//===- llvm/Analysis/MemoryProfileInfo.h - memory profile info ---*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains utilities to analyze memory profile information. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_MEMORYPROFILEINFO_H #define LLVM_ANALYSIS_MEMORYPROFILEINFO_H #include "llvm/IR/Constants.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndex.h" #include namespace llvm { namespace memprof { /// Return the allocation type for a given set of memory profile values. AllocationType getAllocType(uint64_t TotalLifetimeAccessDensity, uint64_t AllocCount, uint64_t TotalLifetime); /// Build callstack metadata from the provided list of call stack ids. Returns /// the resulting metadata node. MDNode *buildCallstackMetadata(ArrayRef CallStack, LLVMContext &Ctx); /// Returns the stack node from an MIB metadata node. MDNode *getMIBStackNode(const MDNode *MIB); /// Returns the allocation type from an MIB metadata node. AllocationType getMIBAllocType(const MDNode *MIB); /// Returns the string to use in attributes with the given type. std::string getAllocTypeAttributeString(AllocationType Type); /// True if the AllocTypes bitmask contains just a single type. bool hasSingleAllocType(uint8_t AllocTypes); /// Class to build a trie of call stack contexts for a particular profiled /// allocation call, along with their associated allocation types. /// The allocation will be at the root of the trie, which is then used to /// compute the minimum lists of context ids needed to associate a call context /// with a single allocation type. class CallStackTrie { private: struct CallStackTrieNode { // Allocation types for call context sharing the context prefix at this // node. uint8_t AllocTypes; // Map of caller stack id to the corresponding child Trie node. std::map Callers; CallStackTrieNode(AllocationType Type) : AllocTypes(static_cast(Type)) {} }; // The node for the allocation at the root. CallStackTrieNode *Alloc = nullptr; // The allocation's leaf stack id. uint64_t AllocStackId = 0; void deleteTrieNode(CallStackTrieNode *Node) { if (!Node) return; for (auto C : Node->Callers) deleteTrieNode(C.second); delete Node; } // Recursive helper to trim contexts and create metadata nodes. bool buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx, std::vector &MIBCallStack, std::vector &MIBNodes, bool CalleeHasAmbiguousCallerContext); public: CallStackTrie() = default; ~CallStackTrie() { deleteTrieNode(Alloc); } bool empty() const { return Alloc == nullptr; } /// Add a call stack context with the given allocation type to the Trie. /// The context is represented by the list of stack ids (computed during /// matching via a debug location hash), expected to be in order from the /// allocation call down to the bottom of the call stack (i.e. callee to /// caller order). void addCallStack(AllocationType AllocType, ArrayRef StackIds); /// Add the call stack context along with its allocation type from the MIB /// metadata to the Trie. void addCallStack(MDNode *MIB); /// Build and attach the minimal necessary MIB metadata. If the alloc has a /// single allocation type, add a function attribute instead. The reason for /// adding an attribute in this case is that it matches how the behavior for /// allocation calls will be communicated to lib call simplification after /// cloning or another optimization to distinguish the allocation types, /// which is lower overhead and more direct than maintaining this metadata. /// Returns true if memprof metadata attached, false if not (attribute added). bool buildAndAttachMIBMetadata(CallBase *CI); }; /// Helper class to iterate through stack ids in both metadata (memprof MIB and /// callsite) and the corresponding ThinLTO summary data structures /// (CallsiteInfo and MIBInfo). This simplifies implementation of client code /// which doesn't need to worry about whether we are operating with IR (Regular /// LTO), or summary (ThinLTO). template class CallStack { public: CallStack(const NodeT *N = nullptr) : N(N) {} // Implement minimum required methods for range-based for loop. // The default implementation assumes we are operating on ThinLTO data // structures, which have a vector of StackIdIndices. There are specialized // versions provided to iterate through metadata. struct CallStackIterator { const NodeT *N = nullptr; IteratorT Iter; CallStackIterator(const NodeT *N, bool End); uint64_t operator*(); bool operator==(const CallStackIterator &rhs) { return Iter == rhs.Iter; } bool operator!=(const CallStackIterator &rhs) { return !(*this == rhs); } void operator++() { ++Iter; } }; bool empty() const { return N == nullptr; } CallStackIterator begin() const; CallStackIterator end() const { return CallStackIterator(N, /*End*/ true); } CallStackIterator beginAfterSharedPrefix(CallStack &Other); uint64_t back() const; private: const NodeT *N = nullptr; }; template CallStack::CallStackIterator::CallStackIterator( const NodeT *N, bool End) : N(N) { if (!N) { Iter = nullptr; return; } Iter = End ? N->StackIdIndices.end() : N->StackIdIndices.begin(); } template uint64_t CallStack::CallStackIterator::operator*() { assert(Iter != N->StackIdIndices.end()); return *Iter; } template uint64_t CallStack::back() const { assert(N); return N->StackIdIndices.back(); } template typename CallStack::CallStackIterator CallStack::begin() const { return CallStackIterator(N, /*End*/ false); } template typename CallStack::CallStackIterator CallStack::beginAfterSharedPrefix(CallStack &Other) { CallStackIterator Cur = begin(); for (CallStackIterator OtherCur = Other.begin(); Cur != end() && OtherCur != Other.end(); ++Cur, ++OtherCur) assert(*Cur == *OtherCur); return Cur; } /// Specializations for iterating through IR metadata stack contexts. template <> CallStack::CallStackIterator::CallStackIterator( const MDNode *N, bool End); template <> uint64_t CallStack::CallStackIterator::operator*(); template <> uint64_t CallStack::back() const; } // end namespace memprof } // end namespace llvm #endif