//===- CallEvent.h - Wrapper for all function and method calls --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file defines CallEvent and its subclasses, which represent path- /// sensitive instances of different kinds of function and method calls /// (C, C++, and Objective-C). // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include namespace clang { class LocationContext; class ProgramPoint; class ProgramPointTag; class StackFrameContext; namespace ento { enum CallEventKind { CE_Function, CE_CXXMember, CE_CXXMemberOperator, CE_CXXDestructor, CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember, CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor, CE_CXXConstructor, CE_CXXInheritedConstructor, CE_BEG_CXX_CONSTRUCTOR_CALLS = CE_CXXConstructor, CE_END_CXX_CONSTRUCTOR_CALLS = CE_CXXInheritedConstructor, CE_CXXAllocator, CE_CXXDeallocator, CE_BEG_FUNCTION_CALLS = CE_Function, CE_END_FUNCTION_CALLS = CE_CXXDeallocator, CE_Block, CE_ObjCMessage }; class CallEvent; template class CallEventRef : public IntrusiveRefCntPtr { public: CallEventRef(const T *Call) : IntrusiveRefCntPtr(Call) {} CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr(Orig) {} // The copy assignment operator is defined as deleted pending further // motivation. CallEventRef &operator=(const CallEventRef &) = delete; CallEventRef cloneWithState(ProgramStateRef State) const { return this->get()->template cloneWithState(State); } // Allow implicit conversions to a superclass type, since CallEventRef // behaves like a pointer-to-const. template operator CallEventRef() const { return this->get(); } }; /// \class RuntimeDefinition /// Defines the runtime definition of the called function. /// /// Encapsulates the information we have about which Decl will be used /// when the call is executed on the given path. When dealing with dynamic /// dispatch, the information is based on DynamicTypeInfo and might not be /// precise. class RuntimeDefinition { /// The Declaration of the function which could be called at runtime. /// NULL if not available. const Decl *D = nullptr; /// The region representing an object (ObjC/C++) on which the method is /// called. With dynamic dispatch, the method definition depends on the /// runtime type of this object. NULL when the DynamicTypeInfo is /// precise. const MemRegion *R = nullptr; /// A definition is foreign if it has been imported and newly created by the /// ASTImporter. This can be true only if CTU is enabled. const bool Foreign = false; public: RuntimeDefinition() = default; RuntimeDefinition(const Decl *InD) : D(InD) {} RuntimeDefinition(const Decl *InD, bool Foreign) : D(InD), Foreign(Foreign) {} RuntimeDefinition(const Decl *InD, const MemRegion *InR) : D(InD), R(InR) {} const Decl *getDecl() { return D; } bool isForeign() const { return Foreign; } /// Check if the definition we have is precise. /// If not, it is possible that the call dispatches to another definition at /// execution time. bool mayHaveOtherDefinitions() { return R != nullptr; } /// When other definitions are possible, returns the region whose runtime type /// determines the method definition. const MemRegion *getDispatchRegion() { return R; } }; /// Represents an abstract call to a function or method along a /// particular path. /// /// CallEvents are created through the factory methods of CallEventManager. /// /// CallEvents should always be cheap to create and destroy. In order for /// CallEventManager to be able to re-use CallEvent-sized memory blocks, /// subclasses of CallEvent may not add any data members to the base class. /// Use the "Data" and "Location" fields instead. class CallEvent { public: using Kind = CallEventKind; private: ProgramStateRef State; const LocationContext *LCtx; llvm::PointerUnion Origin; CFGBlock::ConstCFGElementRef ElemRef = {nullptr, 0}; mutable std::optional Foreign; // Set by CTU analysis. protected: // This is user data for subclasses. const void *Data; // This is user data for subclasses. // This should come right before RefCount, so that the two fields can be // packed together on LP64 platforms. SourceLocation Location; private: template friend struct llvm::IntrusiveRefCntPtrInfo; mutable unsigned RefCount = 0; void Retain() const { ++RefCount; } void Release() const; protected: friend class CallEventManager; CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx, CFGBlock::ConstCFGElementRef ElemRef) : State(std::move(state)), LCtx(lctx), Origin(E), ElemRef(ElemRef) {} CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx, CFGBlock::ConstCFGElementRef ElemRef) : State(std::move(state)), LCtx(lctx), Origin(D), ElemRef(ElemRef) {} // DO NOT MAKE PUBLIC CallEvent(const CallEvent &Original) : State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin), ElemRef(Original.ElemRef), Data(Original.Data), Location(Original.Location) {} /// Copies this CallEvent, with vtable intact, into a new block of memory. virtual void cloneTo(void *Dest) const = 0; /// Get the value of arbitrary expressions at this point in the path. SVal getSVal(const Stmt *S) const { return getState()->getSVal(S, getLocationContext()); } using ValueList = SmallVectorImpl; /// Used to specify non-argument regions that will be invalidated as a /// result of this call. virtual void