GC) is then used in association with that pattern to represent the character on the screen.
Where as the font contributes the pattern, the graphics context contributes (in relation to drawing of
characters) such things as colour, clipping, and how overlaying is to appear on screen.

Available fonts reside on a font server. This is a separate server to the X11 server which interacts
with the X Window System screen. The font server xfs is included with the X Window System
distribution and is often used in that roll. When xfs is used, the fonts appear to be contained in
directories within the unpacked files of the X distribution and directly accessed from there. This is
not the case. It is xfs that is accessing those file and making them available using a protocol. A
defined protocol, separate to that for interacting with the X11 server, is used for interacting with
any font server, including xfs. Functions in Xlib which are responsible for interacting with the font
server use that protocol as their mechanism.

A font must be loaded from the font server onto the X11 server before it can be used. A font to
be used in a program is than linked to the GC by setting the appropriate member in the XGCValues
structure. If that font has not been loaded, an attempt to use the GC to draw text will occur without
an error return, but nothing will appear on the screen. It is important that all fonts that are to be used
by a client program are loaded into the server. However, only one copy of a font is kept on a server,
but that font can be shared by many client programs. A font is only unloaded from a server once all
client programs using that font no longer need it. There is at least one font loaded on any server, and
that is the default font. If a font is not specified when a GC is created, that default font is used. But
that default font is implementation dependent.

Generally the XLoadQueryFont () function is used to load a font onto a X11 server and es-
tablish links between that server image and the client program. This function is composed of a

116

5.2. What fonts are available

XQueryFont () and a XLoadFont () function call with XLoadQueryFont () having the combined
effect of both component calls.

Each font is identified by a name. It is that name that is used to load that font from the font server
onto the X11 server and, through it, to connect it to the client program. The program of Figure 5.3
lists the name of each font available on a font server, which is different from those that have been
loaded onto an X11 server. Note the difference and similarities of this program with the other X
Window programs included here. To assist that comparison, the template structure used in writing
those X Window programs has also been used in Figure 5.3. Notice that only the display needs
to be opened by the program since fonts are related to the display, not to windows on the display.
When this program was run, 2900 fonts were listed by name since those names matched the general
wildcard search string "« " used in the X1istFonts () function. A similar list is produced using the
x1lsfonts command which is provided as a standard part of the X Window System distribution.

/% This program prints the name of all fonts available on the current X server.
*

* Coded by: Ross Maloney
* Date: December 2008
*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xcarv)

{

Display xmydisplay;
char s+xfontNames;
int i, present;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");
fontNames = XListFonts (mydisplay, "x", 4000, &present);
for (i=0; i<present; i++) printf("%s\n", fontNames[i]);
printf ("Number_of_those_fonts_present_=_%d\n", present);

/% 2. create a top—level window x/

/+ 3. give the Window Manager hints =/

/+ 4. establish window resources =/

/¥ 5. create all the other windows needed x*/
/¥ 6. select events for each window =/

/% 7. map the windows x/

/+ 8. enter the event loop =/

/+ 9. «clean up before exiting =/

Figure 5.3: A program to print the names of all available fonts

Full font names are composed of 12 fields separated by a hyphen (-). Those fields are:

foundary [misc, mutt, schumacher, sony, adobe, b&h, bitstream];

font family [palatino, courier, helvetica, avantgrade, times, symbol];

font weight [medium, bold, book, demi, light];

slant [roman, italic, oblique];

set width [normal];

117

5.3. Keyboard echoing on windows

e size in pixels [8§, 10, 12, 14, 18, 24];
e point size (in tenths of a point) [80, 100, 120, 140, 120, 150, 170, 230];
e horizontal resolution in dots per inch (dpi [75, 100]);

o vertical resolution in dots per inch (dpi) [75, 100];

e spacing [p, c];
e average width (in tenths of a pixel)

e character set name [is08859-1]

with examples of each field given in [square brackets]. If the seach field in the program of Figure 5.3
is changed to "+«-palatino-+is08859-1" then 4 font names are listed.

The list created by a program such as that in Figure 5.3 provides a first step in using a font by
identifying the fonts available. A program such as xfontsel available in the standard X Window
System distribution can be used to view the appearance of a font corresponding to a name. That
name can be used as a parameter in a XLoadFont () or XLoadQueryFont () function.

5.3 Keyboard echoing on windows

Providing visual feedback of keyboard entry is most appropriately done on the window associated
with the data request. Visual linking of data requests and subsequent data entry is one of the benefits
that a windowing system such as X can provide. The technique used in the program of Figure 5.2 of
printing the keyboard entry on the console assumes that the console is available. However, there are
many situations where that technique is inappropriate, or alternatively, printing on a window more
directly associated with the data entry is more appropriate. In that case, the characters linked to the
keys of the keyboard as in the program of Figure 5.2, need to be dealt with by extending the font
drawing techniques considered in Chapter 3. However, in that chapter the font drawing was static
in that the text to be displayed was encoded directly in the program. The text to be displayed here is
entered from the keyboard for processing by the executing program.

Both static and dynamic processing of text is used in the program of Figure 5.4. The program
starts with three text sub-windows arranged on a plain white window 300x400 pixels in size. These
three sub-windows are used for displaying text. Figure 5.5 shows that window combination. The two
top windows receive a sequence of characters from the keyboard, the user selecting which window is
tobe used via the mouse. As the characters are typed they are displayed both in that selected window
and in the third window. Different character fonts are defined in the program for each of the four
of those character streams. Each of the three windows is labelled with a text string. The display
of the text strings entered through the keyboard is dynamic while static text is used to display the
label of each window. Both the containing (background) window and the window which shows the
accumulated entered text are insensative to keyboard entry.

To assist in controlling this program, the receiving of a down arrow key entry from the keyboard
in either of the keyboard entry windows, terminates the program’s execution.

The four windows used in this program fall into two classes; that which accept the mouse pointer
click and keyboard entry, and that which will receive neither. A result of this is that a different event
mask is required for each of these two classes; the first with keyboard, mouse button, and exposure
events enabled, while the other has only the exposure event enabled.

118

5.3. Keyboard echoing on windows

/x This program consists of a main window on which is placed three text

* windows: two windows for text input and the other for display of all the
* text entered through the other two windows. The text entered is also echoed
* in that window. All four text streams have a different font. All four

* windows have white backgrounds with the boundary of each text window shown
* by its border. A text label is displayed against each text window. The
* program is terminated by typing the ’‘down arrow’ key.

3

* Coded by: Ross Maloney

* Date: November 2008

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <string .h>

#define BUFFER LENGTH 10

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, textWindowl, textWindow2, textWindow3;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmbhints ;

XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc, myGCl;
XGCValues myGCvalues;

KeySym sym;

XFontStruct xfontl , *xfont2;
XTextItem myText;

char xwindow_name = "Echoing";

char *xicon_name = "Ec";

char xlabell = "input_A:";

char xlabel2 = "input_B:";

char xlabel3 = "All_here:";

int screen_num , done;
unsigned long mymask;

int X, 1;

int yWindow1l, yWindow2, yWindow3, width;
char buffer [BUFFER LENGTH];

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/x 2. create a top—level window =x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 400, 550, 400, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 5.4: A program with two text entry and one accumulated display windows (Continues ...

119

5.3. Keyboard echoing on windows

/% 3. give the Window Manager hints */
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMlIconName (mydisplay , baseWindow, &iconName);

/% 4. establish window resources x/
XRebindKeysym (mydisplay , XK_Meta_L, NULL, 0, "Metal", 5);
myGCvalues. background = WhitePixel (mydisplay, screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);
mymask = GCForeground | GCBackground;
myge = XCreateGC (mydisplay, baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay,
"—adobe—palatino —-medium—i—normal ——0-0-0-0—p—0-is08859 —-1");
font2 = XLoadQueryFont(mydisplay,
"—adobe—times—bold—r—normal ——0-0-0—0—p—0-is08859 —1");
XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);

myGCl1

/¥ 5. create all the other windows needed x*/

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

textWindow3 = XCreateWindow (mydisplay, baseWindow, 140, 170, 300, 180, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.event_mask = KeyPressMask | ButtonPressMask | ExposureMask;

textWindowl = XCreateWindow (mydisplay, baseWindow, 140, 50, 200, 20, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

textWindow2 = XCreateWindow (mydisplay, baseWindow, 140, 110, 200, 20, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

I/« 6. select events for each window =/
I 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindowl);

XMapWindow (mydisplay , textWindow2);

XMapWindow (mydisplay , textWindow3);

/x 8. enter the event loop =/

done = 0;
yWindowl = yWindow2 = yWindow3 = 0;
myText.chars = buffer;

myText.nchars = 1;

while (done == 0) {
XNextEvent(mydisplay , &baseEvent);
switch(baseEvent.type) {

Figure 5.4: A program with two text entry and one accumulated display windows (Continues ...)

120

5.3. Keyboard echoing on windows

XDrawlImageString (mydisplay , baseWindow, mygc,
85, 65, labell, strlen(labell));
XDrawlImageString (mydisplay , baseWindow, mygc,
85, 125, label2, strlen(label2));
XDrawlImageString (mydisplay , baseWindow, mygc,
78, 185, label3, strlen(label3));
break;
case ButtonPress:
break;
case KeyPress:
if (baseEvent.xkey.keycode == 88) {
done = 1;
break;

}
x = XLookupString(&baseEvent.xkey, buffer , BUFFER LENGTH, &sym, NULL);

sym = XKeycodeToKeysym (mydisplay, baseEvent.xkey.keycode, 1);
if (baseEvent.xkey.window == textWindowl) {
myText. font = fontl —> fid;
XDrawText(mydisplay, textWindowl, myGCl, yWindowl, 15, &myText, 1);
width = XTextWidth(fontl, buffer, 1);
yWindowl += width;
}
if (baseEvent.xkey.window == textWindow2) {
myText. font = font2 —> fid;
XDrawText(mydisplay, textWindow2, myGCl, yWindow2, 15, &myText, 1);
width = XTextWidth(fontl, buffer, 1);
yWindow2 += width;
}
XDrawText(mydisplay, textWindow3, myGCl, yWindow3, 15, &myText, 1);
yWindow3 += width;
break;

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay, baseWindow);
XUnmapWindow (mydisplay , textWindowl);
XUnmapWindow (mydisplay , textWindow?2);
}

Figure 5.4: A program with two text entry and one accumulated display windows

Both the Xlib function XDrawText () and XDrawImageString () are used here to put text on
the windows. For the labelling of the windows, the function XDrawImageString () is more appro-
priate since the X11 server only uses a limited part of the graphics context (GC) specified for drawing
the text to achieve the final result. By contrast, the XDrawText () function allows more flexibility by
the program (client) in the way the text is drawn, but at the cost of greater activity by the server.

Prior to the XDrawImageString () calls in the pprogram of Figure 5.4 no font had been ref-
erenced. When these calls make reference to the mygc graphics context (GC) the font used is that
which had been defined as the default. That default will vary with implementation of the X Window
System being used in running the program, for the default used is that assigned by the X11 server
used. The alignment of those labels was done by trial-and-error ro get the labels to be right-justified
one under the other. But the length of each label text is font dependent and so this alignment will be
incomplete if a different default font is used.

All other text is written using fonts that are explicitely loaded. This is the more general means of

121

5.3. Keyboard echoing on windows

drawing text. The steps involved are:

1. create a GC;
2. load the font;
3. link the loaded font to the GC;

4. draw the text referencing the GC.

The font is loaded from the font server into the X11 server. In the client program, a pointer is returned
to the block of memory in the X11 server where the details of that loaded font are stored. The £id
member of that block of information contains the identifier of that font and it is the value of that
member that is set as the font member in the GC structure.

Echoing

input A: [Nowfienny thingsro

input B: [We eando with?!

ALl here: INoo¥e candofisnny Hhings with?l 76

Figure 5.5: Keyboard echoing and accumulated display

Two graphics contexts (mygc, and myGC1) are used but it is myGC1 that is used for handling the
text. Two fonts are loaded with their pointers stored as font1 and font2. Both fonts are propor-
tional fonts which means that each character in the font can take a different character width. The
font identification member (fid) of the font structure is set as the default font in the myGC1 structure
before it is used in the XDrawText () function call which shows the character.

Characters are entered one after the other using the keyboard. Each character entered needs to be
displayed immediately. So the call to XDrawText () is made using a string of one character in length.
All characters are displayed in the position passed as parameters to the XDrawText () function. To
do this correctly a counter of the position in the window where the next character is to be shown is
kept and this is incremented after each character is shown by the width of that character. This width
is determined by the function XTextWidth () based on that character and the font used to show
that character on the screen.

122

5.4. Putting text in a window

5.3.1 Exercises
Modify the program of Figure 5.4 so that:

1. The characters that are echoed in the top window and inserted in the bottom window are
coloured red.

2. The bottom window folds the accumulated line of text so that all characters remain visible
when long character sequences are typed in the top two windows.

5.4 Putting text in a window

Displaying text comprising collections of characters available entirely before starting the display pro-
cess is considered here. The process is similar to, but also enables refinements to be made, or required
to be made, to that process used when printing a character at a time as it is entered from a keyboard.
Having all the text available presents different challenges to be resolved about the appearance of that
text on a window.

There is a fundamental process that underlies placing of all text in a window. It consists of a
number of steps. The characters, or string of characters that are to be displayed are obtained. The
window to be used is created or identified for use. Then the font to be used is selected and loaded
into the font server. Finally the characters are drawn on the window using the selected font. The
code which performs this process is shown in Figure 5.7 and Figure 5.6 shows the resulting text on a
window. The terminal output produced was:

ascent = 16
decent 4

which are characteristics of the font used.

Fix white boomers,

Figure 5.6: Text beind displayed in a text window

The displayed text has a foreground colour that appears as that which fills the characters, and a
background colour that underlies the extent of the text being displayed. If that text does not fill the
window, then the colour of the window will fill areas of the window not covered by the text. Text
that falls beyond the window in which it is drawn is cut (or clipped) off. Thus position of the text in
the window can be significant.

123

5.4. Putting text in a window

/+ This program demonstrates placement of a single line of text in a window

* which is setup for that purpose. The line of text is too long to be
* displayed in that window.

K

* Coded by: Ross Maloney

* Date: February 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <string.h>
#include <stdio.h>

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, textWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize;

XWMHints wmbhints ;

XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc;

XGCValues myGCvalues;

XFontStruct xfontl;

char xwindow_name = "Text";

char *xicon_name = "Te";

char xtextline = "Six_white_boomers,_Snow_white_boomers, Racing Santa";
int screen_num , done;

unsigned long mymask;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

[* 2. create a top—level window =x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat. event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 300, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/% 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMlIconName (mydisplay , baseWindow, &iconName);

Figure 5.7: A program to draw a string of text (Continues ...)

