//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This pass exposes codegen information to IR-level passes. Every /// transformation that uses codegen information is broken into three parts: /// 1. The IR-level analysis pass. /// 2. The IR-level transformation interface which provides the needed /// information. /// 3. Codegen-level implementation which uses target-specific hooks. /// /// This file defines #2, which is the interface that IR-level transformations /// use for querying the codegen. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #include "llvm/ADT/SmallBitVector.h" #include "llvm/IR/FMF.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/InstructionCost.h" #include #include #include namespace llvm { namespace Intrinsic { typedef unsigned ID; } class AllocaInst; class AssumptionCache; class BlockFrequencyInfo; class DominatorTree; class BranchInst; class CallBase; class Function; class GlobalValue; class InstCombiner; class OptimizationRemarkEmitter; class InterleavedAccessInfo; class IntrinsicInst; class LoadInst; class Loop; class LoopInfo; class LoopVectorizationLegality; class ProfileSummaryInfo; class RecurrenceDescriptor; class SCEV; class ScalarEvolution; class StoreInst; class SwitchInst; class TargetLibraryInfo; class Type; class User; class Value; class VPIntrinsic; struct KnownBits; /// Information about a load/store intrinsic defined by the target. struct MemIntrinsicInfo { /// This is the pointer that the intrinsic is loading from or storing to. /// If this is non-null, then analysis/optimization passes can assume that /// this intrinsic is functionally equivalent to a load/store from this /// pointer. Value *PtrVal = nullptr; // Ordering for atomic operations. AtomicOrdering Ordering = AtomicOrdering::NotAtomic; // Same Id is set by the target for corresponding load/store intrinsics. unsigned short MatchingId = 0; bool ReadMem = false; bool WriteMem = false; bool IsVolatile = false; bool isUnordered() const { return (Ordering == AtomicOrdering::NotAtomic || Ordering == AtomicOrdering::Unordered) && !IsVolatile; } }; /// Attributes of a target dependent hardware loop. struct HardwareLoopInfo { HardwareLoopInfo() = delete; HardwareLoopInfo(Loop *L); Loop *L = nullptr; BasicBlock *ExitBlock = nullptr; BranchInst *ExitBranch = nullptr; const SCEV *ExitCount = nullptr; IntegerType *CountType = nullptr; Value *LoopDecrement = nullptr; // Decrement the loop counter by this // value in every iteration. bool IsNestingLegal = false; // Can a hardware loop be a parent to // another hardware loop? bool CounterInReg = false; // Should loop counter be updated in // the loop via a phi? bool PerformEntryTest = false; // Generate the intrinsic which also performs // icmp ne zero on the loop counter value and // produces an i1 to guard the loop entry. bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop = false, bool ForceHardwareLoopPHI = false); bool canAnalyze(LoopInfo &LI); }; class IntrinsicCostAttributes { const IntrinsicInst *II = nullptr; Type *RetTy = nullptr; Intrinsic::ID IID; SmallVector ParamTys; SmallVector Arguments; FastMathFlags FMF; // If ScalarizationCost is UINT_MAX, the cost of scalarizing the // arguments and the return value will be computed based on types. InstructionCost ScalarizationCost = InstructionCost::getInvalid(); public: IntrinsicCostAttributes( Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost = InstructionCost::getInvalid(), bool TypeBasedOnly = false); IntrinsicCostAttributes( Intrinsic::ID Id, Type *RTy, ArrayRef Tys, FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr, InstructionCost ScalarCost = InstructionCost::getInvalid()); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Args); IntrinsicCostAttributes( Intrinsic::ID Id, Type *RTy, ArrayRef Args, ArrayRef Tys, FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr, InstructionCost ScalarCost = InstructionCost::getInvalid()); Intrinsic::ID getID() const { return IID; } const IntrinsicInst *getInst() const { return II; } Type *getReturnType() const { return RetTy; } FastMathFlags getFlags() const { return FMF; } InstructionCost getScalarizationCost() const { return ScalarizationCost; } const SmallVectorImpl &getArgs() const { return Arguments; } const SmallVectorImpl &getArgTypes() const { return ParamTys; } bool isTypeBasedOnly() const { return Arguments.empty(); } bool skipScalarizationCost() const { return ScalarizationCost.isValid(); } }; enum class TailFoldingStyle { /// Don't use tail folding None, /// Use predicate only to mask operations on data in the loop. /// When the VL is not known to be a power-of-2, this method requires a /// runtime overflow check for the i + VL in the loop because it compares the /// scalar induction variable against the tripcount rounded up by VL which may /// overflow. When the VL is a power-of-2, both the increment and uprounded /// tripcount will overflow to 0, which does not require a runtime check /// since the loop is exited when the loop induction variable equals the /// uprounded trip-count, which are both 0. Data, /// Same as Data, but avoids using the get.active.lane.mask intrinsic to /// calculate the mask and instead implements this with a /// splat/stepvector/cmp. /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the /// active.lane.mask intrinsic when it is not natively supported? DataWithoutLaneMask, /// Use predicate to control both data and control flow. /// This method always requires a runtime overflow check for the i + VL /// increment inside the loop, because it uses the result direclty in the /// active.lane.mask to calculate the mask for the next iteration. If the /// increment overflows, the mask is no longer correct. DataAndControlFlow, /// Use predicate to control both data and control flow, but modify /// the trip count so that a runtime overflow check can be avoided /// and such that the scalar epilogue loop can always be removed. DataAndControlFlowWithoutRuntimeCheck }; struct TailFoldingInfo { TargetLibraryInfo *TLI; LoopVectorizationLegality *LVL; InterleavedAccessInfo *IAI; TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI) : TLI(TLI), LVL(LVL), IAI(IAI) {} }; class TargetTransformInfo; typedef TargetTransformInfo TTI; /// This pass provides access to the codegen interfaces that are needed /// for IR-level transformations. class TargetTransformInfo { public: /// Construct a TTI object using a type implementing the \c Concept /// API below. /// /// This is used by targets to construct a TTI wrapping their target-specific /// implementation that encodes appropriate costs for their target. template TargetTransformInfo(T Impl); /// Construct a baseline TTI object using a minimal implementation of /// the \c Concept API below. /// /// The TTI implementation will reflect the information in the DataLayout /// provided if non-null. explicit TargetTransformInfo(const DataLayout &DL); // Provide move semantics. TargetTransformInfo(TargetTransformInfo &&Arg); TargetTransformInfo &operator=(TargetTransformInfo &&RHS); // We need to define the destructor out-of-line to define our sub-classes // out-of-line. ~TargetTransformInfo(); /// Handle the invalidation of this information. /// /// When used as a result of \c TargetIRAnalysis this method will be called /// when the function this was computed for changes. When it returns false, /// the information is preserved across those changes. bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &) { // FIXME: We should probably in some way ensure that the subtarget // information for a function hasn't changed. return false; } /// \name Generic Target Information /// @{ /// The kind of cost model. /// /// There are several different cost models that can be customized by the /// target. The normalization of each cost model may be target specific. /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as /// those derived from MCSchedModel::LoopMicroOpBufferSize etc. enum TargetCostKind { TCK_RecipThroughput, ///< Reciprocal throughput. TCK_Latency, ///< The latency of instruction. TCK_CodeSize, ///< Instruction code size. TCK_SizeAndLatency ///< The weighted sum of size and latency. }; /// Underlying constants for 'cost' values in this interface. /// /// Many APIs in this interface return a cost. This enum defines the /// fundamental values that should be used to interpret (and produce) those /// costs. The costs are returned as an int rather than a member of this /// enumeration because it is expected that the cost of one IR instruction /// may have a multiplicative factor to it or otherwise won't fit directly /// into the enum. Moreover, it is common to sum or average costs which works /// better as simple integral values. Thus this enum only provides constants. /// Also note that the returned costs are signed integers to make it natural /// to add, subtract, and test with zero (a common boundary condition). It is /// not expected that 2^32 is a realistic cost to be modeling at any point. /// /// Note that these costs should usually reflect the intersection of code-size /// cost and execution cost. A free instruction is typically one that folds /// into another instruction. For example, reg-to-reg moves can often be /// skipped by renaming the registers in the CPU, but they still are encoded /// and thus wouldn't be considered 'free' here. enum TargetCostConstants { TCC_Free = 0, ///< Expected to fold away in lowering. TCC_Basic = 1, ///< The cost of a typical 'add' instruction. TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. }; /// Estimate the cost of a GEP operation when lowered. /// /// \p PointeeType is the source element type of the GEP. /// \p Ptr is the base pointer operand. /// \p Operands is the list of indices following the base pointer. /// /// \p AccessType is a hint as to what type of memory might be accessed by /// users of the GEP. getGEPCost will use it to determine if the GEP can be /// folded into the addressing mode of a load/store. If AccessType is null, /// then the resulting target type based off of PointeeType will be used as an /// approximation. InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, Type *AccessType = nullptr, TargetCostKind CostKind = TCK_SizeAndLatency) const; /// Describe known properties for a set of pointers. struct PointersChainInfo { /// All the GEPs in a set have same base address. unsigned IsSameBaseAddress : 1; /// These properties only valid if SameBaseAddress is set. /// True if all pointers are separated by a unit stride. unsigned IsUnitStride : 1; /// True if distance between any two neigbouring pointers is a known value. unsigned IsKnownStride : 1; unsigned Reserved : 29; bool isSameBase() const { return IsSameBaseAddress; } bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; } bool isKnownStride() const { return IsSameBaseAddress && IsKnownStride; } static PointersChainInfo getUnitStride() { return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1, /*IsKnownStride=*/1, 0}; } static PointersChainInfo getKnownStride() { return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0, /*IsKnownStride=*/1, 0}; } static PointersChainInfo getUnknownStride() { return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0, /*IsKnownStride=*/0, 0}; } }; static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?"); /// Estimate the cost of a chain of pointers (typically pointer operands of a /// chain of loads or stores within same block) operations set when lowered. /// \p AccessTy is the type of the loads/stores that will ultimately use the /// \p Ptrs. InstructionCost getPointersChainCost(ArrayRef Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind = TTI::TCK_RecipThroughput ) const; /// \returns A value by which our inlining threshold should be multiplied. /// This is primarily used to bump up the inlining threshold wholesale on /// targets where calls are unusually expensive. /// /// TODO: This is a rather blunt instrument. Perhaps altering the costs of /// individual classes of instructions would be better. unsigned getInliningThresholdMultiplier() const; /// \returns A value to be added to the inlining threshold. unsigned adjustInliningThreshold(const CallBase *CB) const; /// \returns The cost of having an Alloca in the caller if not inlined, to be /// added to the threshold unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const; /// \returns Vector bonus in