//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H #define LLVM_CODEGEN_MACHINEBASICBLOCK_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundleIterator.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/BranchProbability.h" #include #include #include #include #include namespace llvm { class BasicBlock; class MachineFunction; class MCSymbol; class ModuleSlotTracker; class Pass; class Printable; class SlotIndexes; class StringRef; class raw_ostream; class LiveIntervals; class TargetRegisterClass; class TargetRegisterInfo; // This structure uniquely identifies a basic block section. // Possible values are // {Type: Default, Number: (unsigned)} (These are regular section IDs) // {Type: Exception, Number: 0} (ExceptionSectionID) // {Type: Cold, Number: 0} (ColdSectionID) struct MBBSectionID { enum SectionType { Default = 0, // Regular section (these sections are distinguished by the // Number field). Exception, // Special section type for exception handling blocks Cold, // Special section type for cold blocks } Type; unsigned Number; MBBSectionID(unsigned N) : Type(Default), Number(N) {} // Special unique sections for cold and exception blocks. const static MBBSectionID ColdSectionID; const static MBBSectionID ExceptionSectionID; bool operator==(const MBBSectionID &Other) const { return Type == Other.Type && Number == Other.Number; } bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); } private: // This is only used to construct the special cold and exception sections. MBBSectionID(SectionType T) : Type(T), Number(0) {} }; // This structure represents the information for a basic block pertaining to // the basic block sections profile. struct UniqueBBID { unsigned BaseID; unsigned CloneID; }; template <> struct ilist_traits { private: friend class MachineBasicBlock; // Set by the owning MachineBasicBlock. MachineBasicBlock *Parent; using instr_iterator = simple_ilist>::iterator; public: void addNodeToList(MachineInstr *N); void removeNodeFromList(MachineInstr *N); void transferNodesFromList(ilist_traits &FromList, instr_iterator First, instr_iterator Last); void deleteNode(MachineInstr *MI); }; class MachineBasicBlock : public ilist_node_with_parent { public: /// Pair of physical register and lane mask. /// This is not simply a std::pair typedef because the members should be named /// clearly as they both have an integer type. struct RegisterMaskPair { public: MCPhysReg PhysReg; LaneBitmask LaneMask; RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask) : PhysReg(PhysReg), LaneMask(LaneMask) {} bool operator==(const RegisterMaskPair &other) const { return PhysReg == other.PhysReg && LaneMask == other.LaneMask; } }; private: using Instructions = ilist>; const BasicBlock *BB; int Number; /// The call frame size on entry to this basic block due to call frame setup /// instructions in a predecessor. This is usually zero, unless basic blocks /// are split in the middle of a call sequence. /// /// This information is only maintained until PrologEpilogInserter eliminates /// call frame pseudos. unsigned CallFrameSize = 0; MachineFunction *xParent; Instructions Insts; /// Keep track of the predecessor / successor basic blocks. std::vector Predecessors; std::vector Successors; /// Keep track of the probabilities to the successors. This vector has the /// same order as Successors, or it is empty if we don't use it (disable /// optimization). std::vector Probs; using probability_iterator = std::vector::iterator; using const_probability_iterator = std::vector::const_iterator; std::optional IrrLoopHeaderWeight; /// Keep track of the physical registers that are livein of the basicblock. using LiveInVector = std::vector; LiveInVector LiveIns; /// Alignment of the basic block. One if the basic block does not need to be /// aligned. Align Alignment; /// Maximum amount of bytes that can be added to align the basic block. If the /// alignment cannot be reached in this many bytes, no bytes are emitted. /// Zero to represent no maximum. unsigned MaxBytesForAlignment = 0; /// Indicate that this basic block is entered via an exception handler. bool IsEHPad = false; /// Indicate that this MachineBasicBlock is referenced somewhere other than /// as predecessor/successor, a terminator MachineInstr, or a jump table. bool MachineBlockAddressTaken = false; /// If this MachineBasicBlock corresponds to an IR-level "blockaddress" /// constant, this contains a pointer to that block. BasicBlock *AddressTakenIRBlock = nullptr; /// Indicate that this basic block needs its symbol be emitted regardless of /// whether the flow just falls-through to it. bool LabelMustBeEmitted = false; /// Indicate that this basic block is the entry block of an EH scope, i.e., /// the block that used to have a catchpad or cleanuppad instruction in the /// LLVM IR. bool IsEHScopeEntry = false; /// Indicates if this is a target block of a catchret. bool IsEHCatchretTarget = false; /// Indicate that this basic block is the entry block of an EH funclet. bool IsEHFuncletEntry = false; /// Indicate that this basic block is the entry block of a cleanup funclet. bool IsCleanupFuncletEntry = false; /// Fixed unique ID assigned to this basic block upon creation. Used with /// basic block sections and basic block labels. std::optional BBID; /// With basic block sections, this stores the Section ID of the basic block. MBBSectionID SectionID{0}; // Indicate that this basic block begins a section. bool IsBeginSection = false; // Indicate that this basic block ends a section. bool IsEndSection = false; /// Indicate that this basic block is the indirect dest of an INLINEASM_BR. bool IsInlineAsmBrIndirectTarget = false; /// since getSymbol is a relatively