//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Interface for Targets to specify which operations they can successfully /// select and how the others should be expanded most efficiently. /// //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/CommandLine.h" #include #include #include #include namespace llvm { extern cl::opt DisableGISelLegalityCheck; class MachineFunction; class raw_ostream; class LegalizerHelper; class LostDebugLocObserver; class MachineInstr; class MachineRegisterInfo; class MCInstrInfo; namespace LegalizeActions { enum LegalizeAction : std::uint8_t { /// The operation is expected to be selectable directly by the target, and /// no transformation is necessary. Legal, /// The operation should be synthesized from multiple instructions acting on /// a narrower scalar base-type. For example a 64-bit add might be /// implemented in terms of 32-bit add-with-carry. NarrowScalar, /// The operation should be implemented in terms of a wider scalar /// base-type. For example a <2 x s8> add could be implemented as a <2 /// x s32> add (ignoring the high bits). WidenScalar, /// The (vector) operation should be implemented by splitting it into /// sub-vectors where the operation is legal. For example a <8 x s64> add /// might be implemented as 4 separate <2 x s64> adds. There can be a leftover /// if there are not enough elements for last sub-vector e.g. <7 x s64> add /// will be implemented as 3 separate <2 x s64> adds and one s64 add. Leftover /// types can be avoided by doing MoreElements first. FewerElements, /// The (vector) operation should be implemented by widening the input /// vector and ignoring the lanes added by doing so. For example <2 x i8> is /// rarely legal, but you might perform an <8 x i8> and then only look at /// the first two results. MoreElements, /// Perform the operation on a different, but equivalently sized type. Bitcast, /// The operation itself must be expressed in terms of simpler actions on /// this target. E.g. a SREM replaced by an SDIV and subtraction. Lower, /// The operation should be implemented as a call to some kind of runtime /// support library. For example this usually happens on machines that don't /// support floating-point operations natively. Libcall, /// The target wants to do something special with this combination of /// operand and type. A callback will be issued when it is needed. Custom, /// This operation is completely unsupported on the target. A programming /// error has occurred. Unsupported, /// Sentinel value for when no action was found in the specified table. NotFound, /// Fall back onto the old rules. /// TODO: Remove this once we've migrated UseLegacyRules, }; } // end namespace LegalizeActions raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action); using LegalizeActions::LegalizeAction; /// The LegalityQuery object bundles together all the information that's needed /// to decide whether a given operation is legal or not. /// For efficiency, it doesn't make a copy of Types so care must be taken not /// to free it before using the query. struct LegalityQuery { unsigned Opcode; ArrayRef Types; struct MemDesc { LLT MemoryTy; uint64_t AlignInBits; AtomicOrdering Ordering; MemDesc() = default; MemDesc(LLT MemoryTy, uint64_t AlignInBits, AtomicOrdering Ordering) : MemoryTy(MemoryTy), AlignInBits(AlignInBits), Ordering(Ordering) {} MemDesc(const MachineMemOperand &MMO) : MemoryTy(MMO.getMemoryType()), AlignInBits(MMO.getAlign().value() * 8), Ordering(MMO.getSuccessOrdering()) {} }; /// Operations which require memory can use this to place requirements on the /// memory type for each MMO. ArrayRef MMODescrs; constexpr LegalityQuery(unsigned Opcode, const ArrayRef Types, const ArrayRef MMODescrs) : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} constexpr LegalityQuery(unsigned Opcode, const ArrayRef Types) : LegalityQuery(Opcode, Types, {}) {} raw_ostream &print(raw_ostream &OS) const; }; /// The result of a query. It either indicates a final answer of Legal or /// Unsupported or describes an action that must be taken to make an operation /// more legal. struct LegalizeActionStep { /// The action to take or the final answer. LegalizeAction Action; /// If describing an action, the type index to change. Otherwise zero. unsigned TypeIdx; /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. LLT NewType; LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, const LLT NewType) : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} LegalizeActionStep(LegacyLegalizeActionStep Step) : TypeIdx(Step.TypeIdx), NewType(Step.NewType) { switch (Step.Action) { case LegacyLegalizeActions::Legal: Action = LegalizeActions::Legal; break; case LegacyLegalizeActions::NarrowScalar: Action = LegalizeActions::NarrowScalar; break; case LegacyLegalizeActions::WidenScalar: Action = LegalizeActions::WidenScalar; break; case LegacyLegalizeActions::FewerElements: Action = LegalizeActions::FewerElements; break; case LegacyLegalizeActions::MoreElements: Action = LegalizeActions::MoreElements; break; case LegacyLegalizeActions::Bitcast: Action = LegalizeActions::Bitcast; break; case LegacyLegalizeActions::Lower: Action = LegalizeActions::Lower; break; case LegacyLegalizeActions::Libcall: Action = LegalizeActions::Libcall; break; case LegacyLegalizeActions::Custom: Action = LegalizeActions::Custom; break; case LegacyLegalizeActions::Unsupported: Action = LegalizeActions::Unsupported; break; case LegacyLegalizeActions::NotFound: Action = LegalizeActions::NotFound; break; } } bool operator==(const LegalizeActionStep &RHS) const { return std::tie(Action, TypeIdx, NewType) == std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); } }; using LegalityPredicate = std::function; using LegalizeMutation = std::function(const LegalityQuery &)>; namespace LegalityPredicates { struct TypePairAndMemDesc { LLT Type0; LLT Type1; LLT MemTy; uint64_t Align; bool operator==(const TypePairAndMemDesc &Other) const { return Type0 == Other.Type0 && Type1 == Other.Type1 && Align == Other.Align && MemTy == Other.MemTy; } /// \returns true if this memory access is legal with for the access described /// by \p Other (The alignment is sufficient for the size and result type). bool isCompatible(const TypePairAndMemDesc &Other) const { return Type0 == Other.Type0 && Type1 == Other.Type1 && Align >= Other.Align && // FIXME: This perhaps should be stricter, but the current legality // rules are written only considering the size. MemTy.getSizeInBits() == Other.MemTy.getSizeInBits(); } }; /// True iff P is false. template Predicate predNot(Predicate P) { return [=](const LegalityQuery &Query) { return !P(Query); }; } /// True iff P0 and P1 are true. template Predicate all(Predicate P0, Predicate P1) { return [=](const LegalityQuery &Query) { return P0(Query) && P1(Query); }; } /// True iff all given predicates are true. template Predicate all(Predicate P0, Predicate P1, Args... args) { return all(all(P0, P1), args...); } /// True iff P0 or P1 are true. template Predicate any(Predicate P0, Predicate P1) { return [=](const LegalityQuery &Query) { return P0(Query) || P1(Query); }; } /// True iff any given predicates are true. template Predicate any(Predicate P0, Predicate P1, Args... args) { return any(any(P0, P1), args...); } /// True iff the given type index is the specified type. LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); /// True iff the given type index is one of the specified types. LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list TypesInit); /// True iff the given type index is not the specified type. inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx] != Type; }; } /// True iff the given types for the given pair of type indexes is one of the /// specified type pairs. LegalityPredicate typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, std::initializer_list> TypesInit); /// True iff the given types for the given pair of type indexes is one of the /// specified type pairs. LegalityPredicate typePairAndMemDescInSet( unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, std::initializer_list TypesAndMemDescInit); /// True iff the specified type index is a scalar. LegalityPredicate isScalar(unsigned TypeIdx); /// True iff the specified type index is a vector. LegalityPredicate isVector(unsigned TypeIdx); /// True iff the specified type index is a pointer (with any address space). LegalityPredicate isPointer(unsigned TypeIdx); /// True iff the specified type index is a pointer with the specified address /// space. LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace); /// True if the type index is a vector with element type \p EltTy LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy); /// True iff the specified type index is a scalar that's narrower than the given /// size. LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar that's wider than the given /// size. LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar or vector with an element type /// that's narrower than the given size. LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar or a vector with an element /// type that's wider than the given size. LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar whose size is not a multiple /// of Size. LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar whose size is not a power of /// 2. LegalityPredicate sizeNotPow2(unsigned TypeIdx); /// True iff the specified type index is a scalar or vector whose element size /// is not a power of 2. LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx); /// True if the total bitwidth of the specified type index is \p Size bits. LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size); /// True iff the specified type indices are both the same bit size. LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1); /// True iff the first type index has a larger total bit size than second type /// index. LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1); /// True iff the first type index has a smaller total bit size than second type /// index. LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1); /// True iff the specified MMO index has a size (rounded to bytes) that is not a /// power of 2. LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); /// True iff the specified MMO index has a size that is not an even byte size, /// or that even byte size is not a power of 2. LegalityPredicate memSizeNotByteSizePow2(unsigned MMOIdx); /// True iff the specified type index