//===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the CCState and CCValAssign classes, used for lowering // and implementing calling conventions. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H #define LLVM_CODEGEN_CALLINGCONVLOWER_H #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/IR/CallingConv.h" #include "llvm/Support/Alignment.h" #include #include namespace llvm { class CCState; class MachineFunction; class MVT; class TargetRegisterInfo; /// CCValAssign - Represent assignment of one arg/retval to a location. class CCValAssign { public: enum LocInfo { Full, // The value fills the full location. SExt, // The value is sign extended in the location. ZExt, // The value is zero extended in the location. AExt, // The value is extended with undefined upper bits. SExtUpper, // The value is in the upper bits of the location and should be // sign extended when retrieved. ZExtUpper, // The value is in the upper bits of the location and should be // zero extended when retrieved. AExtUpper, // The value is in the upper bits of the location and should be // extended with undefined upper bits when retrieved. BCvt, // The value is bit-converted in the location. Trunc, // The value is truncated in the location. VExt, // The value is vector-widened in the location. // FIXME: Not implemented yet. Code that uses AExt to mean // vector-widen should be fixed to use VExt instead. FPExt, // The floating-point value is fp-extended in the location. Indirect // The location contains pointer to the value. // TODO: a subset of the value is in the location. }; private: // Holds one of: // - the register that the value is assigned to; // - the memory offset at which the value resides; // - additional information about pending location; the exact interpretation // of the data is target-dependent. std::variant Data; /// ValNo - This is the value number being assigned (e.g. an argument number). unsigned ValNo; /// isCustom - True if this arg/retval requires special handling. unsigned isCustom : 1; /// Information about how the value is assigned. LocInfo HTP : 6; /// ValVT - The type of the value being assigned. MVT ValVT; /// LocVT - The type of the location being assigned to. MVT LocVT; CCValAssign(LocInfo HTP, unsigned ValNo, MVT ValVT, MVT LocVT, bool IsCustom) : ValNo(ValNo), isCustom(IsCustom), HTP(HTP), ValVT(ValVT), LocVT(LocVT) { } public: static CCValAssign getReg(unsigned ValNo, MVT ValVT, unsigned RegNo, MVT LocVT, LocInfo HTP, bool IsCustom = false) { CCValAssign Ret(HTP, ValNo, ValVT, LocVT, IsCustom); Ret.Data = Register(RegNo); return Ret; } static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, unsigned RegNo, MVT LocVT, LocInfo HTP) { return getReg(ValNo, ValVT, RegNo, LocVT, HTP, /*IsCustom=*/true); } static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom = false) { CCValAssign Ret(HTP, ValNo, ValVT, LocVT, IsCustom); Ret.Data = Offset; return Ret; } static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP) { return getMem(ValNo, ValVT, Offset, LocVT, HTP, /*IsCustom=*/true); } static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo = 0) { CCValAssign Ret(HTP, ValNo, ValVT, LocVT, false); Ret.Data = ExtraInfo; return Ret; } void convertToReg(unsigned RegNo) { Data = Register(RegNo); } void convertToMem(int64_t Offset) { Data = Offset; } unsigned getValNo() const { return ValNo; } MVT getValVT() const { return ValVT; } bool isRegLoc() const { return std::holds_alternative(Data); } bool isMemLoc() const { return std::holds_alternative(Data); } bool isPendingLoc() const { return std::holds_alternative(Data); } bool needsCustom() const { return isCustom; } Register getLocReg() const { return std::get(Data); } int64_t getLocMemOffset() const { return std::get(Data); } unsigned getExtraInfo() const { return std::get(Data); } MVT getLocVT() const { return LocVT; } LocInfo getLocInfo() const { return HTP; } bool isExtInLoc() const { return (HTP == AExt || HTP == SExt || HTP == ZExt); } bool isUpperBitsInLoc() const { return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper; } }; /// Describes a register that needs to be forwarded from the prologue to a /// musttail call. struct ForwardedRegister { ForwardedRegister(Register VReg, MCPhysReg PReg, MVT