//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_ARRAYREF_H #define LLVM_ADT_ARRAYREF_H #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include #include #include #include #include #include #include #include #include namespace llvm { template class [[nodiscard]] MutableArrayRef; /// ArrayRef - Represent a constant reference to an array (0 or more elements /// consecutively in memory), i.e. a start pointer and a length. It allows /// various APIs to take consecutive elements easily and conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the ArrayRef. For this reason, it is not in general /// safe to store an ArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template class LLVM_GSL_POINTER [[nodiscard]] ArrayRef { public: using value_type = T; using pointer = value_type *; using const_pointer = const value_type *; using reference = value_type &; using const_reference = const value_type &; using iterator = const_pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using size_type = size_t; using difference_type = ptrdiff_t; private: /// The start of the array, in an external buffer. const T *Data = nullptr; /// The number of elements. size_type Length = 0; public: /// @name Constructors /// @{ /// Construct an empty ArrayRef. /*implicit*/ ArrayRef() = default; /// Construct an empty ArrayRef from std::nullopt. /*implicit*/ ArrayRef(std::nullopt_t) {} /// Construct an ArrayRef from a single element. /*implicit*/ ArrayRef(const T &OneElt) : Data(&OneElt), Length(1) {} /// Construct an ArrayRef from a pointer and length. constexpr /*implicit*/ ArrayRef(const T *data, size_t length) : Data(data), Length(length) {} /// Construct an ArrayRef from a range. constexpr ArrayRef(const T *begin, const T *end) : Data(begin), Length(end - begin) { assert(begin <= end); } /// Construct an ArrayRef from a SmallVector. This is templated in order to /// avoid instantiating SmallVectorTemplateCommon whenever we /// copy-construct an ArrayRef. template /*implicit*/ ArrayRef(const SmallVectorTemplateCommon &Vec) : Data(Vec.data()), Length(Vec.size()) { } /// Construct an ArrayRef from a std::vector. template /*implicit*/ ArrayRef(const std::vector &Vec) : Data(Vec.data()), Length(Vec.size()) {} /// Construct an ArrayRef from a std::array template /*implicit*/ constexpr ArrayRef(const std::array &Arr) : Data(Arr.data()), Length(N) {} /// Construct an ArrayRef from a C array. template /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} /// Construct an ArrayRef from a std::initializer_list. #if LLVM_GNUC_PREREQ(9, 0, 0) // Disable gcc's warning in this constructor as it generates an enormous amount // of messages. Anyone using ArrayRef should already be aware of the fact that // it does not do lifetime extension. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Winit-list-lifetime" #endif constexpr /*implicit*/ ArrayRef(const std::initializer_list &Vec) : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()), Length(Vec.size()) {} #if LLVM_GNUC_PREREQ(9, 0, 0) #pragma GCC diagnostic pop #endif /// Construct an ArrayRef from ArrayRef. This uses SFINAE to /// ensure that only ArrayRefs of pointers can be converted. template ArrayRef(const ArrayRef &A, std::enable_if_t::value> * = nullptr) : Data(A.data()), Length(A.size()) {} /// Construct an ArrayRef from a SmallVector. This is /// templated in order to avoid instantiating SmallVectorTemplateCommon /// whenever we copy-construct an ArrayRef. template /*implicit*/ ArrayRef( const SmallVectorTemplateCommon &Vec, std::enable_if_t::value> * = nullptr) : Data(Vec.data()), Length(Vec.size()) {} /// Construct an ArrayRef from std::vector. This uses SFINAE /// to ensure that only vectors of pointers can be converted. template ArrayRef(const std::vector &Vec, std::enable_if_t::value> * = nullptr) : Data(Vec.data()), Length(Vec.size()) {} /// @} /// @name Simple Operations /// @{ iterator begin() const { return Data; } iterator end() const { return Data + Length; } reverse_iterator rbegin() const { return reverse_iterator(end()); } reverse_iterator rend() const { return reverse_iterator(begin()); } /// empty - Check if the array is empty. bool empty() const { return Length == 0; } const T *data() const { return Data; } /// size - Get the array size. size_t size() const { return Length; } /// front - Get the first element. const T &front() const { assert(!empty()); return Data[0]; } /// back - Get the last element. const T &back() const { assert(!empty()); return Data[Length-1]; } // copy - Allocate copy in Allocator and return ArrayRef to it. template MutableArrayRef copy(Allocator &A) { T *Buff = A.template Allocate(Length); std::uninitialized_copy(begin(), end(), Buff); return