124

5.4. Putting text in a window

wmsize. flags = USPosition | USSize;

XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;

wmbhints. flags = StateHint;

XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);

/% 4. establish window resources x/
myGCvalues . background = WhitePixel (mydisplay, screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);
mymask = GCForeground | GCBackground;
mygc = XCreateGC (mydisplay, baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay,

"—adobe—times—bold—r—normal ——0-0-0—-0—p—0-is08859 —1") ;

printf ("ascent_= %d\ndescent_=_%d\n", fontl —>ascent, fontl-—>descent);
XSetFont (mydisplay, myge, fontl—>fid);

/¥ 5. create all the other windows needed x*/
myat.background_pixel = BlackPixel (mydisplay, screen_num);
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
textWindow = XCreateWindow (mydisplay, baseWindow, 30, 40, 140, 26, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

I/« 6. select events for each window =*/
/% 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindow);

I/« 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent(mydisplay, &baseEvent);
switch (baseEvent.type) {
case Expose:
XDrawlImageString (mydisplay , textWindow, mygc,
30, 20, textline, strlen(textline));
break;
}

/¥ 9. clean up before exiting =/
XUnmapWindow (mydisplay, baseWindow);
}

Figure 5.7: A program to draw a string of text

125

5.5. Insertion cursor

The horizontal position of the text in the textWindow window is set by a parameter passed in
the XDrawImageString () call. If that parameter is greater than zero, the start point where the first
character of the string is displayed in the window is shifted in the window. Vacant space appears in
the window. Also, if the length of the assembled fonts representing the characters is shorter than the
horizontal dimension of the window, vacant space appears on the right of the window. Such vacant
space is filled by that window’s background colour. This positioning is of the text string inside the
text window, which is different from having the text window passing over the text and clipping text
characters that are beyond the extent of the window. Thus the technique used here for displaying
text differs from that show in Section 5.8 for scrolling text.

The code in Figure 5.7 also positions the fonts of the text vertically. The height of the text window
(textWindow)is created as being 26 pixels high. The baseline of the assembled font characters of the
string (textline)is positioned using the XDrawImageString () call to be 20 pixels down from the
top of the textWindow. The height of the font used (font1) is the sum of the font1->ascent and
fontl->descent, which in this example are 16 and 4, respectively. The result of these measures
and settings is the text is not centred vertically in the text window, with uneven amounts of that
window’s background above and below the line of text.

Note that the mymask variable is assigned a value before it is used in the creation of textWindow.
This is due to the mask bits for creating a GC are different to those used when creating a window.
The background of that window is then assigned to be black in colour.

54.1 Exercises

1. The text window in Figure 5.6 is small in comparison to the base window. Is there any advan-
tage in making that text window larger while continuing to use the same font?

2. What is the smallest height that the text window can be made ing the code of Figure 5.7 to
display all characters of the selected font without truncation?

5.5 Insertion cursor

An insertion cursor is a marker placed on a line of text to indicate where the next character from
the keyboard will be placed. Xlib does not provide an insertion cursor. The cursor provided in
Xlib is a marker for the position of the mouse pointer on screen. This is different from an insertion
cursor. However, most toolkits provide an insertion cursor for text input. So if an insertion pointer
is required when using Xlib, then it has to be constructed and its behaviour determined by program
control.

The program listed in Figure 5.8 is an example of code which implements keyboard text input
while using an insertion cursor. Since no insertion cursor is provided, the cursor shape is created as
a pixmap using the utility program bitmap.

The shape of this insertion cursor is to be compatible with the text font with which it is used. Since
the cursor is implemented by a constant dimension pixmap, a text font in which all characters are of
constant width, i.e. a typewriter font, is appropriate. The font used in the program of Figure 5.8 was
a be¢h-lucidatypewrite at 18 pixel. This text was displayed/entered in a window 26 pixels in
height. From the width element of the XCharStruct structure pointed by the per_char member
of the structure of the font1 variable linked to the b&h-lucidatypewrite font in the program
of Figure 5.8, that constant character width is 11 pixels. The width of the cursor was selected to be
smaller than the character width; a value of 6 being used. So the dimensions of the insertion cursor
pixmap was set at 11x24. As a result, bitmap was executed by the command line:

126

5.5. Insertion cursor

/x This program consists of a main window and a single text entry window. An
% insertion cursor is created using a pixmap. With a foreground colour of

* red, this pixmap is used to show where the next character entered from the
* keyboard will be placed. A 18 pixel typewriter text font is used to show

% the keyboard characters entered. The mouse pointer, trigged by the release
* of any mouse button can be used to position this insertion cursor.

*

* Coded by: Ross Maloney

% Date: June 2011

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>

#define cursoricon_width 6

#define cursoricon_height 24

static unsigned char cursoricon_bits[] = {
0x21, Oxle, 0x0c, 0x0c, 0x0c, 0x0Oc, 0x0c, 0x0Oc, 0x0Oc, 0x0c, 0x0c, 0xOc,
0x0c, 0x0c, 0x0Oc, 0x0c, 0x0Oc, O0x0Oc, OxOc, O0xOc, Ox0c, Ox0Oc, Oxle, 0x21};

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, textWindow ;
XSetWindowAttributes myat;

XSizeHints wmsize;

XWMHints wmbhints;

XTextProperty windowName, iconName;

XEvent baseEvent;

GC myGC;

XGCValues myGCvalues;

XFontStruct xfontl;

XColor exact, closest;

char swindow_name = "Insertion_Cursor";

char xicon_name = "IC";

int screen_num, done, lightcyan, red, count;
int charinc, position, end, current, i;
unsigned long mymask;

char data[20], bytes[3];

KeySym character;

XComposeStatus cs;

Pixmap cursor;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

I« 2. create a top—level window =x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat. event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 300, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 5.8: Text input assisted by an insertion cursor (Continues ...)

127

5.5. Insertion cursor

/% 3. give the Window Manager hints =/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/+* 4. establish window resources x*/

myGCvalues. background = WhitePixel (mydisplay, screen_num);

myGCvalues. foreground = BlackPixel (mydisplay, screen_num);

mymask = GCForeground | GCBackground;

myGC = XCreateGC (mydisplay, baseWindow, mymask, &myGCvalues);

fontl = XLoadQueryFont(mydisplay,

"—b&h—lucidatypewriter —s—sx—s—x—18—sk—s—x—x—x—x");

XSetFont (mydisplay, myGC, fontl—>fid);

charinc = fontl—>per_char—>width;

XAllocNamedColor (mydisplay , XDefaultColormap (mydisplay, screen_num),

"LightCyan2", &exact, &closest);

lightcyan = closest.pixel;

myat.background_pixel = lightcyan;

XChangeWindowAttributes (mydisplay , baseWindow, CWBackPixel, &myat);

XAllocNamedColor (mydisplay, XDefaultColormap (mydisplay, screen_num),

"red", &exact, &closest);

red = closest.pixel;

cursor = XCreatePixmapFromBitmapData (mydisplay, baseWindow,
cursoricon_bits , cursoricon_width, cursoricon_height,
red, WhitePixel (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num));

/* 5. create all the other windows needed x/

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

myat.event_mask = ButtonReleaseMask | KeyPressMask | ExposureMask ;

myat.background_pixel = WhitePixel (mydisplay, screen_num);

textWindow = XCreateWindow (mydisplay, baseWindow, 60, 40, 220, 26, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 6. select events for each window x/
/% 7. map the windows =/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindow);

/* 8. enter the event loop */

current = end = 0;
done = 0;
while (done == 0) {

XNextEvent(mydisplay, &baseEvent);

switch (baseEvent.type) |{

case Expose:

break;

Figure 5.8: Text input assisted by an insertion cursor (Continues ...)

128

5.5. Insertion cursor

case ButtonRelease:
position = baseEvent.xbutton.x/charinc;
current = position;
if (position > end) {
position = end;
current = end;
}
XClearWindow (mydisplay, textWindow);
XCopyArea(mydisplay, cursor, textWindow, myGC, 0, 0, 6, 24,
position * charinc, 2);
XDrawString (mydisplay , textWindow, myGC, 0, 17, &data[0], end);
break;
case KeyPress:
count = XLookupString(&baseEvent.xkey, bytes, 3, &character, &cs);
switch (count) {

case O0: /* Control character */
break;

case 1: /* Printable character =/
switch (bytes[0]) {
case 8: /#* Backspace x/

current ——;
XClearWindow (mydisplay , textWindow);
XCopyArea(mydisplay, cursor, textWindow, myGC, 0, 0, 6, 24,
current * charinc, 2);
for (i=current; i<end; i++) data[i] = data[i+1];
end——;
XDrawString (mydisplay, textWindow, myGC, 0, 17,
&data[0], end);

if (current < 1) XBell(mydisplay, 50);
break;

case 13: /* Enter x*/
XBell (mydisplay, 50);
break;

default:
end ++;
for (i=end; i>current; i——) data[i] = data[i—1];
data[current] = bytes[0];
current++;
XClearWindow (mydisplay , textWindow);
XCopyArea(mydisplay, cursor, textWindow, myGC, 0, 0, 6, 24,

current x charinc, 2);

XDrawString (mydisplay, textWindow, myGC, 0, 17, &data[0], end);

}

break;

}
break;
}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseWindow);
XDestroyWindow (mydisplay, baseWindow);
XCloseDisplay (mydisplay);

Figure 5.8: Text input assisted by an insertion cursor

5.5. Insertion cursor

bitmap -size 6x24

This text input window was set to show 20 characters. So it's dimensions were 220 long by 24 high.
The pixmap created in this way was copied into the programs source code with the associated vari-
ables (width, height and bits having the prefix cursoricon_.

Because the cursor is constant in appearance, i.e. not blinking, another means needs to be found
so it stands out from the text which it marks. In this example that is done by colouring the foreground
of the pixamp red in colour, in contract to the black of the text input.

The program of Figure 5.8 has some, but limited, text editing capacity. A backspace charac-
ter from the keyboard deletes the character to the left of the insertion cursor, with all characters to
the right of that deleted shifting to the left to fill the space created. A corresponding behaviour is
implemented in the array data[] in which the keyboard entered characters are stored. The mouse
pointer can be used to set the placement of the insertion cursor in the sequence of characters which
have already been entered. If that pointer is beyond the length of the inserted text, then the cursor is
set to the end of the text. The placement is by position in the pointer cursor in the text input window
and then pressing any mouse button. Actually it is releasing that button which generates the event
which results in the position being set.

Points to note with respect to the code of Figure 5.8 are:

e In the program, the base window (baseWindow) was created with a standard white back-
ground. When the lightcyan colour became available, the XChangeWindowAttribute () li-
brary call was used to alter this background colour before it was brought to the screen. This
enables the base window to be created and be used before creating more application specific
colours.

o The keyboard key which generates each keypress event is translated by the XLookupString ()
library function call. The count of the number of bytes returned is used to determine if the key
corresponded to a standard character, or a special(control) type character. Different processing
followed from such determination.

e Than same event structure linked to the variable baseEvent is processed as a button press
using the xbutton member, and as a key press using the xkey member.

o The variables current and end are, respectively, the current position for inserting a charac-
ter, and the position of the last character. Both are indices of the storage array data. From
these variables, the position of a character in the input window in pixels can be calculated by
multiplying by the fixed size of each character (the variable charinc).

e The call to XCopyArea () to show the insertion cursor (cursor) uses myGC which has its fore-
ground and background set to black and white, respectively. However when put of the win-
dow, insertion cursor has a red foreground and a white background. These colours are set up
in the XCreatePixmapFromBitmapData () call which creates the cursor pixmap. In effect,
the myGC is a dummy (in the instance of copying a pixmap).

o When the cursor pixmap is copied to, or cleared from, the window, that action partially obliter-
ates the image of the character at that spot in the window. It is necessary to redraw the character
in that position.

o The 0 case in the switch statement of the count variable is meant to process non-printable key-
board characters, for example, the arrow keys.

o The string passed over as the sixth parameter in the XDrawString () Xlib function call is not
null terminated — the seventh (final) parameter is the number of characters being passed.

130

5.6. Moving between text input windows using keys

Figure 5.9 shows a screenshot of the program of Figure 5.8 in operation. Shown are the base
window and the single text window. Into the text window a single line of text with up to 20 characters
can be entered from the keyboard. The mouse pointer has just been used to position the insertion
cursor to be before the 7th character in the input character stream.

[#] Insertion Cursor

This 'iﬁt why jumping

Figure 5.9: Inputing text with an insertion cursor

5.5.1 Exercised
1. Modify the program of Figure 5.8 so the insertion cursor blinks.

2. Change the code of Figure 5.8 so as to label the text input window Text input:. Use two
different techniques to achieve this ends.

3. Increase the editing functionality of the program of Figure 5.8. Such functionality could be by
the use of the keyboard arrow keys to position the insertion cursor.

4. The program of Figure 5.8 uses a technique of clear window, edit stored characters and then
redraw of all characters and cursor for showing the character input. Implement a different
technique which achieves the same goal. Is this technique more efficient than the one used in
Figure 5.8? More efficient in what way?

5.6 Moving between text input windows using keys

Text entered from the keyboard is identified by the X server as belonging to the window on which
the pointer currently sits. This enables the client program to link the input received with the storage
where it wishes that input to be stored. Since most X Window (client) programs are composed of
multiple windows this linkage is to be expected. However, when keyboard entering into a succession
of windows, one after the other, physically moving the mouse pointer over the next keyboard entry
window can be irrigating. Setting up a program so the user can use the keyboard, in addition or as a
substitute to moving the mouse pointer, in the addressed in this section.

The fundamental is that the mouse pointer be over the window for it to receive the keyboard
entry. Physically moving the pointer by hand is the standard technique use to achieve that ends. But
it can also be done under program control by using the XWarpPointer () Xlib call. This function
relocates the pointer and its indicator (cursor) to the location specified by the parameters passed in
the call. The XWarpPointer () library function has a number of modes in which it can relocate the

131

5.6. Moving between text input windows using keys

pointer, which are governed by the parameters passed when the function is called. Moving between
text windows as used here is a useful application of that capacity.

