//===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file implements the LiveInterval analysis pass. Given some /// numbering of each the machine instructions (in this implemention depth-first /// order) an interval [i, j) is said to be a live interval for register v if /// there is no instruction with number j' > j such that v is live at j' and /// there is no instruction with number i' < i such that v is live at i'. In /// this implementation intervals can have holes, i.e. an interval might look /// like [1,20), [50,65), [1000,1001). // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVALS_H #define LLVM_CODEGEN_LIVEINTERVALS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include #include namespace llvm { extern cl::opt UseSegmentSetForPhysRegs; class BitVector; class LiveIntervalCalc; class MachineBlockFrequencyInfo; class MachineDominatorTree; class MachineFunction; class MachineInstr; class MachineRegisterInfo; class raw_ostream; class TargetInstrInfo; class VirtRegMap; class LiveIntervals : public MachineFunctionPass { MachineFunction *MF = nullptr; MachineRegisterInfo *MRI = nullptr; const TargetRegisterInfo *TRI = nullptr; const TargetInstrInfo *TII = nullptr; SlotIndexes *Indexes = nullptr; MachineDominatorTree *DomTree = nullptr; LiveIntervalCalc *LICalc = nullptr; /// Special pool allocator for VNInfo's (LiveInterval val#). VNInfo::Allocator VNInfoAllocator; /// Live interval pointers for all the virtual registers. IndexedMap VirtRegIntervals; /// Sorted list of instructions with register mask operands. Always use the /// 'r' slot, RegMasks are normal clobbers, not early clobbers. SmallVector RegMaskSlots; /// This vector is parallel to RegMaskSlots, it holds a pointer to the /// corresponding register mask. This pointer can be recomputed as: /// /// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]); /// unsigned OpNum = findRegMaskOperand(MI); /// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask(); /// /// This is kept in a separate vector partly because some standard /// libraries don't support lower_bound() with mixed objects, partly to /// improve locality when searching in RegMaskSlots. /// Also see the comment in LiveInterval::find(). SmallVector RegMaskBits; /// For each basic block number, keep (begin, size) pairs indexing into the /// RegMaskSlots and RegMaskBits arrays. /// Note that basic block numbers may not be layout contiguous, that's why /// we can't just keep track of the first register mask in each basic /// block. SmallVector, 8> RegMaskBlocks; /// Keeps a live range set for each register unit to track fixed physreg /// interference. SmallVector RegUnitRanges; public: static char ID; LiveIntervals(); ~LiveIntervals() override; /// Calculate the spill weight to assign to a single instruction. static float getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineInstr &MI); /// Calculate the spill weight to assign to a single instruction. static float getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineBasicBlock *MBB); LiveInterval &getInterval(Register Reg) { if (hasInterval(Reg)) return *VirtRegIntervals[Reg.id()]; return createAndComputeVirtRegInterval(Reg); } const LiveInterval &getInterval(Register Reg) const { return const_cast(this)->getInterval(Reg); } bool hasInterval(Register Reg) const { return VirtRegIntervals.inBounds(Reg.id()) && VirtRegIntervals[Reg.id()]; } /// Interval creation. LiveInterval &createEmptyInterval(Register Reg) { assert(!hasInterval(Reg) && "Interval already exists!"); VirtRegIntervals.grow(Reg.id()); VirtRegIntervals[Reg.id()] = createInterval(Reg); return *VirtRegIntervals[Reg.id()]; } LiveInterval &createAndComputeVirtRegInterval(Register Reg) { LiveInterval &LI = createEmptyInterval(Reg); computeVirtRegInterval(LI); return LI; } /// Return an existing interval for \p Reg. /// If \p Reg has no interval then this creates a new empty one instead. /// Note: does not trigger interval computation. LiveInterval &getOrCreateEmptyInterval(Register Reg) { return hasInterval(Reg) ? getInterval(Reg) : createEmptyInterval(Reg); } /// Interval removal. void removeInterval(Register Reg) { delete VirtRegIntervals[Reg]; VirtRegIntervals[Reg] = nullptr; } /// Given a register and an instruction, adds a live segment from that /// instruction to the end of its MBB. LiveInterval::Segment addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst); /// After removing some uses of a register, shrink its live range to just /// the remaining uses. This method does not compute reaching defs for new /// uses, and it doesn't remove dead defs. /// Dead PHIDef values are marked as unused. New dead machine instructions /// are added to the dead vector. Returns true if the interval may have been /// separated into multiple connected components. bool shrinkToUses(LiveInterval *li, SmallVectorImpl *dead = nullptr); /// Specialized version of /// shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) /// that works on a subregister live range and only looks at uses matching /// the lane mask of the subregister range. /// This may leave the subrange empty which needs to be cleaned up with /// LiveInterval::removeEmptySubranges() afterwards. void shrinkToUses(LiveInterval::SubRange &SR, Register Reg); /// Extend the live range \p LR to reach all points in \p Indices. The /// points in the \p Indices array must be jointly dominated by the union /// of the existing defs in \p LR and points in \p Undefs. /// /// PHI-defs are added as needed to maintain