heavy-weight operation, the symbol /// is only computed once and is cached. mutable MCSymbol *CachedMCSymbol = nullptr; /// Cached MCSymbol for this block (used if IsEHCatchRetTarget). mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr; /// Marks the end of the basic block. Used during basic block sections to /// calculate the size of the basic block, or the BB section ending with it. mutable MCSymbol *CachedEndMCSymbol = nullptr; // Intrusive list support MachineBasicBlock() = default; explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB); ~MachineBasicBlock(); // MachineBasicBlocks are allocated and owned by MachineFunction. friend class MachineFunction; public: /// Return the LLVM basic block that this instance corresponded to originally. /// Note that this may be NULL if this instance does not correspond directly /// to an LLVM basic block. const BasicBlock *getBasicBlock() const { return BB; } /// Remove the reference to the underlying IR BasicBlock. This is for /// reduction tools and should generally not be used. void clearBasicBlock() { BB = nullptr; } /// Return the name of the corresponding LLVM basic block, or an empty string. StringRef getName() const; /// Return a formatted string to identify this block and its parent function. std::string getFullName() const; /// Test whether this block is used as something other than the target /// of a terminator, exception-handling target, or jump table. This is /// either the result of an IR-level "blockaddress", or some form /// of target-specific branch lowering. bool hasAddressTaken() const { return MachineBlockAddressTaken || AddressTakenIRBlock; } /// Test whether this block is used as something other than the target of a /// terminator, exception-handling target, jump table, or IR blockaddress. /// For example, its address might be loaded into a register, or /// stored in some branch table that isn't part of MachineJumpTableInfo. bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; } /// Test whether this block is the target of an IR BlockAddress. (There can /// more than one MBB associated with an IR BB where the address is taken.) bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; } /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock. BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; } /// Set this block to indicate that its address is used as something other /// than the target of a terminator, exception-handling target, jump table, /// or IR-level "blockaddress". void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; } /// Set this block to reflect that it corresponds to an IR-level basic block /// with a BlockAddress. void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; } /// Test whether this block must have its label emitted. bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; } /// Set this block to reflect that, regardless how we flow to it, we need /// its label be emitted. void setLabelMustBeEmitted() { LabelMustBeEmitted = true; } /// Return the MachineFunction containing this basic block. const MachineFunction *getParent() const { return xParent; } MachineFunction *getParent() { return xParent; } using instr_iterator = Instructions::iterator; using const_instr_iterator = Instructions::const_iterator; using reverse_instr_iterator = Instructions::reverse_iterator; using const_reverse_instr_iterator = Instructions::const_reverse_iterator; using iterator = MachineInstrBundleIterator; using const_iterator = MachineInstrBundleIterator; using reverse_iterator = MachineInstrBundleIterator; using const_reverse_iterator = MachineInstrBundleIterator; unsigned size() const { return (unsigned)Insts.size(); } bool sizeWithoutDebugLargerThan(unsigned Limit) const; bool empty() const { return Insts.empty(); } MachineInstr &instr_front() { return Insts.front(); } MachineInstr &instr_back() { return Insts.back(); } const MachineInstr &instr_front() const { return Insts.front(); } const MachineInstr &instr_back() const { return Insts.back(); } MachineInstr &front() { return Insts.front(); } MachineInstr &back() { return *--end(); } const MachineInstr &front() const { return Insts.front(); } const MachineInstr &back() const { return *--end(); } instr_iterator instr_begin() { return Insts.begin(); } const_instr_iterator instr_begin() const { return Insts.begin(); } instr_iterator instr_end() { return Insts.end(); } const_instr_iterator instr_end() const { return Insts.end(); } reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); } const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); } reverse_instr_iterator instr_rend () { return Insts.rend(); } const_reverse_instr_iterator instr_rend () const { return Insts.rend(); } using instr_range = iterator_range; using const_instr_range = iterator_range; instr_range instrs() { return instr_range(instr_begin(), instr_end()); } const_instr_range instrs() const { return const_instr_range(instr_begin(), instr_end()); } iterator begin() { return instr_begin(); } const_iterator begin() const { return instr_begin(); } iterator end () { return instr_end(); } const_iterator end () const { return instr_end(); } reverse_iterator rbegin() { return reverse_iterator::getAtBundleBegin(instr_rbegin()); } const_reverse_iterator rbegin() const { return const_reverse_iterator::getAtBundleBegin(instr_rbegin()); } reverse_iterator rend() { return reverse_iterator(instr_rend()); } const_reverse_iterator rend() const { return const_reverse_iterator(instr_rend()); } /// Support for MachineInstr::getNextNode(). static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) { return &MachineBasicBlock::Insts; } inline iterator_range terminators() { return