As a demonstration of how to create such a situation, consider a background window on which
there is four text entry windows. Each entry window can store/display a single line of 20 characters.
Successive windows contain the date, time, subject, and message. These windows are arrange in a
ring so that the top window is followed by the second from the top, the second by the third, and
so on. The bottom window then is succeeded by the top window. Each text input window has
no editing capability, not even a backspace will delete an input error. This is done to simplify
the program. Further, pressing any mouse button has no effect on the behaviour of the program.
However, positioning the mouse pointer on one of the four text entry windows will result in the
next characters appearing at the end of the character sequence previously entered into that window.
Pressing an up arrow key will move subsequent keyboard characters to goto to the next input window
above the current. A down arrow key will shift the keyboard input to be directed to the window below
the current window. The up and down arrow keys in the primary and supplementary keyboard areas
are treated the same within the program.

(@] Text window switc...

ITuesday 28 June

|Boor'agoon WA

|Fr'1' ends

|Now is a goodkti

Figure 5.10: Four text window arranged in an input ring

Figure 5.10 is a screenshot of the program listed in Figure 5.11 in use. The point can be moved
manually and by the up and down arrow keys. If the mouse pointer is not located in one of the four
text boxes, the program ignores the character typed on the keyboard.

Note the following in the code of Figure 5.11:

e The array ring via its structural components contains all information relating to the four text
input windows. This information is the ID number of the window in which the text is input
and displayed, the array which stores the character input of the window, and the index of the
first free storage location in that array.

o The same font, and GC in particular, is used with each text input window.

o The pointer is moved to indicate the last character in the window indicated by the value of the
variable index used in conjunction with the ring array.

o Aside from the XWarpPointer () call, there is no explicit reference to the pointer.

o To assist with clarity, only KeyPress events are used, and no error checking following Xlib
calls is performed.

132

5.6. Moving between text input windows using keys

~
*

This program consists of a main window on which is placed four text input

and the message. Each window contains a single line of text 20 characters
in length. There is no editing facilities nor insertion cursor on any of

keyboard focus the next window above or below, respectively, for receiving
the next character from the keyboard. These four windows are connected to
form a ring.

Coded by: Ross Maloney
Date: June 2011

¥ X ¥ ¥ X ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib .h>
#include <X11/Xutil .h>
#include <X11/keysymdef.h>

i

{

nt main(int argc, char xargv)

Display xmydisplay;
Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;
GC mygc;
XGCValues myGCvalues;
XFontStruct xfontl;
char *window_name = "Text_window_switching";
char xicon_name = "Swt";
int screen_num, done, y, i, index, charinc, count;
unsigned long mymask;
char bytes[3];
KeySym character;
XComposeStatus cs;
struct | /* Input window ring structure =/
Window id;
int last;
char array[20];
) ring[4];

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/* 2. create a top—level window =x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat. background_pixel = WhitePixel (mydisplay, screen_num);

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 250, 270, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 5.11: Program using up and down arrow keys to switch key entry window (Continues ...

these windows. However, the up arrow and down arrow keyboard keys move the

windows. These windows are to hold the date, name of the receiver, subject,

133

5.6. Moving between text input windows using keys

/x 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources */
myGCvalues . background = WhitePixel (mydisplay, screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);
mymask = GCForeground | GCBackground;
mygc = XCreateGC (mydisplay, baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay,

"—b&h—lucidatypewriter —s—s«—x—s—14—s—sk—x—s—x—x");

XSetFont(mydisplay , mygc, fontl—>fid);
charinc = fontl—>per_char—>width;

/+* 5. create all the other windows needed */
y = 30;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
myat. event_mask = KeyPressMask;
for (i=0; i<4; i++) {
ring[i].id = XCreateWindow (mydisplay, baseWindow, 70, y, 20xcharinc, 20, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
ring[i].last = 0;
y += 60;
}

/* 6. select events for each window x/
/* 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

for (i=0; i<4; i++) XMapWindow(mydisplay, ring[i].id);

/* 8. enter the event loop =/
index = 0;
done = 0;
while (done == 0) {
XNextEvent(mydisplay, &baseEvent);
switch (baseEvent.type) {
case Expose:
break;
case KeyPress:
count = XLookupString(&baseEvent.xkey, bytes, 3, &character, &cs);

index = 0;
for (i=0; i<4; i++)
if (ring[i].id == baseEvent.xkey.window) index = i;

Figure 5.11: Program using up and down arrow keys to switch key entry window (Continues ...)

134

5.6. Moving between text input windows using keys

switch (count) {

case 0: /+ Control character =/
switch (character) {
case XK _Up: /* Up arrow key x/
case XK_KP_Up:
index ——;

if (index < 0) index = 3;
XWarpPointer (mydisplay, None, ring[index].id,
0, 0, 0, 0, ring[index].last*charinc, 10);
break;
case XK_Down: /* Down arrow key x/
case XK _KP_Down:
index++;
if (index > 3) index = 0;
XWarpPointer (mydisplay, None, ring[index].id,
0, 0, 0, 0, ring[index].lastxcharinc, 10);
break;
}
break;
case 1: /* Printable character x*/
ring[index].array[ring[index].last] = bytes[0];
XDrawString (mydisplay, ring[index].id, mygc,
ring[index]. last*charinc, 15, bytes, 1);
ring[index]. last++;
break;
}
break;
}
}

/* 9. «clean up before exiting =/
XUnmapWindow (mydisplay, baseWindow);
}

Figure 5.11: Program using up and down arrow keys to switch key entry window

o The variable mymask is reused and assigned different values for both creating the windows
and the GC.

o The identification number of the window in which the pointer is located when a character
receive event occurs is found in the window member of the key press event type xkey of the

XEvent structure to which the variable baseEvent is assigned (i.e. baseEvent . xkey .window).

e The only accumulates the characters which are typed in, but does not do anything with them,
so when the program is terminated the input is lost.

e The header file X11/keysymdef.h defines the constants XK_Up, XK_KP_Up, XK_Down,
XK_KP_Down, etc. associated with the representation of the arrow keys.

5.6.1 Exercises

1. Modify the program of Figure 5.11 so the Enter key on the keyboard is use to advance to the
next text window.

2. When the window of Figure 5.10 undergoes an exposure, the display of the contents of each
text window is lost. Modify the code of Figure 5.11 so the contents of each window is restored
to the way it was before the window was covered over.

135

5.7. A slider bar

5.7 Aslider bar

A slider bar is a means of interacting with a graphics program. It consists of a slider whose position
on the slider bed can be changed using the mouse. The position of the slider on the bed is read
by the program, and the interpretation of the meaning of that position is up to the program. This
mechanism is also known as a scroll bar. A slider bar operates through use of events. They are often
used in association with text as is the subject of Section 5.8, but they are a general element applicable
to wider usage.

The slider bar is composed of:

o a slider bed, which is usually a narrow window, in which the long dimension is taken as corre-
sponding to the range of values that can be produced by the slider bar; and

e a slider which is an indicator, adjustable in location by the mouse, which marks the value ob-
tained from the slider bar.

Calibrations marks could be added along the length of the slider bed if warranted to assist the user
of the slider bar.

Potentially a slider can be implemented as either a cursor, or as a window. A pattern, possibly in
the form of a bitmap (discussed in Section 4.3) can be used on each as decoration. For implementation
of the sslider bar, the following are needed:

o efficient drawing the slider in its transient positions;
o efficient redrawing of the screen the slider vacates;
e coordinates of the position of the slide on the slider bed; and

o the slider remains attached to the slider bed.

A cursor or window are possible implementation components for a slider bar. A cursor is imple-
mented as light-weight process by the X Window System and this suggests use as a slider. A cursor
follows the position of the mouse across the screen. By using a Mot ionNotify event, the position
of the cursor is available. The handling of drawing and redrawing of screen positions touched by
the transient placement of the cursor on the screen is done automatically by the server. This satisfies
the first three of the above implementation needs. However, it is difficult to contrain that pointer
to follow the slider bed thus satisfying the fourth need. Such contraint would also introduce loss of
utility of the mouse.

By contrast, a window can be constructed to move only within another window. In this case the
window implementing the slider is constrained under program control to remain inside the window
that implements the slider bed. The XMoveWindow () call provides a positioning mechanism for
moving the slider window to the position in the slider window indicated by the mouse pointer.

On the slider bar and slider windows three actions on the mouse are used. The slider is picked
up by clicking a button on the mouse, and released by stopping to press that button. These two
action are on the window the is the slider. Thus the window which implements the slider has linked
to it ButtonPress and ButtonRelease events. The third action is the movement of the mouse,
relative to the slider bed. The coordinates of the mouse pointer on that window is where the slider
window is to be moved. The movement of the mouse on the slider bed is obtained by linking it to a
MotionNotify event. The coordinates that are provided when a Mot ionNotify event is sent by
the X11 server contains the coordinate of the mouse pointer when that event was sent, relative to the

136

5.7. A slider bar

window linked to that event. This window is that of the slider bed. Those coordinates then can be
used in a XMoveWindow () call to reposition the window which represents the slider. But this is only
to occur as long as the mouse button is depressed. Thus pressing and releasing of the mouse button
needs to be stored and that store checked by the program before repositioning of the slider window.

The code of Figure 5.13 is built around three windows; the background window baseWindow,
the slider bed window sliderbedWindow, and the slider window sliderWindow. Each of these
windows has a different colour. The foregrounds of the baseWindow is constructed to be white,
that of the sliderbedWindow window as pale grey, and that of the sliderWindow window as
black. The way that the mouse interacts with these windows, and thus how the slider bar works, is
determined by linking of the mouse events to those three windows. This supports the claim on page
xxii of scheifler1988 that the X Window System “provides mechanism rather than policy”.

Figure 5.12 shows the slider generated by the code of Figure 5.13 as consisting of a vertical slider
bar contained in a window. Background colour of the three windows is chosen to give contrast.
White is used for the base window, pale grey for the slider window, and black for the window
representing the slider. No decoration is used on any window so as not to obscure the major elements
of the code.

Figure 5.12: A window containing a slider bar

To operate the slider, the left-hand mouse button is pressed when the mouse pointer is over the
slider. That mouse button is held depressed while moving the mouse which drags the slider to the
required position on the slider bed. That mouse button is released when the required slider position
is obtained. While the mouse drags the slider, the coordinates of the slider relative to the slider bed,
are printed on the terminal such as:

Moving to: x = 4 y = 12
Moving to: x = 4 y = 13
Moving to: x = 4 vy = 14
Moving to: x = 4 y = 15
Moving to: x = 4 y = 16
Moving to: x = 4 y = 17
Moving to: x = 4 y = 18
Moving to: x =5 y = 19
Moving to: x = 6 y = 20

When the program starts, the slider is positioned at the top extremity of the slider bed.

The ButtonPress and ButtonRelease event types are not used to implement the chosen
operating policy for the slider bar. The MotionNotify event type alone is used in the form of a

137

5.7. A slider bar

/+* A program which produces a window containing a vertical slider bar. The
* slider is picked up by clicking the left—hand mouse button over the slider.
* While that buttn is depressed the slider can be moved along the slider bed
% with the emd of the motion indicated by releasing that mouse button. The
* coordinates of the slider are printed on the terminal screen as the slider
* is moved.

3

* Coded by: Ross Maloney

* Date: February 2009

*/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, sliderWindow , sliderbedWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc,

XGCValues myGCvalues;
XFontStruct xfontl;

char *window_name = "Slider";

char *xicon_name = "Sb";

int screen_num , done;

unsigned long mymask;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);

myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.background_pixel = WhitePixel (mydisplay, screen_num);

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 200, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/x 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;

XSetWMHints (mydisplay , baseWindow, &wmhints);

Figure 5.13: A program that produces and uses a slider bar (Continues...)

138

5.7. A slider bar

XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources */

/% 5. create all the other windows needed x/

myat.background_pixel = 0xd3d3d3;

myat.event_mask = ExposureMask | ButtonlMotionMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderbedWindow = XCreateWindow (mydisplay, baseWindow, 90, 30, 11, 140, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.background_pixel = BlackPixel (mydisplay, screen_num);

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderWindow = XCreateWindow (mydisplay, sliderbedWindow, 1, 0, 7, 14, 1,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 6. select events for each window x/
/* 7. map the windows s/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , sliderbedWindow);

XMapWindow (mydisplay, sliderWindow);

/* 8. enter the event loop x/
done = 0;
while (done ==) |
XNextEvent(mydisplay, &baseEvent);
switch (baseEvent.type) {
case Expose:
break;
case ButtonPress:
break;
case ButtonRelease:
break;
case MotionNotify:
printf ("Moving to: x = %d y = %d\n",
baseEvent.xmotion.x, baseEvent.xmotion.y);
XMoveWindow (mydisplay, sliderWindow, 1, baseEvent.xmotion.y — 7);
break;
}
}

Figure 5.13: A program that produces and uses a slider bar (Continues ...)

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseWindow);
XUnmapWindow (mydisplay, sliderbedWindow);
XUnmapWindow (mydisplay, sliderWindow);

Figure 5.13: A program that produces and uses a slider bar

139

5.8. Scrolling text

ButtonlMotionMask event member which is linked to the sliderbedWindow window that im-
plements the slider bed in the code of Figure 5.13. That event member occurs when the mouse pointer

is moved while the left-hand mouse button is depressed. That event member is not linked to the
slider window. So, if the mouse if clicked and move while above the slider, the ButtonlMot ionMask
event propogates to the s1iderbedWindow. Thus, although the mouse is positioned over the slider,
the event is recceived by the slider bed window, not the slider. The coordinates that accompany that
event message are relative to the sliderbedWindow. A XMoveWindow () call is then used to move
the slider window to those coordinates, using the vertical coordinate alone.

The mode of operation of the slider bar is a property of how it is coded. In this implemen-
tation, if the mouse is positioned over a portion of the slider bar not covered by the slider, the
ButtonlMotionMask event member again is received by the sliderbarWindow and the same
program behaviour is obtained. Also, the centre of the slider window is used as the alignment point
and this results in half of it disappearing at the extremity of the slide bar. This behaviour is different
to what is obtained using, at least some, slider bars available in X11 toolkits.

5.7.1 Exercises

1. Modify the program of Figure 5.13 so that the slider operates vertically but the top-left hand
corner of the slider bed is at pixel coordinate (10,20) of the base window.

2. Change the alignment point of the slider bar from its centre to other points. What is the result
of this change?

3. The slider in Figure 5.12 could be made to be wider than the slider bed. Would that cause
complication in the code of Figure 5.13? Prove your answer with working code.

4. Modify the program of Figure 5.13 so that the slider operates horizontally.

5. Change the mode of operation of the slider bar in the Figure 5.13 code so that a clicking the
mouse on the slider bed above or below the slider moves the slider towards the mouse pointer
by a set movement increment.

