//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file declares a class to represent arbitrary precision floating point /// values and provide a variety of arithmetic operations on them. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APFLOAT_H #define LLVM_ADT_APFLOAT_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FloatingPointMode.h" #include "llvm/Support/ErrorHandling.h" #include #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ do { \ if (usesLayout(getSemantics())) \ return U.IEEE.METHOD_CALL; \ if (usesLayout(getSemantics())) \ return U.Double.METHOD_CALL; \ llvm_unreachable("Unexpected semantics"); \ } while (false) namespace llvm { struct fltSemantics; class APSInt; class StringRef; class APFloat; class raw_ostream; template class Expected; template class SmallVectorImpl; /// Enum that represents what fraction of the LSB truncated bits of an fp number /// represent. /// /// This essentially combines the roles of guard and sticky bits. enum lostFraction { // Example of truncated bits: lfExactlyZero, // 000000 lfLessThanHalf, // 0xxxxx x's not all zero lfExactlyHalf, // 100000 lfMoreThanHalf // 1xxxxx x's not all zero }; /// A self-contained host- and target-independent arbitrary-precision /// floating-point software implementation. /// /// APFloat uses bignum integer arithmetic as provided by static functions in /// the APInt class. The library will work with bignum integers whose parts are /// any unsigned type at least 16 bits wide, but 64 bits is recommended. /// /// Written for clarity rather than speed, in particular with a view to use in /// the front-end of a cross compiler so that target arithmetic can be correctly /// performed on the host. Performance should nonetheless be reasonable, /// particularly for its intended use. It may be useful as a base /// implementation for a run-time library during development of a faster /// target-specific one. /// /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all /// implemented operations. Currently implemented operations are add, subtract, /// multiply, divide, fused-multiply-add, conversion-to-float, /// conversion-to-integer and conversion-from-integer. New rounding modes /// (e.g. away from zero) can be added with three or four lines of code. /// /// Four formats are built-in: IEEE single precision, double precision, /// quadruple precision, and x87 80-bit extended double (when operating with /// full extended precision). Adding a new format that obeys IEEE semantics /// only requires adding two lines of code: a declaration and definition of the /// format. /// /// All operations return the status of that operation as an exception bit-mask, /// so multiple operations can be done consecutively with their results or-ed /// together. The returned status can be useful for compiler diagnostics; e.g., /// inexact, underflow and overflow can be easily diagnosed on constant folding, /// and compiler optimizers can determine what exceptions would be raised by /// folding operations and optimize, or perhaps not optimize, accordingly. /// /// At present, underflow tininess is detected after rounding; it should be /// straight forward to add support for the before-rounding case too. /// /// The library reads hexadecimal floating point numbers as per C99, and /// correctly rounds if necessary according to the specified rounding mode. /// Syntax is required to have been validated by the caller. It also converts /// floating point numbers to hexadecimal text as per the C99 %a and %A /// conversions. The output precision (or alternatively the natural minimal /// precision) can be specified; if the requested precision is less than the /// natural precision the output is correctly rounded for the specified rounding /// mode. /// /// It also reads decimal floating point numbers and correctly rounds according /// to the specified rounding mode. /// /// Conversion to decimal text is not currently implemented. /// /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit /// signed exponent, and the significand as an array of integer parts. After /// normalization of a number of precision P the exponent is within the range of /// the format, and if the number is not denormal the P-th bit of the /// significand is set as an explicit integer bit. For denormals the most /// significant bit is shifted right so that the exponent is maintained at the /// format's minimum, so that the smallest denormal has just the least /// significant bit of the significand set. The sign of zeroes and infinities /// is significant; the exponent and significand of such numbers is not stored, /// but has a known implicit (deterministic) value: 0 for the significands, 0 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and /// significand are deterministic, although not really meaningful, and preserved /// in non-conversion operations. The exponent is implicitly all 1 bits. /// /// APFloat does not provide any exception handling beyond default exception /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause /// by encoding Signaling NaNs with the first bit of its trailing significand as /// 0. /// /// TODO /// ==== /// /// Some features that may or may not be worth adding: /// /// Binary to decimal conversion (hard). /// /// Optional ability to detect underflow tininess before rounding. /// /// New formats: x87 in single and double precision mode (IEEE apart from /// extended exponent range) (hard). /// /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. /// // This is the common type definitions shared by APFloat and its internal // implementation classes. This struct should not