make_range(getFirstTerminator(), end()); } inline iterator_range terminators() const { return make_range(getFirstTerminator(), end()); } /// Returns a range that iterates over the phis in the basic block. inline iterator_range phis() { return make_range(begin(), getFirstNonPHI()); } inline iterator_range phis() const { return const_cast(this)->phis(); } // Machine-CFG iterators using pred_iterator = std::vector::iterator; using const_pred_iterator = std::vector::const_iterator; using succ_iterator = std::vector::iterator; using const_succ_iterator = std::vector::const_iterator; using pred_reverse_iterator = std::vector::reverse_iterator; using const_pred_reverse_iterator = std::vector::const_reverse_iterator; using succ_reverse_iterator = std::vector::reverse_iterator; using const_succ_reverse_iterator = std::vector::const_reverse_iterator; pred_iterator pred_begin() { return Predecessors.begin(); } const_pred_iterator pred_begin() const { return Predecessors.begin(); } pred_iterator pred_end() { return Predecessors.end(); } const_pred_iterator pred_end() const { return Predecessors.end(); } pred_reverse_iterator pred_rbegin() { return Predecessors.rbegin();} const_pred_reverse_iterator pred_rbegin() const { return Predecessors.rbegin();} pred_reverse_iterator pred_rend() { return Predecessors.rend(); } const_pred_reverse_iterator pred_rend() const { return Predecessors.rend(); } unsigned pred_size() const { return (unsigned)Predecessors.size(); } bool pred_empty() const { return Predecessors.empty(); } succ_iterator succ_begin() { return Successors.begin(); } const_succ_iterator succ_begin() const { return Successors.begin(); } succ_iterator succ_end() { return Successors.end(); } const_succ_iterator succ_end() const { return Successors.end(); } succ_reverse_iterator succ_rbegin() { return Successors.rbegin(); } const_succ_reverse_iterator succ_rbegin() const { return Successors.rbegin(); } succ_reverse_iterator succ_rend() { return Successors.rend(); } const_succ_reverse_iterator succ_rend() const { return Successors.rend(); } unsigned succ_size() const { return (unsigned)Successors.size(); } bool succ_empty() const { return Successors.empty(); } inline iterator_range predecessors() { return make_range(pred_begin(), pred_end()); } inline iterator_range predecessors() const { return make_range(pred_begin(), pred_end()); } inline iterator_range successors() { return make_range(succ_begin(), succ_end()); } inline iterator_range successors() const { return make_range(succ_begin(), succ_end()); } // LiveIn management methods. /// Adds the specified register as a live in. Note that it is an error to add /// the same register to the same set more than once unless the intention is /// to call sortUniqueLiveIns after all registers are added. void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask = LaneBitmask::getAll()) { LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask)); } void addLiveIn(const RegisterMaskPair &RegMaskPair) { LiveIns.push_back(RegMaskPair); } /// Sorts and uniques the LiveIns vector. It can be significantly faster to do /// this than repeatedly calling isLiveIn before calling addLiveIn for every /// LiveIn insertion. void sortUniqueLiveIns(); /// Clear live in list. void clearLiveIns(); /// Add PhysReg as live in to this block, and ensure that there is a copy of /// PhysReg to a virtual register of class RC. Return the virtual register /// that is a copy of the live in PhysReg. Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC); /// Remove the specified register from the live in set. void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = LaneBitmask::getAll()); /// Return true if the specified register is in the live in set. bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = LaneBitmask::getAll()) const; // Iteration support for live in sets. These sets are kept in sorted // order by their register number. using livein_iterator = LiveInVector::const_iterator; /// Unlike livein_begin, this method does not check that the liveness /// information is accurate. Still for debug purposes it may be useful /// to have iterators that won't assert if the liveness information /// is not current. livein_iterator livein_begin_dbg() const { return LiveIns.begin(); } iterator_range liveins_dbg() const { return make_range(livein_begin_dbg(), livein_end()); } livein_iterator livein_begin() const; livein_iterator livein_end() const { return LiveIns.end(); } bool livein_empty() const { return LiveIns.empty(); } iterator_range liveins() const { return make_range(livein_begin(), livein_end()); } /// Remove entry from the livein set and return iterator to the next. livein_iterator removeLiveIn(livein_iterator I); std::vector getLiveIns() const { return LiveIns; } class liveout_iterator { public: using iterator_category = std::input_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = RegisterMaskPair; using pointer = const RegisterMaskPair *; using reference = const RegisterMaskPair &; liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer, MCPhysReg ExceptionSelector, bool End) : ExceptionPointer(ExceptionPointer), ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()), BlockEnd(MBB.succ_end()) { if (End) BlockI = BlockEnd; else if (BlockI != BlockEnd) { LiveRegI = (*BlockI)->livein_begin(); if (!advanceToValidPosition()) return; if (LiveRegI->PhysReg == ExceptionPointer || LiveRegI->PhysReg == ExceptionSelector) ++(*this); } } liveout_iterator &operator++() { do { ++LiveRegI; if (!advanceToValidPosition()) return *this; } while ((*BlockI)->isEHPad() && (LiveRegI->PhysReg == ExceptionPointer || LiveRegI->PhysReg == ExceptionSelector)); return *this; } liveout_iterator operator++(int) { liveout_iterator Tmp = *this; ++(*this); return Tmp; } reference operator*() const { return *LiveRegI; } pointer operator->() const { return &*LiveRegI; } bool operator==(const liveout_iterator &RHS) const { if (BlockI != BlockEnd) return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI; return RHS.BlockI == BlockEnd; } bool operator!