is a vector whose element count is not a /// power of 2. LegalityPredicate numElementsNotPow2(unsigned TypeIdx); /// True iff the specified MMO index has at an atomic ordering of at Ordering or /// stronger. LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering); } // end namespace LegalityPredicates namespace LegalizeMutations { /// Select this specific type for the given type index. LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); /// Keep the same type as the given type index. LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); /// Keep the same scalar or element type as the given type index. LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx); /// Keep the same scalar or element type as the given type. LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty); /// Keep the same scalar or element type as \p TypeIdx, but take the number of /// elements from \p FromTypeIdx. LegalizeMutation changeElementCountTo(unsigned TypeIdx, unsigned FromTypeIdx); /// Keep the same scalar or element type as \p TypeIdx, but take the number of /// elements from \p Ty. LegalizeMutation changeElementCountTo(unsigned TypeIdx, LLT Ty); /// Change the scalar size or element size to have the same scalar size as type /// index \p FromIndex. Unlike changeElementTo, this discards pointer types and /// only changes the size. LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx); /// Widen the scalar type or vector element type for the given type index to the /// next power of 2. LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0); /// Widen the scalar type or vector element type for the given type index to /// next multiple of \p Size. LegalizeMutation widenScalarOrEltToNextMultipleOf(unsigned TypeIdx, unsigned Size); /// Add more elements to the type for the given type index to the next power of /// 2. LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); /// Break up the vector type for the given type index into the element type. LegalizeMutation scalarize(unsigned TypeIdx); } // end namespace LegalizeMutations /// A single rule in a legalizer info ruleset. /// The specified action is chosen when the predicate is true. Where appropriate /// for the action (e.g. for WidenScalar) the new type is selected using the /// given mutator. class LegalizeRule { LegalityPredicate Predicate; LegalizeAction Action; LegalizeMutation Mutation; public: LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, LegalizeMutation Mutation = nullptr) : Predicate(Predicate), Action(Action), Mutation(Mutation) {} /// Test whether the LegalityQuery matches. bool match(const LegalityQuery &Query) const { return Predicate(Query); } LegalizeAction getAction() const { return Action; } /// Determine the change to make. std::pair determineMutation(const LegalityQuery &Query) const { if (Mutation) return Mutation(Query); return std::make_pair(0, LLT{}); } }; class LegalizeRuleSet { /// When non-zero, the opcode we are an alias of unsigned AliasOf = 0; /// If true, there is another opcode that aliases this one bool IsAliasedByAnother = false; SmallVector Rules; #ifndef NDEBUG /// If bit I is set, this rule set contains a rule that may handle (predicate /// or perform an action upon (or both)) the type index I. The uncertainty /// comes from free-form rules executing user-provided lambda functions. We /// conservatively assume such rules do the right thing and cover all type /// indices. The bitset is intentionally 1 bit wider than it absolutely needs /// to be to distinguish such cases from the cases where all type indices are /// individually handled. SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC + 2}; SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM - MCOI::OPERAND_FIRST_GENERIC_IMM + 2}; #endif unsigned typeIdx(unsigned TypeIdx) { assert(TypeIdx <= (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && "Type Index is out of bounds"); #ifndef NDEBUG TypeIdxsCovered.set(TypeIdx); #endif return TypeIdx; } void markAllIdxsAsCovered() { #ifndef NDEBUG TypeIdxsCovered.set(); ImmIdxsCovered.set(); #endif } void add(const LegalizeRule &Rule) { assert(AliasOf == 0 && "RuleSet is aliased, change the representative opcode instead"); Rules.push_back(Rule); } static bool always(const LegalityQuery &) { return true; } /// Use the given action when the predicate is true. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate) { add({Predicate, Action}); return *this; } /// Use the given action when the predicate is true. /// Action should be an action that requires mutation. LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, LegalizeMutation Mutation) { add({Predicate, Action, Mutation}); return *this; } /// Use the given action when type index 0 is any type in the given list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list Types) { using namespace LegalityPredicates; return actionIf(Action, typeInSet(typeIdx(0), Types)); } /// Use the given action when type index 0 is any type in the given list. /// Action should be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list Types, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); } /// Use the given action when type indexes 0 and 1 is any type pair in the /// given