//===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Defines the fixed point number interface. /// This is a class for abstracting various operations performed on fixed point /// types. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APFIXEDPOINT_H #define LLVM_ADT_APFIXEDPOINT_H #include "llvm/ADT/APSInt.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" namespace llvm { class APFloat; struct fltSemantics; /// The fixed point semantics work similarly to fltSemantics. The width /// specifies the whole bit width of the underlying scaled integer (with padding /// if any). The scale represents the number of fractional bits in this type. /// When HasUnsignedPadding is true and this type is unsigned, the first bit /// in the value this represents is treated as padding. class FixedPointSemantics { public: static constexpr unsigned WidthBitWidth = 16; static constexpr unsigned LsbWeightBitWidth = 13; /// Used to differentiate between constructors with Width and Lsb from the /// default Width and scale struct Lsb { int LsbWeight; }; FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, bool IsSaturated, bool HasUnsignedPadding) : FixedPointSemantics(Width, Lsb{-static_cast(Scale)}, IsSigned, IsSaturated, HasUnsignedPadding) {} FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned, bool IsSaturated, bool HasUnsignedPadding) : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned), IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) { assert(isUInt(Width) && isInt(Weight.LsbWeight)); assert(!(IsSigned && HasUnsignedPadding) && "Cannot have unsigned padding on a signed type."); } /// Check if the Semantic follow the requirements of an older more limited /// version of this class bool isValidLegacySema() const { return LsbWeight <= 0 && static_cast(Width) >= -LsbWeight; } unsigned getWidth() const { return Width; } unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; } int getLsbWeight() const { return LsbWeight; } int getMsbWeight() const { return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/; } bool isSigned() const { return IsSigned; } bool isSaturated() const { return IsSaturated; } bool hasUnsignedPadding() const { return HasUnsignedPadding; } void setSaturated(bool Saturated) { IsSaturated = Saturated; } /// return true if the first bit doesn't have a strictly positive weight bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; } /// Return the number of integral bits represented by these semantics. These /// are separate from the fractional bits and do not include the sign or /// padding bit. unsigned getIntegralBits() const { return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0); } /// Return the FixedPointSemantics that allows for calculating the full /// precision semantic that can precisely represent the precision and ranges /// of both input values. This does not compute the resulting semantics for a /// given binary operation. FixedPointSemantics getCommonSemantics(const FixedPointSemantics &Other) const; /// Print semantics for debug purposes void print(llvm::raw_ostream& OS) const; /// Returns true if this fixed-point semantic with its value bits interpreted /// as an integer can fit in the given floating point semantic without /// overflowing to infinity. /// For example, a signed 8-bit fixed-point semantic has a maximum and /// minimum integer representation of 127 and -128, respectively. If both of /// these values can be represented (possibly inexactly) in the floating /// point semantic without overflowing, this returns true. bool fitsInFloatSemantics(const fltSemantics &FloatSema) const; /// Return the FixedPointSemantics for an integer type. static FixedPointSemantics GetIntegerSemantics(unsigned Width, bool IsSigned) { return FixedPointSemantics(Width, /*Scale=*/0, IsSigned, /*IsSaturated=*/false, /*HasUnsignedPadding=*/false); } bool operator==(FixedPointSemantics Other) const { return Width == Other.Width && LsbWeight == Other.LsbWeight && IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated && HasUnsignedPadding == Other.HasUnsignedPadding; } bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); } private: unsigned Width : WidthBitWidth; signed int LsbWeight : LsbWeightBitWidth; unsigned IsSigned : 1; unsigned IsSaturated : 1; unsigned HasUnsignedPadding : 1; }; static_assert(sizeof(FixedPointSemantics) == 4, ""); inline hash_code hash_value(const FixedPointSemantics &Val) { return hash_value(bit_cast(Val)); } template <> struct DenseMapInfo { static inline FixedPointSemantics getEmptyKey() { return FixedPointSemantics(0, 0, false, false, false); } static inline FixedPointSemantics getTombstoneKey() { return FixedPointSemantics(0, 1, false, false, false); } static unsigned getHashValue(const FixedPointSemantics &Val) { return hash_value(Val); } static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; } }; /// The APFixedPoint class works similarly to APInt/APSInt in that it is a /// functional replacement for a scaled integer. It supports a wide range of /// semantics including the one used by fixed point types proposed in ISO/IEC /// JTC1 SC22 WG14 N1169. The class carries the value and semantics of /// a fixed point, and provides different operations that would normally be /// performed on fixed point types. class APFixedPoint { public: APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema) : Val(Val, !Sema.isSigned()), Sema(Sema) { assert(Val.getBitWidth() == Sema.getWidth() && "The value should have a bit width that matches the Sema width"); } APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema) : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {} // Zero