//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file declares the MachineIRBuilder class. /// This is a helper class to build MachineInstr. //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H #define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Module.h" namespace llvm { // Forward declarations. class APInt; class BlockAddress; class Constant; class ConstantFP; class ConstantInt; class DataLayout; class GISelCSEInfo; class GlobalValue; class TargetRegisterClass; class MachineFunction; class MachineInstr; class TargetInstrInfo; class GISelChangeObserver; /// Class which stores all the state required in a MachineIRBuilder. /// Since MachineIRBuilders will only store state in this object, it allows /// to transfer BuilderState between different kinds of MachineIRBuilders. struct MachineIRBuilderState { /// MachineFunction under construction. MachineFunction *MF = nullptr; /// Information used to access the description of the opcodes. const TargetInstrInfo *TII = nullptr; /// Information used to verify types are consistent and to create virtual registers. MachineRegisterInfo *MRI = nullptr; /// Debug location to be set to any instruction we create. DebugLoc DL; /// PC sections metadata to be set to any instruction we create. MDNode *PCSections = nullptr; /// \name Fields describing the insertion point. /// @{ MachineBasicBlock *MBB = nullptr; MachineBasicBlock::iterator II; /// @} GISelChangeObserver *Observer = nullptr; GISelCSEInfo *CSEInfo = nullptr; }; class DstOp { union { LLT LLTTy; Register Reg; const TargetRegisterClass *RC; }; public: enum class DstType { Ty_LLT, Ty_Reg, Ty_RC }; DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {} DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {} DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {} DstOp(const LLT T) : LLTTy(T), Ty(DstType::Ty_LLT) {} DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {} void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const { switch (Ty) { case DstType::Ty_Reg: MIB.addDef(Reg); break; case DstType::Ty_LLT: MIB.addDef(MRI.createGenericVirtualRegister(LLTTy)); break; case DstType::Ty_RC: MIB.addDef(MRI.createVirtualRegister(RC)); break; } } LLT getLLTTy(const MachineRegisterInfo &MRI) const { switch (Ty) { case DstType::Ty_RC: return LLT{}; case DstType::Ty_LLT: return LLTTy; case DstType::Ty_Reg: return MRI.getType(Reg); } llvm_unreachable("Unrecognised DstOp::DstType enum"); } Register getReg() const { assert(Ty == DstType::Ty_Reg && "Not a register"); return Reg; } const TargetRegisterClass *getRegClass() const { switch (Ty) { case DstType::Ty_RC: return RC; default: llvm_unreachable("Not a RC Operand"); } } DstType getDstOpKind() const { return Ty; } private: DstType Ty; }; class SrcOp { union { MachineInstrBuilder SrcMIB; Register Reg; CmpInst::Predicate Pred; int64_t Imm; }; public: enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm }; SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {} SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {} SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {} SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {} /// Use of registers held in unsigned integer variables (or more rarely signed /// integers) is no longer permitted to avoid ambiguity with upcoming support /// for immediates. SrcOp(unsigned) = delete; SrcOp(int) = delete; SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {} SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {} void addSrcToMIB(MachineInstrBuilder &MIB) const { switch (Ty) { case SrcType::Ty_Predicate: MIB.addPredicate(Pred); break; case SrcType::Ty_Reg: MIB.addUse(Reg); break; case SrcType::Ty_MIB: MIB.addUse(SrcMIB->getOperand(0).getReg()); break; case SrcType::Ty_Imm: MIB.addImm(Imm); break; } } LLT getLLTTy(const MachineRegisterInfo &MRI) const { switch (Ty) { case SrcType::Ty_Predicate: case SrcType::Ty_Imm: llvm_unreachable("Not a register operand"); case SrcType::Ty_Reg: return MRI.getType(Reg); case SrcType::Ty_MIB: return MRI.getType(SrcMIB->getOperand(0).getReg()); } llvm_unreachable("Unrecognised SrcOp::SrcType enum"); } Register getReg() const { switch (Ty) { case SrcType::Ty_Predicate: case SrcType::Ty_Imm: llvm_unreachable("Not a register operand"); case SrcType::Ty_Reg: return Reg; case SrcType::Ty_MIB: return SrcMIB->getOperand(0).getReg(); } llvm_unreachable("Unrecognised SrcOp::SrcType enum"); } CmpInst::Predicate getPredicate() const { switch (Ty) { case SrcType::Ty_Predicate: return Pred; default: llvm_unreachable("Not a register operand"); } } int64_t getImm() const { switch (Ty) { case SrcType::Ty_Imm: return Imm; default: llvm_unreachable("Not an immediate"); } } SrcType getSrcOpKind() const { return Ty; } private: SrcType Ty; }; /// Helper class to build MachineInstr. /// It keeps internally the insertion point and debug location for all /// the new instructions we want to create. /// This information can be modified via the related setters. class MachineIRBuilder { MachineIRBuilderState State; unsigned getOpcodeForMerge(const DstOp &DstOp, ArrayRef SrcOps) const; protected: void validateTruncExt(const LLT Dst, const LLT Src, bool IsExtend); void validateUnaryOp(const LLT Res, const LLT Op0); void validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1); void validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1); void validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty, const LLT Op1Ty); void recordInsertion(MachineInstr *InsertedInstr) const { if (State.Observer) State.Observer->createdInstr(*InsertedInstr); } public: /// Some constructors for easy use. MachineIRBuilder() = default; MachineIRBuilder(MachineFunction &MF) { setMF(MF); } MachineIRBuilder(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt) { setMF(*MBB.getParent()); setInsertPt(MBB, InsPt); } MachineIRBuilder(MachineInstr &MI) : MachineIRBuilder(*MI.getParent(), MI.getIterator()) { setInstr(MI); setDebugLoc(MI.getDebugLoc()); } MachineIRBuilder(MachineInstr &MI, GISelChangeObserver &Observer) : MachineIRBuilder(MI) { setChangeObserver(Observer); } virtual ~MachineIRBuilder() = default; MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {} const TargetInstrInfo &getTII() { assert(State.TII && "TargetInstrInfo is not set"); return *State.TII; } /// Getter for the function we currently build. MachineFunction &getMF() { assert(State.MF && "MachineFunction