VT) : VReg(VReg), PReg(PReg), VT(VT) {} Register VReg; MCPhysReg PReg; MVT VT; }; /// CCAssignFn - This function assigns a location for Val, updating State to /// reflect the change. It returns 'true' if it failed to handle Val. typedef bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); /// CCCustomFn - This function assigns a location for Val, possibly updating /// all args to reflect changes and indicates if it handled it. It must set /// isCustom if it handles the arg and returns true. typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); /// CCState - This class holds information needed while lowering arguments and /// return values. It captures which registers are already assigned and which /// stack slots are used. It provides accessors to allocate these values. class CCState { private: CallingConv::ID CallingConv; bool IsVarArg; bool AnalyzingMustTailForwardedRegs = false; MachineFunction &MF; const TargetRegisterInfo &TRI; SmallVectorImpl &Locs; LLVMContext &Context; // True if arguments should be allocated at negative offsets. bool NegativeOffsets; uint64_t StackSize; Align MaxStackArgAlign; SmallVector UsedRegs; SmallVector PendingLocs; SmallVector PendingArgFlags; // ByValInfo and SmallVector ByValRegs: // // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers // tracking. // Or, in another words it tracks byval parameters that are stored in // general purpose registers. // // For 4 byte stack alignment, // instance index means byval parameter number in formal // arguments set. Assume, we have some "struct_type" with size = 4 bytes, // then, for function "foo": // // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t) // // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2) // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4). // // In case of 8 bytes stack alignment, // In function shown above, r3 would be wasted according to AAPCS rules. // ByValRegs vector size still would be 2, // while "%t" goes to the stack: it wouldn't be described in ByValRegs. // // Supposed use-case for this collection: // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0. // 2. HandleByVal fills up ByValRegs. // 3. Argument analysis (LowerFormatArguments, for example). After // some byval argument was analyzed, InRegsParamsProcessed is increased. struct ByValInfo { ByValInfo(unsigned B, unsigned E) : Begin(B), End(E) {} // First register allocated for current parameter. unsigned Begin; // First after last register allocated for current parameter. unsigned End; }; SmallVector ByValRegs; // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed // during argument analysis. unsigned InRegsParamsProcessed; public: CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, SmallVectorImpl &Locs, LLVMContext &Context, bool NegativeOffsets = false); void addLoc(const CCValAssign &V) { Locs.push_back(V); } LLVMContext &getContext() const { return Context; } MachineFunction &getMachineFunction() const { return MF; } CallingConv::ID getCallingConv() const { return CallingConv; } bool isVarArg() const { return IsVarArg; } /// Returns the size of the currently allocated portion of the stack. uint64_t getStackSize() const { return StackSize; } /// getAlignedCallFrameSize - Return the size of the call frame needed to /// be able to store all arguments and such that the alignment requirement /// of each of the arguments is satisfied. uint64_t getAlignedCallFrameSize() const { return alignTo(StackSize, MaxStackArgAlign); } /// isAllocated - Return true if the specified register (or an alias) is /// allocated. bool isAllocated(MCRegister Reg) const { return UsedRegs[Reg / 32] & (1 << (Reg & 31)); } /// AnalyzeFormalArguments - Analyze an array of argument values, /// incorporating info about the formals into this state. void AnalyzeFormalArguments(const SmallVectorImpl &Ins, CCAssignFn Fn); /// The function will invoke AnalyzeFormalArguments. void AnalyzeArguments(const SmallVectorImpl &Ins, CCAssignFn Fn) { AnalyzeFormalArguments(Ins, Fn); } /// AnalyzeReturn - Analyze the returned values of a return, /// incorporating info about the result values into this state. void AnalyzeReturn(const SmallVectorImpl &Outs, CCAssignFn Fn); /// CheckReturn - Analyze the return values of a function, returning /// true if the return can