//===- llvm/ADT/BreadthFirstIterator.h - Breadth First iterator -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file builds on the ADT/GraphTraits.h file to build a generic breadth /// first graph iterator. This file exposes the following functions/types: /// /// bf_begin/bf_end/bf_iterator /// * Normal breadth-first iteration - visit a graph level-by-level. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_BREADTHFIRSTITERATOR_H #define LLVM_ADT_BREADTHFIRSTITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/iterator_range.h" #include #include #include #include namespace llvm { // bf_iterator_storage - A private class which is used to figure out where to // store the visited set. We only provide a non-external variant for now. template class bf_iterator_storage { public: SetType Visited; }; // The visited state for the iteration is a simple set. template using bf_iterator_default_set = SmallPtrSet; // Generic Breadth first search iterator. template ::NodeRef>, class GT = GraphTraits> class bf_iterator : public bf_iterator_storage { public: using iterator_category = std::forward_iterator_tag; using value_type = typename GT::NodeRef; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = const value_type &; private: using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; // First element is the node reference, second is the next child to visit. using QueueElement = std::pair>; // Visit queue - used to maintain BFS ordering. // std::optional<> because we need markers for levels. std::queue> VisitQueue; // Current level. unsigned Level = 0; inline bf_iterator(NodeRef Node) { this->Visited.insert(Node); Level = 0; // Also, insert a dummy node as marker. VisitQueue.push(QueueElement(Node, std::nullopt)); VisitQueue.push(std::nullopt); } inline bf_iterator() = default; inline void toNext() { std::optional Head = VisitQueue.front(); QueueElement H = *Head; NodeRef Node = H.first; std::optional &ChildIt = H.second; if (!ChildIt) ChildIt.emplace(GT::child_begin(Node)); while (*ChildIt != GT::child_end(Node)) { NodeRef Next = *(*ChildIt)++; // Already visited? if (this->Visited.insert(Next).second) VisitQueue.push(QueueElement(Next, std::nullopt)); } VisitQueue.pop(); // Go to the next element skipping markers if needed. if (!VisitQueue.empty()) { Head = VisitQueue.front(); if (Head != std::nullopt) return; Level += 1; VisitQueue.pop(); // Don't push another marker if this is the last // element. if (!VisitQueue.empty()) VisitQueue.push(std::nullopt); } } public: // Provide static begin and end methods as our public "constructors" static bf_iterator begin(const GraphT &G) { return bf_iterator(GT::getEntryNode(G)); } static bf_iterator end(const GraphT &G) { return bf_iterator(); } bool operator==(const bf_iterator &RHS) const { return VisitQueue == RHS.VisitQueue; } bool operator!=(const bf_iterator &RHS) const { return !(*this == RHS); } reference operator*() const { return VisitQueue.front()->first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time so that you can actually call methods on the node, because the // contained type is a pointer. NodeRef operator->() const { return **this; } bf_iterator &operator++() { // Pre-increment toNext(); return *this; } bf_iterator operator++(int) { // Post-increment bf_iterator ItCopy = *this; ++*this; return ItCopy; } unsigned getLevel() const { return Level; } }; // Provide global constructors that automatically figure out correct types. template bf_iterator bf_begin(const T &G) { return bf_iterator::begin(G); } template bf_iterator bf_end(const T &G) { return bf_iterator::end(G); } // Provide an accessor method to use them in range-based patterns. template iterator_range> breadth_first(const T &G) { return make_range(bf_begin(G), bf_end(G)); } } // end namespace llvm #endif // LLVM_ADT_BREADTHFIRSTITERATOR_H