is not set"); return *State.MF; } const MachineFunction &getMF() const { assert(State.MF && "MachineFunction is not set"); return *State.MF; } const DataLayout &getDataLayout() const { return getMF().getFunction().getParent()->getDataLayout(); } LLVMContext &getContext() const { return getMF().getFunction().getContext(); } /// Getter for DebugLoc const DebugLoc &getDL() { return State.DL; } /// Getter for MRI MachineRegisterInfo *getMRI() { return State.MRI; } const MachineRegisterInfo *getMRI() const { return State.MRI; } /// Getter for the State MachineIRBuilderState &getState() { return State; } /// Setter for the State void setState(const MachineIRBuilderState &NewState) { State = NewState; } /// Getter for the basic block we currently build. const MachineBasicBlock &getMBB() const { assert(State.MBB && "MachineBasicBlock is not set"); return *State.MBB; } MachineBasicBlock &getMBB() { return const_cast( const_cast(this)->getMBB()); } GISelCSEInfo *getCSEInfo() { return State.CSEInfo; } const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; } /// Current insertion point for new instructions. MachineBasicBlock::iterator getInsertPt() { return State.II; } /// Set the insertion point before the specified position. /// \pre MBB must be in getMF(). /// \pre II must be a valid iterator in MBB. void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II) { assert(MBB.getParent() == &getMF() && "Basic block is in a different function"); State.MBB = &MBB; State.II = II; } /// @} void setCSEInfo(GISelCSEInfo *Info) { State.CSEInfo = Info; } /// \name Setters for the insertion point. /// @{ /// Set the MachineFunction where to build instructions. void setMF(MachineFunction &MF); /// Set the insertion point to the end of \p MBB. /// \pre \p MBB must be contained by getMF(). void setMBB(MachineBasicBlock &MBB) { State.MBB = &MBB; State.II = MBB.end(); assert(&getMF() == MBB.getParent() && "Basic block is in a different function"); } /// Set the insertion point to before MI. /// \pre MI must be in getMF(). void setInstr(MachineInstr &MI) { assert(MI.getParent() && "Instruction is not part of a basic block"); setMBB(*MI.getParent()); State.II = MI.getIterator(); setPCSections(MI.getPCSections()); } /// @} /// Set the insertion point to before MI, and set the debug loc to MI's loc. /// \pre MI must be in getMF(). void setInstrAndDebugLoc(MachineInstr &MI) { setInstr(MI); setDebugLoc(MI.getDebugLoc()); } void setChangeObserver(GISelChangeObserver &Observer) { State.Observer = &Observer; } GISelChangeObserver *getObserver() { return State.Observer; } void stopObservingChanges() { State.Observer = nullptr; } bool isObservingChanges() const { return State.Observer != nullptr; } /// @} /// Set the debug location to \p DL for all the next build instructions. void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; } /// Get the current instruction's debug location. const DebugLoc &getDebugLoc() { return State.DL; } /// Set the PC sections metadata to \p MD for all the next build instructions. void setPCSections(MDNode *MD) { State.PCSections = MD; } /// Get the current instruction's PC sections metadata. MDNode *getPCSections() { return State.PCSections; } /// Build and insert = \p Opcode . /// The insertion point is the one set by the last call of either /// setBasicBlock or setMI. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildInstr(unsigned Opcode) { return insertInstr(buildInstrNoInsert(Opcode)); } /// Build but don't insert = \p Opcode . /// /// \pre setMF, setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildInstrNoInsert(unsigned Opcode); /// Insert an existing instruction at the insertion point. MachineInstrBuilder insertInstr(MachineInstrBuilder MIB); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in \p Reg (suitably modified by \p Expr). MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in memory at \p Reg (suitably modified by \p /// Expr). MachineInstrBuilder buildIndirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in the stack slot specified by \p FI /// (suitably modified by \p Expr). MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instructions specifying that \p Variable is /// given by \p C (suitably modified by \p Expr). MachineInstrBuilder buildConstDbgValue(const Constant &C, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_LABEL instructions specifying that \p Label is /// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label". MachineInstrBuilder buildDbgLabel(const MDNode *Label); /// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align /// /// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of /// the allocated memory into \p Res. /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size, Align Alignment); /// Build and insert \p Res = G_FRAME_INDEX \p Idx /// /// G_FRAME_INDEX materializes the address of an alloca value or other /// stack-based object. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx); /// Build and insert \p Res = G_GLOBAL_VALUE \p GV /// /// G_GLOBAL_VALUE materializes the address of the specified global /// into \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type /// in the same address space as \p GV. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV); /// Build and insert \p Res = G_CONSTANT_POOL \p Idx /// /// G_CONSTANT_POOL materializes the address of an object in the constant /// pool. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildConstantPool(const DstOp &Res, unsigned Idx); /// Build and insert \p Res = G_PTR_ADD \p Op0, \p Op1 /// /// G_PTR_ADD adds \p Op1 addressible units to the pointer specified by \p Op0, /// storing the resulting pointer in \p Res. Addressible units are typically /// bytes but this can vary between targets. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with pointer /// type. /// \pre \p Op1 must be a generic virtual register with scalar type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional Flags = std::nullopt); /// Materialize and insert \p Res = G_PTR_ADD \p Op0, (G_CONSTANT \p Value) /// /// G_PTR_ADD adds \p Value bytes to the pointer specified by \p Op0, /// storing the resulting pointer in \p Res. If \p Value is zero then no /// G_PTR_ADD or G_CONSTANT will be created and \pre Op0 will be assigned to /// \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Op0 must be a generic virtual register with pointer type. /// \pre \p ValueTy must be a scalar type. /// \pre \p Res must be 0. This is to detect confusion between /// materializePtrAdd() and buildPtrAdd(). /// \post \p Res will either be a new generic virtual register of the same /// type as \p Op0 or \p Op0 itself. /// /// \return a MachineInstrBuilder for the newly created instruction. std::optional materializePtrAdd(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value); /// Build and insert \p Res = G_PTRMASK \p Op0, \p Op1 MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_PTRMASK, {Res}, {Op0, Op1}); } /// Build and insert \p Res = G_PTRMASK \p Op0, \p G_CONSTANT (1 << NumBits) - 1 /// /// This clears the low bits of a pointer operand without destroying its /// pointer properties. This has the effect of rounding the address *down* to /// a specified alignment in bits. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with pointer /// type. /// \pre \p NumBits must be an integer representing the number of low bits to /// be cleared in \p Op0. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits); /// Build and insert /// a, b, ..., x = G_UNMERGE_VALUES \p Op0 /// \p Res = G_BUILD_VECTOR a, b, ..., x, undef, ..., undef /// /// Pad \p Op0 with undef elements to match number of elements in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with vector type, /// same vector element type and Op0 must have fewer elements then Res. /// /// \return a MachineInstrBuilder for the newly created build vector instr. MachineInstrBuilder buildPadVectorWithUndefElements(const DstOp &Res, const SrcOp &Op0); /// Build and insert /// a, b, ..., x, y, z = G_UNMERGE_VALUES \p Op0 /// \p Res = G_BUILD_VECTOR a, b, ..., x /// /// Delete trailing elements in \p Op0 to match number of elements in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with vector type, /// same vector element type and Op0 must have more elements then Res. /// /// \return a MachineInstrBuilder for the newly created build vector instr. MachineInstrBuilder buildDeleteTrailingVectorElements(const DstOp &Res, const SrcOp &Op0); /// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1 /// /// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and /// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the /// same scalar type. ////\pre \p CarryOut must be generic virtual register with scalar type ///(typically s1) /// /// \return The newly created instruction. MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_UADDO, {Res, CarryOut}, {Op0, Op1}); } /// Build and insert \p Res, \p CarryOut = G_USUBO \p Op0, \p Op1 MachineInstrBuilder buildUSubo(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_USUBO, {Res, CarryOut}, {Op0, Op1}); } /// Build and insert \p Res, \p CarryOut = G_SADDO \p Op0, \p Op1 MachineInstrBuilder buildSAddo(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_SADDO, {Res, CarryOut}, {Op0, Op1}); } /// Build and insert \p Res, \p CarryOut = G_SUBO \p Op0, \p Op1 MachineInstrBuilder buildSSubo(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_SSUBO, {Res, CarryOut}, {Op0, Op1}); } /// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0, /// \p Op1, \p CarryIn /// /// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit /// width) and sets \p CarryOut to 1 if the result overflowed in unsigned /// arithmetic. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same scalar type. /// \pre \p CarryOut and \p CarryIn must be generic virtual /// registers with the same scalar type (typically s1) /// /// \return The newly created instruction. MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1, const SrcOp &CarryIn) { return buildInstr(TargetOpcode::G_UADDE, {Res, CarryOut}, {Op0, Op1, CarryIn}); } /// Build and insert \p Res, \p CarryOut = G_USUBE \p Op0, \p Op1, \p CarryInp MachineInstrBuilder buildUSube(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1, const SrcOp &CarryIn) { return buildInstr(TargetOpcode::G_USUBE, {Res, CarryOut}, {Op0, Op1, CarryIn}); } /// Build and insert \p Res, \p CarryOut = G_SADDE \p Op0, \p Op1, \p CarryInp MachineInstrBuilder buildSAdde(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1, const SrcOp &CarryIn) { return buildInstr(TargetOpcode::G_SADDE, {Res, CarryOut}, {Op0, Op1, CarryIn}); } /// Build and insert \p Res, \p CarryOut = G_SSUBE \p Op0, \p Op1, \p CarryInp MachineInstrBuilder buildSSube(const DstOp &Res, const DstOp &CarryOut, const SrcOp &Op0, const SrcOp &Op1, const SrcOp &CarryIn) { return buildInstr(TargetOpcode::G_SSUBE, {Res, CarryOut}, {Op0, Op1, CarryIn}); } /// Build and insert \p Res = G_ANYEXT \p Op0 /// /// G_ANYEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified /// (i.e. this is neither zero nor sign-extension). For a vector register, /// each element is extended individually. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op); /// Build and insert \p Res = G_SEXT \p Op /// /// G_SEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the /// high bit of \p Op (i.e. 2s-complement sign extended). /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op); /// Build and insert \p Res = G_SEXT_INREG \p Op, ImmOp MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp) { return buildInstr(TargetOpcode::G_SEXT_INREG, {Res}, {Op, SrcOp(ImmOp)}); } /// Build and insert \p Res = G_FPEXT \p Op MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FPEXT, {Res}, {Op}, Flags); } /// Build and insert a G_PTRTOINT instruction. MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src}); } /// Build and insert a G_INTTOPTR instruction. MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src}); } /// Build and insert \p Dst = G_BITCAST \p Src MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src}); } /// Build and insert \p Dst = G_ADDRSPACE_CAST \p Src MachineInstrBuilder buildAddrSpaceCast(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_ADDRSPACE_CAST, {Dst}, {Src}); } /// \return The opcode of the extension the target wants to use for boolean /// values. unsigned getBoolExtOp(bool IsVec, bool IsFP) const; // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res // = G_ZEXT \p Op depending on how the target wants to extend boolean values. MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op, bool IsFP); // Build and insert \p Res = G_SEXT_INREG \p Op, 1 or \p Res = G_AND \p Op, 1, // or COPY depending on how the target wants to extend boolean values, using // the original register size. MachineInstrBuilder buildBoolExtInReg(const DstOp &Res, const SrcOp &Op, bool IsVector, bool IsFP); /// Build and insert \p Res = G_ZEXT \p Op /// /// G_ZEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector /// register, each element is extended individually. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op); /// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op); /// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op); // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op); /// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p /// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and /// \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op); /// Build and inserts \p Res = \p G_AND \p Op, \p LowBitsSet(ImmOp) /// Since there is no G_ZEXT_INREG like G_SEXT_INREG, the instruction is /// emulated using G_AND. MachineInstrBuilder buildZExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp); /// Build and insert an appropriate cast between two registers of equal size. MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src); /// Build and insert G_BR \p Dest /// /// G_BR is an unconditional branch to \p Dest. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBr(MachineBasicBlock &Dest); /// Build and insert G_BRCOND \p Tst, \p Dest /// /// G_BRCOND is a conditional branch to \p Dest. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Tst must be a generic virtual register with scalar /// type. At the beginning of legalization, this will be a single /// bit (s1). Targets with interesting flags registers may change /// this. For a wider type, whether the branch is taken must only /// depend on bit 0 (for now). /// /// \return The newly created instruction. MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest); /// Build and insert G_BRINDIRECT \p Tgt /// /// G_BRINDIRECT is an indirect branch to \p Tgt. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Tgt must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBrIndirect(Register Tgt); /// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg /// /// G_BRJT is a jump table branch using a table base pointer \p TablePtr, /// jump table index \p JTI and index \p IndexReg /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p TablePtr must be a generic virtual register with pointer type. /// \pre \p JTI must be a jump table index. /// \pre \p IndexReg must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI, Register IndexReg); /// Build and insert \p Res = G_CONSTANT \p Val /// /// G_CONSTANT is an integer constant with the specified size and value. \p /// Val will be extended or truncated to the size of \p Reg. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or pointer /// type. /// /// \return The newly created instruction. virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val); /// Build and insert \p Res = G_CONSTANT \p Val /// /// G_CONSTANT is an integer constant with the specified size and value. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val); MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val); /// Build and insert \p Res = G_FCONSTANT \p Val /// /// G_FCONSTANT is a floating-point constant with the specified size and /// value. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// /// \return The newly created instruction. virtual MachineInstrBuilder buildFConstant(const DstOp &Res, const ConstantFP &Val); MachineInstrBuilder buildFConstant(const DstOp &Res, double Val); MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val); /// Build and insert \p Res = COPY Op /// /// Register-to-register COPY sets \p Res to \p Op. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op); /// Build and insert G_ASSERT_SEXT, G_ASSERT_ZEXT, or G_ASSERT_ALIGN /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAssertInstr(unsigned Opc, const DstOp &Res, const SrcOp &Op, unsigned Val) { return buildInstr(Opc, Res, Op).addImm(Val); } /// Build and insert \p Res = G_ASSERT_ZEXT Op, Size /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAssertZExt(const DstOp &Res, const SrcOp &Op, unsigned Size) { return buildAssertInstr(TargetOpcode::G_ASSERT_ZEXT, Res, Op, Size); } /// Build and insert \p Res = G_ASSERT_SEXT Op, Size /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAssertSExt(const DstOp &Res, const SrcOp &Op, unsigned Size) { return buildAssertInstr(TargetOpcode::G_ASSERT_SEXT, Res, Op, Size); } /// Build and insert \p Res = G_ASSERT_ALIGN Op, AlignVal /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op, Align AlignVal) { return buildAssertInstr(TargetOpcode::G_ASSERT_ALIGN, Res, Op, AlignVal.value()); } /// Build and insert `Res = G_LOAD Addr, MMO`. /// /// Loads the value stored at \p Addr. Puts the result in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO) { return buildLoadInstr(TargetOpcode::G_LOAD, Res, Addr, MMO); } /// Build and insert a G_LOAD instruction, while constructing the /// MachineMemOperand. MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes()); /// Build and insert `Res = Addr, MMO`. /// /// Loads the value stored at \p Addr. Puts the result in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO); /// Helper to create a load from a constant offset given a base address. Load /// the type of \p Dst from \p Offset from the given base address and memory /// operand. MachineInstrBuilder buildLoadFromOffset(const DstOp &Dst, const SrcOp &BasePtr, MachineMemOperand &BaseMMO, int64_t Offset); /// Build and insert `G_STORE Val, Addr, MMO`. /// /// Stores the value \p Val to \p Addr. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Val must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO); /// Build and insert a G_STORE instruction, while constructing the /// MachineMemOperand. MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes()); /// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Src must be generic virtual registers. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index); /// Build and insert \p Res = IMPLICIT_DEF. MachineInstrBuilder buildUndef(const DstOp &Res); /// Build and insert \p Res = G_MERGE_VALUES \p Op0, ... /// /// G_MERGE_VALUES combines the input elements contiguously into a larger /// register. It should only be used when the destination register is not a /// vector. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all \p Ops registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildMergeValues(const DstOp &Res, ArrayRef Ops); /// Build and insert \p Res = G_MERGE_VALUES \p Op0, ... /// or \p Res = G_BUILD_VECTOR \p Op0, ... /// or \p Res = G_CONCAT_VECTORS \p Op0, ... /// /// G_MERGE_VALUES combines the input elements contiguously into a larger /// register. It is used when the destination register is not a vector. /// G_BUILD_VECTOR combines scalar inputs into a vector register. /// G_CONCAT_VECTORS combines vector inputs into a vector register. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all \p Ops registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. The /// opcode of the new instruction will depend on the types of both /// the destination and the sources. MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef Ops); MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, std::initializer_list Ops); /// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op /// /// G_UNMERGE_VALUES splits contiguous bits of the input into multiple /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all \p Res registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildUnmerge(ArrayRef Res, const SrcOp &Op); MachineInstrBuilder buildUnmerge(ArrayRef Res, const SrcOp &Op); /// Build and insert an unmerge of \p Res sized pieces to cover \p Op MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op); /// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ... /// /// G_BUILD_VECTOR creates a vector value from multiple scalar registers. /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the /// input scalar registers. /// \pre The type of all \p Ops registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBuildVector(const DstOp &Res, ArrayRef Ops); /// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ... where each OpN is /// built with G_CONSTANT. MachineInstrBuilder buildBuildVectorConstant(const DstOp &Res, ArrayRef Ops); /// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill /// the number of elements MachineInstrBuilder buildSplatVector(const DstOp &Res, const SrcOp &Src); /// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ... /// /// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers /// which have types larger than the destination vector element type, and /// truncates the values to fit. /// /// If the operands given are already the same size as the vector elt type, /// then this method will instead create a G_BUILD_VECTOR instruction. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The type of all \p Ops registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res, ArrayRef Ops); /// Build and insert a vector splat of a scalar \p Src using a /// G_INSERT_VECTOR_ELT and G_SHUFFLE_VECTOR idiom. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Src must have the same type as the element type of \p Dst /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildShuffleSplat(const DstOp &Res, const SrcOp &Src); /// Build and insert \p Res = G_SHUFFLE_VECTOR \p Src1, \p Src2, \p Mask /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1, const SrcOp &Src2, ArrayRef Mask); /// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ... /// /// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more /// vectors. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all source operands must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildConcatVectors(const DstOp &Res, ArrayRef Ops); MachineInstrBuilder buildInsert(const DstOp &Res, const SrcOp &Src, const SrcOp &Op, unsigned Index); /// Build and insert a G_INTRINSIC instruction. /// /// There are four different opcodes based on combinations of whether the /// intrinsic has side effects and whether it is convergent. These properties /// can be specified as explicit parameters, or else they are retrieved from /// the MCID for the intrinsic. /// /// The parameter \p Res provides the Registers or MOs that will be defined by /// this instruction. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef Res, bool HasSideEffects, bool isConvergent); MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef Res); MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef Res, bool HasSideEffects, bool isConvergent); MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef Res); /// Build and insert \p Res = G_FPTRUNC \p Op /// /// G_FPTRUNC converts a floating-point value into one with a smaller type. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Res must be smaller than \p Op /// /// \return The newly created instruction. MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op, std::optional Flags = std::nullopt); /// Build and insert \p Res = G_TRUNC \p Op /// /// G_TRUNC extracts the low bits of a type. For a vector type each element is /// truncated independently before being packed into the destination. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Res must be smaller than \p Op /// /// \return The newly created instruction. MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op); /// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or /// vector type. Typically this starts as s1 or . /// \pre \p Op0 and Op1 must be generic virtual registers with the /// same number of elements as \p Res. If \p Res is a scalar, /// \p Op0 must be either a scalar or pointer. /// \pre \p Pred must be an integer predicate. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1); /// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or /// vector type. Typically this starts as s1 or . /// \pre \p Op0 and Op1 must be generic virtual registers with the /// same number of elements as \p Res (or scalar, if \p Res is /// scalar). /// \pre \p Pred must be a floating-point predicate. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional Flags = std::nullopt); /// Build and insert a \p Res = G_IS_FPCLASS \p Src, \p Mask MachineInstrBuilder buildIsFPClass(const DstOp &Res, const SrcOp &Src, unsigned Mask) { return buildInstr(TargetOpcode::G_IS_FPCLASS, {Res}, {Src, SrcOp(static_cast(Mask))}); } /// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same type. /// \pre \p Tst must be a generic virtual register with scalar, pointer or /// vector type. If vector then it must have the same number of /// elements as the other parameters. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional Flags = std::nullopt); /// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val, /// \p Elt, \p Idx /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Val must be a generic virtual register // with the same vector type. /// \pre \p Elt and \p Idx must be a generic virtual register /// with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildInsertVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Elt, const SrcOp &Idx); /// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// \pre \p Val must be a generic virtual register with vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildExtractVectorElementConstant(const DstOp &Res, const SrcOp &Val, const int Idx) { return buildExtractVectorElement(Res, Val, buildConstant(LLT::scalar(64), Idx)); } /// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// \pre \p Val must be a generic virtual register with vector type. /// \pre \p Idx must be a generic virtual register with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildExtractVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Idx); /// Build and insert `OldValRes, SuccessRes = /// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`. /// /// Atomically replace the value at \p Addr with \p NewVal if it is currently /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p /// Addr in \p Res, along with an s1 indicating whether it was replaced. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register of scalar type. /// \pre \p SuccessRes must be a generic virtual register of scalar type. It /// will be assigned 0 on failure and 1 on success. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual /// registers of the same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes, Register Addr, Register CmpVal, Register NewVal, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal, /// MMO`. /// /// Atomically replace the value at \p Addr with \p NewVal if it is currently /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p /// Addr in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register of scalar type. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual /// registers of the same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr, Register CmpVal, Register NewVal, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_ Addr, Val, MMO`. /// /// Atomically read-modify-update the value at \p Addr with \p Val. Puts the /// original value from \p Addr in \p OldValRes. The modification is /// determined by the opcode. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_XCHG Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with \p Val. Puts the original /// value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_ADD Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the addition of \p Val and /// the original value. Puts the original value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_SUB Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the subtraction of \p Val and /// the original value. Puts the original value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_AND Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the bitwise and of \p Val and /// the original value. Puts the original value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_NAND Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the bitwise nand of \p Val /// and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_OR Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the bitwise or of \p Val and /// the original value. Puts the original value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_XOR Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the bitwise xor of \p Val and /// the original value. Puts the original value from \p Addr in \p OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_MAX Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the signed maximum of \p /// Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_MIN Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the signed minimum of \p /// Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_UMAX Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the unsigned maximum of \p /// Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_UMIN Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the unsigned minimum of \p /// Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_FADD Addr, Val, MMO`. MachineInstrBuilder buildAtomicRMWFAdd( const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_FSUB Addr, Val, MMO`. MachineInstrBuilder buildAtomicRMWFSub( const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_FMAX Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the floating point maximum of /// \p Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWFMax( const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO); /// Build and insert `OldValRes = G_ATOMICRMW_FMIN Addr, Val, MMO`. /// /// Atomically replace the value at \p Addr with the floating point minimum of /// \p Val and the original value. Puts the original value from \p Addr in \p /// OldValRes. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p OldValRes must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// \pre \p OldValRes, and \p Val must be generic virtual registers of the /// same type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAtomicRMWFMin( const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO); /// Build and insert `G_FENCE Ordering, Scope`. MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope); /// Build and insert G_PREFETCH \p Addr, \p RW, \p Locality, \p CacheType MachineInstrBuilder buildPrefetch(const SrcOp &Addr, unsigned RW, unsigned Locality, unsigned CacheType, MachineMemOperand &MMO); /// Build and insert \p Dst = G_FREEZE \p Src MachineInstrBuilder buildFreeze(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_FREEZE, {Dst}, {Src}); } /// Build and insert \p Res = G_BLOCK_ADDR \p BA /// /// G_BLOCK_ADDR computes the address of a basic block. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register of a pointer type. /// /// \return The newly created instruction. MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA); /// Build and insert \p Res = G_ADD \p Op0, \p Op1 /// /// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1, /// truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_SUB \p Op0, \p Op1 /// /// G_SUB sets \p Res to the difference of integer parameters \p Op0 and /// \p Op1, truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_MUL \p Op0, \p Op1 /// /// G_MUL sets \p Res to the product of integer parameters \p Op0 and \p Op1, /// truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_UREM \p Op0, \p Op1 MachineInstrBuilder buildURem(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_UREM, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildFMinNum(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMINNUM, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildFMaxNum(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMAXNUM, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildFMinNumIEEE(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMINNUM_IEEE, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildFMaxNumIEEE(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMAXNUM_IEEE, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags); } MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_AND \p Op0, \p Op1 /// /// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p /// Op1. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1}); } /// Build and insert \p Res = G_OR \p Op0, \p Op1 /// /// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p /// Op1. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_XOR \p Op0, \p Op1 MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1}); } /// Build and insert a bitwise not, /// \p NegOne = G_CONSTANT -1 /// \p Res = G_OR \p Op0, NegOne MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) { auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1); return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne}); } /// Build and insert integer negation /// \p Zero = G_CONSTANT 0 /// \p Res = G_SUB Zero, \p Op0 MachineInstrBuilder buildNeg(const DstOp &Dst, const SrcOp &Src0) { auto Zero = buildConstant(Dst.getLLTTy(*getMRI()), 0); return buildInstr(TargetOpcode::G_SUB, {Dst}, {Zero, Src0}); } /// Build and insert \p Res = G_CTPOP \p Op0, \p Src0 MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0}); } /// Build and insert \p Res = G_CTLZ \p Op0, \p Src0 MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0}); } /// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0 MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0}); } /// Build and insert \p Res = G_CTTZ \p Op0, \p Src0 MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0}); } /// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0 MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0}); } /// Build and insert \p Dst = G_BSWAP \p Src0 MachineInstrBuilder buildBSwap(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_BSWAP, {Dst}, {Src0}); } /// Build and insert \p Res = G_FADD \p Op0, \p Op1 MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_STRICT_FADD \p Op0, \p Op1 MachineInstrBuilder buildStrictFAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_STRICT_FADD, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_FSUB \p Op0, \p Op1 MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_FDIV \p Op0, \p Op1 MachineInstrBuilder buildFDiv(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FDIV, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2 MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, const SrcOp &Src2, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2}, Flags); } /// Build and insert \p Res = G_FMAD \p Op0, \p Op1, \p Op2 MachineInstrBuilder buildFMAD(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, const SrcOp &Src2, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FMAD, {Dst}, {Src0, Src1, Src2}, Flags); } /// Build and insert \p Res = G_FNEG \p Op0 MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0}, Flags); } /// Build and insert \p Res = G_FABS \p Op0 MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags); } /// Build and insert \p Dst = G_FCANONICALIZE \p Src0 MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags); } /// Build and insert \p Dst = G_INTRINSIC_TRUNC \p Src0 MachineInstrBuilder buildIntrinsicTrunc(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {Dst}, {Src0}, Flags); } /// Build and insert \p Res = GFFLOOR \p Op0, \p Op1 MachineInstrBuilder buildFFloor(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FFLOOR, {Dst}, {Src0}, Flags); } /// Build and insert \p Dst = G_FLOG \p Src MachineInstrBuilder buildFLog(const DstOp &Dst, const SrcOp &Src, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FLOG, {Dst}, {Src}, Flags); } /// Build and insert \p Dst = G_FLOG2 \p Src MachineInstrBuilder buildFLog2(const DstOp &Dst, const SrcOp &Src, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FLOG2, {Dst}, {Src}, Flags); } /// Build and insert \p Dst = G_FEXP2 \p Src MachineInstrBuilder buildFExp2(const DstOp &Dst, const SrcOp &Src, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FEXP2, {Dst}, {Src}, Flags); } /// Build and insert \p Dst = G_FPOW \p Src0, \p Src1 MachineInstrBuilder buildFPow(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FPOW, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Dst = G_FLDEXP \p Src0, \p Src1 MachineInstrBuilder buildFLdexp(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FLDEXP, {Dst}, {Src0, Src1}, Flags); } /// Build and insert \p Fract, \p Exp = G_FFREXP \p Src MachineInstrBuilder buildFFrexp(const DstOp &Fract, const DstOp &Exp, const SrcOp &Src, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_FFREXP, {Fract, Exp}, {Src}, Flags); } /// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1 MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1}); } /// Build and insert \p Res = G_UITOFP \p Src0 MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0}); } /// Build and insert \p Res = G_SITOFP \p Src0 MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0}); } /// Build and insert \p Res = G_FPTOUI \p Src0 MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0}); } /// Build and insert \p Res = G_FPTOSI \p Src0 MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) { return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0}); } /// Build and insert \p Dst = G_INTRINSIC_ROUNDEVEN \p Src0, \p Src1 MachineInstrBuilder buildIntrinsicRoundeven(const DstOp &Dst, const SrcOp &Src0, std::optional Flags = std::nullopt) { return buildInstr(TargetOpcode::G_INTRINSIC_ROUNDEVEN, {Dst}, {Src0}, Flags); } /// Build and insert \p Res = G_SMIN \p Op0, \p Op1 MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1}); } /// Build and insert \p Res = G_SMAX \p Op0, \p Op1 MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1}); } /// Build and insert \p Res = G_UMIN \p Op0, \p Op1 MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1}); } /// Build and insert \p Res = G_UMAX \p Op0, \p Op1 MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1) { return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1}); } /// Build and insert \p Dst = G_ABS \p Src MachineInstrBuilder buildAbs(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_ABS, {Dst}, {Src}); } /// Build and insert \p Res = G_JUMP_TABLE \p JTI /// /// G_JUMP_TABLE sets \p Res to the address of the jump table specified by /// the jump table index \p JTI. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI); /// Build and insert \p Res = G_VECREDUCE_SEQ_FADD \p ScalarIn, \p VecIn /// /// \p ScalarIn is the scalar accumulator input to start the sequential /// reduction operation of \p VecIn. MachineInstrBuilder buildVecReduceSeqFAdd(const DstOp &Dst, const SrcOp &ScalarIn, const SrcOp &VecIn) { return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FADD, {Dst}, {ScalarIn, {VecIn}}); } /// Build and insert \p Res = G_VECREDUCE_SEQ_FMUL \p ScalarIn, \p VecIn /// /// \p ScalarIn is the scalar accumulator input to start the sequential /// reduction operation of \p VecIn. MachineInstrBuilder buildVecReduceSeqFMul(const DstOp &Dst, const SrcOp &ScalarIn, const SrcOp &VecIn) { return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FMUL, {Dst}, {ScalarIn, {VecIn}}); } /// Build and insert \p Res = G_VECREDUCE_FADD \p Src /// /// \p ScalarIn is the scalar accumulator input to the reduction operation of /// \p VecIn. MachineInstrBuilder buildVecReduceFAdd(const DstOp &Dst, const SrcOp &ScalarIn, const SrcOp &VecIn) { return buildInstr(TargetOpcode::G_VECREDUCE_FADD, {Dst}, {ScalarIn, VecIn}); } /// Build and insert \p Res = G_VECREDUCE_FMUL \p Src /// /// \p ScalarIn is the scalar accumulator input to the reduction operation of /// \p VecIn. MachineInstrBuilder buildVecReduceFMul(const DstOp &Dst, const SrcOp &ScalarIn, const SrcOp &VecIn) { return buildInstr(TargetOpcode::G_VECREDUCE_FMUL, {Dst}, {ScalarIn, VecIn}); } /// Build and insert \p Res = G_VECREDUCE_FMAX \p Src MachineInstrBuilder buildVecReduceFMax(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_FMAX, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_FMIN \p Src MachineInstrBuilder buildVecReduceFMin(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_FMIN, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_FMAXIMUM \p Src MachineInstrBuilder buildVecReduceFMaximum(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_FMAXIMUM, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_FMINIMUM \p Src MachineInstrBuilder buildVecReduceFMinimum(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_FMINIMUM, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_ADD \p Src MachineInstrBuilder buildVecReduceAdd(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_ADD, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_MUL \p Src MachineInstrBuilder buildVecReduceMul(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_MUL, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_AND \p Src MachineInstrBuilder buildVecReduceAnd(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_AND, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_OR \p Src MachineInstrBuilder buildVecReduceOr(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_OR, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_XOR \p Src MachineInstrBuilder buildVecReduceXor(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_XOR, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_SMAX \p Src MachineInstrBuilder buildVecReduceSMax(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_SMAX, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_SMIN \p Src MachineInstrBuilder buildVecReduceSMin(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_SMIN, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_UMAX \p Src MachineInstrBuilder buildVecReduceUMax(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_UMAX, {Dst}, {Src}); } /// Build and insert \p Res = G_VECREDUCE_UMIN \p Src MachineInstrBuilder buildVecReduceUMin(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_VECREDUCE_UMIN, {Dst}, {Src}); } /// Build and insert G_MEMCPY or G_MEMMOVE MachineInstrBuilder buildMemTransferInst(unsigned Opcode, const SrcOp &DstPtr, const SrcOp &SrcPtr, const SrcOp &Size, MachineMemOperand &DstMMO, MachineMemOperand &SrcMMO) { auto MIB = buildInstr( Opcode, {}, {DstPtr, SrcPtr, Size, SrcOp(INT64_C(0) /*isTailCall*/)}); MIB.addMemOperand(&DstMMO); MIB.addMemOperand(&SrcMMO); return MIB; } MachineInstrBuilder buildMemCpy(const SrcOp &DstPtr, const SrcOp &SrcPtr, const SrcOp &Size, MachineMemOperand &DstMMO, MachineMemOperand &SrcMMO) { return buildMemTransferInst(TargetOpcode::G_MEMCPY, DstPtr, SrcPtr, Size, DstMMO, SrcMMO); } /// Build and insert \p Dst = G_SBFX \p Src, \p LSB, \p Width. MachineInstrBuilder buildSbfx(const DstOp &Dst, const SrcOp &Src, const SrcOp &LSB, const SrcOp &Width) { return buildInstr(TargetOpcode::G_SBFX, {Dst}, {Src, LSB, Width}); } /// Build and insert \p Dst = G_UBFX \p Src, \p LSB, \p Width. MachineInstrBuilder buildUbfx(const DstOp &Dst, const SrcOp &Src, const SrcOp &LSB, const SrcOp &Width) { return buildInstr(TargetOpcode::G_UBFX, {Dst}, {Src, LSB, Width}); } /// Build and insert \p Dst = G_ROTR \p Src, \p Amt MachineInstrBuilder buildRotateRight(const DstOp &Dst, const SrcOp &Src, const SrcOp &Amt) { return buildInstr(TargetOpcode::G_ROTR, {Dst}, {Src, Amt}); } /// Build and insert \p Dst = G_ROTL \p Src, \p Amt MachineInstrBuilder buildRotateLeft(const DstOp &Dst, const SrcOp &Src, const SrcOp &Amt) { return buildInstr(TargetOpcode::G_ROTL, {Dst}, {Src, Amt}); } /// Build and insert \p Dst = G_BITREVERSE \p Src MachineInstrBuilder buildBitReverse(const DstOp &Dst, const SrcOp &Src) { return buildInstr(TargetOpcode::G_BITREVERSE, {Dst}, {Src}); } virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef DstOps, ArrayRef SrcOps, std::optional Flags = std::nullopt); }; } // End namespace llvm. #endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H