=(const liveout_iterator &RHS) const { return !(*this == RHS); } private: bool advanceToValidPosition() { if (LiveRegI != (*BlockI)->livein_end()) return true; do { ++BlockI; } while (BlockI != BlockEnd && (*BlockI)->livein_empty()); if (BlockI == BlockEnd) return false; LiveRegI = (*BlockI)->livein_begin(); return true; } MCPhysReg ExceptionPointer, ExceptionSelector; const_succ_iterator BlockI; const_succ_iterator BlockEnd; livein_iterator LiveRegI; }; /// Iterator scanning successor basic blocks' liveins to determine the /// registers potentially live at the end of this block. There may be /// duplicates or overlapping registers in the list returned. liveout_iterator liveout_begin() const; liveout_iterator liveout_end() const { return liveout_iterator(*this, 0, 0, true); } iterator_range liveouts() const { return make_range(liveout_begin(), liveout_end()); } /// Get the clobber mask for the start of this basic block. Funclets use this /// to prevent register allocation across funclet transitions. const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const; /// Get the clobber mask for the end of the basic block. /// \see getBeginClobberMask() const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const; /// Return alignment of the basic block. Align getAlignment() const { return Alignment; } /// Set alignment of the basic block. void setAlignment(Align A) { Alignment = A; } void setAlignment(Align A, unsigned MaxBytes) { setAlignment(A); setMaxBytesForAlignment(MaxBytes); } /// Return the maximum amount of padding allowed for aligning the basic block. unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; } /// Set the maximum amount of padding allowed for aligning the basic block void setMaxBytesForAlignment(unsigned MaxBytes) { MaxBytesForAlignment = MaxBytes; } /// Returns true if the block is a landing pad. That is this basic block is /// entered via an exception handler. bool isEHPad() const { return IsEHPad; } /// Indicates the block is a landing pad. That is this basic block is entered /// via an exception handler. void setIsEHPad(bool V = true) { IsEHPad = V; } bool hasEHPadSuccessor() const; /// Returns true if this is the entry block of the function. bool isEntryBlock() const; /// Returns true if this is the entry block of an EH scope, i.e., the block /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. bool isEHScopeEntry() const { return IsEHScopeEntry; } /// Indicates if this is the entry block of an EH scope, i.e., the block that /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; } /// Returns true if this is a target block of a catchret. bool isEHCatchretTarget() const { return IsEHCatchretTarget; } /// Indicates if this is a target block of a catchret. void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; } /// Returns true if this is the entry block of an EH funclet. bool isEHFuncletEntry() const { return IsEHFuncletEntry; } /// Indicates if this is the entry block of an EH funclet. void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; } /// Returns true if this is the entry block of a cleanup funclet. bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; } /// Indicates if this is the entry block of a cleanup funclet. void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; } /// Returns true if this block begins any section. bool isBeginSection() const { return IsBeginSection; } /// Returns true if this block ends any section. bool isEndSection() const { return IsEndSection; } void setIsBeginSection(bool V = true) { IsBeginSection = V; } void setIsEndSection(bool V = true) { IsEndSection = V; } std::optional getBBID() const { return BBID; } /// Returns the section ID of this basic block. MBBSectionID getSectionID() const { return SectionID; } /// Returns the unique section ID number of this basic block. unsigned getSectionIDNum() const { return ((unsigned)MBBSectionID::SectionType::Cold) - ((unsigned)SectionID.Type) + SectionID.Number; } /// Sets the fixed BBID of this basic block. void setBBID(const UniqueBBID &V) { assert(!BBID.has_value() && "Cannot change BBID."); BBID = V; } /// Sets the section ID for this basic block. void setSectionID(MBBSectionID V) { SectionID = V; } /// Returns the MCSymbol marking the end of this basic block. MCSymbol *getEndSymbol() const; /// Returns true if this block may have an INLINEASM_BR (overestimate, by /// checking if any of the successors are indirect targets of any inlineasm_br /// in the function). bool mayHaveInlineAsmBr() const; /// Returns true if this is the indirect dest of an INLINEASM_BR. bool isInlineAsmBrIndirectTarget() const { return IsInlineAsmBrIndirectTarget; } /// Indicates if this is the indirect dest of an INLINEASM_BR. void setIsInlineAsmBrIndirectTarget(bool V = true) { IsInlineAsmBrIndirectTarget = V; } /// Returns true if it is legal to hoist instructions into this block. bool isLegalToHoistInto() const; // Code Layout methods. /// Move 'this' block before or after the specified block. This only moves /// the block, it does not modify the CFG or adjust potential fall-throughs at /// the end of the block. void moveBefore(MachineBasicBlock *NewAfter); void moveAfter(MachineBasicBlock *NewBefore); /// Returns true if this and MBB belong to the same section. bool sameSection(const MachineBasicBlock *MBB) const { return getSectionID() == MBB->getSectionID(); } /// Update