MutableArrayRef(Buff, Length); } /// equals - Check for element-wise equality. bool equals(ArrayRef RHS) const { if (Length != RHS.Length) return false; return std::equal(begin(), end(), RHS.begin()); } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. ArrayRef slice(size_t N, size_t M) const { assert(N+M <= size() && "Invalid specifier"); return ArrayRef(data()+N, M); } /// slice(n) - Chop off the first N elements of the array. ArrayRef slice(size_t N) const { return slice(N, size() - N); } /// Drop the first \p N elements of the array. ArrayRef drop_front(size_t N = 1) const { assert(size() >= N && "Dropping more elements than exist"); return slice(N, size() - N); } /// Drop the last \p N elements of the array. ArrayRef drop_back(size_t N = 1) const { assert(size() >= N && "Dropping more elements than exist"); return slice(0, size() - N); } /// Return a copy of *this with the first N elements satisfying the /// given predicate removed. template ArrayRef drop_while(PredicateT Pred) const { return ArrayRef(find_if_not(*this, Pred), end()); } /// Return a copy of *this with the first N elements not satisfying /// the given predicate removed. template ArrayRef drop_until(PredicateT Pred) const { return ArrayRef(find_if(*this, Pred), end()); } /// Return a copy of *this with only the first \p N elements. ArrayRef take_front(size_t N = 1) const { if (N >= size()) return *this; return drop_back(size() - N); } /// Return a copy of *this with only the last \p N elements. ArrayRef take_back(size_t N = 1) const { if (N >= size()) return *this; return drop_front(size() - N); } /// Return the first N elements of this Array that satisfy the given /// predicate. template ArrayRef take_while(PredicateT Pred) const { return ArrayRef(begin(), find_if_not(*this, Pred)); } /// Return the first N elements of this Array that don't satisfy the /// given predicate. template ArrayRef take_until(PredicateT Pred) const { return ArrayRef(begin(), find_if(*this, Pred)); } /// @} /// @name Operator Overloads /// @{ const T &operator[](size_t Index) const { assert(Index < Length && "Invalid index!"); return Data[Index]; } /// Disallow accidental assignment from a temporary. /// /// The declaration here is extra complicated so that "arrayRef = {}" /// continues to select the move assignment operator. template std::enable_if_t::value, ArrayRef> & operator=(U &&Temporary) = delete; /// Disallow accidental assignment from a temporary. /// /// The declaration here is extra complicated so that "arrayRef = {}" /// continues to select the move assignment operator. template std::enable_if_t::value, ArrayRef> & operator=(std::initializer_list) = delete; /// @} /// @name Expensive Operations /// @{ std::vector vec() const { return std::vector(Data, Data+Length); } /// @} /// @name Conversion operators /// @{ operator std::vector() const { return std::vector(Data, Data+Length); } /// @} }; /// MutableArrayRef - Represent a mutable reference to an array (0 or more /// elements consecutively in memory), i.e. a start pointer and a length. It /// allows various APIs to take and modify consecutive elements easily and /// conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the MutableArrayRef. For this reason, it is not in /// general safe to store a MutableArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template class [[nodiscard]] MutableArrayRef : public ArrayRef { public: using value_type = T; using pointer = value_type *; using const_pointer = const value_type *; using reference = value_type &; using const_reference = const value_type &; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using size_type = size_t; using difference_type = ptrdiff_t; /// Construct an empty MutableArrayRef. /*implicit*/ MutableArrayRef() = default; /// Construct an empty MutableArrayRef from std::nullopt. /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef() {} /// Construct a MutableArrayRef from a single element. /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef(OneElt) {} /// Construct a MutableArrayRef from a pointer and length. /*implicit*/ MutableArrayRef(T *data, size_t length) : ArrayRef(data, length) {} /// Construct a MutableArrayRef from a range. MutableArrayRef(T *begin, T *end) : ArrayRef(begin, end) {} /// Construct a MutableArrayRef from a SmallVector. /*implicit*/ MutableArrayRef(SmallVectorImpl &Vec) : ArrayRef(Vec) {} /// Construct a MutableArrayRef from a std::vector. /*implicit*/ MutableArrayRef(std::vector &Vec) : ArrayRef(Vec) {} /// Construct a MutableArrayRef from a std::array template /*implicit*/ constexpr MutableArrayRef(std::array &Arr) : ArrayRef(Arr) {} /// Construct a MutableArrayRef from a C array. template /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef(Arr) {} T *data() const { return const_cast(ArrayRef::data()); } iterator begin() const { return data(); } iterator end() const { return data() + this->size(); } reverse_iterator rbegin() const { return reverse_iterator(end()); } reverse_iterator rend() const { return reverse_iterator(begin()); } /// front - Get the first element. T &front() const { assert(!this->empty()); return data()[0]; } /// back - Get the last element. T &back() const { assert(!this->empty()); return data()[this->size()-1]; } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. MutableArrayRef slice(size_t N, size_t M) const { assert(N + M <= this->size() && "Invalid specifier"); return MutableArrayRef(this->data() + N, M); } /// slice(n) - Chop off the first N elements of the array. MutableArrayRef slice(size_t N) const { return slice(N, this->size() - N); } /// Drop the first \p N elements of the array. MutableArrayRef drop_front(size_t N = 1) const { assert(this->size() >= N && "Dropping more elements than exist"); return slice(N, this->size() - N); } MutableArrayRef drop_back(size_t N = 1) const { assert(this->size() >= N && "Dropping more elements than exist"); return slice(0, this->size() - N); } /// Return a copy of *this with the first N elements satisfying the /// given predicate removed. template MutableArrayRef drop_while(PredicateT Pred) const { return MutableArrayRef(find_if_not(*this, Pred), end()); } /// Return a copy of *this with the first N elements not satisfying /// the given predicate removed. template MutableArrayRef drop_until(PredicateT Pred) const { return MutableArrayRef(find_if(*this, Pred), end()); } /// Return a copy of *this with only the first \p N elements. MutableArrayRef take_front(size_t N = 1) const { if (N >= this->size()) return *this; return drop_back(this->size() - N); } /// Return a copy of *this with only the last \p N elements. MutableArrayRef take_back(size_t N = 1) const { if (N >= this->size()) return *this; return drop_front(this->size() - N); } /// Return the first N elements of this Array that satisfy the given /// predicate. template MutableArrayRef take_while(PredicateT Pred) const { return MutableArrayRef(begin(), find_if_not(*this, Pred)); } /// Return the first N elements of this Array that don't satisfy the /// given predicate. template MutableArrayRef take_until(PredicateT Pred) const { return MutableArrayRef(begin(), find_if(*this, Pred)); } /// @} /// @name Operator Overloads /// @{ T &operator[](size_t Index) const { assert(Index < this->size() && "Invalid index!"); return data()[Index]; } }; /// This is a MutableArrayRef that owns its array. template class OwningArrayRef : public MutableArrayRef { public: OwningArrayRef() = default; OwningArrayRef(size_t Size) : MutableArrayRef(new T[Size], Size) {} OwningArrayRef(ArrayRef Data) : MutableArrayRef(new T[Data.size()], Data.size()) { std::copy(Data.begin(), Data.end(), this->begin()); } OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } OwningArrayRef &operator=(OwningArrayRef &&Other) { delete[] this->data(); this->MutableArrayRef::operator=(Other); Other.MutableArrayRef::operator=(MutableArrayRef()); return *this; } ~OwningArrayRef() { delete[] this->data(); } }; /// @name ArrayRef Deduction guides /// @{ /// Deduction guide to construct an ArrayRef from a single element. template ArrayRef(const T &OneElt) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a pointer and length template ArrayRef(const T *data, size_t length) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a range template ArrayRef(const T *data, const T *end) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a SmallVector template ArrayRef(const SmallVectorImpl &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a SmallVector template ArrayRef(const SmallVector &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a std::vector template ArrayRef(const std::vector &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a std::array template ArrayRef(const std::array &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from an ArrayRef (const) template ArrayRef(const ArrayRef &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from an ArrayRef template ArrayRef(ArrayRef &Vec) -> ArrayRef; /// Deduction guide to construct an ArrayRef from a C array. template ArrayRef(const T (&Arr)[N]) -> ArrayRef; /// @} /// @name ArrayRef Convenience constructors /// @{ /// Construct an ArrayRef from a single element. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const T &OneElt) { return OneElt; } /// Construct an ArrayRef from a pointer and length. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const T *data, size_t length) { return ArrayRef(data, length); } /// Construct an ArrayRef from a range. