//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares a GenericLoopInfo instantiation for LLVM IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPINFO_H #define LLVM_ANALYSIS_LOOPINFO_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/GenericLoopInfo.h" #include #include #include namespace llvm { class DominatorTree; class InductionDescriptor; class Instruction; class LoopInfo; class Loop; class MDNode; class MemorySSAUpdater; class ScalarEvolution; class raw_ostream; // Implementation in Support/GenericLoopInfoImpl.h extern template class LoopBase; /// Represents a single loop in the control flow graph. Note that not all SCCs /// in the CFG are necessarily loops. class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase { public: /// A range representing the start and end location of a loop. class LocRange { DebugLoc Start; DebugLoc End; public: LocRange() = default; LocRange(DebugLoc Start) : Start(Start), End(Start) {} LocRange(DebugLoc Start, DebugLoc End) : Start(std::move(Start)), End(std::move(End)) {} const DebugLoc &getStart() const { return Start; } const DebugLoc &getEnd() const { return End; } /// Check for null. /// explicit operator bool() const { return Start && End; } }; /// Return true if the specified value is loop invariant. bool isLoopInvariant(const Value *V) const; /// Return true if all the operands of the specified instruction are loop /// invariant. bool hasLoopInvariantOperands(const Instruction *I) const; /// If the given value is an instruction inside of the loop and it can be /// hoisted, do so to make it trivially loop-invariant. /// Return true if \c V is already loop-invariant, and false if \c V can't /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is /// set to true. This function can be used as a slightly more aggressive /// replacement for isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt = nullptr, MemorySSAUpdater *MSSAU = nullptr, ScalarEvolution *SE = nullptr) const; /// If the given instruction is inside of the loop and it can be hoisted, do /// so to make it trivially loop-invariant. /// Return true if \c I is already loop-invariant, and false if \c I can't /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is /// set to true. This function can be used as a slightly more aggressive /// replacement for isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt = nullptr, MemorySSAUpdater *MSSAU = nullptr, ScalarEvolution *SE = nullptr) const; /// Check to see if the loop has a canonical induction variable: an integer /// recurrence that starts at 0 and increments by one each time through the /// loop. If so, return the phi node that corresponds to it. /// /// The IndVarSimplify pass transforms loops to have a canonical induction /// variable. /// PHINode *getCanonicalInductionVariable() const; /// Get the latch condition instruction. ICmpInst *getLatchCmpInst() const; /// Obtain the unique incoming and back edge. Return false if they are /// non-unique or the loop is dead; otherwise, return true. bool getIncomingAndBackEdge(BasicBlock *&Incoming, BasicBlock *&Backedge) const; /// Below are some utilities to get the loop guard, loop bounds and induction /// variable, and to check if a given phinode is an auxiliary induction /// variable, if the loop is guarded, and if the loop is canonical. /// /// Here is an example: /// \code /// for (int i = lb; i < ub; i+=step) /// /// --- pseudo LLVMIR --- /// beforeloop: /// guardcmp = (lb < ub) /// if (guardcmp) goto preheader; else goto afterloop /// preheader: /// loop: /// i_1 = phi[{lb, preheader}, {i_2, latch}] /// /// i_2 = i_1 + step /// latch: /// cmp = (i_2 < ub) /// if (cmp) goto loop /// exit: /// afterloop: /// \endcode /// /// - getBounds /// - getInitialIVValue --> lb /// - getStepInst --> i_2 = i_1 + step /// - getStepValue --> step /// - getFinalIVValue --> ub /// - getCanonicalPredicate --> '<' /// - getDirection --> Increasing /// /// - getInductionVariable --> i_1 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 /// - getLoopGuardBranch() /// --> `if (guardcmp) goto preheader; else goto afterloop` /// - isGuarded() --> true /// - isCanonical --> false struct LoopBounds { /// Return the LoopBounds object if /// - the given \p IndVar is an induction variable /// - the initial value of the induction variable can be found /// - the step instruction of the induction variable can be found /// - the final value of the induction variable can be found /// /// Else std::nullopt. static std::optional getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE); /// Get the initial value of the loop induction variable. Value &getInitialIVValue() const { return InitialIVValue; } /// Get the instruction that updates the loop induction variable. Instruction &getStepInst() const { return StepInst; } /// Get the step that the loop induction variable gets updated by in each /// loop iteration. Return nullptr if not found. Value *getStepValue() const { return StepValue; } /// Get the final value of the loop induction variable. Value &getFinalIVValue() const { return FinalIVValue; } /// Return the canonical predicate for the latch compare instruction, if /// able to be calcuated. Else BAD_ICMP_PREDICATE. /// /// A predicate is considered as canonical if requirements below are all /// satisfied: /// 1. The first successor of the latch branch is the loop header /// If not, inverse the predicate. /// 2. One of the operands of the latch comparison is StepInst /// If not, and /// - if the current calcuated predicate is not ne or eq, flip the /// predicate. /// - else if the loop is increasing, return slt /// (notice that it is safe to change from ne or eq to sign compare) /// - else if the loop is decreasing, return sgt /// (notice that it is safe to change from ne or eq to sign compare) /// /// Here is an example when both (1) and (2) are not satisfied: /// \code /// loop.header: /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] /// %inc = add %iv, %step /// %cmp = slt %iv, %finaliv /// br %cmp, %loop.exit, %loop.header /// loop.exit: /// \endcode /// - The second successor of the latch branch is the loop header instead /// of the first successor (slt -> sge) /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) /// instead of the StepInst (%inc) (sge -> sgt) /// /// The predicate would be sgt if both (1) and (2) are satisfied. /// getCanonicalPredicate() returns sgt for this example. /// Note: The IR is not changed. ICmpInst::Predicate getCanonicalPredicate() const; /// An enum for the direction of the loop /// - for (int i = 0; i < ub; ++i) --> Increasing /// - for (int i = ub; i > 0; --i) --> Descresing /// - for (int i = x; i != y; i+=z) --> Unknown enum class Direction { Increasing, Decreasing, Unknown }; /// Get the direction of the loop. Direction getDirection() const; private: LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, ScalarEvolution &SE) : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), FinalIVValue(F), SE(SE) {} const Loop &L; // The initial value of the loop induction variable Value &InitialIVValue; // The instruction that updates the loop induction variable Instruction &StepInst; // The value that the loop induction variable gets updated by in each loop // iteration Value *StepValue; // The final value of the loop induction variable Value &FinalIVValue; ScalarEvolution &SE; }; /// Return the struct LoopBounds collected if all struct members are found, /// else std::nullopt. std::optional getBounds(ScalarEvolution &SE) const; /// Return the loop induction variable if found, else return nullptr. /// An instruction is considered as the loop induction variable if /// - it is an induction variable of the loop; and /// - it is used to determine the condition of the branch in the loop latch /// /// Note: the induction variable doesn't need to be canonical, i.e. starts at /// zero and increments by one each time through the loop (but it can be). PHINode *getInductionVariable(ScalarEvolution &SE) const; /// Get the loop induction descriptor for the loop induction variable. Return /// true if the loop induction variable is found. bool getInductionDescriptor(ScalarEvolution &SE, InductionDescriptor &IndDesc) const; /// Return true if the given PHINode \p AuxIndVar is /// - in the loop header /// - not used outside of the loop /// - incremented by a loop invariant step for each loop iteration /// - step instruction opcode should be add or sub /// Note: auxiliary induction variable is not required to be used in the /// conditional branch in the loop latch. (but it can be) bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, ScalarEvolution &SE) const; /// Return the loop guard branch, if it exists. /// /// This currently only works on simplified loop, as it requires a preheader /// and a latch to identify the guard. It will work on loops of the form: /// \code /// GuardBB: /// br cond1, Preheader, ExitSucc <== GuardBranch /// Preheader: /// br Header /// Header: /// ... /// br Latch /// Latch: /// br cond2, Header, ExitBlock /// ExitBlock: /// br ExitSucc /// ExitSucc: /// \endcode BranchInst *getLoopGuardBranch() const; /// Return true iff the loop is /// - in simplify rotated form, and /// - guarded by a loop guard branch. bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } /// Return true if the loop is in rotated form. /// /// This does not check if the loop was rotated by loop rotation, instead it /// only checks if the loop is in rotated form (has a valid latch that exists /// the loop). bool isRotatedForm() const { assert(!isInvalid() && "Loop not in a valid state!"); BasicBlock *Latch = getLoopLatch(); return Latch && isLoopExiting(Latch); } /// Return true if the loop induction variable starts at zero and increments /// by one each time through the loop. bool isCanonical(ScalarEvolution &SE) const; /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to /// true, token values defined inside loop are allowed to violate LCSSA form. bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const; /// Return true if this Loop and all inner subloops are in LCSSA form. If \p /// IgnoreTokens is set to true, token values defined inside loop are allowed /// to violate LCSSA form. bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, bool IgnoreTokens = true) const; /// Return true if the Loop is in the form that the LoopSimplify form /// transforms loops to, which is sometimes called normal form. bool isLoopSimplifyForm() const; /// Return true if the loop body is safe to clone in practice. bool isSafeToClone() const; /// Returns true if the loop is annotated parallel. /// /// A parallel loop can be assumed to not contain any dependencies between /// iterations by the compiler. That is, any loop-carried dependency checking /// can be skipped completely when parallelizing the loop on the target /// machine. Thus, if the parallel loop information originates from the /// programmer, e.g. via the OpenMP parallel for pragma, it is the /// programmer's responsibility to ensure there are no loop-carried /// dependencies. The final execution order of the instructions across /// iterations is not guaranteed, thus, the end result might or might not /// implement actual concurrent execution of instructions across multiple /// iterations. bool isAnnotatedParallel() const; /// Return the llvm.loop loop id metadata node for this loop if it is present. /// /// If this loop contains the same llvm.loop metadata on each branch to the /// header then the node is returned. If any latch instruction does not /// contain llvm.loop or if multiple latches contain different nodes then /// 0 is returned. MDNode *getLoopID() const; /// Set the llvm.loop loop id metadata for this loop. /// /// The LoopID metadata node will be added to each terminator instruction in /// the loop that branches to the loop header. /// /// The LoopID metadata node should have one or more operands and the first /// operand should be the node itself. void setLoopID(MDNode *LoopID) const; /// Add llvm.loop.unroll.disable to this loop's loop id metadata. /// /// Remove existing unroll metadata and add unroll disable metadata to /// indicate the loop has already been unrolled. This prevents a loop /// from being unrolled more than is directed by a pragma if the loop /// unrolling pass is run more than once (which it generally is). void setLoopAlreadyUnrolled(); /// Add llvm.loop.mustprogress to this loop's loop id metadata. void setLoopMustProgress(); void dump() const; void dumpVerbose() const; /// Return the debug location of the start of this loop. /// This looks for a BB terminating instruction with a known debug /// location by looking at the preheader and header blocks. If it /// cannot find a terminating instruction with location information, /// it returns an unknown location. DebugLoc getStartLoc() const; /// Return the source code span of the loop. LocRange getLocRange() const; StringRef getName() const { if (BasicBlock *Header = getHeader()) if (Header->hasName()) return Header->getName(); return ""; } private: Loop() = default; friend class LoopInfoBase; friend class LoopBase; explicit Loop(BasicBlock *BB) : LoopBase(BB) {} ~Loop() = default; }; // Implementation in Support/GenericLoopInfoImpl.h extern template class LoopInfoBase; class LoopInfo : public LoopInfoBase { typedef LoopInfoBase BaseT; friend class LoopBase; void operator=(const LoopInfo &) = delete; LoopInfo(const LoopInfo &) = delete; public: LoopInfo() = default; explicit LoopInfo(const DominatorTreeBase &DomTree); LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast(Arg))) {} LoopInfo &operator=(LoopInfo &&RHS) { BaseT::operator=(std::move(static_cast(RHS))); return *this; } /// Handle invalidation explicitly. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &); // Most of the public interface is provided via LoopInfoBase. /// Update LoopInfo after removing the last backedge from a loop. This updates /// the loop forest and parent loops for each block so that \c L is no longer /// referenced, but does not actually delete \c L immediately. The pointer /// will remain valid until this LoopInfo's memory is released. void erase(Loop *L); /// Returns true if replacing From with To everywhere is guaranteed to /// preserve LCSSA form. bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { // Preserving LCSSA form is only problematic if the replacing value is an // instruction. Instruction *I = dyn_cast(To); if (!I) return true; // If both instructions are defined in the same basic block then replacement // cannot break LCSSA form. if (I->getParent() == From->getParent()) return true; // If the instruction is not defined in a loop then it can safely replace // anything. Loop *ToLoop = getLoopFor(I->getParent()); if (!ToLoop) return true; // If the replacing instruction is defined in the same loop as the original // instruction, or in a loop that contains it as an inner loop, then using // it as a replacement will not break LCSSA form. return ToLoop->contains(getLoopFor(From->getParent())); } /// Checks if moving a specific instruction can break LCSSA in any loop. /// /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, /// assuming that the function containing \p Inst and \p NewLoc is currently /// in LCSSA form. bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { assert(Inst->getFunction() == NewLoc->getFunction() && "Can't reason about IPO!"); auto *OldBB = Inst->getParent(); auto *NewBB = NewLoc->getParent(); // Movement within the same loop does not break LCSSA (the equality check is // to avoid doing a hashtable lookup in case of intra-block movement). if (OldBB == NewBB) return true; auto *OldLoop = getLoopFor(OldBB); auto *NewLoop = getLoopFor(NewBB); if (OldLoop == NewLoop) return true; // Check if Outer contains Inner; with the null loop counting as the // "outermost" loop. auto Contains = [](const Loop *Outer, const Loop *Inner) { return !Outer || Outer->contains(Inner); }; // To check that the movement of Inst to before NewLoc does not break LCSSA, // we need to check two sets of uses for possible LCSSA violations at // NewLoc: the users of NewInst, and the operands of NewInst. // If we know we're hoisting Inst out of an inner loop to an outer loop, // then the uses *of* Inst don't need to be checked. if (!Contains(NewLoop, OldLoop)) { for (Use &U : Inst->uses()) { auto *UI = cast(U.getUser()); auto *UBB = isa(UI) ? cast(UI)->getIncomingBlock(U) : UI->getParent(); if (UBB != NewBB && getLoopFor(UBB) != NewLoop) return false; } } // If we know we're sinking Inst from an outer loop into an inner loop, then // the *operands* of Inst don't need to be checked. if (!Contains(OldLoop, NewLoop)) { // See below on why we can't handle phi nodes here. if (isa(Inst)) return false; for (Use &U : Inst->operands()) { auto *DefI = dyn_cast(U.get()); if (!DefI) return false; // This would need adjustment if we allow Inst to be a phi node -- the // new use block won't simply be NewBB. auto *DefBlock = DefI->getParent(); if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) return false; } } return true; } // Return true if a new use of V added in ExitBB would require an LCSSA PHI // to be inserted at the begining of the block. Note that V is assumed to // dominate ExitBB, and ExitBB must be the exit block of some loop. The // IR is assumed to be in LCSSA form before the planned insertion. bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, const BasicBlock *ExitBB) const; }; /// Enable verification of loop info. /// /// The flag enables checks which are expensive and are disabled by default /// unless the `EXPENSIVE_CHECKS` macro is defined. The `-verify-loop-info` /// flag allows the checks to be enabled selectively without re-compilation. extern bool VerifyLoopInfo; // Allow clients to walk the list of nested loops... template <> struct GraphTraits { typedef const Loop *NodeRef; typedef LoopInfo::iterator ChildIteratorType; static NodeRef getEntryNode(const Loop *L) { return L; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; template <> struct GraphTraits { typedef Loop *NodeRef; typedef LoopInfo::iterator ChildIteratorType; static NodeRef getEntryNode(Loop *L) { return L; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; /// Analysis pass that exposes the \c LoopInfo for a function. class LoopAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: typedef LoopInfo Result; LoopInfo run(Function &F, FunctionAnalysisManager &AM); }; /// Printer pass for the \c LoopAnalysis results. class LoopPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); static bool isRequired() { return true; } }; /// Verifier pass for the \c LoopAnalysis results. struct LoopVerifierPass : public PassInfoMixin { PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); static bool isRequired() { return true; } }; /// The legacy pass manager's analysis pass to compute loop information. class LoopInfoWrapperPass : public FunctionPass { LoopInfo LI; public: static char ID; // Pass identification, replacement for typeid LoopInfoWrapperPass(); LoopInfo &getLoopInfo() { return LI; } const LoopInfo &getLoopInfo() const { return LI; } /// Calculate the natural loop information for a given function. bool runOnFunction(Function &F) override; void verifyAnalysis() const override; void releaseMemory() override { LI.releaseMemory(); } void print(raw_ostream &O, const Module *M = nullptr) const override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; /// Function to print a loop's contents as LLVM's text IR assembly. void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); /// Find and return the loop attribute node for the attribute @p Name in /// @p LoopID. Return nullptr if there is no such attribute. MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); /// Find string metadata for a loop. /// /// Returns the MDNode where the first operand is the metadata's name. The /// following operands are the metadata's values. If no metadata with @p Name is /// found, return nullptr. MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); std::optional getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name); /// Returns true if Name is applied to TheLoop and enabled. bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name); /// Find named metadata for a loop with an integer value. std::optional getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name); /// Find named metadata for a loop with an integer value. Return \p Default if /// not set. int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0); /// Find string metadata for loop /// /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an /// operand or null otherwise. If the string metadata is not found return /// Optional's not-a-value. std::optional findStringMetadataForLoop(const Loop *TheLoop, StringRef Name); /// Look for the loop attribute that requires progress within the loop. /// Note: Most consumers probably want "isMustProgress" which checks /// the containing function attribute too. bool hasMustProgress(const Loop *L); /// Return true if this loop can be assumed to make progress. (i.e. can't /// be infinite without side effects without also being undefined) bool isMustProgress(const Loop *L); /// Return true if this loop can be assumed to run for a finite number of /// iterations. bool isFinite(const Loop *L); /// Return whether an MDNode might represent an access group. /// /// Access group metadata nodes have to be distinct and empty. Being /// always-empty ensures that it never needs to be changed (which -- because /// MDNodes are designed immutable -- would require creating a new MDNode). Note /// that this is not a sufficient condition: not every distinct and empty NDNode /// is representing an access group. bool isValidAsAccessGroup(MDNode *AccGroup); /// Create a new LoopID after the loop has been transformed. /// /// This can be used when no follow-up loop attributes are defined /// (llvm::makeFollowupLoopID returning None) to stop transformations to be /// applied again. /// /// @param Context The LLVMContext in which to create the new LoopID. /// @param OrigLoopID The original LoopID; can be nullptr if the original /// loop has no LoopID. /// @param RemovePrefixes Remove all loop attributes that have these prefixes. /// Use to remove metadata of the transformation that has /// been applied. /// @param AddAttrs Add these loop attributes to the new LoopID. /// /// @return A new LoopID that can be applied using Loop::setLoopID(). llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef RemovePrefixes, llvm::ArrayRef AddAttrs); } // namespace llvm #endif