//===- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // See "Precise interprocedural dataflow analysis via graph reachability" // by Reps, Horwitz, and Sagiv // (http://portal.acm.org/citation.cfm?id=199462) for the definition of an // exploded graph. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Analysis/Support/BumpVector.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include #include #include #include #include #include namespace clang { class CFG; class Decl; class Expr; class ParentMap; class Stmt; namespace ento { class ExplodedGraph; //===----------------------------------------------------------------------===// // ExplodedGraph "implementation" classes. These classes are not typed to // contain a specific kind of state. Typed-specialized versions are defined // on top of these classes. //===----------------------------------------------------------------------===// // ExplodedNode is not constified all over the engine because we need to add // successors to it at any time after creating it. class ExplodedNode : public llvm::FoldingSetNode { friend class BranchNodeBuilder; friend class CoreEngine; friend class EndOfFunctionNodeBuilder; friend class ExplodedGraph; friend class IndirectGotoNodeBuilder; friend class NodeBuilder; friend class SwitchNodeBuilder; /// Efficiently stores a list of ExplodedNodes, or an optional flag. /// /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing /// for the case when there is only one node in the group. This is a fairly /// common case in an ExplodedGraph, where most nodes have only one /// predecessor and many have only one successor. It can also be used to /// store a flag rather than a node list, which ExplodedNode uses to mark /// whether a node is a sink. If the flag is set, the group is implicitly /// empty and no nodes may be added. class NodeGroup { // Conceptually a discriminated union. If the low bit is set, the node is // a sink. If the low bit is not set, the pointer refers to the storage // for the nodes in the group. // This is not a PointerIntPair in order to keep the storage type opaque. uintptr_t P; public: NodeGroup(bool Flag = false) : P(Flag) { assert(getFlag() == Flag); } ExplodedNode * const *begin() const; ExplodedNode * const *end() const; unsigned size() const; bool empty() const { return P == 0 || getFlag() != 0; } /// Adds a node to the list. /// /// The group must not have been created with its flag set. void addNode(ExplodedNode *N, ExplodedGraph &G); /// Replaces the single node in this group with a new node. /// /// Note that this should only be used when you know the group was not /// created with its flag set, and that the group is empty or contains /// only a single node. void replaceNode(ExplodedNode *node); /// Returns whether this group was created with its flag set. bool getFlag() const { return (P & 1); } }; /// Location - The program location (within a function body) associated /// with this node. const ProgramPoint Location; /// State - The state associated with this node. ProgramStateRef State; /// Preds - The predecessors of this node. NodeGroup Preds; /// Succs - The successors of this node. NodeGroup Succs; int64_t Id; public: explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state, int64_t Id, bool IsSink) : Location(loc), State(std::move(state)), Succs(IsSink), Id(Id) { assert(isSink() == IsSink); } /// getLocation - Returns the edge associated with the given node. ProgramPoint getLocation() const { return Location; } const LocationContext *getLocationContext() const { return getLocation().getLocationContext(); } const StackFrameContext *getStackFrame() const { return getLocation().getStackFrame(); } const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); } CFG &getCFG() const { return *getLocationContext()->getCFG(); } const CFGBlock *getCFGBlock() const; const ParentMap &getParentMap() const { return getLocationContext()->getParentMap(); } template T &getAnalysis() const { return *getLocationContext()->getAnalysis(); } const ProgramStateRef &getState() const { return State; } template std::optional getLocationAs() const & { return Location.getAs(); } /// Get the value of an arbitrary expression at this node. SVal getSVal(const Stmt *S) const { return getState()->getSVal(S, getLocationContext()); } static void Profile(llvm::FoldingSetNodeID &ID, const ProgramPoint &Loc, const ProgramStateRef &state, bool IsSink) { ID.Add(Loc); ID.AddPointer(state.get()); ID.AddBoolean(IsSink); } void Profile(llvm::FoldingSetNodeID& ID) const { // We avoid copy constructors by not using accessors. Profile(ID, Location, State, isSink()); } /// addPredeccessor - Adds a predecessor to the current node, and /// in tandem add this node as a successor of the other node. void addPredecessor(ExplodedNode *V, ExplodedGraph &G); unsigned succ_size() const { return Succs.size(); } unsigned pred_size() const { return Preds.size(); } bool succ_empty() const { return Succs.empty(); } bool pred_empty() const { return Preds.empty(); } bool isSink() const { return Succs.getFlag(); } bool hasSinglePred() const { return (pred_size() == 1); } ExplodedNode *getFirstPred() { return pred_empty() ? nullptr : *(pred_begin()); } const ExplodedNode *getFirstPred() const { return const_cast(this)->getFirstPred(); } ExplodedNode *getFirstSucc() { return succ_empty() ? nullptr : *(succ_begin()); } const ExplodedNode *getFirstSucc() const { return const_cast(this)->getFirstSucc(); } // Iterators over successor and predecessor vertices. using succ_iterator = ExplodedNode * const *; using succ_range = llvm::iterator_range; using const_succ_iterator = const ExplodedNode * const *; using const_succ_range = llvm::iterator_range; using pred_iterator = ExplodedNode * const *; using pred_range = llvm::iterator_range; using const_pred_iterator = const ExplodedNode * const *; using const_pred_range = llvm::iterator_range; pred_iterator pred_begin() { return Preds.begin(); } pred_iterator pred_end() { return Preds.end(); } pred_range preds() { return {Preds.begin(), Preds.end()}; } const_pred_iterator pred_begin() const { return const_cast(this)->pred_begin(); } const_pred_iterator pred_end() const { return const_cast(this)->pred_end(); } const_pred_range preds() const { return {Preds.begin(), Preds.end()}; } succ_iterator succ_begin() { return Succs.begin(); } succ_iterator succ_end() { return Succs.end(); } succ_range succs() { return {Succs.begin(), Succs.end()}; } const_succ_iterator succ_begin() const { return const_cast(this)->succ_begin(); } const_succ_iterator succ_end() const { return const_cast(this)->succ_end(); } const_succ_range succs() const { return {Succs.begin(), Succs.end()}; } int64_t getID() const { return Id; } /// The node is trivial if it has only one successor, only one predecessor, /// it's predecessor has only one successor, /// and its program state is the same as the program state of the previous /// node. /// Trivial nodes may be skipped while printing exploded graph. bool isTrivial() const; /// If the node's program point corresponds to a statement, retrieve that /// statement. Useful for figuring out where to put a warning or a note. /// If the statement belongs to a body-farmed definition, /// retrieve the call site for that definition. const Stmt *getStmtForDiagnostics() const; /// Find the next statement that was executed on this node's execution path. /// Useful for explaining control flow that follows the current node. /// If the statement belongs to a body-farmed definition, retrieve the /// call site for that definition. const Stmt *getNextStmtForDiagnostics() const; /// Find the statement that was executed immediately before this node. /// Useful when the node corresponds to a CFG block entrance. /// If the statement belongs to a body-farmed definition, retrieve the /// call site for that definition. const Stmt *getPreviousStmtForDiagnostics() const; /// Find the statement that was executed at or immediately before this node. /// Useful when any nearby statement will do. /// If the statement belongs to a body-farmed definition, retrieve the /// call site for that definition. const Stmt *getCurrentOrPreviousStmtForDiagnostics() const; private: void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); } void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); } }; using InterExplodedGraphMap = llvm::DenseMap; class ExplodedGraph { protected: friend class CoreEngine; // Type definitions. using NodeVector = std::vector; /// The roots of the simulation graph. Usually there will be only /// one, but clients are free to establish multiple subgraphs within a single /// SimulGraph. Moreover, these subgraphs can often merge when paths from /// different roots reach the same state at the same program location. NodeVector Roots; /// The nodes in the simulation graph which have been /// specially marked as the endpoint of an abstract simulation path. NodeVector EndNodes; /// Nodes - The nodes in the graph. llvm::FoldingSet Nodes; /// BVC - Allocator and context for allocating nodes and their predecessor /// and successor groups. BumpVectorContext BVC; /// NumNodes - The number of nodes in the graph. int64_t NumNodes = 0; /// A list of recently allocated nodes that can potentially be recycled. NodeVector ChangedNodes; /// A list of nodes that can be reused. NodeVector FreeNodes; /// Determines how often nodes are reclaimed. /// /// If this is 0, nodes will never be reclaimed. unsigned ReclaimNodeInterval = 0; /// Counter to determine when to reclaim nodes. unsigned ReclaimCounter; public: ExplodedGraph(); ~ExplodedGraph(); /// Retrieve the node associated with a (Location,State) pair, /// where the 'Location' is a ProgramPoint in the CFG. If no node for /// this pair exists, it is created. IsNew is set to true if /// the node was freshly created. ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State, bool IsSink = false, bool* IsNew = nullptr); /// Create a node for a (Location, State) pair, /// but don't store it for deduplication later. This /// is useful when copying an already completed /// ExplodedGraph for further processing. ExplodedNode *createUncachedNode(const ProgramPoint &L, ProgramStateRef State, int64_t Id, bool IsSink = false); std::unique_ptr MakeEmptyGraph() const { return std::make_unique(); } /// addRoot - Add an untyped node to the set of roots. ExplodedNode *addRoot(ExplodedNode *V) { Roots.push_back(V); return V; } /// addEndOfPath - Add an untyped node to the set of EOP nodes. ExplodedNode *addEndOfPath(ExplodedNode *V) { EndNodes.push_back(V); return V; } unsigned num_roots() const { return Roots.size(); } unsigned num_eops() const { return EndNodes.size(); } bool empty() const { return NumNodes == 0; } unsigned size() const { return NumNodes; } void reserve(unsigned NodeCount) { Nodes.reserve(NodeCount); } // Iterators. using NodeTy = ExplodedNode; using AllNodesTy = llvm::FoldingSet; using roots_iterator = NodeVector::iterator; using const_roots_iterator = NodeVector::const_iterator; using eop_iterator = NodeVector::iterator; using const_eop_iterator = NodeVector::const_iterator; using node_iterator = AllNodesTy::iterator; using const_node_iterator = AllNodesTy::const_iterator; llvm::iterator_range nodes() { return Nodes; } llvm::iterator_range nodes() const { return Nodes; } roots_iterator roots_begin() { return Roots.begin(); } roots_iterator roots_end() { return Roots.end(); } const_roots_iterator roots_begin() const { return Roots.begin(); } const_roots_iterator roots_end() const { return Roots.end(); } eop_iterator eop_begin() { return EndNodes.begin(); } eop_iterator eop_end() { return EndNodes.end(); } const_eop_iterator eop_begin() const { return EndNodes.begin(); } const_eop_iterator eop_end() const { return EndNodes.end(); } llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); } BumpVectorContext &getNodeAllocator() { return BVC; } using NodeMap = llvm::DenseMap; /// Creates a trimmed version of the graph that only contains paths leading /// to the given nodes. /// /// \param Nodes The nodes which must appear in the final graph. Presumably /// these are end-of-path nodes (i.e. they have no successors). /// \param[out] ForwardMap A optional map from nodes in this graph to nodes in /// the returned graph. /// \param[out] InverseMap An optional map from nodes in the returned graph to /// nodes in this graph. /// \returns The trimmed graph std::unique_ptr trim(ArrayRef Nodes, InterExplodedGraphMap *ForwardMap = nullptr, InterExplodedGraphMap *InverseMap = nullptr) const; /// Enable tracking of recently allocated nodes for potential reclamation /// when calling reclaimRecentlyAllocatedNodes(). void enableNodeReclamation(unsigned Interval) { ReclaimCounter = ReclaimNodeInterval = Interval; } /// Reclaim "uninteresting" nodes created since the last time this method /// was called. void reclaimRecentlyAllocatedNodes(); /// Returns true if nodes for the given expression kind are always /// kept around. static bool isInterestingLValueExpr(const Expr *Ex); private: bool shouldCollect(const ExplodedNode *node); void collectNode(ExplodedNode *node); }; class ExplodedNodeSet { using ImplTy = llvm::SmallSetVector; ImplTy Impl; public: ExplodedNodeSet(ExplodedNode *N) { assert(N && !static_cast(N)->isSink()); Impl.insert(N); } ExplodedNodeSet() = default; void Add(ExplodedNode *N) { if (N && !static_cast(N)->isSink()) Impl.insert(N); } using iterator = ImplTy::iterator; using const_iterator = ImplTy::const_iterator; unsigned size() const { return Impl.size(); } bool empty() const { return Impl.empty(); } bool erase(ExplodedNode *N) { return Impl.remove(N); } void clear() { Impl.clear(); } void insert(const ExplodedNodeSet &S) { assert(&S != this); if (empty()) Impl = S.Impl; else Impl.insert(S.begin(), S.end()); } iterator begin() { return Impl.begin(); } iterator end() { return Impl.end(); } const_iterator begin() const { return Impl.begin(); } const_iterator end() const { return Impl.end(); } }; } // namespace ento } // namespace clang // GraphTraits namespace llvm { template <> struct GraphTraits { using GraphTy = clang::ento::ExplodedGraph *; using NodeRef = clang::ento::ExplodedNode *; using ChildIteratorType = clang::ento::ExplodedNode::succ_iterator; using nodes_iterator = llvm::df_iterator; static NodeRef getEntryNode(const GraphTy G) { return *G->roots_begin(); } static bool predecessorOfTrivial(NodeRef N) { return N->succ_size() == 1 && N->getFirstSucc()->isTrivial(); } static ChildIteratorType child_begin(NodeRef N) { if (predecessorOfTrivial(N)) return child_begin(*N->succ_begin()); return N->succ_begin(); } static ChildIteratorType child_end(NodeRef N) { if (predecessorOfTrivial(N)) return child_end(N->getFirstSucc()); return N->succ_end(); } static nodes_iterator nodes_begin(const GraphTy G) { return df_begin(G); } static nodes_iterator nodes_end(const GraphTy G) { return df_end(G); } }; } // namespace llvm #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H