percent. /// /// Vector bonuses: We want to more aggressively inline vector-dense kernels /// and apply this bonus based on the percentage of vector instructions. A /// bonus is applied if the vector instructions exceed 50% and half that /// amount is applied if it exceeds 10%. Note that these bonuses are some what /// arbitrary and evolved over time by accident as much as because they are /// principled bonuses. /// FIXME: It would be nice to base the bonus values on something more /// scientific. A target may has no bonus on vector instructions. int getInlinerVectorBonusPercent() const; /// \return the expected cost of a memcpy, which could e.g. depend on the /// source/destination type and alignment and the number of bytes copied. InstructionCost getMemcpyCost(const Instruction *I) const; /// Returns the maximum memset / memcpy size in bytes that still makes it /// profitable to inline the call. uint64_t getMaxMemIntrinsicInlineSizeThreshold() const; /// \return The estimated number of case clusters when lowering \p 'SI'. /// \p JTSize Set a jump table size only when \p SI is suitable for a jump /// table. unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const; /// Estimate the cost of a given IR user when lowered. /// /// This can estimate the cost of either a ConstantExpr or Instruction when /// lowered. /// /// \p Operands is a list of operands which can be a result of transformations /// of the current operands. The number of the operands on the list must equal /// to the number of the current operands the IR user has. Their order on the /// list must be the same as the order of the current operands the IR user /// has. /// /// The returned cost is defined in terms of \c TargetCostConstants, see its /// comments for a detailed explanation of the cost values. InstructionCost getInstructionCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) const; /// This is a helper function which calls the three-argument /// getInstructionCost with \p Operands which are the current operands U has. InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const { SmallVector Operands(U->operand_values()); return getInstructionCost(U, Operands, CostKind); } /// If a branch or a select condition is skewed in one direction by more than /// this factor, it is very likely to be predicted correctly. BranchProbability getPredictableBranchThreshold() const; /// Return true if branch divergence exists. /// /// Branch divergence has a significantly negative impact on GPU performance /// when threads in the same wavefront take different paths due to conditional /// branches. /// /// If \p F is passed, provides a context function. If \p F is known to only /// execute in a single threaded environment, the target may choose to skip /// uniformity analysis and assume all values are uniform. bool hasBranchDivergence(const Function *F = nullptr) const; /// Returns whether V is a source of divergence. /// /// This function provides the target-dependent information for /// the target-independent UniformityAnalysis. bool isSourceOfDivergence(const Value *V) const; // Returns true for the target specific // set of operations which produce uniform result // even taking non-uniform arguments bool isAlwaysUniform(const Value *V) const; /// Query the target whether the specified address space cast from FromAS to /// ToAS is valid. bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address. bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const; /// Returns the address space ID for a target's 'flat' address space. Note /// this is not necessarily the same as addrspace(0), which LLVM sometimes /// refers to as the generic address space. The flat address space is a /// generic address space that can be used access multiple segments of memory /// with different address spaces. Access of a memory location through a /// pointer with this address space is expected to be legal but slower /// compared to the same memory location accessed through a pointer with a /// different address space. // /// This is for targets with different pointer representations which can /// be converted with the addrspacecast instruction. If a pointer is converted /// to this address space, optimizations should attempt to replace the access /// with the source address space. /// /// \returns ~0u if the target does not have such a flat address space to /// optimize away. unsigned getFlatAddressSpace() const; /// Return any intrinsic address operand indexes which may be rewritten if /// they use a flat address space pointer. /// /// \returns true if the intrinsic was handled. bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const; bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; /// Return true if globals in this address space can have initializers other /// than `undef`. bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const; unsigned getAssumedAddrSpace(const Value *V) const; bool isSingleThreaded() const; std::pair getPredicatedAddrSpace(const Value *V) const; /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p /// NewV, which has a different address space. This should happen for every /// operand index that collectFlatAddressOperands returned for the intrinsic. /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the /// new value (which may be the original \p II with modified operands). Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const; /// Test whether calls to a function lower to actual program function /// calls. /// /// The idea is to test whether the program is likely to require a 'call' /// instruction or equivalent in order to call the given function. /// /// FIXME: It's not clear that this is a good or useful query API. Client's /// should probably move to simpler cost metrics using the above. /// Alternatively, we could split the cost interface into distinct code-size /// and execution-speed costs. This would allow modelling the core of this /// query more accurately as a call is a single small instruction, but /// incurs significant execution cost. bool isLoweredToCall(const Function *F) const; struct LSRCost { /// TODO: Some of these could be merged. Also, a lexical ordering /// isn't always optimal. unsigned Insns; unsigned NumRegs; unsigned AddRecCost; unsigned NumIVMuls; unsigned NumBaseAdds; unsigned ImmCost; unsigned SetupCost; unsigned ScaleCost; }; /// Parameters that control the generic loop unrolling transformation. struct UnrollingPreferences { /// The cost threshold for the unrolled loop. Should be relative to the /// getInstructionCost values returned by this API, and the expectation is /// that the unrolled loop's instructions when run through that interface /// should not exceed this cost. However, this is only an estimate. Also, /// specific loops may be unrolled even with a cost above this threshold if /// deemed profitable. Set this to UINT_MAX to disable the loop body cost /// restriction. unsigned Threshold; /// If complete unrolling will reduce the cost of the loop, we will boost /// the Threshold by a certain percent to allow more aggressive complete /// unrolling. This value provides the maximum boost percentage that we /// can apply to Threshold (The value should be no less than 100). /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, /// MaxPercentThresholdBoost / 100) /// E.g. if complete unrolling reduces the loop execution time by 50% /// then we boost the threshold by the factor of 2x. If unrolling is not /// expected to reduce the running time, then we do not increase the /// threshold. unsigned MaxPercentThresholdBoost; /// The cost threshold for the unrolled loop when optimizing for size (set /// to UINT_MAX to disable). unsigned OptSizeThreshold; /// The cost threshold for the unrolled loop, like Threshold, but used /// for partial/runtime unrolling (set to UINT_MAX to disable). unsigned PartialThreshold; /// The cost threshold for the unrolled loop when optimizing for size, like /// OptSizeThreshold, but used for partial/runtime unrolling (set to /// UINT_MAX to disable). unsigned PartialOptSizeThreshold; /// A forced unrolling factor (the number of concatenated bodies of the /// original loop in the unrolled loop body). When set to 0, the unrolling /// transformation will select an unrolling factor based on the current cost /// threshold and other factors. unsigned Count; /// Default unroll count for loops with run-time trip count. unsigned DefaultUnrollRuntimeCount; // Set the maximum unrolling factor. The unrolling factor may be selected // using the appropriate cost threshold, but may not exceed this number // (set to UINT_MAX to disable). This does not apply in cases where the // loop is being fully unrolled. unsigned MaxCount; /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but /// applies even if full unrolling is selected. This allows a target to fall /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. unsigned FullUnrollMaxCount; // Represents number of instructions optimized when "back edge" // becomes "fall through" in unrolled loop. // For now we count a conditional branch on a backedge and a comparison // feeding it. unsigned BEInsns; /// Allow partial unrolling (unrolling of loops to expand the size of the /// loop body, not only to eliminate small constant-trip-count loops). bool Partial; /// Allow runtime unrolling (unrolling of loops to expand the size of the /// loop body even when the number of loop iterations is not known at /// compile time). bool Runtime; /// Allow generation of a loop remainder (extra iterations after unroll). bool AllowRemainder; /// Allow emitting expensive instructions (such as divisions) when computing /// the trip count of a loop for runtime unrolling. bool AllowExpensiveTripCount; /// Apply loop unroll on any kind of loop /// (mainly to loops that fail runtime unrolling). bool Force; /// Allow using trip count upper bound to unroll loops. bool UpperBound; /// Allow unrolling of all the iterations of the runtime loop remainder. bool UnrollRemainder; /// Allow unroll and jam. Used to enable unroll and jam for the target. bool UnrollAndJam; /// Threshold for unroll and jam, for inner loop size. The 'Threshold' /// value above is used during unroll and jam for the outer loop size. /// This value is used in the same manner to limit the size of the inner /// loop. unsigned UnrollAndJamInnerLoopThreshold; /// Don't allow loop unrolling to simulate more than this number of /// iterations when checking full unroll profitability unsigned MaxIterationsCountToAnalyze; /// Don't disable runtime unroll for the loops which were vectorized. bool UnrollVectorizedLoop = false; }; /// Get target-customized preferences for the generic loop unrolling /// transformation. The caller will initialize UP with the current /// target-independent defaults. void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const; /// Query the target whether it would be profitable to convert the given loop /// into a hardware loop. bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const; /// Query the target whether it would be prefered to create a predicated /// vector loop, which can avoid the need to emit a scalar epilogue loop. bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const; /// Query the target what the preferred style of tail folding is. /// \param IVUpdateMayOverflow Tells whether it is known if the IV update /// may (or will never) overflow for the suggested VF/UF in the given loop. /// Targets can use this information to select a more optimal tail folding /// style. The value conservatively defaults to true, such that no assumptions /// are made on overflow. TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const; // Parameters that control the loop peeling transformation struct PeelingPreferences { /// A forced peeling factor (the number of bodied of the original loop /// that should be peeled off before the loop body). When set to 0, the /// a peeling factor based on profile information and other factors. unsigned PeelCount; /// Allow peeling off loop iterations. bool AllowPeeling; /// Allow peeling off loop iterations for loop nests. bool AllowLoopNestsPeeling; /// Allow peeling basing on profile. Uses to enable peeling off all /// iterations basing on provided profile. /// If the value is true the peeling cost model can decide to peel only /// some iterations and in this case it will set this to false. bool