getExtraInvalidatedValues(ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {} public: CallEvent &operator=(const CallEvent &) = delete; virtual ~CallEvent() = default; /// Returns the kind of call this is. virtual Kind getKind() const = 0; virtual StringRef getKindAsString() const = 0; /// Returns the declaration of the function or method that will be /// called. May be null. virtual const Decl *getDecl() const { return Origin.dyn_cast(); } bool isForeign() const { assert(Foreign && "Foreign must be set before querying"); return *Foreign; } void setForeign(bool B) const { Foreign = B; } /// The state in which the call is being evaluated. const ProgramStateRef &getState() const { return State; } /// The context in which the call is being evaluated. const LocationContext *getLocationContext() const { return LCtx; } const CFGBlock::ConstCFGElementRef &getCFGElementRef() const { return ElemRef; } /// Returns the definition of the function or method that will be /// called. virtual RuntimeDefinition getRuntimeDefinition() const = 0; /// Returns the expression whose value will be the result of this call. /// May be null. virtual const Expr *getOriginExpr() const { return Origin.dyn_cast(); } /// Returns the number of arguments (explicit and implicit). /// /// Note that this may be greater than the number of parameters in the /// callee's declaration, and that it may include arguments not written in /// the source. virtual unsigned getNumArgs() const = 0; /// Returns true if the callee is known to be from a system header. bool isInSystemHeader() const { const Decl *D = getDecl(); if (!D) return false; SourceLocation Loc = D->getLocation(); if (Loc.isValid()) { const SourceManager &SM = getState()->getStateManager().getContext().getSourceManager(); return SM.isInSystemHeader(D->getLocation()); } // Special case for implicitly-declared global operator new/delete. // These should be considered system functions. if (const auto *FD = dyn_cast(D)) return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal(); return false; } /// Returns a source range for the entire call, suitable for /// outputting in diagnostics. virtual SourceRange getSourceRange() const { return getOriginExpr()->getSourceRange(); } /// Returns the value of a given argument at the time of the call. virtual SVal getArgSVal(unsigned Index) const; /// Returns the expression associated with a given argument. /// May be null if this expression does not appear in the source. virtual const Expr *getArgExpr(unsigned Index) const { return nullptr; } /// Returns the source range for errors associated with this argument. /// /// May be invalid if the argument is not written in the source. virtual SourceRange getArgSourceRange(unsigned Index) const; /// Returns the result type, adjusted for references. QualType getResultType() const; /// Returns the return value of the call. /// /// This should only be called if the CallEvent was created using a state in /// which the return value has already been bound to the origin expression. SVal getReturnValue() const; /// Returns true if the type of any of the non-null arguments satisfies /// the condition. bool hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const; /// Returns true if any of the arguments appear to represent callbacks. bool hasNonZeroCallbackArg() const; /// Returns true if any of the arguments is void*. bool hasVoidPointerToNonConstArg() const; /// Returns true if any of the arguments are known to escape to long- /// term storage, even if this method will not modify them. // NOTE: The exact semantics of this are still being defined! // We don't really want a list of hardcoded exceptions in the long run, // but we don't want duplicated lists of known APIs in the short term either. virtual bool argumentsMayEscape() const { return hasNonZeroCallbackArg(); } /// Returns true if the callee is an externally-visible function in the /// top-level namespace, such as \c malloc. /// /// You can use this call to determine that a particular function really is /// a library function and not, say, a C++ member function with the same name. /// /// If a name is provided, the function must additionally match the given /// name. /// /// Note that this deliberately excludes C++ library functions in the \c std /// namespace, but will include C library functions accessed through the /// \c std namespace. This also does not check if the function is declared /// as 'extern "C"', or if it uses C++ name mangling. // FIXME: Add a helper for checking namespaces. // FIXME: Move this down to AnyFunctionCall once checkers have more // precise callbacks. bool isGlobalCFunction(StringRef SpecificName = StringRef()) const; /// Returns the name of the callee, if its name is a simple identifier. /// /// Note that this will fail for Objective-C methods, blocks, and C++ /// overloaded operators. The former is named by a Selector rather than a /// simple identifier, and the latter two do not have names. // FIXME: Move this down to AnyFunctionCall once checkers have more // precise callbacks. const IdentifierInfo *getCalleeIdentifier() const { const auto *ND = dyn_cast_or_null(getDecl()); if (!ND) return nullptr; return ND->getIdentifier(); } /// Returns an appropriate ProgramPoint for this call. ProgramPoint getProgramPoint(bool