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const T *begin, const T *end) { return ArrayRef(begin, end); } /// Construct an ArrayRef from a SmallVector. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const SmallVectorImpl &Vec) { return Vec; } /// Construct an ArrayRef from a SmallVector. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const SmallVector &Vec) { return Vec; } /// Construct an ArrayRef from a std::vector. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const std::vector &Vec) { return Vec; } /// Construct an ArrayRef from a std::array. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const std::array &Arr) { return Arr; } /// Construct an ArrayRef from an ArrayRef (no-op) (const) template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const ArrayRef &Vec) { return Vec; } /// Construct an ArrayRef from an ArrayRef (no-op) template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef &makeArrayRef(ArrayRef &Vec) { return Vec; } /// Construct an ArrayRef from a C array. template LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") ArrayRef makeArrayRef(const T (&Arr)[N]) { return ArrayRef(Arr); } /// @name MutableArrayRef Deduction guides /// @{ /// Deduction guide to construct a `MutableArrayRef` from a single element template MutableArrayRef(T &OneElt) -> MutableArrayRef; /// Deduction guide to construct a `MutableArrayRef` from a pointer and /// length. template MutableArrayRef(T *data, size_t length) -> MutableArrayRef; /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`. template MutableArrayRef(SmallVectorImpl &Vec) -> MutableArrayRef; template MutableArrayRef(SmallVector &Vec) -> MutableArrayRef; /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`. template MutableArrayRef(std::vector &Vec) -> MutableArrayRef; /// Deduction guide to construct a `MutableArrayRef` from a `std::array`. template MutableArrayRef(std::array &Vec) -> MutableArrayRef; /// Deduction guide to construct a `MutableArrayRef` from a C array. template MutableArrayRef(T (&Arr)[N]) -> MutableArrayRef; /// @} /// Construct a MutableArrayRef from a single element. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(T &OneElt) { return OneElt; } /// Construct a MutableArrayRef from a pointer and length. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(T *data, size_t length) { return MutableArrayRef(data, length); } /// Construct a MutableArrayRef from a SmallVector. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(SmallVectorImpl &Vec) { return Vec; } /// Construct a MutableArrayRef from a SmallVector. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(SmallVector &Vec) { return Vec; } /// Construct a MutableArrayRef from a std::vector. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(std::vector &Vec) { return Vec; } /// Construct a MutableArrayRef from a std::array. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(std::array &Arr) { return Arr; } /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const) template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(const MutableArrayRef &Vec) { return Vec; } /// Construct a MutableArrayRef from a C array. template LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") MutableArrayRef makeMutableArrayRef(T (&Arr)[N]) { return MutableArrayRef(Arr); } /// @} /// @name ArrayRef Comparison Operators /// @{ template inline bool operator==(ArrayRef LHS, ArrayRef RHS) { return LHS.equals(RHS); } template inline bool operator==(SmallVectorImpl &LHS, ArrayRef RHS) { return ArrayRef(LHS).equals(RHS); } template inline bool operator!=(ArrayRef LHS, ArrayRef RHS) { return !(LHS == RHS); } template inline bool operator!=(SmallVectorImpl &LHS, ArrayRef RHS) { return !(LHS == RHS); } /// @} template hash_code hash_value(ArrayRef S) { return hash_combine_range(S.begin(), S.end()); } // Provide DenseMapInfo for ArrayRefs. template struct DenseMapInfo, void> { static inline ArrayRef getEmptyKey() { return ArrayRef( reinterpret_cast(~static_cast(0)), size_t(0)); } static inline ArrayRef getTombstoneKey() { return ArrayRef( reinterpret_cast(~static_cast(1)), size_t(0)); } static unsigned getHashValue(ArrayRef Val) { assert(Val.data() != getEmptyKey().data() && "Cannot hash the empty key!"); assert(Val.data() != getTombstoneKey().data() && "Cannot hash the tombstone key!"); return (unsigned)(hash_value(Val)); } static bool isEqual(ArrayRef LHS, ArrayRef RHS) { if (RHS.data() == getEmptyKey().data()) return LHS.data() == getEmptyKey().data(); if (RHS.data() == getTombstoneKey().data()) return LHS.data() == getTombstoneKey().data(); return LHS == RHS; } }; } // end namespace llvm #endif // LLVM_ADT_ARRAYREF_H