PeelProfiledIterations; }; /// Get target-customized preferences for the generic loop peeling /// transformation. The caller will initialize \p PP with the current /// target-independent defaults with information from \p L and \p SE. void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const; /// Targets can implement their own combinations for target-specific /// intrinsics. This function will be called from the InstCombine pass every /// time a target-specific intrinsic is encountered. /// /// \returns std::nullopt to not do anything target specific or a value that /// will be returned from the InstCombiner. It is possible to return null and /// stop further processing of the intrinsic by returning nullptr. std::optional instCombineIntrinsic(InstCombiner & IC, IntrinsicInst & II) const; /// Can be used to implement target-specific instruction combining. /// \see instCombineIntrinsic std::optional simplifyDemandedUseBitsIntrinsic( InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask, KnownBits & Known, bool &KnownBitsComputed) const; /// Can be used to implement target-specific instruction combining. /// \see instCombineIntrinsic std::optional simplifyDemandedVectorEltsIntrinsic( InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts, APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3, std::function SimplifyAndSetOp) const; /// @} /// \name Scalar Target Information /// @{ /// Flags indicating the kind of support for population count. /// /// Compared to the SW implementation, HW support is supposed to /// significantly boost the performance when the population is dense, and it /// may or may not degrade performance if the population is sparse. A HW /// support is considered as "Fast" if it can outperform, or is on a par /// with, SW implementation when the population is sparse; otherwise, it is /// considered as "Slow". enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; /// Return true if the specified immediate is legal add immediate, that /// is the target has add instructions which can add a register with the /// immediate without having to materialize the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const; /// Return true if the specified immediate is legal icmp immediate, /// that is the target has icmp instructions which can compare a register /// against the immediate without having to materialize the immediate into a /// register. bool isLegalICmpImmediate(int64_t Imm) const; /// Return true if the addressing mode represented by AM is legal for /// this target, for a load/store of the specified type. /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. /// If target returns true in LSRWithInstrQueries(), I may be valid. /// TODO: Handle pre/postinc as well. bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace = 0, Instruction *I = nullptr) const; /// Return true if LSR cost of C1 is lower than C2. bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const; /// Return true if LSR major cost is number of registers. Targets which /// implement their own isLSRCostLess and unset number of registers as major /// cost should return false, otherwise return true. bool isNumRegsMajorCostOfLSR() const; /// \returns true if LSR should not optimize a chain that includes \p I. bool isProfitableLSRChainElement(Instruction *I) const; /// Return true if the target can fuse a compare and branch. /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost /// calculation for the instructions in a loop. bool canMacroFuseCmp() const; /// Return true if the target can save a compare for loop count, for example /// hardware loop saves a compare. bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const; enum AddressingModeKind { AMK_PreIndexed, AMK_PostIndexed, AMK_None }; /// Return the preferred addressing mode LSR should make efforts to generate. AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const; /// Return true if the target supports masked store. bool isLegalMaskedStore(Type *DataType, Align Alignment) const; /// Return true if the target supports masked load. bool isLegalMaskedLoad(Type *DataType, Align Alignment) const; /// Return true if the target supports nontemporal store. bool isLegalNTStore(Type *DataType, Align Alignment) const; /// Return true if the target supports nontemporal load. bool isLegalNTLoad(Type *DataType, Align Alignment) const; /// \Returns true if the target supports broadcasting a load to a vector of /// type . bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const; /// Return true if the target supports masked scatter. bool isLegalMaskedScatter(Type *DataType, Align Alignment) const; /// Return true if the target supports masked gather. bool isLegalMaskedGather(Type *DataType, Align Alignment) const; /// Return true if the target forces scalarizing of llvm.masked.gather /// intrinsics. bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const; /// Return true if the target forces scalarizing of llvm.masked.scatter /// intrinsics. bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const; /// Return true if the target supports masked compress store. bool isLegalMaskedCompressStore(Type *DataType) const; /// Return true if the target supports masked expand load. bool isLegalMaskedExpandLoad(Type *DataType) const; /// Return true if this is an alternating opcode pattern that can be lowered /// to a single instruction on the target. In X86 this is for the addsub /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR. /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0` /// when \p Opcode0 is selected and `1` when Opcode1 is selected. /// \p VecTy is the vector type of the instruction to be generated. bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const; /// Return true if we should be enabling ordered reductions for the target. bool enableOrderedReductions() const; /// Return true if the target has a unified operation to calculate division /// and remainder. If so, the additional implicit multiplication and /// subtraction required to calculate a remainder from division are free. This /// can enable more aggressive transformations for division and remainder than /// would typically be allowed using throughput or size cost models. bool hasDivRemOp(Type *DataType, bool IsSigned) const; /// Return true if the given instruction (assumed to be a memory access /// instruction) has a volatile variant. If that's the case then we can avoid /// addrspacecast to generic AS for volatile loads/stores. Default /// implementation returns false, which prevents address space inference for /// volatile loads/stores. bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; /// Return true if target doesn't mind addresses in vectors. bool prefersVectorizedAddressing() const; /// Return the cost of the scaling factor used in the addressing /// mode represented by AM for this target, for a load/store /// of the specified type. /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, it returns a negative value. /// TODO: Handle pre/postinc as well. InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace = 0) const; /// Return true if the loop strength reduce pass should make /// Instruction* based TTI queries to isLegalAddressingMode(). This is /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned /// immediate offset and no index register. bool LSRWithInstrQueries() const; /// Return true if it's free to truncate a value of type Ty1 to type /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 /// by referencing its sub-register AX. bool isTruncateFree(Type *Ty1, Type *Ty2) const; /// Return true if it is profitable to hoist instruction in the /// then/else to before if. bool isProfitableToHoist(Instruction *I) const; bool useAA() const; /// Return true if this type is legal. bool isTypeLegal(Type *Ty) const; /// Returns the estimated number of registers required to represent \p Ty. unsigned getRegUsageForType(Type *Ty) const; /// Return true if switches should be turned into lookup tables for the /// target. bool shouldBuildLookupTables() const; /// Return true if switches should be turned into lookup tables /// containing this constant value for the target. bool shouldBuildLookupTablesForConstant(Constant *C) const; /// Return true if lookup tables should be turned into relative lookup tables. bool shouldBuildRelLookupTables() const; /// Return true if the input function which is cold at all call sites, /// should use coldcc calling convention. bool useColdCCForColdCall(Function &F) const; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the demanded result elements need to be inserted and/or /// extracted from vectors. InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const; /// Estimate the overhead of scalarizing an instructions unique /// non-constant operands. The (potentially vector) types to use for each of /// argument are passes via Tys. InstructionCost getOperandsScalarizationOverhead(ArrayRef Args, ArrayRef Tys, TTI::TargetCostKind CostKind) const; /// If target has efficient vector element load/store instructions, it can /// return true here so that insertion/extraction costs are not added to /// the scalarization cost of a load/store. bool supportsEfficientVectorElementLoadStore() const; /// If the target supports tail calls. bool supportsTailCalls() const; /// If target supports tail call on \p CB bool supportsTailCallFor(const CallBase *CB) const; /// Don't restrict interleaved unrolling to small loops. bool enableAggressiveInterleaving(bool LoopHasReductions) const; /// Returns options for expansion of memcmp. IsZeroCmp is // true if this is the expansion of memcmp(p1, p2, s) == 0. struct MemCmpExpansionOptions { // Return true if memcmp expansion is enabled. operator bool() const { return MaxNumLoads > 0; } // Maximum number of load operations. unsigned MaxNumLoads = 0; // The list of available load sizes (in bytes), sorted in decreasing order. SmallVector LoadSizes; // For memcmp expansion when the memcmp result is only compared equal or // not-equal to 0, allow up to this number of load pairs per block. As an // example, this may allow 'memcmp(a, b, 3) == 0' in a single block: // a0 = load2bytes &a[0] // b0 = load2bytes &b[0] // a2 = load1byte &a[2] // b2 = load1byte &b[2] // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 unsigned NumLoadsPerBlock = 1; // Set to true to allow overlapping loads. For example, 7-byte compares can // be done with two 4-byte compares instead of 4+2+1-byte compares. This // requires all loads in LoadSizes to be doable in an unaligned way. bool AllowOverlappingLoads = false; }; MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const; /// Should the Select Optimization pass be enabled and ran. bool enableSelectOptimize() const; /// Enable matching of interleaved access groups. bool enableInterleavedAccessVectorization() const; /// Enable matching of interleaved access groups that contain predicated /// accesses or gaps and therefore vectorized using masked /// vector loads/stores. bool enableMaskedInterleavedAccessVectorization() const; /// Indicate that it is potentially unsafe to automatically vectorize /// floating-point operations because the semantics of vector and scalar /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math /// does not support IEEE-754 denormal numbers, while depending on the /// platform, scalar floating-point math does. /// This applies to floating-point math operations and calls, not memory /// operations, shuffles, or casts. bool isFPVectorizationPotentiallyUnsafe() const; /// Determine if the target supports unaligned memory accesses. bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace = 0, Align Alignment = Align(1), unsigned *Fast = nullptr) const; /// Return hardware support for population count. PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; /// Return true if the hardware has a fast square-root instruction. bool haveFastSqrt(Type *Ty) const; /// Return true if the cost of the instruction is too high to speculatively /// execute and should be kept behind a branch. /// This normally just wraps around a getInstructionCost() call, but some /// targets might report a low TCK_SizeAndLatency value that is incompatible /// with the fixed TCC_Expensive value. /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute(). bool isExpensiveToSpeculativelyExecute(const Instruction *I) const; /// Return