IsPreVisit = false, const ProgramPointTag *Tag = nullptr) const; /// Returns a new state with all argument regions invalidated. /// /// This accepts an alternate state in case some processing has already /// occurred. ProgramStateRef invalidateRegions(unsigned BlockCount, ProgramStateRef Orig = nullptr) const; using FrameBindingTy = std::pair; using BindingsTy = SmallVectorImpl; /// Populates the given SmallVector with the bindings in the callee's stack /// frame at the start of this call. virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const = 0; /// Returns a copy of this CallEvent, but using the given state. template CallEventRef cloneWithState(ProgramStateRef NewState) const; /// Returns a copy of this CallEvent, but using the given state. CallEventRef<> cloneWithState(ProgramStateRef NewState) const { return cloneWithState(NewState); } /// Returns true if this is a statement is a function or method call /// of some kind. static bool isCallStmt(const Stmt *S); /// Returns the result type of a function or method declaration. /// /// This will return a null QualType if the result type cannot be determined. static QualType getDeclaredResultType(const Decl *D); /// Returns true if the given decl is known to be variadic. /// /// \p D must not be null. static bool isVariadic(const Decl *D); /// Returns AnalysisDeclContext for the callee stack frame. /// Currently may fail; returns null on failure. AnalysisDeclContext *getCalleeAnalysisDeclContext() const; /// Returns the callee stack frame. That stack frame will only be entered /// during analysis if the call is inlined, but it may still be useful /// in intermediate calculations even if the call isn't inlined. /// May fail; returns null on failure. const StackFrameContext *getCalleeStackFrame(unsigned BlockCount) const; /// Returns memory location for a parameter variable within the callee stack /// frame. The behavior is undefined if the block count is different from the /// one that is there when call happens. May fail; returns null on failure. const ParamVarRegion *getParameterLocation(unsigned Index, unsigned BlockCount) const; /// Returns true if on the current path, the argument was constructed by /// calling a C++ constructor over it. This is an internal detail of the /// analysis which doesn't necessarily represent the program semantics: /// if we are supposed to construct an argument directly, we may still /// not do that because we don't know how (i.e., construction context is /// unavailable in the CFG or not supported by the analyzer). bool isArgumentConstructedDirectly(unsigned Index) const { // This assumes that the object was not yet removed from the state. return ExprEngine::getObjectUnderConstruction( getState(), {getOriginExpr(), Index}, getLocationContext()) .has_value(); } /// Some calls have parameter numbering mismatched from argument numbering. /// This function converts an argument index to the corresponding /// parameter index. Returns std::nullopt is the argument doesn't correspond /// to any parameter variable. virtual std::optional getAdjustedParameterIndex(unsigned ASTArgumentIndex) const { return ASTArgumentIndex; } /// Some call event sub-classes conveniently adjust mismatching AST indices /// to match parameter indices. This function converts an argument index /// as understood by CallEvent to the argument index as understood by the AST. virtual unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const { return CallArgumentIndex; } /// Returns the construction context of the call, if it is a C++ constructor /// call or a call of a function returning a C++ class instance. Otherwise /// return nullptr. const ConstructionContext *getConstructionContext() const; /// If the call returns a C++ record type then the region of its return value /// can be retrieved from its construction context. std::optional getReturnValueUnderConstruction() const; // Returns the CallEvent representing the caller of this function const CallEventRef<> getCaller() const; // Returns true if the function was called from a standard library function. // If not or could not get the caller (it may be a top level function) // returns false. bool isCalledFromSystemHeader() const; // Iterator access to formal parameters and their types. private: struct GetTypeFn { QualType operator()(ParmVarDecl *PD) const { return PD->getType(); } }; public: /// Return call's formal parameters. /// /// Remember that the number of formal parameters may not match the number /// of arguments for all calls. However, the first parameter will always /// correspond with the argument value returned by \c getArgSVal(0). virtual ArrayRef parameters() const = 0; using param_type_iterator = llvm::mapped_iterator::iterator, GetTypeFn>; /// Returns an iterator over the types of the call's formal parameters. /// /// This uses the callee decl found by default name lookup rather than the /// definition because it represents a public interface, and probably has /// more annotations. param_type_iterator param_type_begin() const { return llvm::map_iterator(parameters().begin(), GetTypeFn()); } /// \sa param_type_begin() param_type_iterator param_type_end() const { return llvm::map_iterator(parameters().end(), GetTypeFn()); } // For debugging purposes only void