define any non-static data // members. struct APFloatBase { typedef APInt::WordType integerPart; static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; /// A signed type to represent a floating point numbers unbiased exponent. typedef int32_t ExponentType; /// \name Floating Point Semantics. /// @{ enum Semantics { S_IEEEhalf, S_BFloat, S_IEEEsingle, S_IEEEdouble, S_IEEEquad, S_PPCDoubleDouble, // 8-bit floating point number following IEEE-754 conventions with bit // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433. S_Float8E5M2, // 8-bit floating point number mostly following IEEE-754 conventions // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915, // with expanded range and with no infinity or signed zero. // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1) // that IEEE precedent would imply. S_Float8E5M2FNUZ, // 8-bit floating point number mostly following IEEE-754 conventions with // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433. // Unlike IEEE-754 types, there are no infinity values, and NaN is // represented with the exponent and mantissa bits set to all 1s. S_Float8E4M3FN, // 8-bit floating point number mostly following IEEE-754 conventions // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915, // with expanded range and with no infinity or signed zero. // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1) // that IEEE precedent would imply. S_Float8E4M3FNUZ, // 8-bit floating point number mostly following IEEE-754 conventions // and bit layout S1E4M3 with expanded range and with no infinity or signed // zero. // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1) // that IEEE precedent would imply. S_Float8E4M3B11FNUZ, // Floating point number that occupies 32 bits or less of storage, providing // improved range compared to half (16-bit) formats, at (potentially) // greater throughput than single precision (32-bit) formats. S_FloatTF32, S_x87DoubleExtended, S_MaxSemantics = S_x87DoubleExtended, }; static const llvm::fltSemantics &EnumToSemantics(Semantics S); static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem); static const fltSemantics &IEEEhalf() LLVM_READNONE; static const fltSemantics &BFloat() LLVM_READNONE; static const fltSemantics &IEEEsingle() LLVM_READNONE; static const fltSemantics &IEEEdouble() LLVM_READNONE; static const fltSemantics &IEEEquad() LLVM_READNONE; static const fltSemantics &PPCDoubleDouble() LLVM_READNONE; static const fltSemantics &Float8E5M2() LLVM_READNONE; static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE; static const fltSemantics &Float8E4M3FN() LLVM_READNONE; static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE; static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE; static const fltSemantics &FloatTF32() LLVM_READNONE; static const fltSemantics &x87DoubleExtended() LLVM_READNONE; /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with /// anything real. static const fltSemantics &Bogus() LLVM_READNONE; /// @} /// IEEE-754R 5.11: Floating Point Comparison Relations. enum cmpResult { cmpLessThan, cmpEqual, cmpGreaterThan, cmpUnordered }; /// IEEE-754R 4.3: Rounding-direction attributes. using roundingMode = llvm::RoundingMode; static constexpr roundingMode rmNearestTiesToEven = RoundingMode::NearestTiesToEven; static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive; static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative; static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero; static constexpr roundingMode rmNearestTiesToAway = RoundingMode::NearestTiesToAway; /// IEEE-754R 7: Default exception handling. /// /// opUnderflow or opOverflow are always returned or-ed with opInexact. /// /// APFloat models this behavior specified by IEEE-754: /// "For operations producing results in floating-point format, the default /// result of an operation that signals the invalid operation exception /// shall be a quiet NaN." enum opStatus { opOK = 0x00, opInvalidOp = 0x01, opDivByZero = 0x02, opOverflow = 0x04, opUnderflow = 0x08, opInexact = 0x10 }; /// Category of internally-represented number. enum fltCategory { fcInfinity, fcNaN, fcNormal, fcZero }; /// Convenience enum used to construct an uninitialized APFloat. enum uninitializedTag { uninitialized }; /// Enumeration of \c ilogb error results. enum IlogbErrorKinds { IEK_Zero = INT_MIN + 1, IEK_NaN = INT_MIN, IEK_Inf = INT_MAX }; static unsigned int semanticsPrecision(const fltSemantics &); static ExponentType semanticsMinExponent(const fltSemantics &); static ExponentType semanticsMaxExponent(const fltSemantics &); static unsigned int semanticsSizeInBits(const fltSemantics &); static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool); // Returns true if any number described by \p Src can be precisely represented // by a normal (not subnormal) value in \p Dst. static bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst); /// Returns the size of the floating point number (in bits) in the given /// semantics. static unsigned getSizeInBits(const fltSemantics &Sem); }; namespace detail { class IEEEFloat final : public APFloatBase { public: /// \name Constructors /// @{ IEEEFloat(const fltSemantics &); // Default construct to +0.0 IEEEFloat(const fltSemantics &, integerPart); IEEEFloat(const fltSemantics &, uninitializedTag); IEEEFloat(const fltSemantics &, const APInt &); explicit IEEEFloat(double d); explicit IEEEFloat(float f); IEEEFloat(const IEEEFloat &); IEEEFloat(IEEEFloat &&); ~IEEEFloat(); /// @} /// Returns whether this instance allocated memory. bool needsCleanup() const { return partCount() > 1; } /// \name Convenience "constructors" /// @{ /// @} /// \name Arithmetic /// @{ opStatus add(const IEEEFloat &, roundingMode); opStatus subtract(const IEEEFloat &, roundingMode); opStatus multiply(const IEEEFloat &, roundingMode); opStatus divide(const IEEEFloat &, roundingMode); /// IEEE remainder. opStatus remainder(const IEEEFloat &); /// C fmod, or llvm frem. opStatus mod(const IEEEFloat &); opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); opStatus roundToIntegral(roundingMode); /// IEEE-754R 5.3.1: nextUp/nextDown. opStatus next(bool nextDown); /// @} /// \name Sign operations. /// @{ void changeSign(); /// @} /// \name Conversions /// @{ opStatus convert(const fltSemantics &, roundingMode, bool *); opStatus convertToInteger(MutableArrayRef, unsigned int, bool, roundingMode, bool *) const; opStatus convertFromAPInt(const APInt &, bool, roundingMode); opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); Expected convertFromString(StringRef, roundingMode); APInt bitcastToAPInt() const; double convertToDouble() const; float convertToFloat() const; /// @} /// The definition of equality is not straightforward for floating point, so /// we won't use operator==. Use one of the following, or write whatever it /// is you really mean. bool operator==(const IEEEFloat &) const = delete; /// IEEE comparison with another floating point number (NaNs compare /// unordered, 0==-0). cmpResult compare(const IEEEFloat &) const; /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). bool bitwiseIsEqual(const IEEEFloat &) const; /// Write out a hexadecimal representation of the floating point value to DST, /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. /// Return the number of characters written, excluding the terminating NUL. unsigned int convertToHexString(char *dst, unsigned int hexDigits, bool upperCase, roundingMode) const; /// \name IEEE-754R 5.7.2 General operations. /// @{ /// IEEE-754R isSignMinus: Returns true if and only if the current value is /// negative. /// /// This applies to zeros and NaNs as well. bool isNegative() const { return sign; } /// IEEE-754R isNormal: Returns true if and only if the current value is normal. /// /// This implies that the current value of the float is not zero, subnormal, /// infinite, or NaN following the definition of normality from IEEE-754R. bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } /// Returns true if and only if the current value is zero, subnormal, or /// normal. /// /// This means that the value is not infinite or NaN. bool isFinite() const { return !isNaN() && !isInfinity(); } /// Returns true if and only if the float is plus or minus zero. bool isZero() const { return category == fcZero; } /// IEEE-754R isSubnormal(): Returns true if and only if the float is a /// denormal. bool isDenormal() const; /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. bool isInfinity() const { return category == fcInfinity; } /// Returns true if and only if the float is a quiet or signaling NaN. bool isNaN() const { return category == fcNaN; } /// Returns true if and only if the float is a signaling NaN. bool isSignaling() const; /// @} /// \name Simple Queries /// @{ fltCategory getCategory() const { return category; } const fltSemantics &getSemantics() const { return *semantics; } bool isNonZero() const { return category != fcZero; } bool isFiniteNonZero() const { return isFinite() && !isZero(); } bool isPosZero() const { return isZero() && !isNegative(); } bool isNegZero() const { return isZero() && isNegative(); } /// Returns true if and only if the number has the smallest possible non-zero /// magnitude in the current semantics. bool isSmallest() const; /// Returns true if this is the smallest (by magnitude) normalized finite /// number in the given semantics. bool isSmallestNormalized() const; /// Returns true if and only if the number has the largest possible finite /// magnitude in the current semantics. bool isLargest() const; /// Returns true if and only if the number is an exact integer. bool isInteger() const; /// @} IEEEFloat &operator=(const IEEEFloat &); IEEEFloat &operator=(IEEEFloat &&); /// Overload to compute a hash code for an APFloat value. /// /// Note that the use of hash codes for floating point values is in general /// frought with peril. Equality is hard to define for these values. For /// example, should negative and positive zero hash to different codes? Are /// they equal or not? This hash value implementation specifically /// emphasizes producing different codes for different inputs in order to /// be used in canonicalization and memoization. As such, equality is /// bitwiseIsEqual, and 0 != -0. friend hash_code hash_value(const IEEEFloat &Arg); /// Converts this value into a decimal string. /// /// \param FormatPrecision The maximum number of digits of /// precision to output. If there are fewer digits available, /// zero padding will not be used unless the value is /// integral and small enough to be expressed in /// FormatPrecision digits. 0 means to use the natural /// precision of the number. /// \param FormatMaxPadding The maximum number of zeros to /// consider inserting before falling back to scientific /// notation. 