true if it is faster to check if a floating-point value is NaN /// (or not-NaN) versus a comparison against a constant FP zero value. /// Targets should override this if materializing a 0.0 for comparison is /// generally as cheap as checking for ordered/unordered. bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; /// Return the expected cost of supporting the floating point operation /// of the specified type. InstructionCost getFPOpCost(Type *Ty) const; /// Return the expected cost of materializing for the given integer /// immediate of the specified type. InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const; /// Return the expected cost of materialization for the given integer /// immediate of the specified type for a given instruction. The cost can be /// zero if the immediate can be folded into the specified instruction. InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) const; InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const; /// Return the expected cost for the given integer when optimising /// for size. This is different than the other integer immediate cost /// functions in that it is subtarget agnostic. This is useful when you e.g. /// target one ISA such as Aarch32 but smaller encodings could be possible /// with another such as Thumb. This return value is used as a penalty when /// the total costs for a constant is calculated (the bigger the cost, the /// more beneficial constant hoisting is). InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const; /// @} /// \name Vector Target Information /// @{ /// The various kinds of shuffle patterns for vector queries. enum ShuffleKind { SK_Broadcast, ///< Broadcast element 0 to all other elements. SK_Reverse, ///< Reverse the order of the vector. SK_Select, ///< Selects elements from the corresponding lane of ///< either source operand. This is equivalent to a ///< vector select with a constant condition operand. SK_Transpose, ///< Transpose two vectors. SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset. SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one ///< with any shuffle mask. SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any ///< shuffle mask. SK_Splice ///< Concatenates elements from the first input vector ///< with elements of the second input vector. Returning ///< a vector of the same type as the input vectors. ///< Index indicates start offset in first input vector. }; /// Additional information about an operand's possible values. enum OperandValueKind { OK_AnyValue, // Operand can have any value. OK_UniformValue, // Operand is uniform (splat of a value). OK_UniformConstantValue, // Operand is uniform constant. OK_NonUniformConstantValue // Operand is a non uniform constant value. }; /// Additional properties of an operand's values. enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1, OP_NegatedPowerOf2 = 2, }; // Describe the values an operand can take. We're in the process // of migrating uses of OperandValueKind and OperandValueProperties // to use this class, and then will change the internal representation. struct OperandValueInfo { OperandValueKind Kind = OK_AnyValue; OperandValueProperties Properties = OP_None; bool isConstant() const { return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue; } bool isUniform() const { return Kind == OK_UniformConstantValue || Kind == OK_UniformValue; } bool isPowerOf2() const { return Properties == OP_PowerOf2; } bool isNegatedPowerOf2() const { return Properties == OP_NegatedPowerOf2; } OperandValueInfo getNoProps() const { return {Kind, OP_None}; } }; /// \return the number of registers in the target-provided register class. unsigned getNumberOfRegisters(unsigned ClassID) const; /// \return the target-provided register class ID for the provided type, /// accounting for type promotion and other type-legalization techniques that /// the target might apply. However, it specifically does not account for the /// scalarization or splitting of vector types. Should a vector type require /// scalarization or splitting into multiple underlying vector registers, that /// type should be mapped to a register class containing no registers. /// Specifically, this is designed to provide a simple, high-level view of the /// register allocation later performed by the backend. These register classes /// don't necessarily map onto the register classes used by the backend. /// FIXME: It's not currently possible to determine how many registers /// are used by the provided type. unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const; /// \return the target-provided register class name const char *getRegisterClassName(unsigned ClassID) const; enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector }; /// \return The width of the largest scalar or vector register type. TypeSize getRegisterBitWidth(RegisterKind K) const; /// \return The width of the smallest vector register type. unsigned getMinVectorRegisterBitWidth() const; /// \return The maximum value of vscale if the target specifies an /// architectural maximum vector length, and std::nullopt otherwise. std::optional getMaxVScale() const; /// \return the value of vscale to tune the cost model for. std::optional getVScaleForTuning() const; /// \return true if vscale is known to be a power of 2 bool isVScaleKnownToBeAPowerOfTwo() const; /// \return True if the vectorization factor should be chosen to /// make the vector of the smallest element type match the size of a /// vector register. For wider element types, this could result in /// creating vectors that span multiple vector registers. /// If false, the vectorization factor will be chosen based on the /// size of the widest element type. /// \p K Register Kind for vectorization. bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const; /// \return The minimum vectorization factor for types of given element /// bit width, or 0 if there is no minimum VF. The returned value only /// applies when shouldMaximizeVectorBandwidth returns true. /// If IsScalable is true, the returned ElementCount must be a scalable VF. ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const; /// \return The maximum vectorization factor for types of given element /// bit width and opcode, or 0 if there is no maximum VF. /// Currently only used by the SLP vectorizer. unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const; /// \return The minimum vectorization factor for the store instruction. Given /// the initial estimation of the minimum vector factor and store value type, /// it tries to find possible lowest VF, which still might be profitable for /// the vectorization. /// \param VF Initial estimation of the minimum vector factor. /// \param ScalarMemTy Scalar memory type of the store operation. /// \param ScalarValTy Scalar type of the stored value. /// Currently only used by the SLP vectorizer. unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const; /// \return True if it should be considered for address type promotion. /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is /// profitable without finding other extensions fed by the same input. bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; /// \return The size of a cache line in bytes. unsigned getCacheLineSize() const; /// The possible cache levels enum class CacheLevel { L1D, // The L1 data cache L2D, // The L2 data cache // We currently do not model L3 caches, as their sizes differ widely between // microarchitectures. Also, we currently do not have a use for L3 cache // size modeling yet. }; /// \return The size of the cache level in bytes, if available. std::optional getCacheSize(CacheLevel Level) const; /// \return The associativity of the cache level, if available. std::optional getCacheAssociativity(CacheLevel Level) const; /// \return How much before a load we should place the prefetch /// instruction. This is currently measured in number of /// instructions. unsigned getPrefetchDistance() const; /// Some HW prefetchers can handle accesses up to a certain constant stride. /// Sometimes prefetching is beneficial even below the HW prefetcher limit, /// and the arguments provided are meant to serve as a basis for deciding this /// for a particular loop. /// /// \param NumMemAccesses Number of memory accesses in the loop. /// \param NumStridedMemAccesses Number of the memory accesses that /// ScalarEvolution could find a known stride /// for. /// \param NumPrefetches Number of software prefetches that will be /// emitted as determined by the addresses /// involved and the cache line size. /// \param HasCall True if the loop contains a call. /// /// \return This is the minimum stride in bytes where it makes sense to start /// adding SW prefetches. The default is 1, i.e. prefetch with any /// stride. unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const; /// \return The maximum number of iterations to prefetch ahead. If /// the required number of iterations is more than this number, no /// prefetching is performed. unsigned getMaxPrefetchIterationsAhead() const; /// \return True if prefetching should also be done for writes. bool enableWritePrefetching() const; /// \return if target want to issue a prefetch in address space \p AS. bool shouldPrefetchAddressSpace(unsigned AS) const; /// \return The maximum interleave factor that any transform should try to /// perform for this target. This number depends on the level of parallelism /// and the number of execution units in the CPU. unsigned getMaxInterleaveFactor(ElementCount VF) const; /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2. static OperandValueInfo getOperandInfo(const Value *V); /// This is an approximation of reciprocal throughput of a math/logic op. /// A higher cost indicates less expected throughput. /// From Agner Fog's guides, reciprocal throughput is "the average number of /// clock cycles per instruction when the instructions are not part of a /// limiting dependency chain." /// Therefore, costs should be scaled to account for multiple execution units /// on the target that can process this type of instruction. For example, if /// there are 5 scalar integer units and 2 vector integer units that can /// calculate an 'add' in a single cycle, this model should indicate that the /// cost of the vector add instruction is 2.5 times the cost of the scalar /// add instruction. /// \p Args is an optional argument which holds the instruction operands /// values so the TTI can analyze those values searching for special /// cases or optimizations based on those values. /// \p CxtI is the optional original context instruction, if one exists, to /// provide even more information. InstructionCost getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None}, ArrayRef Args = ArrayRef(), const Instruction *CxtI = nullptr) const; /// \return The cost of a shuffle instruction of kind Kind and of type Tp. /// The exact mask may be passed as Mask, or else the array will be empty. /// The index and subtype parameters are used by the subvector insertion and /// extraction shuffle kinds to show the insert/extract point and the type of /// the subvector being inserted/extracted. The operands of the shuffle can be /// passed through \p Args, which helps improve the cost estimation in some /// cases, like in broadcast loads. /// NOTE: For subvector extractions Tp represents the source type. InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef Mask = std::nullopt, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, int Index = 0, VectorType *SubTp = nullptr, ArrayRef Args = std::nullopt) const; /// Represents a hint about the context in which a cast is used. /// /// For zext/sext, the context of the cast is the operand, which must be a /// load of some kind. For trunc, the context is of the cast is the single /// user of the instruction, which must be a store of some kind. /// /// This enum allows the vectorizer to give getCastInstrCost an idea of the /// type of cast it's dealing with, as not every cast is equal. For instance, /// the zext of a load may be free, but the zext of an interleaving load can //// be (very) expensive! /// /// See \c getCastContextHint to compute a CastContextHint from a cast /// Instruction*. Callers can use it if they don't need to override the /// context and just want it to be calculated from the instruction. /// /// FIXME: This handles the types of load/store