dump(raw_ostream &Out) const; void dump() const; }; /// Represents a call to any sort of function that might have a /// FunctionDecl. class AnyFunctionCall : public CallEvent { protected: AnyFunctionCall(const Expr *E, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CallEvent(E, St, LCtx, ElemRef) {} AnyFunctionCall(const Decl *D, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CallEvent(D, St, LCtx, ElemRef) {} AnyFunctionCall(const AnyFunctionCall &Other) = default; public: // This function is overridden by subclasses, but they must return // a FunctionDecl. const FunctionDecl *getDecl() const override { return cast(CallEvent::getDecl()); } RuntimeDefinition getRuntimeDefinition() const override; bool argumentsMayEscape() const override; void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const override; ArrayRef parameters() const override; static bool classof(const CallEvent *CA) { return CA->getKind() >= CE_BEG_FUNCTION_CALLS && CA->getKind() <= CE_END_FUNCTION_CALLS; } }; /// Represents a C function or static C++ member function call. /// /// Example: \c fun() class SimpleFunctionCall : public AnyFunctionCall { friend class CallEventManager; protected: SimpleFunctionCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(CE, St, LCtx, ElemRef) {} SimpleFunctionCall(const SimpleFunctionCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) SimpleFunctionCall(*this); } public: const CallExpr *getOriginExpr() const override { return cast(AnyFunctionCall::getOriginExpr()); } const FunctionDecl *getDecl() const override; unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index); } Kind getKind() const override { return CE_Function; } StringRef getKindAsString() const override { return "SimpleFunctionCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Function; } }; /// Represents a call to a block. /// /// Example: ^{ statement-body }() class BlockCall : public CallEvent { friend class CallEventManager; protected: BlockCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CallEvent(CE, St, LCtx, ElemRef) {} BlockCall(const BlockCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) BlockCall(*this); } void getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const override; public: const CallExpr *getOriginExpr() const override { return cast(CallEvent::getOriginExpr()); } unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index); } /// Returns the region associated with this instance of the block. /// /// This may be NULL if the block's origin is unknown. const BlockDataRegion *getBlockRegion() const; const BlockDecl *getDecl() const override { const BlockDataRegion *BR = getBlockRegion(); if (!BR) return nullptr; return BR->getDecl(); } bool isConversionFromLambda() const { const BlockDecl *BD = getDecl(); if (!BD) return false; return BD->isConversionFromLambda(); } /// For a block converted from a C++ lambda, returns the block /// VarRegion for the variable holding the captured C++ lambda record. const VarRegion *getRegionStoringCapturedLambda() const { assert(isConversionFromLambda()); const BlockDataRegion *BR = getBlockRegion(); assert(BR && "Block converted from lambda must have a block region"); auto ReferencedVars = BR->referenced_vars(); assert(!ReferencedVars.empty()); return ReferencedVars.begin().getCapturedRegion(); } RuntimeDefinition getRuntimeDefinition() const override { if (!isConversionFromLambda()) return RuntimeDefinition(getDecl()); // Clang converts lambdas to blocks with an implicit user-defined // conversion operator method on the lambda record that looks (roughly) // like: // // typedef R(^block_type)(P1, P2, ...); // operator block_type() const { // auto Lambda = *this; // return ^(P1 p1, P2 p2, ...){ // /* return Lambda(p1, p2, ...); */ // }; // } // // Here R is the return type of the lambda and P1, P2, ... are // its parameter types. 'Lambda' is a fake VarDecl captured by the block // that is initialized to a copy of the lambda. // // Sema leaves the body of a lambda-converted block empty (it is // produced by CodeGen), so we can't analyze it directly. Instead, we skip // the block body and analyze the operator() method on the captured lambda. const VarDecl *LambdaVD = getRegionStoringCapturedLambda()->getDecl(); const CXXRecordDecl *LambdaDecl = LambdaVD->getType()->getAsCXXRecordDecl(); CXXMethodDecl *LambdaCallOperator = LambdaDecl->getLambdaCallOperator(); return RuntimeDefinition(LambdaCallOperator); } bool argumentsMayEscape() const override { return true; } void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const override; ArrayRef parameters() const override; Kind getKind() const override { return CE_Block; } StringRef getKindAsString() const override { return "BlockCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Block; } }; /// Represents a non-static C++ member function call, no matter how /// it is written. class CXXInstanceCall : public AnyFunctionCall { protected: CXXInstanceCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(CE, St, LCtx, ElemRef) {} CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(D, St, LCtx, ElemRef) {} CXXInstanceCall(const CXXInstanceCall &Other) = default; void getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const override; public: /// Returns the expression representing