6. When the slider in Figure 5.12 is moved, it’s previous position no longer appears on the display.
What causes this to occur?

5.8 Scrolling text

The term scrolling is used to describe the process of moving a window over an object larger than the
window so that the full capacity of the window is used to view a portion of the object. Since only a
portion of the object is visible through the window, natural questions that such a window needs to
include are:

e what proportion of the object is visible in the window;
e how far from the start of the object is the window positioned; and

e how far from the end of the object is the window positioned.

A visual answer to these questions is provided by a scroll bar. Such a scroll bar is located adjacent to
the window which shows the visible part of the object. The scroll bar itself is a slider bar as described
in Section 5.7 but with it’s coordinate output applied to adjustment of the positioning of a window
for viewing an object which is too large to fit into the window. In this Section that object is text.

140

5.8. Scrolling text

The problem is how to align the viewing window with the object. This situation occurs in stan-
dard text output programs. Say a text window 10 characters wide is to be used to move across a
single line of text such that only the characters under that window are shown. The line of text is held
in a single dimensional array. Showing the text that appears in the window is by printing 10 charac-
ters from that text array starting from an offset. Positioning of the window on the text corresponds
to changing the value of the offset. Everything here is centred around the character, which is the unit
of alignment.

In pixel-map graphics as used by X11, the pixel is the alignment unit. From Section 5.7, the output
from a slider bar is coordinates, in units of pixels. To use the slider bar, the positioning of the window
should be done in units of pixels. When X11 draws a string of text using a font the result is a pixel
map that represents that drawing. That pattern is created on a drawable, which can be either a screen
window or an off-screen pixmap. This off-screen pixmap is measured and accessed in units of pixels
and can be moved to a screen, in whole or part, as required. So an XDrawString () call can be
used to create the pixmap of the text of interest in an off-screen pixmap, and a XCopyArea () call
to move the part corresponding to under the viewing window to the screen. In this arrangement,
the creation of the off-screen pixmap occurs once for all scrolled viewings. The positioning of the
viewing window uses the coordinates coming from the slider bar.

Most, but not all, Xlib drawing calls can write into either a window or a pixmap. These are
called drawables. Once a window has been mapped onto the screen using a XMapWindow () call,
all susbsequent drawing calls that reference that window produce their effect on the screen in that
mapped window. By contrast, drawing into a pixmap is not visible. It can be made visible by copying
the contents of that pixmap, or part of it, to a window. A nominated rectangle of the pixmap can be
copied to the desired position in a window.

The pixmap, which is of type Pixmap, is created using a XCreatePixmap () call. That pixmap
is created in the X11 server’s memory. Before it is used, it is recommended that it be cleared of
that memory’s residual content by using a XFillRectangle () call (a XClearArea () call only
clears areas of a window, not a pixmap). That pixmap can then be used for drawing operations, for
example to draw text using a XDrawImageString (). A portion of that pixmap can then be copied
to a window using a XCopyArea () call. In the context of scrolling, the size of the area copied from
the pixmap corresponds to the size of the viewing window. The starting location is adjusted by using
the coordinates from the slider (scroll) bar.

The XCopyArea () call is applied as a result of an exposure event. When the slider is moved,
the exposure of part of the slider bed window changes, and that generates an exposure event. The
XCopyArea () requires the coordinate of the pixmap to move to the viewing window. The raw
coordinate values from which this is obtained is part of the But t on1Mot ionMask event component.
This value (or the appropriate value computed from it) is used in the XCopyArea () call.

5.8.1 Scrolling horizontally

If a line of text is too long to be displayed in a window, that text can be moved, or scrolled, through
the viewing window under the control of the program’s user. This is not directly supported by Xlib
although all X11 toolkits do provide this support. However, it can be achieved using what Xlib does
provide and those components can be used to implement scrolling of more general graphic objects.
Scrolling of text can be more difficult than such general objects since knowledge of fonts used in the
text is required. Horizontal scrolling of text is simpler than vertical scrolling of text.

A program which implements horizontal scrolling of text is given in Figure 5.14. This program
builds upon the code of Figure 5.7. Differences introduced into this code includes the following;:

o A more general means of handling colour via the XColor structure is used;

141

5.8. Scrolling text

/+ A program to scroll a line of text horizontally.

* is done to view portions of the line which is too long to fit into the
* viewing window. A slider is used to move the viewing window along the
* of text to bring the required continuous section of text into view.

3

* Coded by: Ross Maloney

* Date: February 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil .h>
#include <string.h>

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow, textWindow, sliderWindow,
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc;

XGCValues myGCvalues;
XFontStruct xfontl;

XColor white, black, grey;
Pixmap buffer;

char sxwindow_name = "Hscroll";

char *xicon_name = "Hs";

char xtextline = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" ;

int screen_num, done, Xx;
unsigned long mymask;

/* 1. open connection to the server =/

mydisplay = XOpenDisplay("");

[x 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
black. pixel BlackPixel (mydisplay, screen_num);
white. pixel = WhitePixel (mydisplay, screen_num);
grey.pixel = 0xd3d3d3;
myat.border_pixel = black.pixel;
myat.background_pixel = white. pixel;
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),

100, 100, 200, 200, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,

This

sliderbedWindow ;

DefaultVisual (mydisplay, screen_num),

mymask, &myat);

Figure 5.14: A program to scroll a line of text horizontally (Continues ...)

line

142

5.8. Scrolling text

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources x/
myGCvalues. background = white. pixel;
myGCvalues. foreground = black. pixel;
mymask = GCForeground | GCBackground;
mygc = XCreateGC(mydisplay, baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay,
"—adobe—times—bold—r—normal ——0-0-0—0—p—0-is08859 —1");

/* 5. create all the other windows needed x/

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

myat.background_pixel = black.pixel;

textWindow = XCreateWindow (mydisplay, baseWindow, 30, 40, 140, 26, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.background_pixel = grey.pixel;

myat.event_mask = ExposureMask | ButtonlMotionMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderbedWindow = XCreateWindow (mydisplay, baseWindow, 30, 80, 140, 11, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.background_pixel = black.pixel;

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderWindow = XCreateWindow (mydisplay, sliderbedWindow, 0, 1, 14, 7, 1,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

buffer = XCreatePixmap (mydisplay, baseWindow, 1000, 26,

DefaultDepth (mydisplay, screen_num));
XFillRectangle (mydisplay, buffer, mygc,
0, 0, 1000, 26);
XDrawlImageString (mydisplay, buffer, mygc,
0, 20, textline, strlen(textline));

/* 6. select events for each window x/
/* 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindow);

XMapWindow (mydisplay, sliderbedWindow);

XMapWindow (mydisplay , sliderWindow);

Figure 5.14: A program to scroll a line of text horizontally (Continues ...)

143

5.8. Scrolling text

/x 8. enter the event loop x/

done = 0;
while (done == 0) {

XNextEvent(mydisplay, &baseEvent);
switch (baseEvent.type) |{
case Expose:
XCopyArea(mydisplay , buffer, textWindow, mygc, x, 0,
140, 20, 0, 0);
break;
case ButtonPress:
break;
case ButtonRelease:
break;
case MotionNotify:
XMoveWindow (mydisplay, sliderWindow , baseEvent.xmotion.x—7, 1);
x = baseEvent.xmotion.x;
break;
}

/* 9. «clean up before exiting x/

XUnmapWindow (mydisplay , baseWindow);

Figure 5.14: A program to scroll a line of text horizontally

A slide bar, similar to that of Figure 5.12, is positioned horizontally below the text window;

In the Figure 5.7 code, the font encased text string is written into the t extWindow “drawable”,
which is of type Window. In the code of Figure 5.14 that string is written into the buffer
variable, which is a “drawable” of type Pixmap. The contents of buf fer do not appear on the
screen;

The pixmap buffer is created in the same part of the program where the text window, slider,
and slider bed windows occurs;

The contents of the pixmap buffer is set to an initial condition using a XFillRectangle ()
call;

Scrolling of the text results from processing exposure events;

The starting position of the text string in the textWindow is done by assigning a value to the
positioning variable x.

Coupling of the scroll bar and the scrolling occurs through the processing of events; the Exposure
part handles the scrolling while the Mot ionNotify handles changes to the position of the scroll
bar. No attempt is made in the code of Figure 5.14 to ensure that the scroll bar is able to address all
characters of the text so that all can pass through the viewing window.

Figure 5.15 shows the code of Figure 5.14 in use. Notice that the two characters shown in the text

window can be cut vertically through the character, this depending on the position of the scroll bar.
All characters contained in the text cannot be scrolled through the viewing window.

144

5.8. Scrolling text

[@] Hscroll

Figure 5.15: Horizontal scrolling a line of text with a scrol bar

5.8.2 Scrolling vertically

Two forms of vertical scrolling of text can be used; one in which the pixels forming the text’s characters
are moved vertically through the viewing window, and the other where the lines of text are moved
vertically through the window. The first of these forms is similar to that shown above for scrolling
a horizontal line of text. This is characterised by the chance of a partial line of text appearing at the
top or bottom of the viewing window. In the second, a full line of text is added and removed from
opposite ends of the viewing window. This technique is characterised by the scrolling by full lines of
text. It is the technique used here.

Code to implement vertical text scrolling is contained in Figure 5.16. It uses a vertical slider bar
similar to that in the code of Figure 5.13, laid on the right of the text viewing window textWindow.
The font used to draw the text was known when the dimensions of the viewing window was selected.
The height of that window was selected to accommodate five lines of text, but the 140 pixel width
selected was too small to view the whole line of each line of text that is held in the program is
the array lines. Figure 5.17 shows the truncation of those longer lines and the appearance in the
window of lines shorter than the window’s width. The text viewing window background is in black
and the background of each text line is drawn with a white background. The unequal amount of
black background at the top and bottom of the viewing window indicates and error in the selection
of that window’s height for containing five lines of text.

Figure 5.17 shows a result of executing the code of Figure 5.16. As in the code of Figure 5.14 the
font used has an ascent of 14, and a descent 6, giving a line height of 20 pixels. The height of the text
viewing window textWindow was assigned a value of 100 pixels so as to accommodate five lines
of such text. The height of the slider bed window sliderbedWindow of the scroll bed was set at
130 pixels. The nine lines of text processed by the program are set in the array 1ines, one line per
array entry. Each of those lines of text are displayed in the text viewing window through the pixmap
buffer.

Scrolling is implemented by positioning of the slider in the scroll bar. In contrast to the code of
Figure 5.14 where the position of the slider could be used directly, here that position value needs to
be transformed. When the program starts, the viewing window shows the text stored in elements 0
to 4 of array 1ines [] and the scroll bar is at the top of the scroll bar. When the slider is moved, it’s
position (y) is converted to a text line index and that index is used to remove one line of text from
the top and bottom of the buffer pixmap. When the slider is moved to a position that the next line

145

5.8. Scrolling text

/* This program scrolls vertically through a passage of text. A vertical

% scroll bar is used to control the position of the viewing window, bringing
% in and removing a line of text as the viewing window is scrolled past each
* line of text.

3

* Coded by: Ross Maloney

* Date: February 2009

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseWindow , textWindow , sliderWindow , sliderbedWindow;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;

GC mygc;

XGCValues myGCvalues;
XFontStruct xfontl;

XColor white, black, grey;
Pixmap buffer;

char x*window_name = "Vscroll";

char xicon_name = "Vs";

static char xlines[9] = {"Mary_had_a_little _lamb",
"Her_father_shot_it_dead",
"Now_Mary, takes the _lamb _to_school",
"Between_two_hunks_of bread",
"Now_Mary,_ is_a_very_wise_girl"
"And_keeps_her _own _counsel well",
"She_never tells",
"That_at_home_there_is _lamb_stew",
"And _fleece_on_the_floor_as_well"};

int screen_num, done, i, y, newEnd, oldEnd;

unsigned long mymask;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

[+ 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);

black.pixel = BlackPixel(mydisplay, screen_num);

white. pixel = WhitePixel (mydisplay, screen_num);

grey.pixel = 0xd3d3d3;

myat.border_pixel = black.pixel;

myat. background_pixel = white. pixel;

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 200, 200, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 5.16: A program to vertically scroll a fixed portion of text (Continues ...)

146

5.8. Scrolling text

/x 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/% 4. establish window resources */
myGCvalues. background = white. pixel;
myGCvalues . foreground = black. pixel;
mymask = GCForeground | GCBackground;
myge = XCreateGC (mydisplay, baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay,
"—adobe—times—bold—r—normal ——0—-0—-0—-0—p—0-is08859 —1");

/% 5. create all the other windows needed x/

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

myat. background_pixel = black. pixel;

textWindow = XCreateWindow (mydisplay, baseWindow, 10, 20, 140, 100, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.background_pixel = grey.pixel;

myat.event_mask = ExposureMask | ButtonlMotionMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderbedWindow = XCreateWindow (mydisplay, baseWindow, 160, 20, 11, 130, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

myat.background_pixel = black. pixel;

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

sliderWindow = XCreateWindow (mydisplay, sliderbedWindow, 1, 0, 7, 14, 1,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

buffer = XCreatePixmap (mydisplay, baseWindow, 2000, 100,

DefaultDepth (mydisplay, screen_num));
XFillRectangle (mydisplay, buffer, mygc, 0, 0, 2000, 100);

XDrawlmageString (mydisplay, buffer, mygc, 0, 14, lines[0], strlen(lines[0]));

for (i=1; i<5; i++) |
XDrawlImageString (mydisplay , buffer , mygc,
0, 14 + 20xi, lines[i], strlen(lines[i]));
}
oldEnd
newEnd

4;
4;

/¥ 6. select events for each window =/

Figure 5.16: A program to vertically scroll a fixed portion of text (Continues ...)