that the vectorizer can /// produce, which are the cases where the context instruction is most /// likely to be incorrect. There are other situations where that can happen /// too, which might be handled here but in the long run a more general /// solution of costing multiple instructions at the same times may be better. enum class CastContextHint : uint8_t { None, ///< The cast is not used with a load/store of any kind. Normal, ///< The cast is used with a normal load/store. Masked, ///< The cast is used with a masked load/store. GatherScatter, ///< The cast is used with a gather/scatter. Interleave, ///< The cast is used with an interleaved load/store. Reversed, ///< The cast is used with a reversed load/store. }; /// Calculates a CastContextHint from \p I. /// This should be used by callers of getCastInstrCost if they wish to /// determine the context from some instruction. /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr, /// or if it's another type of cast. static CastContextHint getCastContextHint(const Instruction *I); /// \return The expected cost of cast instructions, such as bitcast, trunc, /// zext, etc. If there is an existing instruction that holds Opcode, it /// may be passed in the 'I' parameter. InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, const Instruction *I = nullptr) const; /// \return The expected cost of a sign- or zero-extended vector extract. Use /// Index = -1 to indicate that there is no information about the index value. InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const; /// \return The expected cost of control-flow related instructions such as /// Phi, Ret, Br, Switch. InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, const Instruction *I = nullptr) const; /// \returns The expected cost of compare and select instructions. If there /// is an existing instruction that holds Opcode, it may be passed in the /// 'I' parameter. The \p VecPred parameter can be used to indicate the select /// is using a compare with the specified predicate as condition. When vector /// types are passed, \p VecPred must be used for all lanes. InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The expected cost of vector Insert and Extract. /// Use -1 to indicate that there is no information on the index value. /// This is used when the instruction is not available; a typical use /// case is to provision the cost of vectorization/scalarization in /// vectorizer passes. InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index = -1, Value *Op0 = nullptr, Value *Op1 = nullptr) const; /// \return The expected cost of vector Insert and Extract. /// This is used when instruction is available, and implementation /// asserts 'I' is not nullptr. /// /// A typical suitable use case is cost estimation when vector instruction /// exists (e.g., from basic blocks during transformation). InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index = -1) const; /// \return The cost of replication shuffle of \p VF elements typed \p EltTy /// \p ReplicationFactor times. /// /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: /// <0,0,0,1,1,1,2,2,2,3,3,3> InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind); /// \return The cost of Load and Store instructions. InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo = {OK_AnyValue, OP_None}, const Instruction *I = nullptr) const; /// \return The cost of VP Load and Store instructions. InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The cost of masked Load and Store instructions. InstructionCost getMaskedMemoryOpCost( unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// \return The cost of Gather or Scatter operation /// \p Opcode - is a type of memory access Load or Store /// \p DataTy - a vector type of the data to be loaded or stored /// \p Ptr - pointer [or vector of pointers] - address[es] in memory /// \p VariableMask - true when the memory access is predicated with a mask /// that is not a compile-time constant /// \p Alignment - alignment of single element /// \p I - the optional original context instruction, if one exists, e.g. the /// load/store to transform or the call to the gather/scatter intrinsic InstructionCost getGatherScatterOpCost( unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The cost of the interleaved memory operation. /// \p Opcode is the memory operation code /// \p VecTy is the vector type of the interleaved access. /// \p Factor is the interleave factor /// \p Indices is the indices for interleaved load members (as interleaved /// load allows gaps) /// \p Alignment is the alignment of the memory operation /// \p AddressSpace is address space of the pointer. /// \p UseMaskForCond indicates if the memory access is predicated. /// \p UseMaskForGaps indicates if gaps should be masked. InstructionCost getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, bool UseMaskForCond = false, bool UseMaskForGaps = false) const; /// A helper function to determine the type of reduction algorithm used /// for a given \p Opcode and set of FastMathFlags \p FMF. static bool requiresOrderedReduction(std::optional FMF) { return FMF && !(*FMF).allowReassoc(); } /// Calculate the cost of vector reduction intrinsics. /// /// This is the cost of reducing the vector value of type \p Ty to a scalar /// value using the operation denoted by \p Opcode. The FastMathFlags /// parameter \p FMF indicates what type of reduction we are performing: /// 1. Tree-wise. This is the typical 'fast' reduction performed that /// involves successively splitting a vector into half and doing the /// operation on the pair of halves until you have a scalar value. For /// example: /// (v0, v1, v2, v3) /// ((v0+v2), (v1+v3), undef, undef) /// ((v0+v2+v1+v3), undef, undef, undef) /// This is the default behaviour for integer operations, whereas for /// floating point we only do this if \p FMF indicates that /// reassociation is allowed. /// 2. Ordered. For a vector with N elements this involves performing N /// operations in lane order, starting with an initial scalar value, i.e. /// result = InitVal + v0 /// result = result + v1 /// result = result + v2 /// result = result + v3 /// This is only the case for FP operations and when reassociation is not /// allowed. /// InstructionCost getArithmeticReductionCost( unsigned Opcode, VectorType *Ty, std::optional FMF, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; InstructionCost getMinMaxReductionCost( Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF = FastMathFlags(), TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// Calculate the cost of an extended reduction pattern, similar to /// getArithmeticReductionCost of an Add reduction with multiply and optional /// extensions. This is the cost of as: /// ResTy vecreduce.add(mul (A, B)). /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). InstructionCost getMulAccReductionCost( bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// Calculate the cost of an extended reduction pattern, similar to /// getArithmeticReductionCost of a reduction with an extension. /// This is the cost of as: /// ResTy vecreduce.opcode(ext(Ty A)). InstructionCost getExtendedReductionCost( unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// \returns The cost of Intrinsic instructions. Analyses the real arguments. /// Three cases are handled: 1. scalar instruction 2. vector instruction /// 3. scalar instruction which is to be vectorized. InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const; /// \returns The cost of Call instructions. InstructionCost getCallInstrCost( Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; /// \returns The number of pieces into which the provided type must be /// split during legalization. Zero is returned when the answer is unknown. unsigned getNumberOfParts(Type *Tp) const; /// \returns The cost of the address computation. For most targets this can be /// merged into the instruction indexing mode. Some targets might want to /// distinguish between address computation for memory operations on vector /// types and scalar types. Such targets should override this function. /// The 'SE' parameter holds pointer for the scalar evolution object which /// is used in order to get the Ptr step value in case of constant stride. /// The 'Ptr' parameter holds SCEV of the access pointer. InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr, const SCEV *Ptr = nullptr) const; /// \returns The cost, if any, of keeping values of the given types alive /// over a callsite. /// /// Some types may require the use of register classes that do not have /// any callee-saved registers, so would require a spill and fill. InstructionCost getCostOfKeepingLiveOverCall(ArrayRef Tys) const; /// \returns True if the intrinsic is a supported memory intrinsic. Info /// will contain additional information - whether the intrinsic may write /// or read to memory, volatility and the pointer. Info is undefined /// if false is returned. bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; /// \returns The maximum element size, in bytes, for an element /// unordered-atomic memory intrinsic. unsigned getAtomicMemIntrinsicMaxElementSize() const; /// \returns A value which is the result of the given memory intrinsic. New /// instructions may be created to extract the result from the given intrinsic /// memory operation. Returns nullptr if the target cannot create a result /// from the given intrinsic. Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) const; /// \returns The type to use in a loop expansion of a memcpy call. Type *getMemcpyLoopLoweringType( LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicElementSize = std::nullopt) const; /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. /// \param RemainingBytes The number of bytes to copy. /// /// Calculates the operand types to use when copying \p RemainingBytes of /// memory, where source and destination alignments are \p SrcAlign and /// \p DestAlign respectively. void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicCpySize = std::nullopt) const; /// \returns True if the two functions have compatible attributes for inlining /// purposes. bool areInlineCompatible(const Function *Caller, const Function *Callee) const; /// \returns True if the caller and callee agree on how \p Types will be /// passed to or returned from the callee. /// to the callee. /// \param Types List of types to check. bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef &Types) const; /// The type of load/store indexing. enum MemIndexedMode { MIM_Unindexed, ///< No indexing. MIM_PreInc, ///< Pre-incrementing. MIM_PreDec, ///< Pre-decrementing. MIM_PostInc, ///< Post-incrementing. MIM_PostDec ///< Post-decrementing. }; /// \returns True if the specified indexed load for the given type is legal. bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; /// \returns True if the specified indexed store for the given type is legal. bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; /// \returns The bitwidth of the largest vector type that should be used to /// load/store in the given address space. unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; /// \returns True if the load instruction is legal to vectorize. bool isLegalToVectorizeLoad(LoadInst *LI) const; /// \returns True if the store instruction is legal to vectorize. bool isLegalToVectorizeStore(StoreInst *SI) const; /// \returns True if it is legal to vectorize the given load chain. bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const; /// \returns True if it is legal to vectorize the given store chain. bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const; /// \returns True if it is legal to vectorize the given reduction kind. bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const; /// \returns True if the given type is supported for scalable vectors bool isElementTypeLegalForScalableVector(Type *Ty) const; /// \returns The new vector factor value if the target doesn't support \p /// SizeInBytes loads or has a better vector factor. unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const; /// \returns The new vector factor value if the target doesn't support \p /// SizeInBytes stores or has a better vector factor. unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const; /// Flags describing the kind of vector reduction. struct ReductionFlags { ReductionFlags() = default; bool IsMaxOp = false; ///< If the op a min/max kind, true if it's a max operation. bool IsSigned = false; ///< Whether the operation is a signed int reduction. bool NoNaN = false; ///< If op is an fp min/max, whether NaNs may be present. }; /// \returns True if the target prefers reductions in loop. bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const; /// \returns True if the target prefers reductions select kept in the loop /// when tail folding. i.e. /// loop: /// p = phi (0, s) /// a = add (p, x) /// s = select (mask, a, p) /// vecreduce.add(s) /// /// As opposed to the normal scheme of p = phi (0, a) which allows the select /// to be pulled out of the loop. If the select(.., add, ..) can be predicated /// by the target, this can lead to cleaner code generation. bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const; /// Return true if the loop vectorizer should consider vectorizing an /// otherwise scalar epilogue loop. bool preferEpilogueVectorization() const; /// \returns True if the target wants to expand the given reduction intrinsic /// into a shuffle sequence. bool shouldExpandReduction(const IntrinsicInst *II) const; /// \returns the size cost of rematerializing a GlobalValue address relative /// to a stack reload. unsigned getGISelRematGlobalCost() const; /// \returns the lower bound of a trip count to decide on vectorization /// while tail-folding. unsigned getMinTripCountTailFoldingThreshold() const; /// \returns True if the target supports scalable vectors. bool supportsScalableVectors() const; /// \return true when scalable vectorization is preferred. bool enableScalableVectorization() const; /// \name Vector Predication Information /// @{ /// Whether the target supports the %evl parameter of VP intrinsic efficiently /// in hardware, for the given opcode and type/alignment. (see LLVM Language /// Reference - "Vector Predication Intrinsics"). /// Use of %evl is discouraged when that is not the case. bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const; struct VPLegalization { enum VPTransform { // keep the predicating parameter Legal = 0, // where legal, discard the predicate parameter Discard = 1, // transform into something else that is also predicating Convert = 2 }; // How to transform the EVL parameter. // Legal: keep the EVL parameter as it is. // Discard: Ignore the EVL parameter where it is safe to do so. // Convert: Fold the EVL into the mask parameter. VPTransform EVLParamStrategy; // How to transform the operator. // Legal: The target supports this operator. // Convert: Convert this to a non-VP operation. // The 'Discard' strategy is invalid. VPTransform OpStrategy; bool shouldDoNothing() const { return (EVLParamStrategy == Legal) && (OpStrategy == Legal); } VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy) : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {} }; /// \returns How the target needs this vector-predicated operation to be /// transformed. VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const; /// @} /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb /// state. /// /// Used by the LowerTypeTests pass, which constructs an IR inline assembler /// node containing a jump table in a format suitable for the target, so it /// needs to know what format of jump table it can legally use. /// /// For non-Arm targets, this function isn't used. It defaults to returning /// false, but it shouldn't matter what it returns anyway. bool hasArmWideBranch(bool Thumb) const; /// \return The maximum number of function arguments the target supports. unsigned getMaxNumArgs() const; /// @} private: /// The abstract base class used to type erase specific TTI /// implementations. class Concept; /// The template model for the base class which wraps a concrete /// implementation in a type erased interface. template class Model; std::unique_ptr TTIImpl; }; class TargetTransformInfo::Concept { public: virtual ~Concept() = 0; virtual const DataLayout &getDataLayout() const = 0; virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, Type *AccessType, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getPointersChainCost(ArrayRef Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) = 0; virtual unsigned getInliningThresholdMultiplier() const = 0; virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0; virtual int getInlinerVectorBonusPercent() const = 0; virtual unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const = 0; virtual InstructionCost getMemcpyCost(const Instruction *I) = 0; virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const = 0; virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) = 0; virtual InstructionCost getInstructionCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) = 0; virtual BranchProbability getPredictableBranchThreshold() = 0; virtual bool hasBranchDivergence(const Function *F = nullptr) = 0; virtual bool isSourceOfDivergence(const Value *V) = 0; virtual bool isAlwaysUniform(const Value *V) = 0; virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0; virtual unsigned getFlatAddressSpace() = 0; virtual bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const = 0; virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; virtual bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0; virtual unsigned getAssumedAddrSpace(const Value *V) const = 0; virtual bool isSingleThreaded() const = 0; virtual std::pair getPredicatedAddrSpace(const Value *V) const = 0; virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const = 0; virtual bool isLoweredToCall(const Function *F) = 0; virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) = 0; virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) = 0; virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) = 0; virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) = 0; virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0; virtual std::optional instCombineIntrinsic( InstCombiner &IC, IntrinsicInst &II) = 0; virtual std::optional simplifyDemandedUseBitsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits & Known, bool &KnownBitsComputed) = 0; virtual std::optional simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) = 0; virtual bool isLegalAddImmediate(int64_t Imm) = 0; virtual bool isLegalICmpImmediate(int64_t Imm) = 0; virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I) = 0; virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) = 0; virtual bool isNumRegsMajorCostOfLSR() = 0; virtual bool isProfitableLSRChainElement(Instruction *I) = 0; virtual bool canMacroFuseCmp() = 0; virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) = 0; virtual AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0; virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0; virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0; virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0; virtual bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const = 0; virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0; virtual bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) = 0; virtual bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment) = 0; virtual bool isLegalMaskedCompressStore(Type *DataType) = 0; virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0; virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const = 0; virtual bool enableOrderedReductions() = 0; virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; virtual bool prefersVectorizedAddressing() = 0; virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) = 0; virtual bool LSRWithInstrQueries() = 0; virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; virtual bool isProfitableToHoist(Instruction *I) = 0; virtual bool useAA() = 0; virtual bool isTypeLegal(Type *Ty) = 0; virtual unsigned getRegUsageForType(Type *Ty) = 0; virtual bool shouldBuildLookupTables() = 0; virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; virtual bool shouldBuildRelLookupTables() = 0; virtual bool useColdCCForColdCall(Function &F) = 0; virtual InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TargetCostKind CostKind) = 0; virtual InstructionCost getOperandsScalarizationOverhead(ArrayRef Args, ArrayRef Tys, TargetCostKind CostKind) = 0; virtual bool supportsEfficientVectorElementLoadStore() = 0; virtual bool supportsTailCalls() = 0; virtual bool supportsTailCallFor(const CallBase *CB) = 0; virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; virtual MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0; virtual bool enableSelectOptimize() = 0; virtual bool enableInterleavedAccessVectorization() = 0; virtual bool enableMaskedInterleavedAccessVectorization() = 0; virtual bool isFPVectorizationPotentiallyUnsafe() = 0; virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) = 0; virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; virtual bool haveFastSqrt(Type *Ty) = 0; virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0; virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; virtual InstructionCost getFPOpCost(Type *Ty) = 0; virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) = 0; virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) = 0; virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) = 0; virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) = 0; virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0; virtual unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const = 0; virtual const char *getRegisterClassName(unsigned ClassID) const = 0; virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0; virtual unsigned getMinVectorRegisterBitWidth() const = 0; virtual std::optional getMaxVScale() const = 0; virtual std::optional getVScaleForTuning() const = 0; virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0; virtual bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0; virtual ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const = 0; virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0; virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const = 0; virtual bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; virtual unsigned getCacheLineSize() const = 0; virtual std::optional getCacheSize(CacheLevel Level) const = 0; virtual std::optional getCacheAssociativity(CacheLevel Level) const = 0; /// \return How much before a load we should place the prefetch /// instruction. This is currently measured in number of /// instructions. virtual unsigned getPrefetchDistance() const = 0; /// \return Some HW prefetchers can handle accesses up to a certain /// constant stride. This is the minimum stride in bytes where it /// makes sense to start adding SW prefetches. The default is 1, /// i.e. prefetch with any stride. Sometimes prefetching is beneficial /// even below the HW prefetcher limit, and the arguments provided are /// meant to serve as a basis for deciding this for a particular loop. virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const = 0; /// \return The maximum number of iterations to prefetch ahead. If /// the required number of iterations is more than this number, no /// prefetching is performed. virtual unsigned getMaxPrefetchIterationsAhead() const = 0; /// \return True if prefetching should also be done for writes. virtual bool enableWritePrefetching() const = 0; /// \return if target want to issue a prefetch in address space \p AS. virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0; virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0; virtual InstructionCost getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, ArrayRef Args, const Instruction *CxtI = nullptr) = 0; virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef Args) = 0; virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) = 0; virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) = 0; virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1) = 0; virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) = 0; virtual InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, OperandValueInfo OpInfo, const Instruction *I) = 0; virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) = 0; virtual InstructionCost getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0; virtual InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional FMF, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getExtendedReductionCost( unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; virtual