initialization. APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {} APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); } inline unsigned getWidth() const { return Sema.getWidth(); } inline unsigned getScale() const { return Sema.getScale(); } int getLsbWeight() const { return Sema.getLsbWeight(); } int getMsbWeight() const { return Sema.getMsbWeight(); } inline bool isSaturated() const { return Sema.isSaturated(); } inline bool isSigned() const { return Sema.isSigned(); } inline bool hasPadding() const { return Sema.hasUnsignedPadding(); } FixedPointSemantics getSemantics() const { return Sema; } bool getBoolValue() const { return Val.getBoolValue(); } // Convert this number to match the semantics provided. If the overflow // parameter is provided, set this value to true or false to indicate if this // operation results in an overflow. APFixedPoint convert(const FixedPointSemantics &DstSema, bool *Overflow = nullptr) const; // Perform binary operations on a fixed point type. The resulting fixed point // value will be in the common, full precision semantics that can represent // the precision and ranges of both input values. See convert() for an // explanation of the Overflow parameter. APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const; // Perform shift operations on a fixed point type. Unlike the other binary // operations, the resulting fixed point value will be in the original // semantic. APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const; APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const { // Right shift cannot overflow. if (Overflow) *Overflow = false; return APFixedPoint(Val >> Amt, Sema); } /// Perform a unary negation (-X) on this fixed point type, taking into /// account saturation if applicable. APFixedPoint negate(bool *Overflow = nullptr) const; /// Return the integral part of this fixed point number, rounded towards /// zero. (-2.5k -> -2) APSInt getIntPart() const { if (getMsbWeight() < 0) return APSInt(APInt::getZero(getWidth()), Val.isUnsigned()); APSInt ExtVal = (getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val; if (Val < 0 && Val != -Val) // Cover the case when we have the min val return -((-ExtVal).relativeShl(getLsbWeight())); return ExtVal.relativeShl(getLsbWeight()); } /// Return the integral part of this fixed point number, rounded towards /// zero. The value is stored into an APSInt with the provided width and sign. /// If the overflow parameter is provided, and the integral value is not able /// to be fully stored in the provided width and sign, the overflow parameter /// is set to true. APSInt convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow = nullptr) const; /// Convert this fixed point number to a floating point value with the /// provided semantics. APFloat convertToFloat(const fltSemantics &FloatSema) const; void toString(SmallVectorImpl &Str) const; std::string toString() const { SmallString<40> S; toString(S); return std::string(S); } void print(raw_ostream &) const; void dump() const; // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1. int compare(const APFixedPoint &Other) const; bool operator==(const APFixedPoint &Other) const { return compare(Other) == 0; } bool operator!=(const APFixedPoint &Other) const { return compare(Other) != 0; } bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; } bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; } bool operator>=(const APFixedPoint &Other) const { return compare(Other) >= 0; } bool operator<=(const APFixedPoint &Other) const { return compare(Other) <= 0; } static APFixedPoint getMax(const FixedPointSemantics &Sema); static APFixedPoint getMin(const FixedPointSemantics &Sema); /// Given a floating point semantic, return the next floating point semantic /// with a larger exponent and larger or equal mantissa. static const fltSemantics *promoteFloatSemantics(const fltSemantics *S); /// Create an APFixedPoint with a value equal to that of the provided integer, /// and in the same semantics as the provided target semantics. If the value /// is not able to fit in the specified fixed point semantics, and the /// overflow parameter is provided, it is set to true. static APFixedPoint getFromIntValue(const APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow = nullptr); /// Create an APFixedPoint with a value equal to that of the provided /// floating point value, in the provided target semantics. If the value is /// not able to fit in the specified fixed point semantics and the overflow /// parameter is specified, it is set to true. /// For NaN, the Overflow flag is always set. For +inf and -inf, if the /// semantic is saturating, the value saturates. Otherwise, the Overflow flag /// is set. static APFixedPoint getFromFloatValue(const APFloat &Value, const FixedPointSemantics &DstFXSema, bool *Overflow = nullptr); private: APSInt Val; FixedPointSemantics Sema; }; inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) { OS << FX.toString(); return OS; } inline hash_code hash_value(const APFixedPoint &Val) { return hash_combine(Val.getSemantics(), Val.getValue()); } template <> struct DenseMapInfo { static inline APFixedPoint getEmptyKey() { return APFixedPoint(DenseMapInfo::getEmptyKey()); } static inline APFixedPoint getTombstoneKey() { return APFixedPoint(DenseMapInfo::getTombstoneKey()); } static unsigned getHashValue(const APFixedPoint &Val) { return hash_value(Val); } static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) { return LHS.getSemantics() == RHS.getSemantics() && LHS.getValue() == RHS.getValue(); } }; } // namespace llvm #endif