147

5.8. Scrolling text

I 7. map the windows x/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , textWindow);
XMapWindow (mydisplay , sliderbedWindow);
XMapWindow (mydisplay , sliderWindow);

/x 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent(mydisplay, &baseEvent);
switch (baseEvent.type) |{
case Expose:
if (newEnd == oldEnd) {
XCopyArea(mydisplay, buffer, textWindow, mygc, 0, O,
2000, 110, 0, 0);
}
if (newEnd > oldEnd) {
for (i=0; i<5; i++) {
XCopyArea(mydisplay, buffer, buffer, mygc, 0, 20%(i+1),
2000, 20, 0, 20xi);
}
XFillRectangle (mydisplay, buffer, mygc, 0, 80, 2000, 20);
XDrawlImageString (mydisplay , buffer , mygc,
0, 94, lines[newEnd], strlen(lines[newEnd]));
XCopyArea(mydisplay, buffer, textWindow, mygc, 0, 80,
2000, 20, 0, 80);
oldEnd = newEnd;
}
if (newEnd < oldEnd) {
for (i=4; i>0; i—) {
XCopyArea(mydisplay, buffer, buffer, mygc, 0, 20%(i—-1),
2000, 20, 0, 20xi);
}
XFillRectangle (mydisplay, buffer, mygc, 0, 0, 2000, 20);
XDrawlImageString (mydisplay , buffer , mygc,
0, 14, lines[newEnd—4], strlen(lines[newEnd—4]));
XCopyArea(mydisplay, buffer, textWindow, mygc, 0, O,
2000, 20, 0, 0);
oldEnd = newEnd;
}
break;
case ButtonPress:
break;
case ButtonRelease:
break;
case MotionNotify:
XMoveWindow (mydisplay, sliderWindow, 1, baseEvent.xmotion.y—7);
y = baseEvent.xmotion.y;
newEnd = 4 + (y + 7)/40;
break;
}
}

/+ 9. «clean up before exiting =/
XUnmapWindow (mydisplay, baseWindow);
}

Figure 5.16: A program to vertically scroll a fixed portion of text

148

5.8. Scrolling text

should be displayed, text lines 1 to 5 of array 1ines [] are mapped into buf fer. Here the scroll bar
bed of 130 pixels length is meant to enable movement of 4 lines of text. When the slider moves 30
pixels, a new line of text is moved into, and out from the pixmap buffer and then the text viewing
window textWindow. This scroll bar movement increments the index newEnd recording the last
line of text contained in 1ines [] now shown on the viewing window. Handling of lines of text in
the pixmap buffer is done by comparing the newEnd to it’s previous value held in c1dEnd. Only
if the values in newEnd and o01dEnd are different is processing of the pixmap performed.

ow Mary takes the lamb
Between two hunks of br

Ehe never tells
hat at home there is 1

Figure 5.17: Vertical scrolling lines of text

The code of Figure 5.16 fills the viewing window with the first five lines that are available for
viewing. After that, all scroll processing is triggered by the Exposure event generated by moving
the scroll bar.

5.8.3 Exercises

1.

Modify the program of Figure 5.14 so that the scroll bar prints on the terminal the percentage
position of the slider along the slide bed. Remove the link with the text string used in the
program.

Modify the program of Figure 5.16 so that vertical scrolling moves the pixels that encode each
line of text are scrolled through the viewing window.

Describe three techniques for implementing vertical scrolling of text from the standpoint of the
pixmap (or pixmaps) that would be involved in each.

Implement horizontal scrolling in the program of Figure 5.16 to that the end of the longer lines
text become visible.

In the code of Figure 5.16, explain the choice of values that are used in transforming the coor-
dinate values obtained from the slider.

The manner of moving lines of text in and out of the pixmap in the code of Figure 5.16 is limited.
What is that limitation? Modify the code so that multiple lines of text move in and out of the
pixmap.

. Modify the program of Figure 5.16 to use a different font.

149

5.9. Contents Summary

5.9 Contents Summary

Text remains an important source of input and output in modern computer programs. A graphical
system such as X11 supports such operations. Text characters entered from a keyboard or taken from
a disk file are drawn on the display by the X server. By choosing different font styles and sizes, the
same characters can be made to appear differently on the windows on a screen. How to achieve that
using the services provided by Xlib has been the underlying theme of this chapter.

This chapter assumes that creating windows, and the handling of events linked to such windows,
is known. These are the foundation stores. Handling of keyboard input is shown to be two separate
processes. One of those processes is to get and interpret the meaning of a key pressed. The other
is to provide a visual feedback of the key sroke to the screen. Control of that visual feedback is by
choosing a font to use Finding which font styles and in which sizes they are available on a particular
X11 server by using a user program is demonstrated. Finally scroll bars are introduced and built
up from windows and events as component parts. They are shown as both a general means of
interacting with a program and as a means for controlling the scrolling of text.

150

Chapter6
Classic drawing

Drawing pictures is arguably one of the most important application of computer graphics. A graph
shows data in a pictorial manner. Computers can be used both to produce data together with gen-
erating a pictorial representation — a visualisation — of that data, and a graph is a relatively simple
pictorial representation. But Xlib does not even support the drawing of graphs. But it does have
facility to put on the screen lines of different types, and fill areas with colour, together with means
supporting interaction between the computer user and those lines and areas. Such components are
simple. An outcome of this is that they provide flexibility for creating pictures but at the cost of more
programming effort and required knowledge. In this chapter illustrations of those aspects of Xlib
will be given by simple examples.

The drawing done here uses the concepts and handling methods for a window, pixmap, graphics
context (GC), and colour that have been used in previous chapters. Display of text is also drawing
and it uses those same elements.

Because data is central to drawing, a different means of approach is warranted. Drawings should
be done on a pixmap and that pixmap mapped to a window. Drawing done in a pixmap remains, but
if a window becomes hidden and then exposed, the window needs to be redrawn by the program.
This may not be possible when a drawing is builtup incremental, in which case re-running of the
program would be requiried, if that was possible to obtain the same data. The difficulty is that a
pixmap is not visible until it is mapped with that drawing to a window. By contrast, when drawing
directly on a window the drawing becomes visible immediately.

Drawing on a window by going through a pixmap is less intuative than by direct use of a window.
This is the reason for positioning the contents of this chapter after that of previous chapters.

6.1 Limit on multiple objects in a request

A single graphic drawing call requests the creation of single or multiple visual objects on the screen.
In X, those objects are a point, a line, a polygon, and an arc. For example, a XDrawRectangle ()
call requests the drawing of a single object, in this case a rectangle defined by the height and width
supplied with the call. But a XDrawRectangles () call requests drawing of multiple rectangles
whose heights and widths are defined in an array that is passed in the call. The server used to
perform those drawings limits the number of objects that can be drawn using one call.

If the client server knows the limitation of the drawing server, it can divide a user’s program
request for drawing of multiple visual objects into multiple X protocol requests which together
have the same result as the user program’s request. However, in the case of XDrawArcs () and
XDrawLines () calls, breaking of the request would influence how the line segments are joined to-

151

6.1. Limit on multiple objects in a request

gether, and with a XFillPolygon () call the inside of the polygon would become ill-defined. If
the user program knows the limitation of the drawing server being used then steps can be taken to
avoid the use of multiple protocol requests. The program of Figure 6.1 illustrates obtaining the server
protocol request limitation.

/* This program prints the display request limitation of the current X server.
*

*

Coded by: Ross Maloney
* Date: March 2009
%/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xcarv)

{
Display xmydisplay;
long size;

/+ 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/

/x 3. give the Window Manager hints =/

/¥ 4. establish window resources =/

/* 5. «create all the other windows needed =/
/¥ 6. select events for each window =/

/% 7. map the windows x/

/+ 8. enter the event loop =/
size = XMaxRequestSize (mydisplay);
printf ("Single_protocol_size _limit_= %d\n", size);
size —= 3;
printf ("Upper_limits:\n");
printf ("__points__ < %d\n", size);

printf("__lines < Yd\n", size/2);

[ENTRRTENTIN R i}

printf (" __arcs < Y%d\n", size/3);

[ENTENTESTRITIN D

printf ("__polygons_< %d\n", size+1);

/¥ 9. clean up before exiting =/
XCloseDisplay (mydisplay);

Figure 6.1: A program to print drawing limits of display server

The maximum size of a server request is obtained by the XMapRequestSize () call and the value
obtained is in units of four bytes. The X protocol guarantees that this value will be greater than 4096
units. From this request maximum, the maximum number of points, lines, arcs, and polygons that
can be include in a single request can be cakculated. Running of the program code in Figure 6.1 gave
the results:

Single protoocol size limit = 65535
Upper drawing limits:

points < 65532

lines < 32766

arcs < 21844

polygons < 65533

152

6.2. Drawing lines, circles, and a coloured-in square

None of these values appear to be a great limitation. Similar limits also apply to text strings that can
be drawn using the one call, with that limit determined by the length of the string.

6.2 Drawing lines, circles, and a coloured-in square

Xlib includes calls to draw points, straight lines, rectangles, polygons, and arcs. There are also calls
that draw rectangles, and closed polygons and arcs with colour. There are no calls to draw spline
lines. With those available calls, complex pictures can be built on a window with enhancements of
those component parts by setting properties in the graphics context (GC) used with each component.
Circles and ellipse are drawn as specific cases of arcs. A square is a particular case of a rectangle,
but the rectangle itself is a particular case of a polygon. However, rectangles occur so frequently in
drawing and their definitions is simpler than that of a polygon to warrant separate rectangle related
calls.

[@] Tarplate [@ Tarplate

(a) original (b) re-exposed

Figure 6.2: A target plate in a window

Figure 6.2 is an example of creating a compound picture from parts. It is composed of two
squares, two lines, and a circle. The resulting picture represents a target place for drawing atten-
tion towards it’s centre as opposed to the centre of the background window. One square is drawn in
blue with the other in pink. Two different styles of lines are used; one for the circle and the vertical
line, and a dashed line for the horizontal. Those lines are drawn in black and red. The assemblage is
drawn on a background window having a white background. Figure 6.3 contains the code used to
produce the picture of Figure 6.2.

Aspects of the code in Figure 6.3 are worth noting. It is necessary to draw the pick square as
a polygon for the XFillRectangle () call only draws a rectangle horizontally and there is no
means of rotating the resulting figure. Only one GC (baseGC) is used and the colour of the fore-
ground, the line thickness, and line style is changed before it is used to draw each object. The
XSetForeground () and XSetLineAttributes () calls are used to achieve those respective changes.
A line thickness of 0 as used in the final XSetLineAttribute () call to use the fastest line drawing
algorithm available in the server to draw a line one pixel in thickness. The absolute technique of
specifying coordinates of the square drawn with the XFillPolygon () is used as opposed to the
relative addressing technique. Also the automatic polygon closure feature of that call is used. All

153

6.2. Drawing lines, circles, and a coloured-in square

~
*

square, and
The squares
solid while
line. This
window .

Coded by:
Date:

¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥

*
~

This program draws a target plate consisting of a square containing a square
which is standing on its corners, extended diagonal lines of the inner

a circle centred at the intersection of those diagonal lines.
are filled in pink and pale blue colour, one diagonal line is
the other is dotted, and the circle is a solid red coloured

picture is drawned directly on its containing white coloured

Ross Maloney
March 2009

#include <X11/Xlib .h>
#include <X11/Xutil.h>

int main(int argc, char xargv)

{

Display xmydisplay;
XSetWindowAttributes baseat;

Window baseW ;

XSizeHints wmsize ;

XWMHints wmbhints ;

XTextProperty windowName, iconName;

XEvent myevent;

GC baseGC;

XGCValues myGCValues;

XColor pink, blue, red, black, white;
XPoint corners[] = {{140,60},{230,150},{140,240}, {50,150}};
char xwindow_name = "Tarplate";

char xicon_name = "Tp";

int screen_num, done;

unsigned long

valuemask;

/+ 1. open connection to the server =/

mydisplay = XOpenDisplay("");

screen_num =
black.pixel =
white . pixel =

I+ 2. create a top—level window x/
DefaultScreen (mydisplay);

BlackPixel (mydisplay, screen_num);
WhitePixel (mydisplay, screen_num);

red. pixel = 0xff0000;

pink. pixel =
blue. pixel =

Oxffb6cl;
Oxacc8eb6;

baseat.background_pixel = white. pixel;

baseat.border_pixel = black.pixel;

baseat.event_mask = ExposureMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),

100, 100, 300, 300, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),

valuemask , &baseat);

Figure 6.3: A program to draw a target plate (Continues...)

154

6.2. Drawing lines, circles, and a coloured-in square

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x*/
valuemask = GCForeground | GCBackground;
myGCValues . background = white. pixel;
myGCValues. foreground = blue. pixel;
baseGC = XCreateGC (mydisplay, baseW, valuemask, &myGCValues);

/* 5. create all the other windows needed x/
/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop x/
done = 0;
while (done ==)
XNextEvent(mydisplay , &myevent);
switch (myevent. type) {
case Expose:

XFillRectangle (mydisplay, baseW, baseGC, 50, 60, 180, 180);

XSetForeground (mydisplay , baseGC, pink.pixel);
XFillPolygon (mydisplay, baseW, baseGC,
corners , 4, Convex, CoordModeOrigin);

XSetForeground (mydisplay , baseGC, black.pixel);
XDrawLine (mydisplay, baseW, baseGC, 140, 30, 140, 270);
XSetLineAttributes (mydisplay, baseGC,

2, LineOnOffDash, CapButt, JoinMiter);
XDrawLine (mydisplay, baseW, baseGC, 20, 150, 260, 150);
XSetForeground (mydisplay , baseGC, red.pixel);
XSetLineAttributes (mydisplay, baseGC,

0, LineSolid, CapButt, JoinMiter);

XDrawArc(mydisplay , baseW, baseGC, 95, 105, 90, 90, 0, 360x64);

break;

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

Figure 6.3: A program to draw a target plate

155

6.3. A symbol composed from circle parts

drawing is done in the exposure clause of the event loop.

Note the order in which the components are drawn because overlapping components overwrite
and thus hide what they overlay. Since the drawing is done on a background window, that window
is created first. The blue square plate needs to be drawn first, after the background window has been
created. Only to it is drawn the pink square before the straight lines and the circle.

Figure 6.2b shows the original picture in Figure 6.2a after it had being covered by another win-
dow on the screen and then re-exposed. The picture is both constructed and reconstructed in the
expose clause of the event loop. However changes which are introduced into the GC during that
construction are retained across exposure events. Thus the initial condition of the GC which pro-
duced the original picture is different in subsequent entries to the exposure clause. A way around
this problem is to set the GC to a know configuration within the expose clause before any drawing is
performed. In the situation of this code that is possible but in other situations it may be impossible or
inappropriate for this to be done. This shows the wisdom in using a pixmap for creating a drawing
and then placing that pixmap onto a window as the result of an exposure event.

6.2.1 Exercises
1. Change the code of Figure 6.3 so that a containing triangle is used in place of the square.

2. Modify the code of Figure 6.3 so that the exposure event problem depicted in Figure 6.2 does
not occur. There are at least two approaches to the solution.

3. Asnoted above, the manner of specifying colour in the code of Figure 6.3 is not robust. Modify
the code to improve the robustness of colour assignment.

