//===- llvm/ADT/SmallSet.h - 'Normally small' sets --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the SmallSet class. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLSET_H #define LLVM_ADT_SMALLSET_H #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include #include #include #include #include namespace llvm { /// SmallSetIterator - This class implements a const_iterator for SmallSet by /// delegating to the underlying SmallVector or Set iterators. template class SmallSetIterator : public iterator_facade_base, std::forward_iterator_tag, T> { private: using SetIterTy = typename std::set::const_iterator; using VecIterTy = typename SmallVector::const_iterator; using SelfTy = SmallSetIterator; /// Iterators to the parts of the SmallSet containing the data. They are set /// depending on isSmall. union { SetIterTy SetIter; VecIterTy VecIter; }; bool isSmall; public: SmallSetIterator(SetIterTy SetIter) : SetIter(SetIter), isSmall(false) {} SmallSetIterator(VecIterTy VecIter) : VecIter(VecIter), isSmall(true) {} // Spell out destructor, copy/move constructor and assignment operators for // MSVC STL, where set::const_iterator is not trivially copy constructible. ~SmallSetIterator() { if (isSmall) VecIter.~VecIterTy(); else SetIter.~SetIterTy(); } SmallSetIterator(const SmallSetIterator &Other) : isSmall(Other.isSmall) { if (isSmall) VecIter = Other.VecIter; else // Use placement new, to make sure SetIter is properly constructed, even // if it is not trivially copy-able (e.g. in MSVC). new (&SetIter) SetIterTy(Other.SetIter); } SmallSetIterator(SmallSetIterator &&Other) : isSmall(Other.isSmall) { if (isSmall) VecIter = std::move(Other.VecIter); else // Use placement new, to make sure SetIter is properly constructed, even // if it is not trivially copy-able (e.g. in MSVC). new (&SetIter) SetIterTy(std::move(Other.SetIter)); } SmallSetIterator& operator=(const SmallSetIterator& Other) { // Call destructor for SetIter, so it gets properly destroyed if it is // not trivially destructible in case we are setting VecIter. if (!isSmall) SetIter.~SetIterTy(); isSmall = Other.isSmall; if (isSmall) VecIter = Other.VecIter; else new (&SetIter) SetIterTy(Other.SetIter); return *this; } SmallSetIterator& operator=(SmallSetIterator&& Other) { // Call destructor for SetIter, so it gets properly destroyed if it is // not trivially destructible in case we are setting VecIter. if (!isSmall) SetIter.~SetIterTy(); isSmall = Other.isSmall; if (isSmall) VecIter = std::move(Other.VecIter); else new (&SetIter) SetIterTy(std::move(Other.SetIter)); return *this; } bool operator==(const SmallSetIterator &RHS) const { if (isSmall != RHS.isSmall) return false; if (isSmall) return VecIter == RHS.VecIter; return SetIter == RHS.SetIter; } SmallSetIterator &operator++() { // Preincrement if (isSmall) VecIter++; else SetIter++; return *this; } const T &operator*() const { return isSmall ? *VecIter : *SetIter; } }; /// SmallSet - This maintains a set of unique values, optimizing for the case /// when the set is small (less than N). In this case, the set can be /// maintained with no mallocs. If the set gets large, we expand to using an /// std::set to maintain reasonable lookup times. template > class SmallSet { /// Use a SmallVector to hold the elements here (even though it will never /// reach its 'large' stage) to avoid calling the default ctors of elements /// we will never use. SmallVector Vector; std::set Set; using VIterator = typename SmallVector::const_iterator; using SIterator = typename std::set::const_iterator; using mutable_iterator = typename SmallVector::iterator; // In small mode SmallPtrSet uses linear search for the elements, so it is // not a good idea to choose this value too high. You may consider using a // DenseSet<> instead if you expect many elements in the set. static_assert(N <= 32, "N should be small"); public: using key_type = T; using size_type = size_t; using value_type = T; using const_iterator = SmallSetIterator; SmallSet() = default; [[nodiscard]] bool empty() const { return Vector.empty() && Set.empty(); } size_type size() const { return isSmall() ? Vector.size() : Set.size(); } /// count - Return 1 if the element is in the set, 0 otherwise. size_type count(const T &V) const { if (isSmall()) { // Since the collection is small, just do a linear search. return vfind(V) == Vector.end() ? 0 : 1; } else { return Set.count(V); } } /// insert - Insert an element into the set if it isn't already there. /// Returns a pair. The first value of it is an iterator to the inserted /// element or the existing element in the set. The second value is true /// if the element is inserted (it was not in the set before). std::pair insert(const T &V) { if (!isSmall()) { auto [I, Inserted] = Set.insert(V); return std::make_pair(const_iterator(I), Inserted); } VIterator I = vfind(V); if (I != Vector.end()) // Don't reinsert if it already exists. return std::make_pair(const_iterator(I), false); if (Vector.size() < N) { Vector.push_back(V); return std::make_pair(const_iterator(std::prev(Vector.end())), true); } // Otherwise, grow from vector to set. while (!Vector.empty()) { Set.insert(Vector.back()); Vector.pop_back(); } return std::make_pair(const_iterator(Set.insert(V).first), true); } template void insert(IterT I, IterT E) { for (; I != E; ++I) insert(*I); } bool erase(const T &V) { if (!isSmall()) return Set.erase(V); for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I) if (*I == V) { Vector.erase(I); return true; } return false; } void clear() { Vector.clear(); Set.clear(); } const_iterator begin() const { if (isSmall()) return {Vector.begin()}; return {Set.begin()}; } const_iterator end() const { if (isSmall()) return {Vector.end()}; return {Set.end()}; } /// Check if the SmallSet contains the given element. bool contains(const T &V) const { if (isSmall()) return vfind(V) != Vector.end(); return Set.find(V) != Set.end(); } private: bool isSmall() const { return Set.empty(); } VIterator vfind(const T &V) const { for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I) if (*I == V) return I; return Vector.end(); } }; /// If this set is of pointer values, transparently switch over to using /// SmallPtrSet for performance. template class SmallSet : public SmallPtrSet {}; /// Equality comparison for SmallSet. /// /// Iterates over elements of LHS confirming that each element is also a member /// of RHS, and that RHS contains no additional values. /// Equivalent to N calls to RHS.count. /// For small-set mode amortized complexity is O(N^2) /// For large-set mode amortized complexity is linear, worst case is O(N^2) (if /// every hash collides). template bool operator==(const SmallSet &LHS, const SmallSet &RHS) { if (LHS.size() != RHS.size()) return false; // All elements in LHS must also be in RHS return all_of(LHS, [&RHS](const T &E) { return RHS.count(E); }); } /// Inequality comparison for SmallSet. /// /// Equivalent to !(LHS == RHS). See operator== for performance notes. template bool operator!=(const SmallSet &LHS, const SmallSet &RHS) { return !(LHS == RHS); } } // end namespace llvm #endif // LLVM_ADT_SMALLSET_H