be performed without sret-demotion, and /// false otherwise. bool CheckReturn(const SmallVectorImpl &Outs, CCAssignFn Fn); /// AnalyzeCallOperands - Analyze the outgoing arguments to a call, /// incorporating info about the passed values into this state. void AnalyzeCallOperands(const SmallVectorImpl &Outs, CCAssignFn Fn); /// AnalyzeCallOperands - Same as above except it takes vectors of types /// and argument flags. void AnalyzeCallOperands(SmallVectorImpl &ArgVTs, SmallVectorImpl &Flags, CCAssignFn Fn); /// The function will invoke AnalyzeCallOperands. void AnalyzeArguments(const SmallVectorImpl &Outs, CCAssignFn Fn) { AnalyzeCallOperands(Outs, Fn); } /// AnalyzeCallResult - Analyze the return values of a call, /// incorporating info about the passed values into this state. void AnalyzeCallResult(const SmallVectorImpl &Ins, CCAssignFn Fn); /// A shadow allocated register is a register that was allocated /// but wasn't added to the location list (Locs). /// \returns true if the register was allocated as shadow or false otherwise. bool IsShadowAllocatedReg(MCRegister Reg) const; /// AnalyzeCallResult - Same as above except it's specialized for calls which /// produce a single value. void AnalyzeCallResult(MVT VT, CCAssignFn Fn); /// getFirstUnallocated - Return the index of the first unallocated register /// in the set, or Regs.size() if they are all allocated. unsigned getFirstUnallocated(ArrayRef Regs) const { for (unsigned i = 0; i < Regs.size(); ++i) if (!isAllocated(Regs[i])) return i; return Regs.size(); } void DeallocateReg(MCPhysReg Reg) { assert(isAllocated(Reg) && "Trying to deallocate an unallocated register"); MarkUnallocated(Reg); } /// AllocateReg - Attempt to allocate one register. If it is not available, /// return zero. Otherwise, return the register, marking it and any aliases /// as allocated. MCRegister AllocateReg(MCPhysReg Reg) { if (isAllocated(Reg)) return MCRegister(); MarkAllocated(Reg); return Reg; } /// Version of AllocateReg with extra register to be shadowed. MCRegister AllocateReg(MCPhysReg Reg, MCPhysReg ShadowReg) { if (isAllocated(Reg)) return MCRegister(); MarkAllocated(Reg); MarkAllocated(ShadowReg); return Reg; } /// AllocateReg - Attempt to allocate one of the specified registers. If none /// are available, return zero. Otherwise, return the first one available, /// marking it and any aliases as allocated. MCPhysReg AllocateReg(ArrayRef Regs) { unsigned FirstUnalloc = getFirstUnallocated(Regs); if (FirstUnalloc == Regs.size()) return MCRegister(); // Didn't find the reg. // Mark the register and any aliases as allocated. MCPhysReg Reg = Regs[FirstUnalloc]; MarkAllocated(Reg); return Reg; } /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive /// registers. If this is not possible, return zero. Otherwise, return the first /// register of the block that were allocated, marking the entire block as allocated. MCPhysReg AllocateRegBlock(ArrayRef Regs, unsigned RegsRequired) { if (RegsRequired > Regs.size()) return 0; for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired; ++StartIdx) { bool BlockAvailable = true; // Check for already-allocated regs in this block for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) { if (isAllocated(Regs[StartIdx + BlockIdx])) { BlockAvailable = false; break; } } if (BlockAvailable) { // Mark the entire block as allocated for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) { MarkAllocated(Regs[StartIdx + BlockIdx]); } return Regs[StartIdx]; } } // No block was available return 0; } /// Version of AllocateReg with list of registers to be shadowed. MCRegister AllocateReg(ArrayRef Regs, const MCPhysReg *ShadowRegs) { unsigned FirstUnalloc = getFirstUnallocated(Regs); if (FirstUnalloc == Regs.size()) return MCRegister(); // Didn't find the reg. // Mark the register and any aliases as allocated. MCRegister Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc]; MarkAllocated(Reg); MarkAllocated(ShadowReg); return Reg; } /// AllocateStack - Allocate a chunk of stack space with the specified size /// and alignment. int64_t AllocateStack(unsigned Size, Align Alignment) { int64_t Offset; if (NegativeOffsets) { StackSize = alignTo(StackSize + Size, Alignment); Offset = -StackSize; } else { Offset = alignTo(StackSize, Alignment); StackSize = Offset + Size; } MaxStackArgAlign = std::max(Alignment, MaxStackArgAlign); ensureMaxAlignment(Alignment); return Offset; } void ensureMaxAlignment(Align Alignment); /// Version of AllocateStack with list of extra registers to be shadowed. /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers. int64_t AllocateStack(unsigned Size, Align Alignment, ArrayRef ShadowRegs) { for (MCPhysReg Reg : ShadowRegs) MarkAllocated(Reg); return AllocateStack(Size, Alignment); } // HandleByVal - Allocate a stack slot large enough to pass an argument by // value. The size and alignment information of the argument is encoded in its // parameter attribute. void HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign, ISD::ArgFlagsTy ArgFlags); // Returns count of byval arguments that are to be stored (even partly) // in registers. unsigned getInRegsParamsCount() const { return ByValRegs.size(); } // Returns count of byval in-regs arguments processed. unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; } // Get information about N-th byval parameter that is stored in registers. // Here "ByValParamIndex" is N. void getInRegsParamInfo(unsigned InRegsParamRecordIndex, unsigned& BeginReg, unsigned& EndReg) const { assert(InRegsParamRecordIndex < ByValRegs.size() && "Wrong ByVal parameter index"); const ByValInfo& info = ByValRegs[InRegsParamRecordIndex]; BeginReg = info.Begin; EndReg = info.End; } // Add information about parameter that is kept in registers. void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) { ByValRegs.push_back(ByValInfo(RegBegin, RegEnd)); } // Goes either to next byval parameter (excluding "waste" record), or // to the end of collection. // Returns false, if end is reached. bool nextInRegsParam() { unsigned e = ByValRegs.size(); if (InRegsParamsProcessed < e) ++InRegsParamsProcessed; return InRegsParamsProcessed < e; } // Clear byval registers tracking info. void clearByValRegsInfo() { InRegsParamsProcessed = 0; ByValRegs.clear(); } // Rewind byval registers tracking info. void rewindByValRegsInfo() { InRegsParamsProcessed = 0; } // Get list of pending assignments SmallVectorImpl &getPendingLocs() { return PendingLocs; } // Get a list of argflags for pending assignments. SmallVectorImpl &getPendingArgFlags() { return PendingArgFlags; } /// Compute the remaining unused register parameters that would be used for /// the given value type. This is useful when varargs are passed in the /// registers that normal prototyped parameters would be passed in, or for /// implementing perfect forwarding. void getRemainingRegParmsForType(SmallVectorImpl &Regs, MVT VT, CCAssignFn Fn); /// Compute the set of registers that need to be preserved and forwarded to /// any musttail calls. void analyzeMustTailForwardedRegisters( SmallVectorImpl &Forwards, ArrayRef RegParmTypes, CCAssignFn Fn); /// Returns true if the results of the two calling conventions are compatible. /// This is usually part of the check for tailcall eligibility. static bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn); /// The function runs an additional analysis pass over function arguments. /// It will mark each argument with the attribute flag SecArgPass. /// After running, it will sort the locs list. template void AnalyzeArgumentsSecondPass(const SmallVectorImpl &Args, CCAssignFn Fn) { unsigned NumFirstPassLocs = Locs.size(); /// Creates similar argument list to \p Args in which each argument is /// marked using SecArgPass flag. SmallVector SecPassArg; // SmallVector SecPassArg; for (auto Arg : Args) { Arg.Flags.setSecArgPass(); SecPassArg.push_back(Arg); } // Run the second argument pass AnalyzeArguments(SecPassArg, Fn); // Sort the locations of the arguments according to their original position. SmallVector TmpArgLocs; TmpArgLocs.swap(Locs); auto B = TmpArgLocs.begin(), E = TmpArgLocs.end(); std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E, std::back_inserter(Locs), [](const CCValAssign &A, const CCValAssign &B) -> bool { return A.getValNo() < B.getValNo(); }); } private: /// MarkAllocated - Mark a register and all of its aliases as allocated. void MarkAllocated(MCPhysReg Reg); void MarkUnallocated(MCPhysReg Reg); }; } // end namespace llvm #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H