0 means to always use scientific notation. /// /// \param TruncateZero Indicate whether to remove the trailing zero in /// fraction part or not. Also setting this parameter to false forcing /// producing of output more similar to default printf behavior. /// Specifically the lower e is used as exponent delimiter and exponent /// always contains no less than two digits. /// /// Number Precision MaxPadding Result /// ------ --------- ---------- ------ /// 1.01E+4 5 2 10100 /// 1.01E+4 4 2 1.01E+4 /// 1.01E+4 5 1 1.01E+4 /// 1.01E-2 5 2 0.0101 /// 1.01E-2 4 2 0.0101 /// 1.01E-2 4 1 1.01E-2 void toString(SmallVectorImpl &Str, unsigned FormatPrecision = 0, unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; /// If this value has an exact multiplicative inverse, store it in inv and /// return true. bool getExactInverse(APFloat *inv) const; // If this is an exact power of two, return the exponent while ignoring the // sign bit. If it's not an exact power of 2, return INT_MIN LLVM_READONLY int getExactLog2Abs() const; // If this is an exact power of two, return the exponent. If it's not an exact // power of 2, return INT_MIN LLVM_READONLY int getExactLog2() const { return isNegative() ? INT_MIN : getExactLog2Abs(); } /// Returns the exponent of the internal representation of the APFloat. /// /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). /// For special APFloat values, this returns special error codes: /// /// NaN -> \c IEK_NaN /// 0 -> \c IEK_Zero /// Inf -> \c IEK_Inf /// friend int ilogb(const IEEEFloat &Arg); /// Returns: X * 2^Exp for integral exponents. friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); /// \name Special value setters. /// @{ void makeLargest(bool Neg = false); void makeSmallest(bool Neg = false); void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = nullptr); void makeInf(bool Neg = false); void makeZero(bool Neg = false); void makeQuiet(); /// Returns the smallest (by magnitude) normalized finite number in the given /// semantics. /// /// \param Negative - True iff the number should be negative void makeSmallestNormalized(bool Negative = false); /// @} cmpResult compareAbsoluteValue(const IEEEFloat &) const; private: /// \name Simple Queries /// @{ integerPart *significandParts(); const integerPart *significandParts() const; unsigned int partCount() const; /// @} /// \name Significand operations. /// @{ integerPart addSignificand(const IEEEFloat &); integerPart subtractSignificand(const IEEEFloat &, integerPart); lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat); lostFraction multiplySignificand(const IEEEFloat&); lostFraction divideSignificand(const IEEEFloat &); void incrementSignificand(); void initialize(const fltSemantics *); void shiftSignificandLeft(unsigned int); lostFraction shiftSignificandRight(unsigned int); unsigned int significandLSB() const; unsigned int significandMSB() const; void zeroSignificand(); /// Return true if the significand excluding the integral bit is all ones. bool isSignificandAllOnes() const; bool isSignificandAllOnesExceptLSB() const; /// Return true if the significand excluding the integral bit is all zeros. bool isSignificandAllZeros() const; bool isSignificandAllZerosExceptMSB() const; /// @} /// \name Arithmetic on special values. /// @{ opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); opStatus divideSpecials(const IEEEFloat &); opStatus multiplySpecials(const IEEEFloat &); opStatus modSpecials(const IEEEFloat &); opStatus remainderSpecials(const IEEEFloat&); /// @} /// \name Miscellany /// @{ bool convertFromStringSpecials(StringRef str); opStatus normalize(roundingMode, lostFraction); opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); opStatus handleOverflow(roundingMode); bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; opStatus convertToSignExtendedInteger(MutableArrayRef, unsigned int, bool, roundingMode, bool *) const; opStatus convertFromUnsignedParts(const integerPart *, unsigned int, roundingMode); Expected convertFromHexadecimalString(StringRef, roundingMode); Expected convertFromDecimalString(StringRef, roundingMode); char *convertNormalToHexString(char *, unsigned int, bool, roundingMode) const; opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, roundingMode); ExponentType exponentNaN() const; ExponentType exponentInf() const; ExponentType exponentZero() const; /// @} template APInt convertIEEEFloatToAPInt() const; APInt convertHalfAPFloatToAPInt() const; APInt convertBFloatAPFloatToAPInt() const; APInt convertFloatAPFloatToAPInt() const; APInt convertDoubleAPFloatToAPInt() const; APInt convertQuadrupleAPFloatToAPInt() const; APInt convertF80LongDoubleAPFloatToAPInt() const; APInt convertPPCDoubleDoubleAPFloatToAPInt() const; APInt convertFloat8E5M2APFloatToAPInt() const; APInt convertFloat8E5M2FNUZAPFloatToAPInt() const; APInt convertFloat8E4M3FNAPFloatToAPInt() const; APInt convertFloat8E4M3FNUZAPFloatToAPInt() const; APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const; APInt convertFloatTF32APFloatToAPInt() const; void initFromAPInt(const fltSemantics *Sem, const APInt &api); template void initFromIEEEAPInt(const APInt &api); void initFromHalfAPInt(const APInt &api); void initFromBFloatAPInt(const APInt &api); void initFromFloatAPInt(const APInt &api); void initFromDoubleAPInt(const APInt &api); void initFromQuadrupleAPInt(const APInt &api); void initFromF80LongDoubleAPInt(const APInt &api); void initFromPPCDoubleDoubleAPInt(const APInt &api); void initFromFloat8E5M2APInt(const APInt &api); void initFromFloat8E5M2FNUZAPInt(const APInt &api); void initFromFloat8E4M3FNAPInt(const APInt &api); void initFromFloat8E4M3FNUZAPInt(const APInt &api); void initFromFloat8E4M3B11FNUZAPInt(const APInt &api); void initFromFloatTF32APInt(const APInt &api); void assign(const IEEEFloat &); void copySignificand(const IEEEFloat &); void freeSignificand(); /// Note: this must be the first data member. /// The semantics that this value obeys. const fltSemantics *semantics; /// A binary fraction with an explicit integer bit. /// /// The significand must be