the terminator instructions in block to account for changes to /// block layout which may have been made. PreviousLayoutSuccessor should be /// set to the block which may have been used as fallthrough before the block /// layout was modified. If the block previously fell through to that block, /// it may now need a branch. If it previously branched to another block, it /// may now be able to fallthrough to the current layout successor. void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor); // Machine-CFG mutators /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list /// of Succ is automatically updated. PROB parameter is stored in /// Probabilities list. The default probability is set as unknown. Mixing /// known and unknown probabilities in successor list is not allowed. When all /// successors have unknown probabilities, 1 / N is returned as the /// probability for each successor, where N is the number of successors. /// /// Note that duplicate Machine CFG edges are not allowed. void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob = BranchProbability::getUnknown()); /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list /// of Succ is automatically updated. The probability is not provided because /// BPI is not available (e.g. -O0 is used), in which case edge probabilities /// won't be used. Using this interface can save some space. void addSuccessorWithoutProb(MachineBasicBlock *Succ); /// Set successor probability of a given iterator. void setSuccProbability(succ_iterator I, BranchProbability Prob); /// Normalize probabilities of all successors so that the sum of them becomes /// one. This is usually done when the current update on this MBB is done, and /// the sum of its successors' probabilities is not guaranteed to be one. The /// user is responsible for the correct use of this function. /// MBB::removeSuccessor() has an option to do this automatically. void normalizeSuccProbs() { BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); } /// Validate successors' probabilities and check if the sum of them is /// approximate one. This only works in DEBUG mode. void validateSuccProbs() const; /// Remove successor from the successors list of this MachineBasicBlock. The /// Predecessors list of Succ is automatically updated. /// If NormalizeSuccProbs is true, then normalize successors' probabilities /// after the successor is removed. void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs = false); /// Remove specified successor from the successors list of this /// MachineBasicBlock. The Predecessors list of Succ is automatically updated. /// If NormalizeSuccProbs is true, then normalize successors' probabilities /// after the successor is removed. /// Return the iterator to the element after the one removed. succ_iterator removeSuccessor(succ_iterator I, bool NormalizeSuccProbs = false); /// Replace successor OLD with NEW and update probability info. void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New); /// Copy a successor (and any probability info) from original block to this /// block's. Uses an iterator into the original blocks successors. /// /// This is useful when doing a partial clone of successors. Afterward, the /// probabilities may need to be normalized. void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I); /// Split the old successor into old plus new and updates the probability /// info. void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, bool NormalizeSuccProbs = false); /// Transfers all the successors from MBB to this machine basic block (i.e., /// copies all the successors FromMBB and remove all the successors from /// FromMBB). void transferSuccessors(MachineBasicBlock *FromMBB); /// Transfers all the successors, as in transferSuccessors, and update PHI /// operands in the successor blocks which refer to FromMBB to refer to this. void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB); /// Return true if any of the successors have probabilities attached to them. bool hasSuccessorProbabilities() const { return !Probs.empty(); } /// Return true if the specified MBB is a predecessor of this block. bool isPredecessor(const MachineBasicBlock *MBB) const; /// Return true if the specified MBB is a successor of this block. bool isSuccessor(const MachineBasicBlock *MBB) const; /// Return true if the specified MBB will be emitted immediately after this /// block, such that if this block exits by falling through, control will /// transfer to the specified MBB. Note that MBB need not be a successor at /// all, for example if this block ends with an unconditional branch to some /// other block. bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; /// Return the successor of this block if it has a single successor. /// Otherwise return a null pointer. /// const MachineBasicBlock *getSingleSuccessor() const; MachineBasicBlock *getSingleSuccessor() { return const_cast( static_cast(this)->getSingleSuccessor()); } /// Return the predecessor of this block if it has a single predecessor. /// Otherwise return a null pointer. /// const MachineBasicBlock *getSinglePredecessor() const; MachineBasicBlock *getSinglePredecessor() { return const_cast( static_cast(this)->getSinglePredecessor()); } /// Return the fallthrough block if the block can implicitly /// transfer control to the block after it by falling off the end of /// it. If an explicit branch to the fallthrough block is not allowed, /// set JumpToFallThrough to be false. Non-null return is a conservative /// answer. MachineBasicBlock *getFallThrough(bool JumpToFallThrough = true); /// Return the fallthrough block if the block can implicitly /// transfer control to it's