SSA form. /// /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR /// will be extended to be live out of the basic block. /// If a SlotIndex in \p Indices is jointy dominated only by points in /// \p Undefs, the live range will not be extended to that point. /// /// See also LiveRangeCalc::extend(). void extendToIndices(LiveRange &LR, ArrayRef Indices, ArrayRef Undefs); void extendToIndices(LiveRange &LR, ArrayRef Indices) { extendToIndices(LR, Indices, /*Undefs=*/{}); } /// If \p LR has a live value at \p Kill, prune its live range by removing /// any liveness reachable from Kill. Add live range end points to /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the /// value's live range. /// /// Calling pruneValue() and extendToIndices() can be used to reconstruct /// SSA form after adding defs to a virtual register. void pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl *EndPoints); /// This function should not be used. Its intent is to tell you that you are /// doing something wrong if you call pruneValue directly on a /// LiveInterval. Indeed, you are supposed to call pruneValue on the main /// LiveRange and all the LiveRanges of the subranges if any. LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex, SmallVectorImpl *) { llvm_unreachable( "Use pruneValue on the main LiveRange and on each subrange"); } SlotIndexes *getSlotIndexes() const { return Indexes; } /// Returns true if the specified machine instr has been removed or was /// never entered in the map. bool isNotInMIMap(const MachineInstr &Instr) const { return !Indexes->hasIndex(Instr); } /// Returns the base index of the given instruction. SlotIndex getInstructionIndex(const MachineInstr &Instr) const { return Indexes->getInstructionIndex(Instr); } /// Returns the instruction associated with the given index. MachineInstr* getInstructionFromIndex(SlotIndex index) const { return Indexes->getInstructionFromIndex(index); } /// Return the first index in the given basic block. SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBStartIdx(mbb); } /// Return the last index in the given basic block. SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return Indexes->getMBBEndIdx(mbb); } bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const { return LR.liveAt(getMBBStartIdx(mbb)); } bool isLiveOutOfMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const { return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot()); } MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { return Indexes->getMBBFromIndex(index); } void insertMBBInMaps(MachineBasicBlock *MBB) { Indexes->insertMBBInMaps(MBB); assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() && "Blocks must be added in order."); RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0)); } SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) { return Indexes->insertMachineInstrInMaps(MI); } void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E) { for (MachineBasicBlock::iterator I = B; I != E; ++I) Indexes->insertMachineInstrInMaps(*I); } void RemoveMachineInstrFromMaps(MachineInstr &MI) { Indexes->removeMachineInstrFromMaps(MI); } SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) { return Indexes->replaceMachineInstrInMaps(MI, NewMI); } VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; } void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; /// Pass entry point; Calculates LiveIntervals. bool runOnMachineFunction(MachineFunction&) override; /// Implement the dump method. void print(raw_ostream &O, const Module* = nullptr) const override; /// If LI is confined to a single basic block, return a pointer to that /// block. If LI is live in to or out of any block, return NULL. MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const; /// Returns true if VNI is killed by any PHI-def values in LI. /// This may conservatively return true to avoid expensive computations. bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const; /// Add kill flags to any instruction that kills a virtual register. void addKillFlags(const VirtRegMap*); /// Call this method to notify LiveIntervals that instruction \p MI has been /// moved within a basic block. This will update the live intervals for all /// operands of \p MI. Moves between basic blocks are not supported. /// /// \param UpdateFlags Update live intervals for nonallocatable physregs. void handleMove(MachineInstr &MI, bool UpdateFlags = false); /// Update intervals of operands of all instructions in the newly /// created bundle specified by \p BundleStart. /// /// \param UpdateFlags Update live intervals for nonallocatable physregs. /// /// Assumes existing liveness is accurate. /// \pre BundleStart should be the first instruction in the Bundle. /// \pre BundleStart should not have a have SlotIndex as one will be assigned. void handleMoveIntoNewBundle(MachineInstr &BundleStart, bool UpdateFlags = false); /// Update live intervals for instructions in a range of iterators. It is /// intended for use after target hooks that may insert or remove /// instructions, and is only efficient for a small number of instructions. /// /// OrigRegs is a vector of registers that were originally used by the /// instructions in the range between the two iterators. /// /// Currently, the only changes that are supported are simple removal /// and addition of uses. void repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef OrigRegs); // Register mask functions. // // Machine instructions may use a register mask operand to