at least one bit wider than the target precision. union Significand { integerPart part; integerPart *parts; } significand; /// The signed unbiased exponent of the value. ExponentType exponent; /// What kind of floating point number this is. /// /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. /// Using the extra bit keeps it from failing under VisualStudio. fltCategory category : 3; /// Sign bit of the number. unsigned int sign : 1; }; hash_code hash_value(const IEEEFloat &Arg); int ilogb(const IEEEFloat &Arg); IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); // This mode implements more precise float in terms of two APFloats. // The interface and layout is designed for arbitrary underlying semantics, // though currently only PPCDoubleDouble semantics are supported, whose // corresponding underlying semantics are IEEEdouble. class DoubleAPFloat final : public APFloatBase { // Note: this must be the first data member. const fltSemantics *Semantics; std::unique_ptr Floats; opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, const APFloat &cc, roundingMode RM); opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, DoubleAPFloat &Out, roundingMode RM); public: DoubleAPFloat(const fltSemantics &S); DoubleAPFloat(const fltSemantics &S, uninitializedTag); DoubleAPFloat(const fltSemantics &S, integerPart); DoubleAPFloat(const fltSemantics &S, const APInt &I); DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); DoubleAPFloat(const DoubleAPFloat &RHS); DoubleAPFloat(DoubleAPFloat &&RHS); DoubleAPFloat &operator=(const DoubleAPFloat &RHS); inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS); bool needsCleanup() const { return Floats != nullptr; } inline APFloat &getFirst(); inline const APFloat &getFirst() const; inline APFloat &getSecond(); inline const APFloat &getSecond() const; opStatus add(const DoubleAPFloat &RHS, roundingMode RM); opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); opStatus remainder(const DoubleAPFloat &RHS); opStatus mod(const DoubleAPFloat &RHS); opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, const DoubleAPFloat &Addend, roundingMode RM); opStatus roundToIntegral(roundingMode RM); void changeSign(); cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; fltCategory getCategory() const; bool isNegative() const; void makeInf(bool Neg); void makeZero(bool Neg); void makeLargest(bool Neg); void makeSmallest(bool Neg); void makeSmallestNormalized(bool Neg); void makeNaN(bool SNaN, bool Neg, const APInt *fill); cmpResult compare(const DoubleAPFloat &RHS) const; bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; APInt bitcastToAPInt() const; Expected convertFromString(StringRef, roundingMode); opStatus next(bool nextDown); opStatus convertToInteger(MutableArrayRef Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const; opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); opStatus convertFromSignExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM); opStatus convertFromZeroExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM); unsigned int convertToHexString(char *DST, unsigned int HexDigits, bool UpperCase, roundingMode RM) const; bool isDenormal() const; bool isSmallest() const; bool isSmallestNormalized() const; bool isLargest() const; bool isInteger() const; void toString(SmallVectorImpl &Str, unsigned FormatPrecision, unsigned FormatMaxPadding, bool TruncateZero = true) const; bool getExactInverse(APFloat *inv) const; LLVM_READONLY int getExactLog2() const; LLVM_READONLY int getExactLog2Abs() const; friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode); friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); friend hash_code hash_value(const DoubleAPFloat &Arg); }; hash_code hash_value(const DoubleAPFloat &Arg); DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, IEEEFloat::roundingMode RM); DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, IEEEFloat::roundingMode); } // End detail namespace // This is a interface class that is currently forwarding functionalities from // detail::IEEEFloat. class APFloat : public APFloatBase { typedef detail::IEEEFloat IEEEFloat; typedef detail::DoubleAPFloat DoubleAPFloat; static_assert(std::is_standard_layout::value); union Storage { const fltSemantics *semantics; IEEEFloat IEEE; DoubleAPFloat Double; explicit Storage(IEEEFloat F, const fltSemantics &S); explicit Storage(DoubleAPFloat F, const fltSemantics &S) : Double(std::move(F)) { assert(&S == &PPCDoubleDouble()); } template Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { if (usesLayout(Semantics)) { new (&IEEE) IEEEFloat(Semantics, std::forward(Args)...); return; } if (usesLayout(Semantics)) { new (&Double) DoubleAPFloat(Semantics, std::forward(Args)...); return; } llvm_unreachable("Unexpected semantics"); } ~Storage() { if (usesLayout(*semantics)) { IEEE.~IEEEFloat(); return; } if (usesLayout(*semantics)) { Double.