the implicit 'this' object. virtual const Expr *getCXXThisExpr() const { return nullptr; } /// Returns the value of the implicit 'this' object. virtual SVal getCXXThisVal() const; const FunctionDecl *getDecl() const override; RuntimeDefinition getRuntimeDefinition() const override; void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const override; static bool classof(const CallEvent *CA) { return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS && CA->getKind() <= CE_END_CXX_INSTANCE_CALLS; } }; /// Represents a non-static C++ member function call. /// /// Example: \c obj.fun() class CXXMemberCall : public CXXInstanceCall { friend class CallEventManager; protected: CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CXXInstanceCall(CE, St, LCtx, ElemRef) {} CXXMemberCall(const CXXMemberCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXMemberCall(*this); } public: const CXXMemberCallExpr *getOriginExpr() const override { return cast(CXXInstanceCall::getOriginExpr()); } unsigned getNumArgs() const override { if (const CallExpr *CE = getOriginExpr()) return CE->getNumArgs(); return 0; } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index); } const Expr *getCXXThisExpr() const override; RuntimeDefinition getRuntimeDefinition() const override; Kind getKind() const override { return CE_CXXMember; } StringRef getKindAsString() const override { return "CXXMemberCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXMember; } }; /// Represents a C++ overloaded operator call where the operator is /// implemented as a non-static member function. /// /// Example: iter + 1 class CXXMemberOperatorCall : public CXXInstanceCall { friend class CallEventManager; protected: CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CXXInstanceCall(CE, St, LCtx, ElemRef) {} CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXMemberOperatorCall(*this); } public: const CXXOperatorCallExpr *getOriginExpr() const override { return cast(CXXInstanceCall::getOriginExpr()); } unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs() - 1; } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index + 1); } const Expr *getCXXThisExpr() const override; Kind getKind() const override { return CE_CXXMemberOperator; } StringRef getKindAsString() const override { return "CXXMemberOperatorCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXMemberOperator; } std::optional getAdjustedParameterIndex(unsigned ASTArgumentIndex) const override { // For member operator calls argument 0 on the expression corresponds // to implicit this-parameter on the declaration. return (ASTArgumentIndex > 0) ? std::optional(ASTArgumentIndex - 1) : std::nullopt; } unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const override { // For member operator calls argument 0 on the expression corresponds // to implicit this-parameter on the declaration. return CallArgumentIndex + 1; } OverloadedOperatorKind getOverloadedOperator() const { return getOriginExpr()->getOperator(); } }; /// Represents an implicit call to a C++ destructor. /// /// This can occur at the end of a scope (for automatic objects), at the end /// of a full-expression (for temporaries), or as part of a delete. class CXXDestructorCall : public CXXInstanceCall { friend class CallEventManager; protected: using DtorDataTy = llvm::PointerIntPair; /// Creates an implicit destructor. /// /// \param DD The destructor that will be called. /// \param Trigger The statement whose completion causes this destructor call. /// \param Target The object region to be destructed. /// \param St The path-sensitive state at this point in the program. /// \param LCtx The location context at this point in the program. /// \param ElemRef The reference to this destructor in the CFG. /// /// FIXME: Eventually we want to drop \param Target and deduce it from /// \param ElemRef. To do that we need to migrate the logic for target /// region lookup from ExprEngine::ProcessImplicitDtor() and make it /// independent from ExprEngine. CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger, const MemRegion *Target, bool IsBaseDestructor, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CXXInstanceCall(DD, St, LCtx, ElemRef) { Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue(); Location = Trigger->getEndLoc(); } CXXDestructorCall(const CXXDestructorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXDestructorCall(*this); } public: SourceRange getSourceRange() const override { return Location; } unsigned getNumArgs() const override { return 0; } RuntimeDefinition getRuntimeDefinition() const override; /// Returns the value of the implicit 'this' object. SVal getCXXThisVal() const override; /// Returns true if this is a call to a base class destructor. bool isBaseDestructor() const { return DtorDataTy::getFromOpaqueValue(Data).getInt(); } Kind getKind() const override { return CE_CXXDestructor; } StringRef getKindAsString() const override { return "CXXDestructorCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXDestructor; } }; /// Represents any constructor invocation. This includes regular constructors /// and inherited constructors. class AnyCXXConstructorCall : public AnyFunctionCall { protected: AnyCXXConstructorCall(const Expr *E, const MemRegion *Target, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(E, St, LCtx, ElemRef) { assert(E && (isa(E) || isa(E))); // Target may be null when the region is unknown. Data = Target; } void getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const override; void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const override; public: /// Returns the value of the implicit 'this' object. SVal getCXXThisVal() const; static bool classof(const CallEvent *Call) { return Call->getKind() >= CE_BEG_CXX_CONSTRUCTOR_CALLS && Call->getKind() <= CE_END_CXX_CONSTRUCTOR_CALLS; } }; /// Represents a call to a C++ constructor. /// /// Example: \c T(1) class CXXConstructorCall : public AnyCXXConstructorCall { friend class CallEventManager; protected: /// Creates a constructor call. /// /// \param CE The constructor expression as written in the source. /// \param Target The region where the object should be constructed. If NULL, /// a new symbolic region will be used. /// \param St The path-sensitive state at this point in the program. /// \param LCtx The location context at this point in the program. /// \param ElemRef The reference to this constructor in the CFG. /// /// FIXME: Eventually we want to drop \param Target and deduce it from /// \param ElemRef. CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyCXXConstructorCall(CE, Target, St, LCtx, ElemRef) {} CXXConstructorCall(const CXXConstructorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXConstructorCall(*this); } public: const CXXConstructExpr *getOriginExpr() const override { return cast(AnyFunctionCall::getOriginExpr()); } const CXXConstructorDecl *getDecl() const override { return getOriginExpr()->getConstructor(); } unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index); } Kind getKind() const override { return CE_CXXConstructor; } StringRef getKindAsString() const override { return "CXXConstructorCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXConstructor; } }; /// Represents a call to a C++ inherited constructor. /// /// Example: \c class T : public S { using S::S; }; T(1); /// // Note, it is difficult to model the parameters. This is one of the reasons // why we skip analysis of inheriting constructors as top-level functions. // CXXInheritedCtorInitExpr doesn't take arguments and doesn't model parameter // initialization because there is none: the arguments in the outer // CXXConstructExpr directly initialize the parameters of the base class // constructor, and no copies are made. (Making a copy of the parameter is // incorrect, at least if it's done in an observable way.) The derived class // constructor doesn't even exist in the formal model. /// E.g., in: /// /// struct X { X *p = this; ~X() {} }; /// struct A { A(X x) : b(x.p == &x) {} bool b; }; /// struct B : A { using A::A; }; /// B b = X{}; /// /// ... b.b is initialized to true. class CXXInheritedConstructorCall : public AnyCXXConstructorCall { friend class CallEventManager; protected: CXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *CE, const MemRegion *Target, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyCXXConstructorCall(CE, Target, St, LCtx, ElemRef) {} CXXInheritedConstructorCall(const CXXInheritedConstructorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXInheritedConstructorCall(*this); } public: const CXXInheritedCtorInitExpr *getOriginExpr() const override { return cast(AnyFunctionCall::getOriginExpr()); } const CXXConstructorDecl *getDecl() const override { return getOriginExpr()->getConstructor(); } /// Obtain the stack frame of the inheriting constructor. Argument expressions /// can be found on the call site of that stack frame. const StackFrameContext *getInheritingStackFrame() const; /// Obtain the CXXConstructExpr for the sub-class that inherited the current /// constructor (possibly indirectly). It's the statement that contains /// argument expressions. const CXXConstructExpr *getInheritingConstructor() const { return cast(getInheritingStackFrame()->getCallSite()); } unsigned getNumArgs() const override { return getInheritingConstructor()->getNumArgs(); } const Expr *getArgExpr(unsigned Index) const override { return getInheritingConstructor()->getArg(Index); } SVal getArgSVal(unsigned Index) const override { return getState()->getSVal( getArgExpr(Index), getInheritingStackFrame()->getParent()->getStackFrame()); } Kind getKind() const override { return CE_CXXInheritedConstructor; } StringRef getKindAsString() const override { return "CXXInheritedConstructorCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXInheritedConstructor; } }; /// Represents the memory allocation call in a C++ new-expression. /// /// This is a call to "operator new". class CXXAllocatorCall : public AnyFunctionCall { friend class CallEventManager; protected: CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(E, St, LCtx, ElemRef) {} CXXAllocatorCall(const CXXAllocatorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXAllocatorCall(*this); } public: const CXXNewExpr *getOriginExpr() const override { return cast(AnyFunctionCall::getOriginExpr()); } const FunctionDecl *getDecl() const override { return getOriginExpr()->getOperatorNew(); } SVal getObjectUnderConstruction() const { return *ExprEngine::getObjectUnderConstruction(getState(), getOriginExpr(), getLocationContext()); } /// Number of non-placement arguments to the call. It is equal to 2 for /// C++17 aligned operator new() calls that have alignment implicitly /// passed as the second argument, and to 1 for other operator new() calls. unsigned getNumImplicitArgs() const { return getOriginExpr()->passAlignment() ? 