InstructionCost getMulAccReductionCost( bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind) = 0; virtual unsigned getNumberOfParts(Type *Tp) = 0; virtual InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0; virtual InstructionCost getCostOfKeepingLiveOverCall(ArrayRef Tys) = 0; virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) = 0; virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) = 0; virtual Type *getMemcpyLoopLoweringType( LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicElementSize) const = 0; virtual void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicCpySize) const = 0; virtual bool areInlineCompatible(const Function *Caller, const Function *Callee) const = 0; virtual bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef &Types) const = 0; virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0; virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const = 0; virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const = 0; virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const = 0; virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0; virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const = 0; virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const = 0; virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags) const = 0; virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags) const = 0; virtual bool preferEpilogueVectorization() const = 0; virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; virtual unsigned getGISelRematGlobalCost() const = 0; virtual unsigned getMinTripCountTailFoldingThreshold() const = 0; virtual bool enableScalableVectorization() const = 0; virtual bool supportsScalableVectors() const = 0; virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const = 0; virtual VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0; virtual bool hasArmWideBranch(bool Thumb) const = 0; virtual unsigned getMaxNumArgs() const = 0; }; template class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { T Impl; public: Model(T Impl) : Impl(std::move(Impl)) {} ~Model() override = default; const DataLayout &getDataLayout() const override { return Impl.getDataLayout(); } InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, Type *AccessType, TargetTransformInfo::TargetCostKind CostKind) override { return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind); } InstructionCost getPointersChainCost(ArrayRef Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind) override { return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind); } unsigned getInliningThresholdMultiplier() const override { return Impl.getInliningThresholdMultiplier(); } unsigned adjustInliningThreshold(const CallBase *CB) override { return Impl.adjustInliningThreshold(CB); } int getInlinerVectorBonusPercent() const override { return Impl.getInlinerVectorBonusPercent(); } unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const override { return Impl.getCallerAllocaCost(CB, AI); } InstructionCost getMemcpyCost(const Instruction *I) override { return Impl.getMemcpyCost(I); } uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override { return Impl.getMaxMemIntrinsicInlineSizeThreshold(); } InstructionCost getInstructionCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) override { return Impl.getInstructionCost(U, Operands, CostKind); } BranchProbability getPredictableBranchThreshold() override { return Impl.getPredictableBranchThreshold(); } bool hasBranchDivergence(const Function *F = nullptr) override { return Impl.hasBranchDivergence(F); } bool isSourceOfDivergence(const Value *V) override { return Impl.isSourceOfDivergence(V); } bool isAlwaysUniform(const Value *V) override { return Impl.isAlwaysUniform(V); } bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { return Impl.isValidAddrSpaceCast(FromAS, ToAS); } bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override { return Impl.addrspacesMayAlias(AS0, AS1); } unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); } bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const override { return Impl.collectFlatAddressOperands(OpIndexes, IID); } bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { return Impl.isNoopAddrSpaceCast(FromAS, ToAS); } bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override { return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS); } unsigned getAssumedAddrSpace(const Value *V) const override { return Impl.getAssumedAddrSpace(V); } bool isSingleThreaded() const override { return Impl.isSingleThreaded(); } std::pair getPredicatedAddrSpace(const Value *V) const override { return Impl.getPredicatedAddrSpace(V); } Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override { return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV); } bool isLoweredToCall(const Function *F) override { return Impl.isLoweredToCall(F); } void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) override { return Impl.getUnrollingPreferences(L, SE, UP, ORE); } void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) override { return Impl.getPeelingPreferences(L, SE, PP); } bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) override { return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); } bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override { return Impl.preferPredicateOverEpilogue(TFI); } TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override { return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow); } std::optional instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override { return Impl.instCombineIntrinsic(IC, II); } std::optional simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) override { return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, KnownBitsComputed); } std::optional simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) override { return Impl.simplifyDemandedVectorEltsIntrinsic( IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, SimplifyAndSetOp); } bool isLegalAddImmediate(int64_t Imm) override { return Impl.isLegalAddImmediate(Imm); } bool isLegalICmpImmediate(int64_t Imm) override { return Impl.isLegalICmpImmediate(Imm); } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I) override { return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace, I); } bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) override { return Impl.isLSRCostLess(C1, C2); } bool isNumRegsMajorCostOfLSR() override { return Impl.isNumRegsMajorCostOfLSR(); } bool isProfitableLSRChainElement(Instruction *I) override { return Impl.isProfitableLSRChainElement(I); } bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); } bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) override { return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); } AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override { return Impl.getPreferredAddressingMode(L, SE); } bool isLegalMaskedStore(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedStore(DataType, Alignment); } bool isLegalMaskedLoad(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedLoad(DataType, Alignment); } bool isLegalNTStore(Type *DataType, Align Alignment) override { return Impl.isLegalNTStore(DataType, Alignment); } bool isLegalNTLoad(Type *DataType, Align Alignment) override { return Impl.isLegalNTLoad(DataType, Alignment); } bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const override { return Impl.isLegalBroadcastLoad(ElementTy, NumElements); } bool isLegalMaskedScatter(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedScatter(DataType, Alignment); } bool isLegalMaskedGather(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedGather(DataType, Alignment); } bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) override { return Impl.forceScalarizeMaskedGather(DataType, Alignment); } bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment) override { return Impl.forceScalarizeMaskedScatter(DataType, Alignment); } bool isLegalMaskedCompressStore(Type *DataType) override { return Impl.isLegalMaskedCompressStore(DataType); } bool isLegalMaskedExpandLoad(Type *DataType) override { return Impl.isLegalMaskedExpandLoad(DataType); } bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const override { return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask); } bool enableOrderedReductions() override { return Impl.enableOrderedReductions(); } bool hasDivRemOp(Type *DataType, bool IsSigned) override { return Impl.hasDivRemOp(DataType, IsSigned); } bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { return Impl.hasVolatileVariant(I, AddrSpace); } bool prefersVectorizedAddressing() override { return Impl.prefersVectorizedAddressing(); } InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) override { return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace); } bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); } bool isTruncateFree(Type *Ty1, Type *Ty2) override { return Impl.isTruncateFree(Ty1, Ty2); } bool isProfitableToHoist(Instruction *I) override { return Impl.isProfitableToHoist(I); } bool useAA() override { return Impl.useAA(); } bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } unsigned getRegUsageForType(Type *Ty) override { return Impl.getRegUsageForType(Ty); } bool shouldBuildLookupTables() override { return Impl.shouldBuildLookupTables(); } bool shouldBuildLookupTablesForConstant(Constant *C) override { return Impl.shouldBuildLookupTablesForConstant(C); } bool shouldBuildRelLookupTables() override { return Impl.shouldBuildRelLookupTables(); } bool useColdCCForColdCall(Function &F) override { return Impl.useColdCCForColdCall(F); } InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TargetCostKind CostKind) override { return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, CostKind); } InstructionCost getOperandsScalarizationOverhead(ArrayRef Args, ArrayRef Tys, TargetCostKind CostKind) override { return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind); } bool supportsEfficientVectorElementLoadStore() override { return Impl.supportsEfficientVectorElementLoadStore(); } bool supportsTailCalls() override { return Impl.supportsTailCalls(); } bool supportsTailCallFor(const CallBase *CB) override { return Impl.supportsTailCallFor(CB); } bool enableAggressiveInterleaving(bool LoopHasReductions) override { return Impl.enableAggressiveInterleaving(LoopHasReductions); } MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override { return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp); } bool enableInterleavedAccessVectorization() override { return Impl.enableInterleavedAccessVectorization(); } bool enableSelectOptimize() override { return Impl.enableSelectOptimize(); } bool enableMaskedInterleavedAccessVectorization() override { return Impl.enableMaskedInterleavedAccessVectorization(); } bool isFPVectorizationPotentiallyUnsafe() override { return Impl.isFPVectorizationPotentiallyUnsafe(); } bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) override { return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, Alignment, Fast); } PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { return Impl.getPopcntSupport(IntTyWidthInBit); } bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } bool isExpensiveToSpeculativelyExecute(const Instruction* I) override { return Impl.isExpensiveToSpeculativelyExecute(I); } bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); } InstructionCost getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); } InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) override { return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); } InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) override { return Impl.getIntImmCost(Imm, Ty, CostKind); } InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) override { return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst); } InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) override { return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); } unsigned getNumberOfRegisters(unsigned ClassID) const override { return Impl.getNumberOfRegisters(ClassID); } unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const override { return Impl.getRegisterClassForType(Vector, Ty); } const char *getRegisterClassName(unsigned ClassID) const override { return