successor, whether by a branch or /// a fallthrough. Non-null return is a conservative answer. MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(false); } /// Return true if the block can implicitly transfer control to the /// block after it by falling off the end of it. This should return /// false if it can reach the block after it, but it uses an /// explicit branch to do so (e.g., a table jump). True is a /// conservative answer. bool canFallThrough(); /// Returns a pointer to the first instruction in this block that is not a /// PHINode instruction. When adding instructions to the beginning of the /// basic block, they should be added before the returned value, not before /// the first instruction, which might be PHI. /// Returns end() is there's no non-PHI instruction. iterator getFirstNonPHI(); const_iterator getFirstNonPHI() const { return const_cast(this)->getFirstNonPHI(); } /// Return the first instruction in MBB after I that is not a PHI or a label. /// This is the correct point to insert lowered copies at the beginning of a /// basic block that must be before any debugging information. iterator SkipPHIsAndLabels(iterator I); /// Return the first instruction in MBB after I that is not a PHI, label or /// debug. This is the correct point to insert copies at the beginning of a /// basic block. \p Reg is the register being used by a spill or defined for a /// restore/split during register allocation. iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg = Register(), bool SkipPseudoOp = true); /// Returns an iterator to the first terminator instruction of this basic /// block. If a terminator does not exist, it returns end(). iterator getFirstTerminator(); const_iterator getFirstTerminator() const { return const_cast(this)->getFirstTerminator(); } /// Same getFirstTerminator but it ignores bundles and return an /// instr_iterator instead. instr_iterator getFirstInstrTerminator(); /// Finds the first terminator in a block by scanning forward. This can handle /// cases in GlobalISel where there may be non-terminator instructions between /// terminators, for which getFirstTerminator() will not work correctly. iterator getFirstTerminatorForward(); /// Returns an iterator to the first non-debug instruction in the basic block, /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true. /// Pseudo probes are like debug instructions which do not turn into real /// machine code. We try to use the function to skip both debug instructions /// and pseudo probe operations to avoid API proliferation. This should work /// most of the time when considering optimizing the rest of code in the /// block, except for certain cases where pseudo probes are designed to block /// the optimizations. For example, code merge like optimizations are supposed /// to be blocked by pseudo probes for better AutoFDO profile quality. /// Therefore, they should be considered as a valid instruction when this /// function is called in a context of such optimizations. On the other hand, /// \c SkipPseudoOp should be true when it's used in optimizations that /// unlikely hurt profile quality, e.g., without block merging. The default /// value of \c SkipPseudoOp is set to true to maximize code quality in /// general, with an explict false value passed in in a few places like branch /// folding and if-conversion to favor profile quality. iterator getFirstNonDebugInstr(bool SkipPseudoOp = true); const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const { return const_cast(this)->getFirstNonDebugInstr( SkipPseudoOp); } /// Returns an iterator to the last non-debug instruction in the basic block, /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true. /// Pseudo probes are like debug instructions which do not turn into real /// machine code. We try to use the function to skip both debug instructions /// and pseudo probe operations to avoid API proliferation. This should work /// most of the time when considering optimizing the rest of code in the /// block, except for certain cases where pseudo probes are designed to block /// the optimizations. For example, code merge like optimizations are supposed /// to be blocked by pseudo probes for better AutoFDO profile quality. /// Therefore, they should be considered as a valid instruction when this /// function is called in a context of such optimizations. On the other hand, /// \c SkipPseudoOp should be true when it's used in optimizations that /// unlikely hurt profile quality, e.g., without block merging. The default /// value of \c SkipPseudoOp is set to true to maximize code quality in /// general, with an explict false value passed in in a few places like branch /// folding and if-conversion to favor profile quality. iterator getLastNonDebugInstr(bool SkipPseudoOp = true); const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const { return const_cast(this)->getLastNonDebugInstr( SkipPseudoOp); } /// Convenience function that returns true if the block ends in a return /// instruction. bool isReturnBlock() const { return !empty() && back().isReturn(); } /// Convenience function that returns true if the bock ends in a EH scope /// return instruction. bool isEHScopeReturnBlock() const { return !empty() && back().isEHScopeReturn(); } /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be /// inserted after this block, and all instructions after \p SplitInst moved /// to it (\p SplitInst will be in the original block). If \p LIS is provided, /// LiveIntervals will be appropriately updated. \return the newly inserted /// block. /// /// If \p UpdateLiveIns is true, this will ensure the live ins list is /// accurate, including for physreg uses/defs in the original block. MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true, LiveIntervals *LIS = nullptr); /// Split the critical edge from this block to the given successor block, and /// return the newly created block, or null if splitting is not possible. /// /// This function updates LiveVariables, MachineDominatorTree, and /// MachineLoopInfo, as applicable. MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, std::vector> *LiveInSets = nullptr); /// Check if the edge between this block and the given successor \p /// Succ, can be split. If this returns true a subsequent call to /// SplitCriticalEdge is guaranteed to return a valid basic block if /// no changes occurred in the meantime. bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const; void pop_front() { Insts.pop_front(); } void pop_back() { Insts.pop_back(); } void push_back(MachineInstr *MI) { Insts.push_back(MI); } /// Insert MI into the instruction list before I, possibly inside a bundle. /// /// If the insertion point is inside a bundle, MI will be added to the bundle, /// otherwise MI will not be added to any bundle. That means this function /// alone can't be used to prepend or append instructions to bundles. See /// MIBundleBuilder::insert() for a more reliable way of doing that. instr_iterator insert(instr_iterator I, MachineInstr *M); /// Insert a range of instructions into the instruction list before I. template void insert(iterator I, IT S, IT E) { assert((I == end() || I->getParent() == this) && "iterator points outside of basic block"); Insts.insert(I.getInstrIterator(), S, E); } /// Insert MI into the instruction list before I. iterator insert(iterator I, MachineInstr *MI) { assert((I == end() || I->getParent() == this) && "iterator points outside of basic block"); assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot insert instruction with bundle flags"); return Insts.insert(I.getInstrIterator(), MI); } /// Insert MI into the instruction list after I. iterator insertAfter(iterator I, MachineInstr *MI) { assert((I == end() || I->getParent() == this) && "iterator points outside of basic block"); assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot insert instruction with bundle flags"); return Insts.insertAfter(I.getInstrIterator(), MI); } /// If I is bundled then insert MI into the instruction list after the end of /// the bundle, otherwise insert MI immediately after I. instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) { assert((I == instr_end() || I->getParent() == this) && "iterator points outside of basic block"); assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot insert instruction with bundle flags"); while (I->isBundledWithSucc()) ++I; return Insts.insertAfter(I, MI); } /// Remove an instruction from the instruction list and delete it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle will still be bundled after removing the single instruction. instr_iterator erase(instr_iterator I); /// Remove an instruction from the instruction list and delete it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle will still be bundled after removing the single instruction. instr_iterator erase_instr(MachineInstr *I) { return erase(instr_iterator(I)); } /// Remove a range of instructions from the instruction list and delete them. iterator erase(iterator I, iterator E) { return Insts.erase(I.getInstrIterator(), E.getInstrIterator()); } /// Remove an instruction or bundle from the instruction list and delete it. /// /// If I points to a bundle of instructions, they are all erased. iterator erase(iterator I) { return erase(I, std::next(I)); } /// Remove an instruction from the instruction list and delete it. /// /// If I is the head of a bundle of instructions, the whole bundle will be /// erased. iterator erase(MachineInstr *I) { return erase(iterator(I)); } /// Remove the unbundled instruction from the instruction list without /// deleting it. /// /// This function can not be used to remove bundled instructions, use /// remove_instr to remove individual instructions from a bundle. MachineInstr *remove(MachineInstr *I) { assert(!I->isBundled() && "Cannot remove bundled instructions"); return Insts.remove(instr_iterator(I)); } /// Remove the possibly bundled instruction from the instruction list /// without deleting it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle will still be bundled after removing the single instruction. MachineInstr *remove_instr(MachineInstr *I); void clear() { Insts.clear(); } /// Take an instruction from MBB 'Other' at the position From, and insert it /// into this MBB right before 'Where'. /// /// If From points to a bundle of instructions, the whole bundle is moved. void splice(iterator Where, MachineBasicBlock *Other, iterator From) { // The range splice() doesn't allow noop moves, but this one does. if (Where != From) splice(Where, Other, From, std::next(From)); } /// Take a block of instructions from MBB 'Other' in the range [From, To), /// and insert them into this MBB right before 'Where'. /// /// The instruction at 'Where' must not be included in the range of /// instructions to move. void splice(iterator Where, MachineBasicBlock *Other, iterator From, iterator To) { Insts.splice(Where.getInstrIterator(), Other->Insts, From.getInstrIterator(), To.getInstrIterator()); } /// This method unlinks 'this' from the containing function, and returns it, /// but does not delete it. MachineBasicBlock *removeFromParent(); /// This method unlinks 'this' from the containing function and deletes it. void eraseFromParent(); /// Given a machine basic block that branched to 'Old', change the code and /// CFG so that it branches to 'New' instead. void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); /// Update