list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list> Types) { using namespace LegalityPredicates; return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); } /// Use the given action when type indexes 0 and 1 is any type pair in the /// given list. /// Action should be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list> Types, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), Mutation); } /// Use the given action when type index 0 is any type in the given list and /// imm index 0 is anything. Action should not be an action that requires /// mutation. LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action, std::initializer_list Types) { using namespace LegalityPredicates; immIdx(0); // Inform verifier imm idx 0 is handled. return actionIf(Action, typeInSet(typeIdx(0), Types)); } LegalizeRuleSet &actionForTypeWithAnyImm( LegalizeAction Action, std::initializer_list> Types) { using namespace LegalityPredicates; immIdx(0); // Inform verifier imm idx 0 is handled. return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); } /// Use the given action when type indexes 0 and 1 are both in the given list. /// That is, the type pair is in the cartesian product of the list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, std::initializer_list Types) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types), typeInSet(typeIdx(1), Types))); } /// Use the given action when type indexes 0 and 1 are both in their /// respective lists. /// That is, the type pair is in the cartesian product of the lists /// Action should not be an action that requires mutation. LegalizeRuleSet & actionForCartesianProduct(LegalizeAction Action, std::initializer_list Types0, std::initializer_list Types1) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types0), typeInSet(typeIdx(1), Types1))); } /// Use the given action when type indexes 0, 1, and 2 are all in their /// respective lists. /// That is, the type triple is in the cartesian product of the lists /// Action should not be an action that requires mutation. LegalizeRuleSet &actionForCartesianProduct( LegalizeAction Action, std::initializer_list Types0, std::initializer_list Types1, std::initializer_list Types2) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types0), all(typeInSet(typeIdx(1), Types1), typeInSet(typeIdx(2), Types2)))); } public: LegalizeRuleSet() = default; bool isAliasedByAnother() { return IsAliasedByAnother; } void setIsAliasedByAnother() { IsAliasedByAnother = true; } void aliasTo(unsigned Opcode) { assert((AliasOf == 0 || AliasOf == Opcode) && "Opcode is already aliased to another opcode"); assert(Rules.empty() && "Aliasing will discard rules"); AliasOf = Opcode; } unsigned getAlias() const { return AliasOf; } unsigned immIdx(unsigned ImmIdx) { assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM - MCOI::OPERAND_FIRST_GENERIC_IMM) && "Imm Index is out of bounds"); #ifndef NDEBUG ImmIdxsCovered.set(ImmIdx); #endif return ImmIdx; } /// The instruction is legal if predicate is true. LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that the free-form // user-provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Legal, Predicate); } /// The instruction is legal when type index 0 is any type in the given list. LegalizeRuleSet &legalFor(std::initializer_list Types) { return actionFor(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 is any type pair in the /// given list. LegalizeRuleSet &legalFor(std::initializer_list> Types) { return actionFor(LegalizeAction::Legal, Types); } /// The instruction is legal when type index 0 is any type in the given list /// and imm index 0 is anything. LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list Types) { markAllIdxsAsCovered(); return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); } LegalizeRuleSet &legalForTypeWithAnyImm( std::initializer_list> Types) { markAllIdxsAsCovered(); return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 along with the memory /// size and minimum alignment is any type and size tuple in the given list. LegalizeRuleSet &legalForTypesWithMemDesc( std::initializer_list TypesAndMemDesc) { return actionIf(LegalizeAction::Legal, LegalityPredicates::typePairAndMemDescInSet( typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc)); } /// The instruction is legal when type indexes 0 and 1 are both in the given /// list. That is, the type pair is in the cartesian product of the list. LegalizeRuleSet &legalForCartesianProduct(std::initializer_list Types) { return actionForCartesianProduct(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 are both their /// respective lists. LegalizeRuleSet &legalForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1) { return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); } /// The instruction is legal when type indexes 0, 1, and 2 are both their /// respective lists. LegalizeRuleSet &legalForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1, std::initializer_list Types2) { return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1, Types2); } LegalizeRuleSet &alwaysLegal() { using namespace LegalizeMutations; markAllIdxsAsCovered(); return actionIf(LegalizeAction::Legal, always); } /// The specified type index is coerced if predicate is true. LegalizeRuleSet &bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that lowering with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Bitcast, Predicate, Mutation); } /// The instruction is lowered. LegalizeRuleSet &lower() { using namespace LegalizeMutations; // We have no choice but conservatively assume that predicate-less lowering // properly handles all type indices by design: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Lower, always); } /// The instruction is lowered if predicate is true. Keep type index 0 as the /// same type. LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { using namespace LegalizeMutations; // We have no choice but conservatively assume that lowering with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Lower, Predicate); } /// The instruction is lowered if predicate is true. LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that lowering with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Lower, Predicate, Mutation); } /// The instruction is lowered when type index 0 is any type in the given /// list. Keep type index 0 as the same type. LegalizeRuleSet &lowerFor(std::initializer_list Types) { return actionFor(LegalizeAction::Lower, Types); } /// The instruction is lowered when type index 0 is any type in the given /// list. LegalizeRuleSet &lowerFor(std::initializer_list Types, LegalizeMutation Mutation) { return actionFor(LegalizeAction::Lower, Types, Mutation); } /// The instruction is lowered when type indexes 0 and 1 is any type pair in /// the given list. Keep type index 0 as the same type. LegalizeRuleSet &lowerFor(std::initializer_list> Types) { return actionFor(LegalizeAction::Lower, Types); } /// The instruction is lowered when type indexes 0 and 1 is any type pair in /// the given list. LegalizeRuleSet &lowerFor(std::initializer_list> Types, LegalizeMutation Mutation) { return actionFor(LegalizeAction::Lower, Types, Mutation); } /// The instruction is lowered when type indexes 0 and 1 are both in their /// respective lists. LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1) { using namespace LegalityPredicates; return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); } /// The instruction is lowered when type indexes 0, 1, and 2 are all in /// their respective lists. LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1, std::initializer_list Types2) { using namespace LegalityPredicates; return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, Types2); } /// The instruction is emitted as a library call. LegalizeRuleSet &libcall() { using namespace LegalizeMutations; // We have no choice but conservatively assume that predicate-less lowering // properly handles all type indices by design: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Libcall, always); } /// Like legalIf, but for the Libcall action. LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that a libcall with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Libcall, Predicate); } LegalizeRuleSet &libcallFor(std::initializer_list Types) { return actionFor(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallFor(std::initializer_list> Types) { return actionFor(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list Types) { return actionForCartesianProduct(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1) { return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); } /// Widen the scalar to the one selected by the mutation if the predicate is /// true. LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); } /// Narrow the scalar to the one selected by the mutation if the predicate is /// true. LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); } /// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any /// type pair in the given list. LegalizeRuleSet & narrowScalarFor(std::initializer_list> Types, LegalizeMutation Mutation) { return actionFor(LegalizeAction::NarrowScalar, Types, Mutation); } /// Add more elements to reach the type selected by the mutation if the /// predicate is true. LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); } /// Remove elements to reach the type selected by the mutation if the /// predicate is true. LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); } /// The instruction is unsupported. LegalizeRuleSet &unsupported() { markAllIdxsAsCovered(); return actionIf(LegalizeAction::Unsupported, always); } LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { return actionIf(LegalizeAction::Unsupported, Predicate); } LegalizeRuleSet &unsupportedFor(std::initializer_list Types) { return actionFor(LegalizeAction::Unsupported, Types); } LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { return actionIf(LegalizeAction::Unsupported, LegalityPredicates::memSizeInBytesNotPow2(0)); } /// Lower a memory operation if the memory size, rounded to bytes, is not a /// power of 2. For example, this will not trigger for s1 or s7, but will for /// s24. LegalizeRuleSet &lowerIfMemSizeNotPow2() { return actionIf(LegalizeAction::Lower, LegalityPredicates::memSizeInBytesNotPow2(0)); } /// Lower a memory operation if the memory access size is not a round power of /// 2 byte size. This is stricter than lowerIfMemSizeNotPow2, and more likely /// what you want (e.g. this will