Impl.getRegisterClassName(ClassID); } TypeSize getRegisterBitWidth(RegisterKind K) const override { return Impl.getRegisterBitWidth(K); } unsigned getMinVectorRegisterBitWidth() const override { return Impl.getMinVectorRegisterBitWidth(); } std::optional getMaxVScale() const override { return Impl.getMaxVScale(); } std::optional getVScaleForTuning() const override { return Impl.getVScaleForTuning(); } bool isVScaleKnownToBeAPowerOfTwo() const override { return Impl.isVScaleKnownToBeAPowerOfTwo(); } bool shouldMaximizeVectorBandwidth( TargetTransformInfo::RegisterKind K) const override { return Impl.shouldMaximizeVectorBandwidth(K); } ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const override { return Impl.getMinimumVF(ElemWidth, IsScalable); } unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override { return Impl.getMaximumVF(ElemWidth, Opcode); } unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const override { return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy); } bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { return Impl.shouldConsiderAddressTypePromotion( I, AllowPromotionWithoutCommonHeader); } unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); } std::optional getCacheSize(CacheLevel Level) const override { return Impl.getCacheSize(Level); } std::optional getCacheAssociativity(CacheLevel Level) const override { return Impl.getCacheAssociativity(Level); } /// Return the preferred prefetch distance in terms of instructions. /// unsigned getPrefetchDistance() const override { return Impl.getPrefetchDistance(); } /// Return the minimum stride necessary to trigger software /// prefetching. /// unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override { return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, NumPrefetches, HasCall); } /// Return the maximum prefetch distance in terms of loop /// iterations. /// unsigned getMaxPrefetchIterationsAhead() const override { return Impl.getMaxPrefetchIterationsAhead(); } /// \return True if prefetching should also be done for writes. bool enableWritePrefetching() const override { return Impl.enableWritePrefetching(); } /// \return if target want to issue a prefetch in address space \p AS. bool shouldPrefetchAddressSpace(unsigned AS) const override { return Impl.shouldPrefetchAddressSpace(AS); } unsigned getMaxInterleaveFactor(ElementCount VF) override { return Impl.getMaxInterleaveFactor(VF); } unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) override { return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); } InstructionCost getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, ArrayRef Args, const Instruction *CxtI = nullptr) override { return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, Args, CxtI); } InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef Args) override { return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args); } InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); } InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) override { return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); } InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) override { return Impl.getCFInstrCost(Opcode, CostKind, I); } InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); } InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1) override { return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); } InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) override { return Impl.getVectorInstrCost(I, Val, CostKind, Index); } InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) override { return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind); } InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, OperandValueInfo OpInfo, const Instruction *I) override { return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, OpInfo, I); } InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, I); } InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) override { return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); } InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) override { return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I); } InstructionCost getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) override { return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); } InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional FMF, TTI::TargetCostKind CostKind) override { return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); } InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) override { return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind); } InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) override { return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF, CostKind); } InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) override { return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind); } InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) override { return Impl.getIntrinsicInstrCost(ICA, CostKind); } InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind) override { return Impl.getCallInstrCost(F, RetTy, Tys, CostKind); } unsigned getNumberOfParts(Type *Tp) override { return Impl.getNumberOfParts(Tp); } InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) override { return Impl.getAddressComputationCost(Ty, SE, Ptr); } InstructionCost getCostOfKeepingLiveOverCall(ArrayRef Tys) override { return Impl.getCostOfKeepingLiveOverCall(Tys); } bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) override { return Impl.getTgtMemIntrinsic(Inst, Info); } unsigned getAtomicMemIntrinsicMaxElementSize() const override { return Impl.getAtomicMemIntrinsicMaxElementSize(); } Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) override { return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); } Type *getMemcpyLoopLoweringType( LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicElementSize) const override { return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, DestAddrSpace, SrcAlign, DestAlign, AtomicElementSize); } void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional AtomicCpySize) const override { Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign, DestAlign, AtomicCpySize); } bool areInlineCompatible(const Function *Caller, const Function *Callee) const override { return Impl.areInlineCompatible(Caller, Callee); } bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef &Types) const override { return Impl.areTypesABICompatible(Caller, Callee, Types); } bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); } bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); } unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { return Impl.getLoadStoreVecRegBitWidth(AddrSpace); } bool isLegalToVectorizeLoad(LoadInst *LI) const override { return Impl.isLegalToVectorizeLoad(LI); } bool isLegalToVectorizeStore(StoreInst *SI) const override { return Impl.isLegalToVectorizeStore(SI); } bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override { return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, AddrSpace); } bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override { return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, AddrSpace); } bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const override { return Impl.isLegalToVectorizeReduction(RdxDesc, VF); } bool isElementTypeLegalForScalableVector(Type *Ty) const override { return Impl.isElementTypeLegalForScalableVector(Ty); } unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override { return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); } unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override { return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); } bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const override { return Impl.preferInLoopReduction(Opcode, Ty, Flags); } bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const override { return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags); } bool preferEpilogueVectorization() const override { return Impl.preferEpilogueVectorization(); } bool shouldExpandReduction(const IntrinsicInst *II) const override { return Impl.shouldExpandReduction(II); } unsigned getGISelRematGlobalCost() const override { return Impl.getGISelRematGlobalCost(); } unsigned getMinTripCountTailFoldingThreshold() const override { return Impl.getMinTripCountTailFoldingThreshold(); } bool supportsScalableVectors() const override { return Impl.supportsScalableVectors(); } bool enableScalableVectorization() const override { return Impl.enableScalableVectorization(); } bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const override { return Impl.hasActiveVectorLength(Opcode, DataType, Alignment); } VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const override { return Impl.getVPLegalizationStrategy(PI); } bool hasArmWideBranch(bool Thumb) const override { return Impl.hasArmWideBranch(Thumb); } unsigned getMaxNumArgs() const override { return Impl.getMaxNumArgs(); } }; template TargetTransformInfo::TargetTransformInfo(T Impl) : TTIImpl(new Model(Impl)) {} /// Analysis pass providing the \c TargetTransformInfo. /// /// The core idea of the TargetIRAnalysis is to expose an interface through /// which LLVM targets can analyze and provide information about the middle /// end's target-independent IR. This supports use cases such as target-aware /// cost modeling of IR constructs. /// /// This is a function analysis because much of the cost modeling for targets /// is done in a subtarget specific way and LLVM supports compiling different /// functions targeting different subtargets in order to support runtime /// dispatch according to the observed subtarget. class TargetIRAnalysis : public AnalysisInfoMixin { public: typedef TargetTransformInfo Result; /// Default construct a target IR analysis. /// /// This will use the module's datalayout to construct a baseline /// conservative TTI result. TargetIRAnalysis(); /// Construct an IR analysis pass around a target-provide callback. /// /// The callback will be called with a particular function for which the TTI /// is needed and must return a TTI object for that function. TargetIRAnalysis(std::function TTICallback); // Value semantics. We spell out the constructors for MSVC. TargetIRAnalysis(const TargetIRAnalysis &Arg) : TTICallback(Arg.TTICallback) {} TargetIRAnalysis(TargetIRAnalysis &&Arg) : TTICallback(std::move(Arg.TTICallback)) {} TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { TTICallback = RHS.TTICallback; return *this; } TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { TTICallback = std::move(RHS.TTICallback); return *this; } Result run(const Function &F, FunctionAnalysisManager &); private: friend AnalysisInfoMixin; static AnalysisKey Key; /// The callback used to produce a result. /// /// We use a completely opaque callback so that targets can provide whatever /// mechanism they desire for constructing the TTI for a given function. /// /// FIXME: Should we really use std::function? It's relatively inefficient. /// It might be possible to arrange for even stateful callbacks to outlive /// the analysis and thus use a function_ref which would be lighter weight. /// This may also be less error prone as the callback is likely to reference /// the external TargetMachine, and that reference needs to never dangle. std::function TTICallback; /// Helper function used as the callback in the default constructor. static Result getDefaultTTI(const Function &F); }; /// Wrapper pass for TargetTransformInfo. /// /// This pass can be constructed from a TTI object which it stores internally /// and is queried by passes. class TargetTransformInfoWrapperPass : public ImmutablePass { TargetIRAnalysis TIRA; std::optional TTI; virtual void anchor(); public: static char ID; /// We must provide a default constructor for the pass but it should /// never be used. /// /// Use the constructor below or call one of the creation routines. TargetTransformInfoWrapperPass(); explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); TargetTransformInfo &getTTI(const Function &F); }; /// Create an analysis pass wrapper around a TTI object. /// /// This analysis pass just holds the TTI instance and makes it available to /// clients. ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); } // namespace llvm #endif