~DoubleAPFloat(); return; } llvm_unreachable("Unexpected semantics"); } Storage(const Storage &RHS) { if (usesLayout(*RHS.semantics)) { new (this) IEEEFloat(RHS.IEEE); return; } if (usesLayout(*RHS.semantics)) { new (this) DoubleAPFloat(RHS.Double); return; } llvm_unreachable("Unexpected semantics"); } Storage(Storage &&RHS) { if (usesLayout(*RHS.semantics)) { new (this) IEEEFloat(std::move(RHS.IEEE)); return; } if (usesLayout(*RHS.semantics)) { new (this) DoubleAPFloat(std::move(RHS.Double)); return; } llvm_unreachable("Unexpected semantics"); } Storage &operator=(const Storage &RHS) { if (usesLayout(*semantics) && usesLayout(*RHS.semantics)) { IEEE = RHS.IEEE; } else if (usesLayout(*semantics) && usesLayout(*RHS.semantics)) { Double = RHS.Double; } else if (this != &RHS) { this->~Storage(); new (this) Storage(RHS); } return *this; } Storage &operator=(Storage &&RHS) { if (usesLayout(*semantics) && usesLayout(*RHS.semantics)) { IEEE = std::move(RHS.IEEE); } else if (usesLayout(*semantics) && usesLayout(*RHS.semantics)) { Double = std::move(RHS.Double); } else if (this != &RHS) { this->~Storage(); new (this) Storage(std::move(RHS)); } return *this; } } U; template static bool usesLayout(const fltSemantics &Semantics) { static_assert(std::is_same::value || std::is_same::value); if (std::is_same::value) { return &Semantics == &PPCDoubleDouble(); } return &Semantics != &PPCDoubleDouble(); } IEEEFloat &getIEEE() { if (usesLayout(*U.semantics)) return U.IEEE; if (usesLayout(*U.semantics)) return U.Double.getFirst().U.IEEE; llvm_unreachable("Unexpected semantics"); } const IEEEFloat &getIEEE() const { if (usesLayout(*U.semantics)) return U.IEEE; if (usesLayout(*U.semantics)) return U.Double.getFirst().U.IEEE; llvm_unreachable("Unexpected semantics"); } void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } void makeNaN(bool SNaN, bool Neg, const APInt *fill) { APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); } void makeLargest(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); } void makeSmallest(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); } void makeSmallestNormalized(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); } explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} explicit APFloat(DoubleAPFloat F, const fltSemantics &S) : U(std::move(F), S) {} cmpResult compareAbsoluteValue(const APFloat &RHS) const { assert(&getSemantics() == &RHS.getSemantics() && "Should only compare APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); if (usesLayout(getSemantics())) return U.Double.compareAbsoluteValue(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } public: APFloat(const fltSemantics &Semantics) : U(Semantics) {} APFloat(const fltSemantics &Semantics, StringRef S); APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} template ::value>> APFloat(const fltSemantics &Semantics, T V) = delete; // TODO: Remove this constructor. This isn't faster than the first one. APFloat(const fltSemantics &Semantics, uninitializedTag) : U(Semantics, uninitialized) {} APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} APFloat(const APFloat &RHS) = default; APFloat(APFloat &&RHS) = default; ~APFloat() = default; bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } /// Factory for Positive and Negative Zero. /// /// \param Negative True iff the number should be negative. static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeZero(Negative); return Val; } /// Factory for Positive and Negative Infinity. /// /// \param Negative True iff the number should be negative. static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeInf(Negative); return Val; } /// Factory for NaN values. /// /// \param Negative - True iff the NaN generated should be negative. /// \param payload - The unspecified fill bits for creating the NaN, 0 by /// default. The value is truncated as necessary. static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, uint64_t payload = 0) { if (payload) { APInt intPayload(64, payload); return getQNaN(Sem, Negative, &intPayload); } else { return getQNaN(Sem, Negative, nullptr); } } /// Factory for QNaN values. static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { APFloat Val(Sem, uninitialized); Val.makeNaN(false, Negative, payload); return Val; } /// Factory for SNaN values. static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { APFloat Val(Sem, uninitialized); Val.makeNaN(true, Negative, payload); return Val; } /// Returns the largest finite number in the given semantics. /// /// \param Negative - True iff the number should be negative static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeLargest(Negative); return Val; } /// Returns the smallest (by magnitude) finite number in the given semantics. /// Might be denormalized, which implies a relative loss of precision. /// /// \param Negative - True iff the number should be negative static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeSmallest(Negative); return Val; } /// Returns the smallest (by magnitude) normalized finite number in the given /// semantics. /// /// \param Negative - True iff the number should be negative static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeSmallestNormalized(Negative); return Val; } /// Returns a float which is bitcasted from an all one value int. /// /// \param Semantics - type float semantics static APFloat getAllOnesValue(const fltSemantics &Semantics); /// Used to insert APFloat objects, or objects that contain APFloat objects, /// into FoldingSets. void Profile(FoldingSetNodeID &NID) const; opStatus add(const APFloat &RHS, roundingMode RM) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.add(RHS.U.IEEE, RM); if (usesLayout(getSemantics())) return U.Double.add(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus subtract(const APFloat &RHS, roundingMode RM) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.subtract(RHS.U.IEEE, RM); if (usesLayout(getSemantics())) return U.Double.subtract(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus multiply(const APFloat &RHS, roundingMode RM) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.multiply(RHS.U.IEEE, RM); if (usesLayout(getSemantics())) return U.Double.multiply(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus divide(const APFloat &RHS, roundingMode RM) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.divide(RHS.U.IEEE, RM); if (usesLayout(getSemantics())) return U.Double.divide(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus remainder(const APFloat &RHS) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.remainder(RHS.U.IEEE); if (usesLayout(getSemantics())) return U.Double.remainder(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } opStatus mod(const APFloat &RHS) { assert(&getSemantics() == &RHS.getSemantics() && "Should only call on two APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.mod(RHS.U.IEEE); if (usesLayout(getSemantics())) return U.Double.mod(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM) { assert(&getSemantics() == &Multiplicand.getSemantics() && "Should only call on APFloats with the same semantics"); assert(&getSemantics() == &Addend.getSemantics() && "Should only call on APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); if (usesLayout(getSemantics())) return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus roundToIntegral(roundingMode RM) { APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); } // TODO: bool parameters are not readable and a source of bugs. // Do something. opStatus next(bool nextDown) { APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); } /// Negate an APFloat. APFloat operator-() const { APFloat Result(*this); Result.changeSign(); return Result; } /// Add two APFloats, rounding ties to the nearest even. /// No error checking. APFloat operator+(const APFloat &RHS) const { APFloat Result(*this); (void)Result.add(RHS, rmNearestTiesToEven); return Result; } /// Subtract two APFloats, rounding ties to the nearest even. /// No error checking. APFloat operator-(const APFloat &RHS) const { APFloat Result(*this); (void)Result.subtract(RHS, rmNearestTiesToEven); return Result; } /// Multiply two APFloats, rounding ties to the nearest even. /// No error checking. APFloat operator*(const APFloat &RHS) const { APFloat Result(*this); (void)Result.multiply(RHS, rmNearestTiesToEven); return Result; } /// Divide the first APFloat by the second, rounding ties to the nearest even. /// No error checking. APFloat operator/(const APFloat &RHS) const { APFloat Result(*this); (void)Result.divide(RHS, rmNearestTiesToEven); return Result; } void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } void clearSign() { if (isNegative()) changeSign(); } void copySign(const APFloat &RHS) { if (isNegative() != RHS.isNegative()) changeSign(); } /// A static helper to produce a copy of an APFloat value with its sign /// copied from some other APFloat. static APFloat copySign(APFloat Value, const APFloat &Sign) { Value.copySign(Sign); return Value; } /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit. /// This preserves the sign and payload bits. APFloat makeQuiet() const { APFloat Result(*this); Result.getIEEE().makeQuiet(); return Result; } opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo); opStatus convertToInteger(MutableArrayRef Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const { APFLOAT_DISPATCH_ON_SEMANTICS( convertToInteger(Input, Width, IsSigned, RM, IsExact)); } opStatus convertToInteger(APSInt &Result, roundingMode RM, bool *IsExact) const; opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM) { APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); } opStatus convertFromSignExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM) { APFLOAT_DISPATCH_ON_SEMANTICS( convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); } opStatus convertFromZeroExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM) { APFLOAT_DISPATCH_ON_SEMANTICS( convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); } Expected convertFromString(StringRef, roundingMode); APInt bitcastToAPInt() const { APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); } /// Converts this APFloat to host double value. /// /// \pre The APFloat must be built using semantics, that can be represented by /// the host double type without loss of precision. It can be IEEEdouble and /// shorter semantics, like IEEEsingle and others. double convertToDouble() const; /// Converts this APFloat to host float value. /// /// \pre The APFloat must be built using semantics, that can be represented by /// the host float type without loss of precision. It can be IEEEsingle and /// shorter semantics, like IEEEhalf. float convertToFloat() const; bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; } bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; } bool operator<(const APFloat &RHS) const { return compare(RHS) == cmpLessThan; } bool operator>(const APFloat &RHS) const { return compare(RHS) == cmpGreaterThan; } bool operator<=(const APFloat &RHS) const { cmpResult Res = compare(RHS); return Res == cmpLessThan || Res == cmpEqual; } bool operator>=(const APFloat &RHS) const { cmpResult Res = compare(RHS); return Res == cmpGreaterThan || Res == cmpEqual; } cmpResult compare(const APFloat &RHS) const { assert(&getSemantics() == &RHS.getSemantics() && "Should only compare APFloats with the same semantics"); if (usesLayout(getSemantics())) return U.IEEE.compare(RHS.U.IEEE); if (usesLayout(getSemantics())) return U.Double.compare(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } bool bitwiseIsEqual(const APFloat &RHS) const { if (&getSemantics() != &RHS.getSemantics()) return false; if (usesLayout(getSemantics())) return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); if (usesLayout(getSemantics())) return U.Double.bitwiseIsEqual(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } /// We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. /// /// We leave