lower s1, s7 and s24). LegalizeRuleSet &lowerIfMemSizeNotByteSizePow2() { return actionIf(LegalizeAction::Lower, LegalityPredicates::memSizeNotByteSizePow2(0)); } LegalizeRuleSet &customIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that a custom action with a // free-form user provided Predicate properly handles all type indices: markAllIdxsAsCovered(); return actionIf(LegalizeAction::Custom, Predicate); } LegalizeRuleSet &customFor(std::initializer_list Types) { return actionFor(LegalizeAction::Custom, Types); } /// The instruction is custom when type indexes 0 and 1 is any type pair in the /// given list. LegalizeRuleSet &customFor(std::initializer_list> Types) { return actionFor(LegalizeAction::Custom, Types); } LegalizeRuleSet &customForCartesianProduct(std::initializer_list Types) { return actionForCartesianProduct(LegalizeAction::Custom, Types); } /// The instruction is custom when type indexes 0 and 1 are both in their /// respective lists. LegalizeRuleSet & customForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1) { return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); } /// The instruction is custom when type indexes 0, 1, and 2 are all in /// their respective lists. LegalizeRuleSet & customForCartesianProduct(std::initializer_list Types0, std::initializer_list Types1, std::initializer_list Types2) { return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1, Types2); } /// Unconditionally custom lower. LegalizeRuleSet &custom() { return customIf(always); } /// Widen the scalar to the next power of two that is at least MinSize. /// No effect if the type is not a scalar or is a power of two. LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize = 0) { using namespace LegalityPredicates; return actionIf( LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); } /// Widen the scalar to the next multiple of Size. No effect if the /// type is not a scalar or is a multiple of Size. LegalizeRuleSet &widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size) { using namespace LegalityPredicates; return actionIf( LegalizeAction::WidenScalar, sizeNotMultipleOf(typeIdx(TypeIdx), Size), LegalizeMutations::widenScalarOrEltToNextMultipleOf(TypeIdx, Size)); } /// Widen the scalar or vector element type to the next power of two that is /// at least MinSize. No effect if the scalar size is a power of two. LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize = 0) { using namespace LegalityPredicates; return actionIf( LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)), LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); } LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), Mutation); } LegalizeRuleSet &scalarize(unsigned TypeIdx) { using namespace LegalityPredicates; return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)), LegalizeMutations::scalarize(TypeIdx)); } LegalizeRuleSet &scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx) { using namespace LegalityPredicates; return actionIf(LegalizeAction::FewerElements, all(Predicate, isVector(typeIdx(TypeIdx))), LegalizeMutations::scalarize(TypeIdx)); } /// Ensure the scalar or element is at least as wide as Ty. LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::WidenScalar, scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()), changeElementTo(typeIdx(TypeIdx), Ty)); } /// Ensure the scalar or element is at least as wide as Ty. LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::WidenScalar, all(Predicate, scalarOrEltNarrowerThan( TypeIdx, Ty.getScalarSizeInBits())), changeElementTo(typeIdx(TypeIdx), Ty)); } /// Ensure the vector size is at least as wide as VectorSize by promoting the /// element. LegalizeRuleSet &widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf( LegalizeAction::WidenScalar, [=](const LegalityQuery &Query) { const LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && !VecTy.isScalable() && VecTy.getSizeInBits() < VectorSize; }, [=](const LegalityQuery &Query) { const LLT VecTy = Query.Types[TypeIdx]; unsigned NumElts = VecTy.getNumElements(); unsigned MinSize = VectorSize / NumElts; LLT NewTy = LLT::fixed_vector(NumElts, LLT::scalar(MinSize)); return std::make_pair(TypeIdx, NewTy); }); } /// Ensure the scalar is at least as wide as Ty. LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::WidenScalar, scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()), changeTo(typeIdx(TypeIdx), Ty)); } /// Ensure the scalar is at least as wide as Ty if condition is met. LegalizeRuleSet &minScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf( LegalizeAction::WidenScalar, [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isScalar() && QueryTy.getSizeInBits() < Ty.getSizeInBits() && Predicate(Query); }, changeTo(typeIdx(TypeIdx), Ty)); } /// Ensure the scalar is at most as wide as Ty. LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::NarrowScalar, scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()), changeElementTo(typeIdx(TypeIdx), Ty)); } /// Ensure the scalar is at most as wide as Ty. LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::NarrowScalar, scalarWiderThan(TypeIdx, Ty.getSizeInBits()), changeTo(typeIdx(TypeIdx), Ty)); } /// Conditionally limit the maximum size of the scalar. /// For