//== RangedConstraintManager.h ----------------------------------*- C++ -*--==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Ranged constraint manager, built on SimpleConstraintManager. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h" #include "llvm/ADT/APSInt.h" #include "llvm/Support/Allocator.h" namespace clang { namespace ento { /// A Range represents the closed range [from, to]. The caller must /// guarantee that from <= to. Note that Range is immutable, so as not /// to subvert RangeSet's immutability. class Range { public: Range(const llvm::APSInt &From, const llvm::APSInt &To) : Impl(&From, &To) { assert(From <= To); } Range(const llvm::APSInt &Point) : Range(Point, Point) {} bool Includes(const llvm::APSInt &Point) const { return From() <= Point && Point <= To(); } const llvm::APSInt &From() const { return *Impl.first; } const llvm::APSInt &To() const { return *Impl.second; } const llvm::APSInt *getConcreteValue() const { return &From() == &To() ? &From() : nullptr; } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddPointer(&From()); ID.AddPointer(&To()); } void dump(raw_ostream &OS) const; void dump() const; // In order to keep non-overlapping ranges sorted, we can compare only From // points. bool operator<(const Range &RHS) const { return From() < RHS.From(); } bool operator==(const Range &RHS) const { return Impl == RHS.Impl; } bool operator!=(const Range &RHS) const { return !operator==(RHS); } private: std::pair Impl; }; /// @class RangeSet is a persistent set of non-overlapping ranges. /// /// New RangeSet objects can be ONLY produced by RangeSet::Factory object, which /// also supports the most common operations performed on range sets. /// /// Empty set corresponds to an overly constrained symbol meaning that there /// are no possible values for that symbol. class RangeSet { public: class Factory; private: // We use llvm::SmallVector as the underlying container for the following // reasons: // // * Range sets are usually very simple, 1 or 2 ranges. // That's why llvm::ImmutableSet is not perfect. // // * Ranges in sets are NOT overlapping, so it is natural to keep them // sorted for efficient operations and queries. For this reason, // llvm::SmallSet doesn't fit the requirements, it is not sorted when it // is a vector. // // * Range set operations usually a bit harder than add/remove a range. // Complex operations might do many of those for just one range set. // Formerly it used to be llvm::ImmutableSet, which is inefficient for our // purposes as we want to make these operations BOTH immutable AND // efficient. // // * Iteration over ranges is widespread and a more cache-friendly // structure is preferred. using ImplType = llvm::SmallVector; struct ContainerType : public ImplType, public llvm::FoldingSetNode { void Profile(llvm::FoldingSetNodeID &ID) const { for (const Range &It : *this) { It.Profile(ID); } } }; // This is a non-owning pointer to an actual container. // The memory is fully managed by the factory and is alive as long as the // factory itself is alive. // It is a pointer as opposed to a reference, so we can easily reassign // RangeSet objects. using UnderlyingType = const ContainerType *; UnderlyingType Impl; public: using const_iterator = ImplType::const_iterator; const_iterator begin() const { return Impl->begin(); } const_iterator end() const { return Impl->end(); } size_t size() const { return Impl->size(); } bool isEmpty() const { return Impl->empty(); } class Factory { public: Factory(BasicValueFactory &BV) : ValueFactory(BV) {} /// Create a new set with all ranges from both LHS and RHS. /// Possible intersections are not checked here. /// /// Complexity: O(N + M) /// where N = size(LHS), M = size(RHS) RangeSet add(RangeSet LHS, RangeSet RHS); /// Create a new set with all ranges from the original set plus the new one. /// Possible intersections are not checked here. /// /// Complexity: O(N) /// where N = size(Original) RangeSet add(RangeSet Original, Range Element); /// Create a new set with all ranges from the original set plus the point. /// Possible intersections are not checked here. /// /// Complexity: O(N) /// where N = size(Original) RangeSet add(RangeSet Original, const llvm::APSInt &Point); /// Create a new set which is a union of two given ranges. /// Possible intersections are not checked here. /// /// Complexity: O(N + M) /// where N = size(LHS), M = size(RHS) RangeSet unite(RangeSet LHS, RangeSet RHS); /// Create a new set by uniting given range set with the given range. /// All intersections and adjacent ranges are handled here. /// /// Complexity: O(N) /// where N = size(Original) RangeSet unite(RangeSet Original, Range Element); /// Create a new set by uniting given range set with the given point. /// All intersections and adjacent ranges are handled here. /// /// Complexity: O(N) /// where N = size(Original) RangeSet unite(RangeSet Original, llvm::APSInt Point); /// Create a new set by uniting given range set with the given range /// between points. All intersections and adjacent ranges are handled here. /// /// Complexity: O(N) /// where N = size(Original) RangeSet unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To); RangeSet getEmptySet() { return &EmptySet; } /// Create a new set with just one range. /// @{ RangeSet getRangeSet(Range Origin); RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To) { return