6.3 A symbol composed from circle parts

On page 5-6 of smith(1990) the Tao (or Tai-Chi) symbol is constructed using Postscript program-
ming and is claimed to be a good test of the functionality of a Postscript interpreter. Experience has
shown that drawing this symbol provides a good test for a X Window System implementation and
associated screen.

Figure 6.4: A window containing the tao symbol

156

6.3. A symbol composed from circle parts

/% This program draws the Tao (or Tai—Chi) symbol in black on a 300 by 300

* white window.

*

* Coded by: Ross
* Date: Marc
*/

#include <X11/Xlib.
#include <X11/Xutil

int main(int argc,

{

The symbol is composed of 3 semicircles, and 3 full circles.
Maloney

h 2009

h>

.h>

char xargv)

Display xmydisplay;
XSetWindowAttributes baseat;
Window baseW ;

XSizeHints wmsize ;

XWMHints wmbhints;
XTextProperty windowName, iconName;
XEvent myevent;

GC gcl, ge2;
XGCValues myGCValues;
XColor black , white;
Pixmap pad;

char *window_name = "Tao";

char xicon_name = "Ta";

int screen_num , done;
unsigned long valuemask;

[+ 1

. open connection to the server =/

mydisplay = XOpenDisplay("");

/+ 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);

black.pixel = Bla
white. pixel = Wh

ckPixel (mydisplay, screen_num);
itePixel (mydisplay, screen_num);

baseat.background_pixel = white. pixel;
baseat.border_pixel = black.pixel;

baseat.event_mask
valuemask = CWBa

= ExposureMask;
ckPixel | CWBorderPixel | CWEventMask;

baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),

/% 3

100, 100, 300, 300, 2,

DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),

valuemask, &baseat);

. give the Window Manager hints =/

wmsize. flags = USPosition | USSize;

XSetWMNormalHints
wmhints. initial_s

(mydisplay , baseW, &wmsize);
tate = NormalState;

wmbhints. flags = StateHint;

XSetWMHints (mydis

play, baseW, &wmbhints);

XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay, baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

Figure 6.5: A program wwhich draws the tao symbol (Continues ...)

157

6.3. A symbol composed from circle parts

/* 4. establish window resources */
valuemask = GCForeground | GCBackground;
myGCValues . background = white. pixel;
myGCValues. foreground = black. pixel;
gcl = XCreateGC (mydisplay, baseW, valuemask, &myGCValues);
myGCValues . background = black. pixel;
myGCValues. foreground = white. pixel;
gc2 = XCreateGC (mydisplay, baseW, valuemask, &myGCValues);

/* 5. create all the other windows needed x/

pad = XCreatePixmap (mydisplay, baseW, 300, 300,
DefaultDepth (mydisplay, screen_num));

XFillRectangle (mydisplay, pad, gc2, 0, 0, 300, 300),
XFillArc (mydisplay, pad, gcl, 30, 30, 240, 240, 9064, 180x64);
XFillArc (mydisplay, pad, gcl, 90, 150, 120, 120, 270%64, 180x64);
XFillArc (mydisplay, pad, gc2, 90, 30, 120, 120, 90x64, 180x64);
XFillArc (mydisplay, pad, gc2, 140, 200, 20, 20, 0, 360x64);
XFillArc (mydisplay, pad, gcl, 140, 80, 20, 20, 0, 360x64);
XDrawArc(mydisplay , pad, gcl, 30, 30, 240, 240, 0, 360x64);

/* 6. select events for each window x/
/% 7. map the windows x/
XMapWindow (mydisplay , baseW);

/% 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &myevent);
switch (myevent. type) {
case Expose:
XCopyArea(mydisplay, pad, baseW, gcl, 0, 0, 300, 300, 0, 0);
break;
}
}

/* 9. clean up before exiting x/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay) ;

Figure 6.5: A program wwhich draws the tao symbol

158

6.3. A symbol composed from circle parts

The Tao symbol show in Figure 6.4 is produced from the the code contained in Figure 6.5 and is
built up from five filled semi-circles and one full circle outline. The symbol is black in colour drawn
on a white base window.

The setup for drawing used here is the most appropriate to use in general. The program of Fig-
ure 6.5 consists of a base window basel and a pixmap pad. All drawing is done in that pixmap and
its contents are made visible by moving those contents to the base window using a XCopyArea ()
call when an Expose event occurs. That pixmap is created using a XCreatePixmap () call specify-
ing the window to which it is to be linked. That window to which it links has to have been created
having the InputOutput property configured into it. In this program that pixmap is pad and the
linked window is the base window baseW. This setup of using a pixmap and window combination
results in complete recovery of the screen image if either partial or whole covering of the basew
window occurs by another window on the screen being used.

When the pixmap is created its contents are unpredictable and need to be put into a know state.
The XFillRectangle () call used for that purpose. This technique was also used in creating the
buffer used in scrolling text both horizontally and vertically in Sections 5.8.1 and 5.8.2.

For convenience the program uses two GCs, one (gc1) in which the foreground and background
colours are respectively black and white, and in the other (gc2) those colours have the reverse roll.
The shapes (circles) from which the total drawing is formed uses the foreground colour. Circles
coloured in black and white are used.

The XCopyArea () call that transfers the drawing in the pixmap to the window does not use the
foreground and background members of the GC supplied in that call. It does, however, use other
members of the GC sppecified. The colouring of the displayed drawing is determined by the colours
contained in the GCs when drawing on the pixmap. In the program of Figure 6.5, use of gc1 in the
XFillRectangle () call would result in a black background in the window no matter whether gc1
or gc2 was used in the XCopyArea () call executed in the Expose clause. Correspondingly, using
gc2inthat XFillRectangle () call changes that window’s background to white.

All drawing in the code in Figure 6.5 is done outside of the event loop by positioning arc segments
within the pixmap pad. Only the transfer of the pixmap to the screen is inside the event loop.

6.3.1 Exercises

1. Modify the program in Figure 6.5 so that the white portions within the tao symbol are coloured
yellow.

2. Modify the program in Figure 6.5 so that all black and white colourings are exchanged.

3. What other means apart from the event mechanism of the X Window System are available to
transfer the contents of the pixmap used for drawing to a screen?

4. With respect to data transfer, and thus network traffic between the client and the server, what
are the advantages of using a pixmap for drawing? Justify your answer. Contrast this situation
to that when using an image structure for storing graphics information. Hint: This question
is concerned with where data is stored and when data is transferred between the client and
server.

5. Compare and contrast the program in Figure 6.5 with code having the same functionality and
the drawing using the Win32 API (Applications Programming Interface) of Microsoft Win-
dows.

159

6.4. A circle bouncing off plain edges

6.4 A circle bouncing off plain edges

If a series of pictures of an object are displayed on the screen they can give the impression that the
object in the picture is moving. One application where this technique is useful is in simulation.

(a) free motion (b) rebounding

Figure 6.6: A moving circle

A simple demonstration of a moving object in continuous motion is considered here and is shown
in Figure 6.6. The motion is in the plane of the viewing surface and resembles a billiard ball bounc-
ing off the cushions that run along the boundaries of the viewing surface. The code in Figure 6.7
draws such a ball as a circle filled in white on a black pixmap. The pixmap pad is used for creating
the drawings. Its colour black results from the black foreground colour of the gc1 GC used in the
XFillRectangle () call that clears it. The circle is drawn in white by using the white foreground
colour of the gc2 GC supplied in the XFillArc () call used in drawing it. The simplicity in the
demonstration is apparent from Figure 6.6 where free movement of the ball appears in Figure 6.6a
while the striking of the bounding cushion is shown in Figure 6.6b as penetrating that cushion -
before rebounding.

The object is shown on the screen by sending the contents of the pixmap to the screen. That
occcurs when an Expose event is received in the event loop by executing a XCopyArea () call. Once
that call has been executed, the next position of the ball in the pixmap needs to be computed and
repositioned in the pixmap. This display-compute process can be repeated by sending an Expose
event after the new position of the call is calculated. That event is created by a XSendEvent () call.
The initial conditions of the placement of the ball in the pixmap and the parameters which are to be
used to compute the motion are set before the event loop of the program in Figure 6.7 is entered.

The XSendEvent () is a general method of performing interprocess communication between
X11 client processes offered by Xlib. In this particular instance the communication is withing the one
process, the process that contains this program. This simplifies the XSendEvent () call used since
the ID of the window being sent the message is know within the code (baseW in this case). This also
enables the third parameter of the XSendEvent () call (the proporation) to be set as FALSE (or 0).

The motion simulated is by drawing a white circle on a pixmap. A new position of the cicle is

calculated taking into consideration any collision with the boundary cushions that may occur. In the
code in Figure 6.7 those collisions are handled by four if statements. Before the circle can be drawn

160

6.4. A circle bouncing off plain edges

/% This program draws a continuously bouncing ball that canons off the cushions

* that surround the viewing screen. All drawing is done in a pixmap that is
* moved to the screen at intervals of time to give the ball movement.

3

* Coded by: Ross Maloney

* Date: March 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil .h>
#include <unistd .h>

int main(int argc, char xargv)

{

Display smydisplay;
XSetWindowAttributes baseat;
Window baseW ;

XSizeHints wmsize;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent;

GC gcl, gc2;
XGCValues myGCValues;
XColor black , white;
Pixmap pad;

char *window_name = "Moving";
char *xicon_name = "Mo";

int screen_num , done;
unsigned long valuemask;

int X, y, dx, dy;
float ratio;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay("");

/* 2. create a top—level window =/

screen_num = DefaultScreen (mydisplay);

black.pixel = BlackPixel (mydisplay, screen_num);

white. pixel = WhitePixel (mydisplay, screen_num);

baseat.background_pixel = white. pixel;

baseat.border_pixel = black.pixel;

baseat.event_mask = ExposureMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
100, 100, 300, 300, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

I/« 3. give the Window Manager hints =x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmbhints. initial_state = NormalState;
wmbhints. flags = StateHint;

XSetWMHints (mydisplay , baseW, &wmhints);

Figure 6.7: A program which bounces a circle off plain edges (Continues ...)

161

6.4. A circle bouncing off plain edges

XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay, baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/% 4. establish window resources x*/
valuemask = GCForeground | GCBackground;
myGCValues . background = white. pixel;
myGCValues. foreground = black. pixel;
gcl = XCreateGC(mydisplay, baseW, valuemask, &myGCValues);
myGCValues . background = black. pixel;
myGCValues. foreground = white. pixel;
gc2 = XCreateGC(mydisplay, baseW, valuemask, &myGCValues);

/* 5. create all the other windows needed x/
pad = XCreatePixmap (mydisplay, baseW, 300, 300,
DefaultDepth (mydisplay, screen_num));
XFillRectangle (mydisplay, pad, gcl, 0, 0, 300, 300);

x = 100;
y = 100;
dx = 10;

ratio = 2.0;
XFillArc (mydisplay, pad, gcl, x, y, 40, 40, 0, 360x64);

/* 6. select events for each window x/
/% 7. map the windows =/
XMapWindow (mydisplay , baseW);

/* 8. enter the event loop =/
done = 0;
while (done == 0) {
XNextEvent (mydisplay, &myevent);
switch (myevent. type) {
case Expose:
XCopyArea(mydisplay, pad, baseW, gcl, 0, 0, 300, 300, 0, 0);
XFillArc (mydisplay, pad, gcl, x, y, 40, 40, 0, 360x64);
x += dx;
if (x<0) {x=0; d« = 10; ratio = —ratio;}
if (x>300) { x = 300, dx = —10; ratio = —ratio ;}
if (y>300) { y = 300, ratio = —ratio;}
if (y<0) {y=0;, ratio = —ratio;}
+= dxxratio;
XFillArc (mydisplay, pad, gc2, x, y, 40, 40, 0, 360x64);
sleep (1);
XSendEvent(mydisplay, baseW, 0, ExposureMask, &myevent);
break;

/% 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);

Figure 6.7: A program which bounces a circle off plain edges

162

6.5. Displaying the multi colours of a photograph

in this new position on the pixmap, the circle is erased from its current position by redrawing it in the
colour of the pixmap (using GC gc1). Then the process is paused using a sleep () call before the
next Expose event is given by the XSendEvent () call. There needs to be a time delay between the
drawing of the circle and erasing it. In this program the standard system sleep () call was used but
this has the problem that the time delay specified in the parameter to the call is measured in seconds.
Even one second is too long for the motion being simulated here.

An alternate approach is to draw the object as a window. The window would be created once.
The XCreateWindow () (or XCreateSimpleWindow ()) which forms that window sets the po-
sition on the screen where the window is to be displayed. Those coordinates are used when the
XMapWindow () call is used to show the window on the screen. The window is removed from the
screen using a XUnmapWindow () call. The position can be changed using a XMoveWindow () call
between the map and unmap calls.

6.4.1 Exercises

1. Does the initial position of the ball appear in the screen output generated by the program code
in Figure 6.7? Give reasoning for you answer.

2. Modify the code in Figure 6.7 so that the circle bounces off the correct face of the boundary
cushions.

3. In the code in Figure 6.7, the current position of the circle is erased by overwriting it with
the (black) colour of the pixmap on which it is drawn. What other technique, based around a
single Xlib call, could be used? In what situations would that technique be advantagous when
compared with the overwrite technique?

4. What happens if the sleep () call is removed from the code in Figure 6.7? What other methods
could be used to introduce a delay in the displaying process used there?

5. Rewrite the program of Figure 6.7 using a window which shows the movement instead of a
pixmap. This is intended to use a sequence of XMoveWindow () and XUnmapWindow () calls.
Using this technique, how is the circle of the moving object created?

6.5 Displaying the multi colours of a photograph

A common application of computer graphics is to show on the screen photographic quality pictures
generated externally from the program. The aim here is to map the photographic data to visible
pixels on the screen without loss of information contained in the original photographic data. That
graphics data is generally a collection of many colour values over the range of all the individual
pixels that makes up the total picture, together with the position each of those pixels occupies in
the two-dimensional matrix of pixels that form the total picture. Placing those colours in the correct
order is the mapping process considered here. This process is more complex than using bitmaps and
pixmaps that have been considered in Sections 4.3 and 4.7. In those respective cases, two and several
colours were involved which contrast to the many colour involved here. However, the X11 image
format that was used in those Sections, and also in Section 3.5, is also able to handle multicolour data
required here.