the version with the double argument here because it's just so /// convenient to write "2.0" and the like. Without this function we'd /// have to duplicate its logic everywhere it's called. bool isExactlyValue(double V) const { bool ignored; APFloat Tmp(V); Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return bitwiseIsEqual(Tmp); } unsigned int convertToHexString(char *DST, unsigned int HexDigits, bool UpperCase, roundingMode RM) const { APFLOAT_DISPATCH_ON_SEMANTICS( convertToHexString(DST, HexDigits, UpperCase, RM)); } bool isZero() const { return getCategory() == fcZero; } bool isInfinity() const { return getCategory() == fcInfinity; } bool isNaN() const { return getCategory() == fcNaN; } bool isNegative() const { return getIEEE().isNegative(); } bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } bool isSignaling() const { return getIEEE().isSignaling(); } bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } bool isFinite() const { return !isNaN() && !isInfinity(); } fltCategory getCategory() const { return getIEEE().getCategory(); } const fltSemantics &getSemantics() const { return *U.semantics; } bool isNonZero() const { return !isZero(); } bool isFiniteNonZero() const { return isFinite() && !isZero(); } bool isPosZero() const { return isZero() && !isNegative(); } bool isNegZero() const { return isZero() && isNegative(); } bool isPosInfinity() const { return isInfinity() && !isNegative(); } bool isNegInfinity() const { return isInfinity() && isNegative(); } bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } bool isIEEE() const { return usesLayout(getSemantics()); } bool isSmallestNormalized() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized()); } /// Return the FPClassTest which will return true for the value. FPClassTest classify() const; APFloat &operator=(const APFloat &RHS) = default; APFloat &operator=(APFloat &&RHS) = default; void toString(SmallVectorImpl &Str, unsigned FormatPrecision = 0, unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { APFLOAT_DISPATCH_ON_SEMANTICS( toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); } void print(raw_ostream &) const; void dump() const; bool getExactInverse(APFloat *inv) const { APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); } LLVM_READONLY int getExactLog2Abs() const { APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2Abs()); } LLVM_READONLY int getExactLog2() const { APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2()); } friend hash_code hash_value(const APFloat &Arg); friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); friend IEEEFloat; friend DoubleAPFloat; }; /// See friend declarations above. /// /// These additional declarations are required in order to compile LLVM with IBM /// xlC compiler. hash_code hash_value(const APFloat &Arg); inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { if (APFloat::usesLayout(X.getSemantics())) return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); if (APFloat::usesLayout(X.getSemantics())) return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); llvm_unreachable("Unexpected semantics"); } /// Equivalent of C standard library function. /// /// While the C standard says Exp is an unspecified value for infinity and nan, /// this returns INT_MAX for infinities, and INT_MIN for NaNs. inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { if (APFloat::usesLayout(X.getSemantics())) return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); if (APFloat::usesLayout(X.getSemantics())) return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); llvm_unreachable("Unexpected semantics"); } /// Returns the absolute value of the argument. inline APFloat abs(APFloat X) { X.clearSign(); return X; } /// Returns the negated value of the argument. inline APFloat neg(APFloat X) { X.changeSign(); return X; } /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat minnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return B < A ? B : A; } /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat maxnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return A < B ? B : A; } /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 /// arguments, propagating NaNs and treating -0 as less than +0. LLVM_READONLY inline APFloat minimum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return A; if (B.isNaN()) return B; if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) return A.isNegative() ? A : B; return B < A ? B : A; } /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 /// arguments, propagating NaNs and treating -0 as less than +0. LLVM_READONLY inline APFloat maximum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return A; if (B.isNaN()) return B; if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) return A.isNegative() ? B : A; return A < B ? B : A; } // We want the following functions to be available in the header for inlining. // We cannot define them inline in the class definition of `DoubleAPFloat` // because doing so would instantiate `std::unique_ptr` before // `APFloat` is defined, and that would be undefined behavior. namespace detail { DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) { if (this != &RHS) { this->~DoubleAPFloat(); new (this) DoubleAPFloat(std::move(RHS)); } return *this; } APFloat &DoubleAPFloat::getFirst() { return Floats[0]; } const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; } APFloat &DoubleAPFloat::getSecond() { return Floats[1]; } const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; } } // namespace detail } // namespace llvm #undef APFLOAT_DISPATCH_ON_SEMANTICS #endif // LLVM_ADT_APFLOAT_H