indicate that a // large number of registers are clobbered by the instruction. This is // typically used for calls. // // For compile time performance reasons, these clobbers are not recorded in // the live intervals for individual physical registers. Instead, // LiveIntervalAnalysis maintains a sorted list of instructions with // register mask operands. /// Returns a sorted array of slot indices of all instructions with /// register mask operands. ArrayRef getRegMaskSlots() const { return RegMaskSlots; } /// Returns a sorted array of slot indices of all instructions with register /// mask operands in the basic block numbered \p MBBNum. ArrayRef getRegMaskSlotsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskSlots().slice(P.first, P.second); } /// Returns an array of register mask pointers corresponding to /// getRegMaskSlots(). ArrayRef getRegMaskBits() const { return RegMaskBits; } /// Returns an array of mask pointers corresponding to /// getRegMaskSlotsInBlock(MBBNum). ArrayRef getRegMaskBitsInBlock(unsigned MBBNum) const { std::pair P = RegMaskBlocks[MBBNum]; return getRegMaskBits().slice(P.first, P.second); } /// Test if \p LI is live across any register mask instructions, and /// compute a bit mask of physical registers that are not clobbered by any /// of them. /// /// Returns false if \p LI doesn't cross any register mask instructions. In /// that case, the bit vector is not filled in. bool checkRegMaskInterference(const LiveInterval &LI, BitVector &UsableRegs); // Register unit functions. // // Fixed interference occurs when MachineInstrs use physregs directly // instead of virtual registers. This typically happens when passing // arguments to a function call, or when instructions require operands in // fixed registers. // // Each physreg has one or more register units, see MCRegisterInfo. We // track liveness per register unit to handle aliasing registers more // efficiently. /// Return the live range for register unit \p Unit. It will be computed if /// it doesn't exist. LiveRange &getRegUnit(unsigned Unit) { LiveRange *LR = RegUnitRanges[Unit]; if (!LR) { // Compute missing ranges on demand. // Use segment set to speed-up initial computation of the live range. RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs); computeRegUnitRange(*LR, Unit); } return *LR; } /// Return the live range for register unit \p Unit if it has already been /// computed, or nullptr if it hasn't been computed yet. LiveRange *getCachedRegUnit(unsigned Unit) { return RegUnitRanges[Unit]; } const LiveRange *getCachedRegUnit(unsigned Unit) const { return RegUnitRanges[Unit]; } /// Remove computed live range for register unit \p Unit. Subsequent uses /// should rely on on-demand recomputation. void removeRegUnit(unsigned Unit) { delete RegUnitRanges[Unit]; RegUnitRanges[Unit] = nullptr; } /// Remove associated live ranges for the register units associated with \p /// Reg. Subsequent uses should rely on on-demand recomputation. \note This /// method can result in inconsistent liveness tracking if multiple phyical /// registers share a regunit, and should be used cautiously. void removeAllRegUnitsForPhysReg(MCRegister Reg) { for (MCRegUnit Unit : TRI->regunits(Reg)) removeRegUnit(Unit); } /// Remove value numbers and related live segments starting at position /// \p Pos that are part of any liverange of physical register \p Reg or one /// of its subregisters. void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos); /// Remove value number and related live segments of \p LI and its subranges /// that start at position \p Pos. void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos); /// Split separate components in LiveInterval \p LI into separate intervals. void splitSeparateComponents(LiveInterval &LI, SmallVectorImpl &SplitLIs); /// For live interval \p LI with correct SubRanges construct matching /// information for the main live range. Expects the main live range to not /// have any segments or value numbers. void constructMainRangeFromSubranges(LiveInterval &LI); private: /// Compute live intervals for all virtual registers. void computeVirtRegs(); /// Compute RegMaskSlots and RegMaskBits. void computeRegMasks(); /// Walk the values in \p LI and check for dead values: /// - Dead PHIDef values are marked as unused. /// - Dead operands are marked as such. /// - Completely dead machine instructions are added to the \p dead vector /// if it is not nullptr. /// Returns true if any PHI value numbers have been removed which may /// have separated the interval into multiple connected components. bool computeDeadValues(LiveInterval &LI, SmallVectorImpl *dead); static LiveInterval *createInterval(Register Reg); void printInstrs(raw_ostream &O) const; void dumpInstrs() const; void computeLiveInRegUnits(); void computeRegUnitRange(LiveRange&, unsigned Unit); bool computeVirtRegInterval(LiveInterval&); using ShrinkToUsesWorkList = SmallVector, 16>; void extendSegmentsToUses(LiveRange &Segments, ShrinkToUsesWorkList &WorkList, Register Reg, LaneBitmask LaneMask); /// Helper function for repairIntervalsInRange(), walks backwards and /// creates/modifies live segments in \p LR to match the operands found. /// Only full operands or operands with subregisters matching \p LaneMask /// are considered. void repairOldRegInRange(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, const SlotIndex endIdx, LiveRange &LR, Register Reg, LaneBitmask LaneMask = LaneBitmask::getAll()); class HMEditor; }; } // end namespace llvm #endif