A two step process is generally used in displaying a photographic picture. The pictures of interest
are generally stored in a format such as JPEG, PNG, TIFF, etc. that minimises the amount of storage
required. The first step in displaying the contained picture is to recover the matrix of pixel colour
values that form the picture. Each picture format is supported by a library of manipulation functions
and their use is a specialised topic which will not be considered further here. Here those functions

163

6.5. Displaying the multi colours of a photograph

will be assumed to have been applied and their output of a two-dimensional array of pixel values
will be assumed to be available. The following step, which is considered here, is to transfer that
matrix of colour values to the display window. In the code of Figure 6.9 this matrix of photographic
data is generated by a simple numerical algorithm. The resulting output is shown in Figure 6.8.

A simulated picture used in the code of Figure 6.9 which is derived from the 753 colours defined
in the standard /etc/X11/rgb. txt file provided in X11 distributions. That file is a server database
of the names of colours defined by their 8-bit red, green, and blue components. Each of those colours
is a 24-bit TrueColor. However, only 503 of those colour values are unique. The names of the colours
where filtered out and the unique hexidecimal 24-bit value of each unique colour was used. The
sequential order of the first occurrence of each colour value found in the file was retained in making
this colour data. In the code of Figure 6.9, these values are set in the array colours, with an ad-
ditional value of 0x0 added to enable this array to be 2-dimensional complete with dimensions of
24x21.

Figure 6.8: A view of a simulated photograph

Since the colour values of the image data here are 24 bit values, it is natural to set the contain-
ing array imagedata to be of type integer. This necessitates a type conversion to be used when
it is part of the XCreateImage () call which allocates the memory for use as the image structure
in the client program. In using the X11 image technique to display a photograph, the colours and
their arrangement which make up that photograph, are stored in this array. This is linked into the
XImage structure that is then used in the XPutImage () call. Notice that this picture array is a
one-dimensional vector. The height and width interpretation necessary to convert it into the photo-
graph displayed on the screen is stored in the Ximage structure when that structure is created by the
XCreateImage () call.

The graphics context GC1 that is part of the XPut Image () call which moves the image to the
server, and thus onto the display (through the window baseW), does not play an active part in that
process in this instance. However, there are special instances where the GC does play a role.

In the code of Figure 6.9, the array colours was initially linked as the data of the photo struc-
ture, assigning it the dimensions of 24221 in the XCreateImage () call. That whole picture was
output to the baseW using a XPut Image () call. The resulting screen picture was too small to enable
the colour detail to be distinguished.

164

6.5. Displaying the multi colours of a photograph

/%

¥ ¥ ¥ ¥ ¥

The X11 image format is used to create and then display multi—coloured
picture derived from the rgb.txt file included with X11. All the 503

unique

colours in that file are displayed as in 15x15 colour swatch.

Coded by: Ross Maloney

Date:

*/

March 2009

#include <X11/Xlib .h>
#include <X11/Xutil.h>

static unsigned int colours[] = {

Oxfffafa, Oxf8f8ff, O0xf5f5f5, Oxdcdcdc, OxfffafO0, Oxfdf5e6,
OxfafOe6, Oxfaebd7, Oxffefd5, Oxffebcd, Oxffedcd, Oxffdab9,
Oxffdead, Oxffedb5, Oxfff8dc, Oxfffff0, Oxfffacd, Oxfffbee,
Oxfofffo, Oxf5fffa, OxfOffff, OxfOf8ff, Oxebebfa, OxfffOf5,
Oxffedel , Oxffffff, 0x0, O0x2f4f4f, 0x696969, 0x708090,
0x778899 , Oxbebebe, 0xd3d3d3, 0x191970, 0x80, 0x6495ed,
0x483d8b, O0x6abacd, 0x7b68ee, 0x8470ff, Oxcd, 0x4169el,
Oxff, Ox1e90ff, Oxbfff, O0x87ceeb, O0x87cefa, 0x4682b4,
Oxb0c4de, Oxadd8e6, O0xb0Oele6, Oxafeeee, Oxcedl, 0x48dlcc,
0x40e0dO0, Oxffff, OxeOffff, O0x5f9ea0, Ox66cdaa, O0x7fffd4,
0x6400, 0x556b2f, O0x8fbc8f, 0x2e8b57, 0x3cb371, 0x20b2aa,
0x98fb98, Oxff7f, O0x7cfc00, 0xff00, Ox7fff00, Oxfa9a,
Oxadff2f, 0x32cd32, O0x9acd32, 0x228b22, 0x6b8e23, 0xbdb76b,
0xfO0e68c, Oxeee8aa, Oxfafad2, Oxffffe0, Oxffff00, O0xffd700,
Oxeedd82, O0xdaa520, 0xb8860b, 0xbc8f8f, Oxcd5c5c, 0x8b4513,
0xa0522d, O0xcd853f, O0xdeb887, O0xf5f5dc, O0xf5deb3, 0xf4a460,
0xd2b48c, 0xd2691le, O0xb22222, O0xab52a2a, 0xe9967a, 0xfa8072,
0xffa07a, Oxffa500, Oxff8c00, Oxff7f50, O0xf08080, O0xff6347,
0xff4500, Oxff0000, Oxff69b4, O0xff1493, OxffcOcb, O0xffbé6cl,
0xdb7093, O0xb03060, O0xc71585, 0xd02090, Oxff00ff, Oxee82ee,
0Oxdda0dd, O0xda70d6, O0xba55d3, 0x9932cc, 0x9400d3, O0x8a2be2,
0xa020f0, 0x9370db, 0xd8bfd8, O0Oxeee9e9, 0xcdc9c9, 0x8b8989,
Oxeee5de, Oxcdc5bf, 0x8b8682, Oxffefdb, Oxeedfcc, OxcdcObO,
0x8b8378, Oxeed5b7, O0Oxcdb79e, 0x8b7d6b, Oxeecbad, 0Oxcdaf95,
0x8b7765, Oxeecfal, Oxcdb38b, 0x8b795e, Oxeee9bf, O0xcdc9a5,
0x8b8970, Oxeee8cd, Oxcdc8bl, 0x8b8878, Oxeeeeel, Oxcdcdcl,
0x8b8b83, Oxeleeel, Oxclcdcl, 0x838b83, Oxeeele5, Oxcdclch,
0x8b8386, O0Oxeed5d2, Oxcdb7b5, 0x8b7d7b, Oxeleeee, Oxclcdced,
0x838b8b, O0x836fff, O0x7a67ee, 0x6959cd, 0x473c8b, 0x4876ff,
0x436eee, O0x3abfcd, 0x27408b, Oxee, 0x8b, O0x1c86ee,
0x1874cd, O0x104e8b, 0x63b8ff, O0xbcacee, 0x4f94cd, 0x36648b,
Oxb2ee, 0x9acd, 0x688b, 0x87ceff, O0x7ecOee, Oxb6cabed,
0x4a708b, Oxb0Oe2ff, Oxa4d3ee, O0x8dbé6cd, 0x607b8b, O0xc6eff,
0xb9d3ee, O0x9fb6cd, 0x6c7b8b, Oxcaelff, Oxbcd2ee, 0xa2bbcd,
0x6e7b8b, Oxbfefff, O0xb2dfee, 0x9acOcd, 0x68838b, Oxdleeee,
Oxb4cdcd, O0x7a8b8b, Oxbbffff, Oxaeeeee, 0x96cdcd, 0x668b8b,
0x98f5ff, O0x8eebee, O0x7acbcd, 0x53868b, Oxf5ff, Oxebee,
0xc5ced, 0x868b, Oxeeee, Oxcdcd, 0x8b8b, O0x97ffff,
0Ox8deeee, 0x79cdcd, 0x528b8b, 0x76eec6, 0x458b74, Oxclffcl,
Oxb4eeb4, O0x9bcd9b, 0x698b69, 0x54ff9f, Oxdeee94, 0x43cd80,
0x9aff9a, 0x90ee90, O0x7ccdZ7c, 0x548b54, Oxee76, Oxcd66,
0x8b45, Oxee00, 0xcdO00, 0x8b00, O0x76ee00, 0x66cd00,
0x458b00, O0xcO0ff3e, O0Oxb3ee3a, 0x698b22, O0xcaff70, Oxbcee68,
Oxa2cdb5a, O0x6e8b3d, O0xfff68f, Oxeee685, O0xcdc673, 0x8b864e,
Oxffec8b, Oxeedc82, Oxcdbe70, 0x8b814c, Oxeeeedl, Oxcdcdb4,
0x8b8b7a, Oxeeee00, Oxcdcd00, O0x8b8b00, O0xeec900, OxcdadO00,

Figure 6.9: A program to display a simulated photograph (Continues...)

165

6.5. Displaying the multi colours of a photograph

0x8b7500, Oxffcl25, Oxeeb422, O0xcd9bld, 0x8b6914, O0xffb9o0f,
OxeeadOe, 0xcd950c, O0x8b6508, Oxffclcl, Oxeeb4b4d, O0xcd9b9b,
0x8b6969, Oxff6aba, Oxee6363, O0xcd5555, O0x8b3a3a, O0xff8247,
Oxee7942, 0xcd6839, 0x8b4726, O0xffd39b, Oxeec591, Oxcdaa7d,
0x8b7355, Oxffe7ba, Oxeed8ae, O0xcdba96, 0x8b7e66, O0Oxffab4f,
Oxee9a49, O0x8bb5a2b, O0Oxff7f24, O0xee7621, Oxcd66ld, O0xff3030,
Oxee2c2c, O0xcd2626, O0x8blala, O0xff4040, Oxee3b3b, 0xcd3333,
0x8b2323, O0xff8c69, O0xee8262, 0xcd7054, 0x8b4c39, O0xee9572,
0Oxcd8162, 0x8b5742, 0xee9a00, O0xcd8500, 0x8b5a00, O0xff7f00,
Oxee7600, Oxcd6600, 0x8b4500, Oxff7256, Oxee6a50, Oxcd5b45,
0x8b3e2f, O0Oxeeb5c42, O0xcd4f39, 0x8b3626, 0xee4000, 0xcd3700,
0x8b2500, O0xee0000, O0xcd0000, O0x8b0000, 0xd70751, Oxeel289,
0xcd1076, 0x8b0a50, Oxfféeb4, Oxeeb6aaZ7, O0xcd6090, O0x8b3ab2,
0xffb5c5, Oxeea9b8, 0xcd919e, 0x8b636¢c, Oxffaeb9, Oxeealad,
0xcd8c95, 0x8b5f65, O0xff82ab, O0xee799f, 0xcd6889, 0x8b475d,
0xff34b3, Oxee30a7, 0xcd2990, O0x8blc62, O0xff3e96, Oxee3a8c,
0xcd3278, 0x8b2252, O0OxeeO0ee, O0xcd00cd, 0x8b008b, O0xff83fa,
OxeeZ7ae9, 0xcd69c9, 0x8b4789, Oxffbbff, Oxeeaeee, O0xcd96cd,
0x8b668b, 0xe066ff, O0xdl5fee, O0xb452cd, 0x7a378b, O0xbf3eff,
0xb23aee, 0x9a32cd, 0x68228b, 0x9b30ff, 0x912cee, 0x7d26cd,
0x551a8b, O0xab82ff, 0x9f79ee, 0x8968cd, 0x5d478b, Oxffelff,
Oxeed2ee, Oxcdbb5cd, 0x8b7b8b, 0x30303, 0x50505, 0x80808,
Oxa0a0Oa, 0xdodod, 0xfofof, 0x121212, 0x141414, 0x171717,
Oxlalala, Oxlclclc, Ox1f1f1f, 0x212121, 0x242424, 0x262626,
0x292929, 0x2b2b2b, O0x2e2e2e, 0x303030, 0x333333, 0x363636,
0x383838, 0x3b3b3b, 0x3d3d3d, 0x404040, 0x424242, 0x454545,
0x474747 , Ox4adada, O0x4d4d4d, Ox4f4fd4f, 0x525252, 0x545454,
0x575757 , 0x595959, O0x5cb5cbc, O0x5ebebe, 0x616161, 0x636363,
0x666666, 0x6b6b6b, O0x6ebebe, 0x707070, 0x737373, 0x757575,
0x787878, 0x7a7aZ7a, 0x7d7d7d, O0x7f7f7f, 0x828282, 0x858585,
0x878787, (0x8a8a8a, O0x8c8c8c, 0x8f8f8f, 0x919191, 0x949494,
0x969696, 0x999999, 0x9c9c9c, 0x9e9e9e, Oxalalal, Oxa3a3a3,
Oxababa6b, OxaB8a8a8, Oxababab, Oxadadad, O0xbObOb0, O0xb3b3b3,
0xb5b5b5, 0xb8b8b8, Oxbababa, O0xbdbdbd, O0xbfbfbf, 0xc2c2c2,
Oxc4cdcd, O0xc7c7c¢7, 0xc9c9c¢9, Oxcccccc, Oxcfcfcf, 0xdildidi,
0xd4d4d4, Oxdédéd6, 0xd9d9d9, Oxdbdbdb, Oxdedede, 0xe0elel,
Oxe3e3e3, O0xebebe5, O0xe8e8e8, Oxebebeb, O0xededed, O0xf0f0f0,
0xf2f2f2 , Oxf7f7f7, Oxfafafa, Oxfcfcfc, Oxa9a9a, O0x0};

int main(int argc, char xargv)

{

Display xmydisplay;

Window baseW ;
XSetWindowAttributes baseat;
XSizeHints wmsize ;

XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent myevent;

GC GC1;

XImage xphoto;

int imagedata[225];

char *window_name = "Photo";

char *icon_name = "Ph";

int screen_num, done, i, j, k, kk;

unsigned long valuemask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay ("");

Figure 6.9: A program to display a simulated photograph (Continues...)

166

6.5. Displaying the multi colours of a photograph

/* 2. create a top—level window x*/
screen_num = DefaultScreen (mydisplay);
baseat.background_pixel = WhitePixel (mydisplay, screen_num);
baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
300, 300, 360, 315, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask, &baseat);

/* 3. give the Window Manager hints s/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources */
GCl1 = XCreateGC (mydisplay, baseW, 0, NULL);
XSetForeground (mydisplay, GC1, BlackPixel(mydisplay, screen_num));
XSetBackground (mydisplay, GC1, WhitePixel(mydisplay, screen_num));
photo = XCreateImage (mydisplay, DefaultVisual (mydisplay, screen_num),
DefaultDepth (mydisplay, screen_num), ZPixmap,
0, (char x)imagedata, 15, 15, 32, 0);

/* 5. create all the other windows needed x/
/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop x/
done = 0;
while (done == 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
for (j=0; j<504; j++) |
for (i=0; i<225; i++) imagedata[i] = colours[j];
k = (j%24)%15;
kk = (j/24)x15;
XPutlmage (mydisplay , baseW, GC1, photo, 0, 0, k, kk, 15, 15);
}
break;
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

Figure 6.9: A program to display a simulated photograph

167

6.6. Content summary

This difficult was resolved by magnifying the screen view of the colour data in the colours array.
This is show in the code of Figure 6.9. Each of the colour values in the colours array is displayed
on the screen in a 15215 colour patch, with each patch having the same neighbours on the screen as
in the original 24221 presentation of that visual data. The array imagedata is linked to the photo
structure to have dimensions of 15215. The formation of each colour patch in imagedata is done on
the server and does not involve protocol exchanges between the client and the server which makes
this technique attractive. Although this is done in the event loop of the code in Figure 6.9, only the
XPutImage () involves protocol exchange between the client and the server. Figure 6.8 shows the
screen output obtained.

