//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS /// algorithm. /// /// The SCC iterator has the important property that if a node in SCC S1 has an /// edge to a node in SCC S2, then it visits S1 *after* S2. /// /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: /// This requires some simple wrappers and is not supported yet.) /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SCCITERATOR_H #define LLVM_ADT_SCCITERATOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include #include #include #include #include #include #include #include namespace llvm { /// Enumerate the SCCs of a directed graph in reverse topological order /// of the SCC DAG. /// /// This is implemented using Tarjan's DFS algorithm using an internal stack to /// build up a vector of nodes in a particular SCC. Note that it is a forward /// iterator and thus you cannot backtrack or re-visit nodes. template > class scc_iterator : public iterator_facade_base< scc_iterator, std::forward_iterator_tag, const std::vector, ptrdiff_t> { using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; using SccTy = std::vector; using reference = typename scc_iterator::reference; /// Element of VisitStack during DFS. struct StackElement { NodeRef Node; ///< The current node pointer. ChildItTy NextChild; ///< The next child, modified inplace during DFS. unsigned MinVisited; ///< Minimum uplink value of all children of Node. StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) : Node(Node), NextChild(Child), MinVisited(Min) {} bool operator==(const StackElement &Other) const { return Node == Other.Node && NextChild == Other.NextChild && MinVisited == Other.MinVisited; } }; /// The visit counters used to detect when a complete SCC is on the stack. /// visitNum is the global counter. /// /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned visitNum; DenseMap nodeVisitNumbers; /// Stack holding nodes of the SCC. std::vector SCCNodeStack; /// The current SCC, retrieved using operator*(). SccTy CurrentSCC; /// DFS stack, Used to maintain the ordering. The top contains the current /// node, the next child to visit, and the minimum uplink value of all child std::vector VisitStack; /// A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeRef N); /// The stack-based DFS traversal; defined below. void DFSVisitChildren(); /// Compute the next SCC using the DFS traversal. void GetNextSCC(); scc_iterator(NodeRef entryN) : visitNum(0) { DFSVisitOne(entryN); GetNextSCC(); } /// End is when the DFS stack is empty. scc_iterator() = default; public: static scc_iterator begin(const GraphT &G) { return scc_iterator(GT::getEntryNode(G)); } static scc_iterator end(const GraphT &) { return scc_iterator(); } /// Direct loop termination test which is more efficient than /// comparison with \c end(). bool isAtEnd() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty(); } bool operator==(const scc_iterator &x) const { return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; } scc_iterator &operator++() { GetNextSCC(); return *this; } reference operator*() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } /// Test if the current SCC has a cycle. /// /// If the SCC has more than one node, this is trivially true. If not, it may /// still contain a cycle if the node has an edge back to itself. bool hasCycle() const; /// This informs the \c scc_iterator that the specified \c Old node /// has been deleted, and \c New is to be used in its place. void ReplaceNode(NodeRef Old, NodeRef New) { assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); // Do the assignment in two steps, in case 'New' is not yet in the map, and // inserting it causes the map to grow. auto tempVal = nodeVisitNumbers[Old]; nodeVisitNumbers[New] = tempVal; nodeVisitNumbers.erase(Old); } }; template void scc_iterator::DFSVisitOne(NodeRef N) { ++visitNum; nodeVisitNumbers[N] = visitNum; SCCNodeStack.push_back(N); VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum)); #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Node " << N << " : visitNum = " << visitNum << "\n"; #endif } template void scc_iterator::DFSVisitChildren() { assert(!VisitStack.empty()); while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) { // TOS has at least one more child so continue DFS NodeRef childN = *VisitStack.back().NextChild++; typename DenseMap::iterator Visited = nodeVisitNumbers.find(childN); if (Visited == nodeVisitNumbers.end()) { // this node has never been seen. DFSVisitOne(childN); continue; } unsigned childNum = Visited->second; if (VisitStack.back().MinVisited > childNum) VisitStack.back().MinVisited = childNum; } } template void scc_iterator::GetNextSCC() { CurrentSCC.clear(); // Prepare to compute the next SCC while (!VisitStack.empty()) { DFSVisitChildren(); // Pop the leaf on top of the VisitStack. NodeRef visitingN = VisitStack.back().Node; unsigned minVisitNum = VisitStack.back().MinVisited; assert(VisitStack.back().NextChild == GT::child_end(visitingN)); VisitStack.pop_back(); // Propagate MinVisitNum to parent so we can detect the SCC starting node. if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum) VisitStack.back().MinVisited = minVisitNum; #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Popped node " << visitingN << " : minVisitNum = " << minVisitNum << "; Node visit num = " << nodeVisitNumbers[visitingN] << "\n"; #endif if (minVisitNum != nodeVisitNumbers[visitingN]) continue; // A full SCC is on the SCCNodeStack! It includes all nodes below // visitingN on the stack. Copy those nodes to CurrentSCC, // reset their minVisit values, and return (this suspends // the DFS traversal till the next ++). do { CurrentSCC.push_back(SCCNodeStack.back()); SCCNodeStack.pop_back(); nodeVisitNumbers[CurrentSCC.back()] = ~0U; } while (CurrentSCC.back() != visitingN); return; } } template bool scc_iterator::hasCycle() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); if (CurrentSCC.size() > 1) return true; NodeRef N = CurrentSCC.front(); for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; ++CI) if (*CI == N) return true; return false; } /// Construct the begin iterator for a deduced graph type T. template scc_iterator scc_begin(const T &G) { return scc_iterator::begin(G); } /// Construct the end iterator for a deduced graph type T. template scc_iterator scc_end(const T &G) { return scc_iterator::end(G); } /// Sort the nodes of a directed SCC in the decreasing order of the edge /// weights. The instantiating GraphT type should have weighted edge type /// declared in its graph traits in order to use this iterator. /// /// This is implemented using Kruskal's minimal spanning tree algorithm followed /// by Kahn's algorithm to compute a topological order on the MST. First a /// maximum spanning tree (forest) is built based on all edges within the SCC /// collection. Then a topological walk is initiated on tree nodes that do not /// have a predecessor and then applied to all nodes of the SCC. Such order /// ensures that high-weighted edges are visited first during the traversal. template > class scc_member_iterator { using NodeType = typename GT::NodeType; using EdgeType = typename GT::EdgeType; using NodesType = std::vector; // Auxilary node information used during the MST calculation. struct NodeInfo { NodeInfo *Group = this; uint32_t Rank = 0; bool Visited = false; DenseSet IncomingMSTEdges; }; // Find the root group of the node and compress the path from node to the // root. NodeInfo *find(NodeInfo *Node) { if (Node->Group != Node) Node->Group = find(Node->Group); return Node->Group; } // Union the source and target node into the same group and return true. // Returns false if they are already in the same group. bool unionGroups(const EdgeType *Edge) { NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]); NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]); // If the edge forms a cycle, do not add it to MST if (G1 == G2) return false; // Make the smaller rank tree a direct child or the root of high rank tree. if (G1->Rank < G1->Rank) G1->Group = G2; else { G2->Group = G1; // If the ranks are the same, increment root of one tree by one. if (G1->Rank == G2->Rank) G2->Rank++; } return true; } std::unordered_map NodeInfoMap; NodesType Nodes; public: scc_member_iterator(const NodesType &InputNodes); NodesType &operator*() { return Nodes; } }; template scc_member_iterator::scc_member_iterator( const NodesType &InputNodes) { if (InputNodes.size() <= 1) { Nodes = InputNodes; return; } // Initialize auxilary node information. NodeInfoMap.clear(); for (auto *Node : InputNodes) { // This is specifically used to construct a `NodeInfo` object in place. An // insert operation will involve a copy construction which invalidate the // initial value of the `Group` field which should be `this`. (void)NodeInfoMap[Node].Group; } // Sort edges by weights. struct EdgeComparer { bool operator()(const EdgeType *L, const EdgeType *R) const { return L->Weight > R->Weight; } }; std::multiset SortedEdges; for (auto *Node : InputNodes) { for (auto &Edge : Node->Edges) { if (NodeInfoMap.count(Edge.Target)) SortedEdges.insert(&Edge); } } // Traverse all the edges and compute the Maximum Weight Spanning Tree // using Kruskal's algorithm. std::unordered_set MSTEdges; for (auto *Edge : SortedEdges) { if (unionGroups(Edge)) MSTEdges.insert(Edge); } // Run Kahn's algorithm on MST to compute a topological traversal order. // The algorithm starts from nodes that have no incoming edge. These nodes are // "roots" of the MST forest. This ensures that nodes are visited before their // descendants are, thus ensures hot edges are processed before cold edges, // based on how MST is computed. std::queue Queue; for (const auto *Edge : MSTEdges) NodeInfoMap[Edge->Target].IncomingMSTEdges.insert(Edge); // Walk through SortedEdges to initialize the queue, instead of using NodeInfoMap // to ensure an ordered deterministic push. for (auto *Edge : SortedEdges) { if (!NodeInfoMap[Edge->Source].Visited && NodeInfoMap[Edge->Source].IncomingMSTEdges.empty()) { Queue.push(Edge->Source); NodeInfoMap[Edge->Source].Visited = true; } } while (!Queue.empty()) { auto *Node = Queue.front(); Queue.pop(); Nodes.push_back(Node); for (auto &Edge : Node->Edges) { NodeInfoMap[Edge.Target].IncomingMSTEdges.erase(&Edge); if (MSTEdges.count(&Edge) && NodeInfoMap[Edge.Target].IncomingMSTEdges.empty()) { Queue.push(Edge.Target); } } } assert(InputNodes.size() == Nodes.size() && "missing nodes in MST"); std::reverse(Nodes.begin(), Nodes.end()); } } // end namespace llvm #endif // LLVM_ADT_SCCITERATOR_H