example, when the maximum size of one type depends on the size of /// another such as extracting N bits from an M bit container. LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf( LegalizeAction::NarrowScalar, [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isScalar() && QueryTy.getSizeInBits() > Ty.getSizeInBits() && Predicate(Query); }, changeElementTo(typeIdx(TypeIdx), Ty)); } /// Limit the range of scalar sizes to MinTy and MaxTy. LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy) { assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); } /// Limit the range of scalar sizes to MinTy and MaxTy. LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy) { return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy); } /// Widen the scalar to match the size of another. LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) { typeIdx(TypeIdx); return widenScalarIf( [=](const LegalityQuery &Query) { return Query.Types[LargeTypeIdx].getScalarSizeInBits() > Query.Types[TypeIdx].getSizeInBits(); }, LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx)); } /// Narrow the scalar to match the size of another. LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) { typeIdx(TypeIdx); return narrowScalarIf( [=](const LegalityQuery &Query) { return Query.Types[NarrowTypeIdx].getScalarSizeInBits() < Query.Types[TypeIdx].getSizeInBits(); }, LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx)); } /// Change the type \p TypeIdx to have the same scalar size as type \p /// SameSizeIdx. LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) { return minScalarSameAs(TypeIdx, SameSizeIdx) .maxScalarSameAs(TypeIdx, SameSizeIdx); } /// Conditionally widen the scalar or elt to match the size of another. LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx) { typeIdx(TypeIdx); return widenScalarIf( [=](const LegalityQuery &Query) { return Query.Types[LargeTypeIdx].getScalarSizeInBits() > Query.Types[TypeIdx].getScalarSizeInBits() && Predicate(Query); }, [=](const LegalityQuery &Query) { LLT T = Query.Types[LargeTypeIdx]; if (T.isVector() && T.getElementType().isPointer()) T = T.changeElementType(LLT::scalar(T.getScalarSizeInBits())); return std::make_pair(TypeIdx, T); }); } /// Conditionally narrow the scalar or elt to match the size of another. LegalizeRuleSet &maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx) { typeIdx(TypeIdx); return narrowScalarIf( [=](const LegalityQuery &Query) { return Query.Types[SmallTypeIdx].getScalarSizeInBits() < Query.Types[TypeIdx].getScalarSizeInBits() && Predicate(Query); }, [=](const LegalityQuery &Query) { LLT T = Query.Types[SmallTypeIdx]; return std::make_pair(TypeIdx, T); }); } /// Add more elements to the vector to reach the next power of two. /// No effect if the type is not a vector or the element count is a power of /// two. LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { using namespace LegalityPredicates; return actionIf(LegalizeAction::MoreElements, numElementsNotPow2(typeIdx(TypeIdx)), LegalizeMutations::moreElementsToNextPow2(TypeIdx)); } /// Limit the number of elements in EltTy vectors to at least MinElements. LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements) { // Mark the type index as covered: typeIdx(TypeIdx); return actionIf( LegalizeAction::MoreElements, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && VecTy.getElementType() == EltTy && VecTy.getNumElements() < MinElements; }, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return std::make_pair( TypeIdx, LLT::fixed_vector(MinElements, VecTy.getElementType())); }); } /// Set number of elements to nearest larger multiple of NumElts. LegalizeRuleSet &alignNumElementsTo(unsigned TypeIdx, const LLT EltTy, unsigned NumElts) { typeIdx(TypeIdx); return actionIf( LegalizeAction::MoreElements, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && VecTy.getElementType() == EltTy && (VecTy.getNumElements() % NumElts != 0); }, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; unsigned NewSize = alignTo(VecTy.getNumElements(), NumElts); return std::make_pair( TypeIdx, LLT::fixed_vector(NewSize, VecTy.getElementType())); }); } /// Limit the number of elements in EltTy vectors to at most MaxElements. LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements) { // Mark the type index as covered: typeIdx(TypeIdx); return actionIf( LegalizeAction::FewerElements, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && VecTy.getElementType() == EltTy && VecTy.getNumElements() > MaxElements; }, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; LLT NewTy = LLT::scalarOrVector(ElementCount::getFixed(MaxElements), VecTy.getElementType()); return std::make_pair(TypeIdx, NewTy); }); } /// Limit the number of elements for the given vectors to at least MinTy's /// number of elements and at most MaxTy's number of elements. /// /// No effect if the type is not a vector or does not have the same element /// type as the constraints. /// The element type of MinTy and MaxTy must match. LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy) { assert(MinTy.getElementType() == MaxTy.getElementType() && "Expected element types to agree"); const LLT EltTy = MinTy.getElementType(); return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); } /// Express \p EltTy vectors strictly using vectors with \p NumElts elements /// (or scalars when \p NumElts equals 1). /// First pad with undef elements to nearest larger multiple of \p NumElts. /// Then perform split with all sub-instructions having the same type. /// Using clampMaxNumElements (non-strict) can result in leftover instruction /// with different type (fewer elements then \p NumElts or scalar). /// No effect if the type is not a vector. LegalizeRuleSet &clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts) { return alignNumElementsTo(TypeIdx, EltTy, NumElts) .clampMaxNumElements(TypeIdx, EltTy, NumElts); } /// Fallback on the previous implementation. This should only be used while /// porting a rule. LegalizeRuleSet &fallback() { add({always, LegalizeAction::UseLegacyRules}); return *this; } /// Check if there is no type index which is obviously not handled by the /// LegalizeRuleSet in any way at all. /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; /// Check if there is no imm index which is obviously not handled by the /// LegalizeRuleSet in any way at all. /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const; /// Apply the ruleset to the given LegalityQuery. LegalizeActionStep apply(const LegalityQuery &Query) const; }; class LegalizerInfo { public: virtual ~LegalizerInfo() = default; const LegacyLegalizerInfo &getLegacyLegalizerInfo() const { return LegacyInfo; } LegacyLegalizerInfo &getLegacyLegalizerInfo() { return LegacyInfo; } unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; unsigned getActionDefinitionsIdx(unsigned Opcode) const; /// Perform simple self-diagnostic and assert if there is anything obviously /// wrong with the actions set up. void verify(const MCInstrInfo &MII) const; /// Get the action definitions for the given opcode. Use this to run a /// LegalityQuery through the definitions. const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; /// Get the action definition builder for the given opcode. Use this to define /// the action definitions. /// /// It is an error to request an opcode that has already been requested by the /// multiple-opcode variant. LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); /// Get the action definition builder for the given set of opcodes. Use this /// to define the action definitions for multiple opcodes at once. The first /// opcode given will be considered the representative opcode and will hold /// the definitions whereas the other opcodes will be configured to refer to /// the representative opcode. This lowers memory requirements and very /// slightly improves performance. /// /// It would be very easy to introduce unexpected side-effects as a result of /// this aliasing if it were permitted to request different but intersecting /// sets of opcodes but that is difficult to keep track of. It is therefore an /// error to request the same opcode twice using this API, to request an /// opcode that already has definitions, or to use the single-opcode API on an /// opcode that has already been requested by this API. LegalizeRuleSet & getActionDefinitionsBuilder(std::initializer_list Opcodes); void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); /// Determine what action should be taken to legalize the described /// instruction. Requires computeTables to have been called. /// /// \returns a description of the next legalization step to perform. LegalizeActionStep getAction(const LegalityQuery &Query) const; /// Determine what action should be taken to legalize the given generic /// instruction. /// /// \returns a description of the next legalization step to perform. LegalizeActionStep getAction(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; bool isLegal(const LegalityQuery &Query) const { return getAction(Query).Action == LegalizeAction::Legal; } bool isLegalOrCustom(const LegalityQuery &Query) const { auto Action = getAction(Query).Action; return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom; } bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; bool isLegalOrCustom(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; /// Called for instructions with the Custom LegalizationAction. virtual bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const { llvm_unreachable("must implement this if custom action is used"); } /// \returns true if MI is either legal or has been legalized and false if not /// legal. /// Return true if MI is either legal or has been legalized and false /// if not legal. virtual bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const { return true; } /// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while /// widening a constant of type SmallTy which targets can override. /// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which /// will be the default. virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const; private: static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; LegacyLegalizerInfo LegacyInfo; }; #ifndef NDEBUG /// Checks that MIR is fully legal, returns an illegal instruction if it's not, /// nullptr otherwise const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); #endif } // end namespace llvm. #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H