2 : 1; } unsigned getNumArgs() const override { return getOriginExpr()->getNumPlacementArgs() + getNumImplicitArgs(); } bool isArray() const { return getOriginExpr()->isArray(); } std::optional getArraySizeExpr() const { return getOriginExpr()->getArraySize(); } SVal getArraySizeVal() const { assert(isArray() && "The allocator call doesn't allocate and array!"); return getState()->getSVal(*getArraySizeExpr(), getLocationContext()); } const Expr *getArgExpr(unsigned Index) const override { // The first argument of an allocator call is the size of the allocation. if (Index < getNumImplicitArgs()) return nullptr; return getOriginExpr()->getPlacementArg(Index - getNumImplicitArgs()); } /// Number of placement arguments to the operator new() call. For example, /// standard std::nothrow operator new and standard placement new both have /// 1 implicit argument (size) and 1 placement argument, while regular /// operator new() has 1 implicit argument and 0 placement arguments. const Expr *getPlacementArgExpr(unsigned Index) const { return getOriginExpr()->getPlacementArg(Index); } Kind getKind() const override { return CE_CXXAllocator; } StringRef getKindAsString() const override { return "CXXAllocatorCall"; } static bool classof(const CallEvent *CE) { return CE->getKind() == CE_CXXAllocator; } }; /// Represents the memory deallocation call in a C++ delete-expression. /// /// This is a call to "operator delete". // FIXME: CXXDeleteExpr isn't present for custom delete operators, or even for // some those that are in the standard library, like the no-throw or align_val // versions. // Some pointers: // http://lists.llvm.org/pipermail/cfe-dev/2020-April/065080.html // clang/test/Analysis/cxx-dynamic-memory-analysis-order.cpp // clang/unittests/StaticAnalyzer/CallEventTest.cpp class CXXDeallocatorCall : public AnyFunctionCall { friend class CallEventManager; protected: CXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : AnyFunctionCall(E, St, LCtx, ElemRef) {} CXXDeallocatorCall(const CXXDeallocatorCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) CXXDeallocatorCall(*this); } public: const CXXDeleteExpr *getOriginExpr() const override { return cast(AnyFunctionCall::getOriginExpr()); } const FunctionDecl *getDecl() const override { return getOriginExpr()->getOperatorDelete(); } unsigned getNumArgs() const override { return getDecl()->getNumParams(); } const Expr *getArgExpr(unsigned Index) const override { // CXXDeleteExpr's only have a single argument. return getOriginExpr()->getArgument(); } Kind getKind() const override { return CE_CXXDeallocator; } StringRef getKindAsString() const override { return "CXXDeallocatorCall"; } static bool classof(const CallEvent *CE) { return CE->getKind() == CE_CXXDeallocator; } }; /// Represents the ways an Objective-C message send can occur. // // Note to maintainers: OCM_Message should always be last, since it does not // need to fit in the Data field's low bits. enum ObjCMessageKind { OCM_PropertyAccess, OCM_Subscript, OCM_Message }; /// Represents any expression that calls an Objective-C method. /// /// This includes all of the kinds listed in ObjCMessageKind. class ObjCMethodCall : public CallEvent { friend class CallEventManager; const PseudoObjectExpr *getContainingPseudoObjectExpr() const; protected: ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) : CallEvent(Msg, St, LCtx, ElemRef) { Data = nullptr; } ObjCMethodCall(const ObjCMethodCall &Other) = default; void cloneTo(void *Dest) const override { new (Dest) ObjCMethodCall(*this); } void getExtraInvalidatedValues( ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const override; /// Check if the selector may have multiple definitions (may have overrides). virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, Selector Sel) const; public: const ObjCMessageExpr *getOriginExpr() const override { return cast(CallEvent::getOriginExpr()); } const ObjCMethodDecl *getDecl() const override { return getOriginExpr()->getMethodDecl(); } unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); } const Expr *getArgExpr(unsigned Index) const override { return getOriginExpr()->getArg(Index); } bool isInstanceMessage() const { return getOriginExpr()->isInstanceMessage(); } ObjCMethodFamily getMethodFamily() const { return getOriginExpr()->getMethodFamily(); } Selector getSelector() const { return getOriginExpr()->getSelector(); } SourceRange getSourceRange() const override; /// Returns the value of the receiver at the time of this call. SVal getReceiverSVal() const; /// Get the interface for the receiver. /// /// This works whether this is an instance message or a class message. /// However, it currently just uses the static type of the receiver. const ObjCInterfaceDecl *getReceiverInterface() const { return getOriginExpr()->getReceiverInterface(); } /// Checks if the receiver refers to 'self' or 'super'. bool isReceiverSelfOrSuper() const; /// Returns how the message was written in