6.5.1 Exercises

1. Modify the code in Figure 6.9 so that the pixel values of the array colours are shown on part of
the screen, verifying the above statement that the colour content is difficult to fully appreciate.

2. Verify by the appropriate print statements inserted in the code shown in Figure 6.9 that 4 bytes
are there used to represent each pixel in the photograph, and that the hoirzontal width of the
photograph is 4 times the value specified in the XCreateImage () call. Why does this value 4
occur in each of these situations?

3. In the program of Figure 6.9, indicate whether imagedata, colours, and photo are stored
on the client or the server, and which of the Xlib call used involve X11 protocol use.

4. Why are client-based techniques such as used with image structures attractive?

5. Describe advantages and disadvantages of using image structure based techniques such as
used in the code of Figure 6.9 for presentation of menus.

6.6 Content summary

This chapter showed how to use Xlib to draw graphics with the X Window graphics system. The
chapter assumes that how to create a window which is to be drawn upon, and how to keep that
window visible on the screen, is known. Examples were given that use a selection of the drawing
primatives available through Xlib.

Such graphics are composed from straight lines of different styles and ellipses, both of themselves,
and in closed figures that are bounded by such lines. Colour can be specified for both the lines and
the area that they enclose. By displaying, removing, repositioning, and then redisplaying, the illusion
of motion of objects so drawn can be produced. The examples given show how this is achieved.

168

Chapter 7

Extras

Armed with the examples of the previous chapters as a guide and a copy of ?, and particularly ?,
useful programs can be written using Xlib. The argument against doing so is the use of toolkits
make programming easier and quicker, and the result is visually more appealing. Although the
programming may be quicker to write using a toolkit due to the written application code being
shorter in length than that using by using Xlib, its execution time generally is slower. Toolkits are
the analogue of a compiler while Xlib is the analogue of an assembler, and to squeeze the most out
of hardware an assembler is the better choice but at the cost of programming effort. Xlib programs
generally use fewer CPU instructions and make more efficient use of the X Protocol than do toolkit
programs. So if a program is to have large usage, then the use of Xlib instead of a toolkit may be a
better design decision across the lifetime of the program.

Generally the appearance of a toolkit implemented program on the screen is characteristic of that
toolkit; there is little opportunity to change it. But much thought goes into that appearance during
the design of the toolkit with the consequence that appearance becomes desired. In the examples
used in the previous chapters, the appearance of buttons, scroll bars, etc. are bland. What was being
demonstrated there was the basic scaffolding with complication associated with beautification belib-
erately avoided. In this chapter such complicating factors in overcoming blandness are considered.

This approach of augmenting a program using Xlib to obtain results readily available from a
toolkit has disadvantages and advantages. The clear disadvantage is the increase in complexity and
length of the code that must be prepared. An advantage is that desired features of one or more toolkit
can be used implemented by programming effort, as well as mixing features obtained from different
toolkits.

The advantage of Xlib is it implements the mechanism rather than policy facit of the X Window
System design. To take good advantage of that design facit, Xlib needs to be put into perspective of
the larger X Window environment and to borrow from it, which reverses the process whereby that
environment has built upon Xlib. Much has been learnt on how to effectively use windows to make
effective human-computer communications since the 1987 introduction of X11. During that same
time, Xlib has remained relatively static due to the low level support that it provides. On to this
support such advances can be grafted. To do that requires know-how.

The material in this chapter does not increase coverage of Xlib but put what have been covered
in previous chapters into place and offers the potential to enhance the programs that result.

7.1 Multi-colour XPM pixmaps

Xlib provides bitmaps in support of its pixmap facility, but this facility is capable of more expanded
use. What is shown here is a direct means for a programmer to describe the placement of fixed

169

7.1. Multi-colour XPM pixmaps

colours in a fixed image. A bitmap provides a means of performing this operation only with two
colours as is shown in Section 4.3. Those colours are the foreground and background colours. Chang-
ing the foreground and background colour assignment changes the colour in the bitmap, although
their position in the bitmap remain fixed. Also, needing only to represent two colours enables a
compact hexidecimal representation of these bitmaps. That representation makes manual creation of
these images difficult.

By contrast, the layout of a XPM pixmap makes manual creation of pixmaps straight forward.
This format is described in (give reference) and now is part of the standard X Window System distri-
bution. It offers fixed, multi-colour laying out of a fixed image in a manner which is visually straight
forward to understand. To assists its integration with more truditional bitmaps, handling of these
pixmaps use deliberate similarity in the name and parameters used in library functions for handling
these pixmaps and the corresponding functions used for bitmaps. As a result, the XPM library is
regarded as being at the same level as that of Xlib. The XPM pixmap contracts to the handling of
multiple colours used in Section 6.5.

The overall parameters of the pixmap need to be assigned. The height and width of the pixmap
need to be specified. The other parameter is the number of characters in the pixmap design that are
to be used to specify each colour. In most cases, one character is used to indicate one colour. As
each colour is introduced into the image portion of the pixmap layout, the count of colour specifying
characters contained in the colour index portion of the pixmap must be incremented. Placement of
that character in the image portion of the pixmap directly corresponds to its position in the displayed
pixmap. If that line length is less than the line width of the editor, no distortion of the image is seen.

As an illustration of this creation process a smiley face is used. It is to be a multi-colour object,
having six colours. Those colours are encoded into the pixmap. The distribution of each colour is
fixed by placed the character representing each colour in the image portion of the pixmap. The image
portion is an array of characters with its width and height corresponding to the width and height of
the image on screen.

This pixmap was generated using an editor starting from a binary coloured bitmap. The bitmap
was used to overcome the difficulty of manually drawing circles. Using the bitmap program, a
51x51 bitmap was opened with the command:

bitmap -size 51x51

Into this array a filled circle was drawn to touch all sides of the array. Then circles were drawn for
the outlines of the two eyes. The mouth was drawn as a circle, and the part of the circle beyound the
extent of the mouth were deleted. Once saved, that file was transformed into pixmap format using
the convert program which is part of the souce distribution of the Imagemagik program.

An editor was used to colour this bitmap. The background colour was defined as None to indicate
that it was to be transparent when the pixmap was on the screen. The characters for the eyes, face,
and mouth were assigned a colour and then inserted into the appropriate places in the bitmap tem-
plate. The resulting pixmap is used in the code contained in Figure 7.1. But the process illustrated
is capable of generalisation, for example in generating pixmaps with coloured, or multi-coloured
lettering for use in menus.

The program of Figure 7.1 starts by displaying a 300x300 pixel window coloured purple. When
the user clicks the left mouse button on that window, a smiley face pixmap which is stored in that
program is deposited on the purple window at the position of the pointer. It is similar in overall
design to the program of Figure 4.1 but the use of the pixmap instead of a bitmap makes a difference.
Those significant differences are:

e Include a <X11/xpm.h> header file ;

170

7.1. Multi-colour XPM pixmaps

/% This program first displays a
% the left—hand mouse button is
% face appears on the screen to
* when the button was pressed.
sk

* Coded by: Ross Maloney

* Date: April 2009

*/

#include <X11/Xlib .h>
#include <X11/Xutil.h>
#include <X11/xpm.h>

[+ XPM =/

static char xsmile[] = {
/* columns rows colors
"51.51.6.1",

" ..c_None",

"._c yellow",

"b_c blue",
"x_c_black",
"w_c_white",
"rc,red",

/% pixels =/

O T T T T N T TV M T T T
"

chars—per—pixel =*/

e e Wt WWWAWWol s
e WWWWAWW . . o e e e e e e . WWWWAWW o
o e WAWWWAWAW .« oo ee e WAWAWAWAW e
e WWWWWWWAWWW . ..o IWWAWWWWWAWAW . . . -
e WWVWWIWAWWAAWAW WWWWWAWAWAWAW e
e WAWAWAWAAAW WAWAWWWWAWAMW e
e wwwbbbbbwwwww wwwwhbbbwwwww
P wbbbbbbbwww wwwbbbbbbwwww o
e bbbxxxbbwww wwbbxooxbbwww o
C bbbxxxbbwww wbbbxxxbbww
. bbbbbbbbww bbbbxbbbw
t bbbbbbww L bbbbbbbb
e bbb bbbbb

300x300 pixel window coloured purple.
clicked in this window, a 6 coloured smiley
indicate when the mouse pointer was located
The smiley face is created using a XPM pixmap.

When

Figure 7.1: A program to deposit a XPM multi-colour pattern at a mouse click (Continues ...)

171

7.1. Multi-colour XPM pixmaps

{

...... S S ",
....... S ",
....... | (AR & (PP ",
........ 1) & PR o o S ",
........... IrrrYIIC ",
.............. 1o b o o o o o S ",
int main(int argc, char xargv)
Display xmydisplay;
Window baseW ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWMHints wmbhints ;
XTextProperty windowName, iconName;
XEvent baseEvent;
GC mygc;
Pixmap pattern, clipper;
char xwindow_name = "ColourClick";
char *icon_name = "CCl";
int screen_num , done, status;
unsigned long mymask;
int X, y;

XpmAttributes faceAt;

/% 1. open connection to the server =/
mydisplay = XOpenDisplay ("");

/% 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat.border_pixel = 0x0; /* black x/
myat. background_pixel = 0xA020F0; /* purple =/
myat.event_mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay, RootWindow (mydisplay, screen_num),
350, 400, 300, 300, 2,
DefaultDepth (mydisplay, screen_num), InputOutput,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Figure 7.1: A program to deposit a XPM multi-colour pattern at a mouse click (Continues ...

172

7.1. Multi-colour XPM pixmaps

/* 3. give the Window Manager hints s/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmbhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x/
faceAt.color_key = XPM_COLOR;
faceAt.valuemask = XpmColorKey | XpmColorTable;
status = XpmCreatePixmapFromData(mydisplay, baseW,

smile , &pattern, &clipper, &faceAt);

myge = XCreateGC (mydisplay, baseW, 0, NULL);
XSetForeground (mydisplay , mygc, WhitePixel (mydisplay, screen_num));
XSetBackground (mydisplay , mygc, BlackPixel(mydisplay, screen_num));
XSetClipMask (mydisplay, mygc, clipper);
XSetClipOrigin (mydisplay, mygc, 0, 0);

/* 5. create all the other windows needed x/
/* 6. select events for each window x*/
/* 7. map the windows s/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop x/
done = 0;
while (done == 0) {
XNextEvent(mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
if (baseEvent.xbutton.button == Buttonl) {
x = baseEvent.xbutton.x;
y = baseEvent.xbutton.y;
XSetClipOrigin (mydisplay, mygc, x, y);
XCopyArea(mydisplay, pattern, baseW, mygc, 0, 0,
51, 51, x, y);
}
break;
}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay, baseW);
XDestroyWindow (mydisplay, baseW);
XCloseDisplay (mydisplay);
}

Figure 7.1: A program to deposit a XPM multi-colour pattern at a mouse click

173

7.1. Multi-colour XPM pixmaps

o The function XpmCreatePixmapFromData () replaces the XCreatePixmapFromBitmapData ()

function;

e The XpmCreatePixmapFromData () function returns the success or failure status of the call,
not the pixmap as in the XCreatePixmapFromData () function;

e Storage for the pixmap to be created is passed as a parameter in the XpmCreatePixmapFromData ()

function;

e The xpm library needs to be included in the compile and link command by the addition of the
—1Xmp switch;

e The XCopyArea () function is used to display the pixmap in contrast to a XCopyPlane ()
function;

o The foreground and background colours of the GC use in copying the XPM pixmap to the
screen are not used.

It is necessary to use the XCopyArea () function call for all eight colour planes of the pixmap created
from the XPM data need to be moved together to the window. In the case of a XCopyPlane ()
function call, only one plane is moved.

In the XPM data, the background colour of the smiley-face is set as None indicating a transparent
colour. This tells the XpmCreatePixmapFromData () function call that a clipping-mask is to be gen-
erated together with the pixmap. In the program of Figure 7.1 this is stored in the variable c1ipper.
This mask is then linked to the graphics context (mygc) that is used in the XCopyArea () function
call that displays the pixmap by the XSetClipMask () function. For this mask to work correctly,
the origin for applying this clipping mask needs to be included in that graphics context as well. This
is done using the XSetClipOrigin () function. If this mask was not used, then the portion of the
smiley-face indicated to have a transparent colour would appear as black. If the colour None is not
used in the XPM data, then no clipping-mask is generated by the XpmCreatePixmapFromData ()
function, then NULL can be used in the function parameters in place of storage for the clipping mask.
The constant XPMk_ COLOR is defined in the xpm. h header file indicating that the pixmap is coloured,
in contrast to being mmonochrome or grey scale.

ColourClick

Figure 7.2: Multi-coloured smiley faces deposited on a window

174

7.2. Using the X Protocol directly

Figure 7.2 shows the visual results of using the program of Figure 7.1. Notice the overlaying of
the pixmaps achieved, and that a pixmap of circular shape is evident by the window’s purple colour
surrounding each of the circular faces.

7.1.1 Exercises

1. Change the background colour to the pixmap in the program of Figure 7.1 to be the purple
colour of the background window. What effect does this change have on the visual affect of the
pixmap?

2. Make the colour of the left hand eye in the pixmap different to that of the right hand eye in the

smiley face.

3. Change the pixmap used in the program of Figure 7.1 so that it uses the word "Click" to replace
the smiley face. Use the technique of Section 3.5 to create the bitmap containing the letters.
Then make each letter a different colour. The background of the pixmap should be transparent.

4. Use the code of Figure 7.1 to varify that the transparent colour if no mask is used with the
XCopyArea () callis black, and this is independent of the foreground and background colours
set in the graphics context used with that function call.

7.2 Using the X Protocol directly

If Xlib is the analogue of assembler language, then what does the machine language look like? That
machine language is the X Protocol which is the order of bytes that are exchanged between the X
client and server in response to Xlib calls contained in the client, or application, program.

175