getRangeSet(Range(From, To)); } RangeSet getRangeSet(const llvm::APSInt &Origin) { return getRangeSet(Origin, Origin); } /// @} /// Intersect the given range sets. /// /// Complexity: O(N + M) /// where N = size(LHS), M = size(RHS) RangeSet intersect(RangeSet LHS, RangeSet RHS); /// Intersect the given set with the closed range [Lower, Upper]. /// /// Unlike the Range type, this range uses modular arithmetic, corresponding /// to the common treatment of C integer overflow. Thus, if the Lower bound /// is greater than the Upper bound, the range is taken to wrap around. This /// is equivalent to taking the intersection with the two ranges [Min, /// Upper] and [Lower, Max], or, alternatively, /removing/ all integers /// between Upper and Lower. /// /// Complexity: O(N) /// where N = size(What) RangeSet intersect(RangeSet What, llvm::APSInt Lower, llvm::APSInt Upper); /// Intersect the given range with the given point. /// /// The result can be either an empty set or a set containing the given /// point depending on whether the point is in the range set. /// /// Complexity: O(logN) /// where N = size(What) RangeSet intersect(RangeSet What, llvm::APSInt Point); /// Delete the given point from the range set. /// /// Complexity: O(N) /// where N = size(From) RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point); /// Negate the given range set. /// /// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus /// operation under the values of the type. /// /// We also handle MIN because applying unary minus to MIN does not change /// it. /// Example 1: /// char x = -128; // -128 is a MIN value in a range of 'char' /// char y = -x; // y: -128 /// /// Example 2: /// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char' /// unsigned char y = -x; // y: 0 /// /// And it makes us to separate the range /// like [MIN, N] to [MIN, MIN] U [-N, MAX]. /// For instance, whole range is {-128..127} and subrange is [-128,-126], /// thus [-128,-127,-126,...] negates to [-128,...,126,127]. /// /// Negate restores disrupted ranges on bounds, /// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B]. /// /// Negate is a self-inverse function, i.e. negate(negate(R)) == R. /// /// Complexity: O(N) /// where N = size(What) RangeSet negate(RangeSet What); /// Performs promotions, truncations and conversions of the given set. /// /// This function is optimized for each of the six cast cases: /// - noop /// - conversion /// - truncation /// - truncation-conversion /// - promotion /// - promotion-conversion /// /// NOTE: This function is NOT self-inverse for truncations, because of /// the higher bits loss: /// - castTo(castTo(OrigRangeOfInt, char), int) != OrigRangeOfInt. /// - castTo(castTo(OrigRangeOfChar, int), char) == OrigRangeOfChar. /// But it is self-inverse for all the rest casts. /// /// Complexity: /// - Noop O(1); /// - Truncation O(N^2); /// - Another case O(N); /// where N = size(What) RangeSet castTo(RangeSet What, APSIntType Ty); RangeSet castTo(RangeSet What, QualType T); /// Return associated value factory. BasicValueFactory &getValueFactory() const { return ValueFactory; } private: /// Return a persistent version of the given container. RangeSet makePersistent(ContainerType &&From); /// Construct a new persistent version of the given container. ContainerType *construct(ContainerType &&From); RangeSet intersect(const ContainerType &LHS, const ContainerType &RHS); /// NOTE: This function relies on the fact that all values in the /// containers are persistent (created via BasicValueFactory::getValue). ContainerType unite(const ContainerType &LHS, const ContainerType &RHS); /// This is a helper function for `castTo` method. Implies not to be used /// separately. /// Performs a truncation case of a cast operation. ContainerType truncateTo(RangeSet What, APSIntType Ty); /// This is a helper function for `castTo` method. Implies not to be used /// separately. /// Performs a conversion case and a promotion-conversion case for signeds /// of a cast operation. ContainerType convertTo(RangeSet What, APSIntType Ty); /// This is a helper function for `castTo` method. Implies not to be used /// separately. /// Performs a promotion for unsigneds only. ContainerType promoteTo(RangeSet What, APSIntType Ty); // Many operations include producing new APSInt values and that's why // we need this factory. BasicValueFactory &ValueFactory; // Allocator for all the created containers. // Containers might own their own memory and that's why it is specific // for the type, so it calls container destructors upon deletion. llvm::SpecificBumpPtrAllocator Arena; // Usually we deal with the same ranges and range sets over and over. // Here we track all created containers and try not to repeat ourselves. llvm::FoldingSet Cache; static ContainerType EmptySet; }; RangeSet(const RangeSet &) = default; RangeSet &operator=(const RangeSet &) = default; RangeSet(RangeSet &&) = default; RangeSet &operator=(RangeSet &&) = default; ~RangeSet() = default; /// Construct a new RangeSet representing '{ [From, To] }'. RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To) : RangeSet(F.getRangeSet(From, To)) {} /// Construct a new RangeSet representing the given point as a range. RangeSet(Factory &F, const llvm::APSInt &Point) : RangeSet(F.getRangeSet(Point)) {} static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS) { ID.AddPointer(RS.Impl); } /// Profile - Generates a hash profile of this RangeSet for use /// by FoldingSet. void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, *this); } /// getConcreteValue - If a symbol is constrained to equal a specific integer /// constant then this method returns that value. Otherwise, it returns /// NULL. const llvm::APSInt *getConcreteValue() const { return Impl->size() == 1 ? begin()->getConcreteValue() : nullptr; } /// Get the minimal value covered by the ranges in the set. /// /// Complexity: O(1) const llvm::APSInt &getMinValue() const; /// Get the maximal value covered by the ranges in the set. /// /// Complexity: O(1) const llvm::APSInt &getMaxValue() const; bool isUnsigned() const; uint32_t getBitWidth() const; APSIntType getAPSIntType() const; /// Test whether the given point is contained by any of the ranges. /// /// Complexity: O(logN) /// where N = size(this) bool contains(llvm::APSInt Point) const { return containsImpl(Point); } bool containsZero() const { APSIntType T{getMinValue()}; return contains(T.getZeroValue()); } /// Test if the range is the [0,0] range. /// /// Complexity: O(1) bool encodesFalseRange() const { const llvm::APSInt *Constant = getConcreteValue(); return Constant && Constant->isZero(); } /// Test if the range doesn't contain zero. /// /// Complexity: O(logN) /// where N = size(this) bool encodesTrueRange() const { return !containsZero(); } void dump(raw_ostream &OS) const; void dump() const; bool operator==(const RangeSet &Other) const { return *Impl == *Other.Impl; } bool operator!=(const RangeSet &Other) const { return !(*this == Other); } private: /* implicit */ RangeSet(ContainerType *RawContainer) : Impl(RawContainer) {} /* implicit */ RangeSet(UnderlyingType Ptr) : Impl(Ptr) {} /// Pin given points to the type represented by the current range set. /// /// This makes parameter points to be in-out parameters. /// In order to maintain consistent types across all of the ranges in the set /// and to keep all the operations to compare ONLY points of the same type, we /// need to pin every point before any operation. /// /// @Returns true if the given points can be converted to the target type /// without changing the values (i.e. trivially) and false otherwise. /// @{ bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const; bool pin(llvm::APSInt &Point) const; /// @} // This version of this function modifies its arguments (pins it). bool containsImpl(llvm::APSInt &Point) const; friend class Factory; }; using ConstraintMap = llvm::ImmutableMap; ConstraintMap getConstraintMap(ProgramStateRef State); class RangedConstraintManager : public SimpleConstraintManager { public: RangedConstraintManager(ExprEngine *EE, SValBuilder &SB) : SimpleConstraintManager(EE, SB) {} ~RangedConstraintManager() override; //===------------------------------------------------------------------===// // Implementation for interface from SimpleConstraintManager. //===------------------------------------------------------------------===// ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym, bool Assumption) override; ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, bool InRange) override; ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym, bool Assumption) override; protected: /// Assume a constraint between a symbolic expression and a concrete integer. virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym, BinaryOperator::Opcode op, const llvm::APSInt &Int); //===------------------------------------------------------------------===// // Interface that subclasses must implement. //===------------------------------------------------------------------===// // Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison // operation for the method being invoked. virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymWithinInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; virtual ProgramStateRef assumeSymOutsideInclusiveRange( ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; //===------------------------------------------------------------------===// // Internal implementation. //===------------------------------------------------------------------===// private: static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment); }; /// Try to simplify a given symbolic expression based on the constraints in /// State. This is needed because the Environment bindings are not getting /// updated when a new constraint is added to the State. If the symbol is /// simplified to a non-symbol (e.g. to a constant) then the original symbol /// is returned. We use this function in the family of assumeSymNE/EQ/LT/../GE /// functions where we can work only with symbols. Use the other function /// (simplifyToSVal) if you are interested in a simplification that may yield /// a concrete constant value. SymbolRef simplify(ProgramStateRef State, SymbolRef Sym); /// Try to simplify a given symbolic expression's associated `SVal` based on the /// constraints in State. This is very similar to `simplify`, but this function /// always returns the simplified SVal. The simplified SVal might be a single /// constant (i.e. `ConcreteInt`). SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym); } // namespace ento } // namespace clang REGISTER_FACTORY_WITH_PROGRAMSTATE(ConstraintMap) #endif