the source (property access, /// subscript, or explicit message send). ObjCMessageKind getMessageKind() const; /// Returns true if this property access or subscript is a setter (has the /// form of an assignment). bool isSetter() const { switch (getMessageKind()) { case OCM_Message: llvm_unreachable("This is not a pseudo-object access!"); case OCM_PropertyAccess: return getNumArgs() > 0; case OCM_Subscript: return getNumArgs() > 1; } llvm_unreachable("Unknown message kind"); } // Returns the property accessed by this method, either explicitly via // property syntax or implicitly via a getter or setter method. Returns // nullptr if the call is not a prooperty access. const ObjCPropertyDecl *getAccessedProperty() const; RuntimeDefinition getRuntimeDefinition() const override; bool argumentsMayEscape() const override; void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const override; ArrayRef parameters() const override; Kind getKind() const override { return CE_ObjCMessage; } StringRef getKindAsString() const override { return "ObjCMethodCall"; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_ObjCMessage; } }; /// Manages the lifetime of CallEvent objects. /// /// CallEventManager provides a way to create arbitrary CallEvents "on the /// stack" as if they were value objects by keeping a cache of CallEvent-sized /// memory blocks. The CallEvents created by CallEventManager are only valid /// for the lifetime of the OwnedCallEvent that holds them; right now these /// objects cannot be copied and ownership cannot be transferred. class CallEventManager { friend class CallEvent; llvm::BumpPtrAllocator &Alloc; SmallVector Cache; using CallEventTemplateTy = SimpleFunctionCall; void reclaim(const void *Memory) { Cache.push_back(const_cast(Memory)); } /// Returns memory that can be initialized as a CallEvent. void *allocate() { if (Cache.empty()) return Alloc.Allocate(); else return Cache.pop_back_val(); } template T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { static_assert(sizeof(T) == sizeof(CallEventTemplateTy), "CallEvent subclasses are not all the same size"); return new (allocate()) T(A, St, LCtx, ElemRef); } template T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { static_assert(sizeof(T) == sizeof(CallEventTemplateTy), "CallEvent subclasses are not all the same size"); return new (allocate()) T(A1, A2, St, LCtx, ElemRef); } template T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { static_assert(sizeof(T) == sizeof(CallEventTemplateTy), "CallEvent subclasses are not all the same size"); return new (allocate()) T(A1, A2, A3, St, LCtx, ElemRef); } template T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { static_assert(sizeof(T) == sizeof(CallEventTemplateTy), "CallEvent subclasses are not all the same size"); return new (allocate()) T(A1, A2, A3, A4, St, LCtx, ElemRef); } public: CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {} /// Gets an outside caller given a callee context. CallEventRef<> getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State); /// Gets a call event for a function call, Objective-C method call, /// a 'new', or a 'delete' call. CallEventRef<> getCall(const Stmt *S, ProgramStateRef State, const LocationContext *LC, CFGBlock::ConstCFGElementRef ElemRef); CallEventRef<> getSimpleCall(const CallExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef); CallEventRef getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(E, State, LCtx, ElemRef); } CallEventRef getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(E, Target, State, LCtx, ElemRef); } CallEventRef getCXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *E, const MemRegion *Target, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(E, Target, State, LCtx, ElemRef); } CallEventRef getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger, const MemRegion *Target, bool IsBase, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(DD, Trigger, Target, IsBase, State, LCtx, ElemRef); } CallEventRef getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(E, State, LCtx, ElemRef); } CallEventRef getCXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) { return create(E, State, LCtx, ElemRef); } }; template CallEventRef CallEvent::cloneWithState(ProgramStateRef NewState) const { assert(isa(*this) && "Cloning to unrelated type"); static_assert(sizeof(T) == sizeof(CallEvent), "Subclasses may not add fields"); if (NewState == State) return cast(this); CallEventManager &Mgr = State->getStateManager().getCallEventManager(); T *Copy = static_cast(Mgr.allocate()); cloneTo(Copy); assert(Copy->getKind() == this->getKind() && "Bad copy"); Copy->State = NewState; return Copy; } inline void CallEvent::Release() const { assert(RefCount > 0 && "Reference count is already zero."); --RefCount; if (RefCount > 0) return; CallEventManager &Mgr = State->getStateManager().getCallEventManager(); Mgr.reclaim(this); this->~CallEvent(); } } // namespace ento } // namespace clang namespace llvm { // Support isa<>, cast<>, and dyn_cast<> for CallEventRef. template struct simplify_type> { using SimpleType = const T *; static SimpleType getSimplifiedValue(clang::ento::CallEventRef Val) { return Val.get(); } }; } // namespace llvm #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H