all phi nodes in this basic block to refer to basic block \p New /// instead of basic block \p Old. void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New); /// Find the next valid DebugLoc starting at MBBI, skipping any debug /// instructions. Return UnknownLoc if there is none. DebugLoc findDebugLoc(instr_iterator MBBI); DebugLoc findDebugLoc(iterator MBBI) { return findDebugLoc(MBBI.getInstrIterator()); } /// Has exact same behavior as @ref findDebugLoc (it also searches towards the /// end of this MBB) except that this function takes a reverse iterator to /// identify the starting MI. DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI); DebugLoc rfindDebugLoc(reverse_iterator MBBI) { return rfindDebugLoc(MBBI.getInstrIterator()); } /// Find the previous valid DebugLoc preceding MBBI, skipping any debug /// instructions. It is possible to find the last DebugLoc in the MBB using /// findPrevDebugLoc(instr_end()). Return UnknownLoc if there is none. DebugLoc findPrevDebugLoc(instr_iterator MBBI); DebugLoc findPrevDebugLoc(iterator MBBI) { return findPrevDebugLoc(MBBI.getInstrIterator()); } /// Has exact same behavior as @ref findPrevDebugLoc (it also searches towards /// the beginning of this MBB) except that this function takes reverse /// iterator to identify the starting MI. A minor difference compared to /// findPrevDebugLoc is that we can't start scanning at "instr_end". DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI); DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) { return rfindPrevDebugLoc(MBBI.getInstrIterator()); } /// Find and return the merged DebugLoc of the branch instructions of the /// block. Return UnknownLoc if there is none. DebugLoc findBranchDebugLoc(); /// Possible outcome of a register liveness query to computeRegisterLiveness() enum LivenessQueryResult { LQR_Live, ///< Register is known to be (at least partially) live. LQR_Dead, ///< Register is known to be fully dead. LQR_Unknown ///< Register liveness not decidable from local neighborhood. }; /// Return whether (physical) register \p Reg has been defined and not /// killed as of just before \p Before. /// /// Search is localised to a neighborhood of \p Neighborhood instructions /// before (searching for defs or kills) and \p Neighborhood instructions /// after (searching just for defs) \p Before. /// /// \p Reg must be a physical register. LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, MCRegister Reg, const_iterator Before, unsigned Neighborhood = 10) const; // Debugging methods. void dump() const; void print(raw_ostream &OS, const SlotIndexes * = nullptr, bool IsStandalone = true) const; void print(raw_ostream &OS, ModuleSlotTracker &MST, const SlotIndexes * = nullptr, bool IsStandalone = true) const; enum PrintNameFlag { PrintNameIr = (1 << 0), ///< Add IR name where available PrintNameAttributes = (1 << 1), ///< Print attributes }; void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr, ModuleSlotTracker *moduleSlotTracker = nullptr) const; // Printing method used by LoopInfo. void printAsOperand(raw_ostream &OS, bool PrintType = true) const; /// MachineBasicBlocks are uniquely numbered at the function level, unless /// they're not in a MachineFunction yet, in which case this will return -1. int getNumber() const { return Number; } void setNumber(int N) { Number = N; } /// Return the call frame size on entry to this basic block. unsigned getCallFrameSize() const { return CallFrameSize; } /// Set the call frame size on entry to this basic block. void setCallFrameSize(unsigned N) { CallFrameSize = N; } /// Return the MCSymbol for this basic block. MCSymbol *getSymbol() const; /// Return the EHCatchret Symbol for this basic block. MCSymbol *getEHCatchretSymbol() const; std::optional getIrrLoopHeaderWeight() const { return IrrLoopHeaderWeight; } void setIrrLoopHeaderWeight(uint64_t Weight) { IrrLoopHeaderWeight = Weight; } /// Return probability of the edge from this block to MBB. This method should /// NOT be called directly, but by using getEdgeProbability method from /// MachineBranchProbabilityInfo class. BranchProbability getSuccProbability(const_succ_iterator Succ) const; private: /// Return probability iterator corresponding to the I successor iterator. probability_iterator getProbabilityIterator(succ_iterator I); const_probability_iterator getProbabilityIterator(const_succ_iterator I) const; friend class MachineBranchProbabilityInfo; friend class MIPrinter; // Methods used to maintain doubly linked list of blocks... friend struct ilist_callback_traits; // Machine-CFG mutators /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this /// unless you know what you're doing, because it doesn't update Pred's /// successors list. Use Pred->addSuccessor instead. void addPredecessor(MachineBasicBlock *Pred); /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this /// unless you know what you're doing, because it doesn't update Pred's /// successors list. Use Pred->removeSuccessor instead. void removePredecessor(MachineBasicBlock *Pred); }; raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); /// Prints a machine basic block reference. /// /// The format is: /// %bb.5 - a machine basic block with MBB.getNumber() == 5. /// /// Usage: OS << printMBBReference(MBB) << '\n'; Printable printMBBReference(const MachineBasicBlock &MBB); // This is useful when building IndexedMaps keyed on basic block pointers. struct MBB2NumberFunctor { using argument_type = const MachineBasicBlock *; unsigned operator()(const MachineBasicBlock *MBB) const { return MBB->getNumber(); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for machine basic block graphs (machine-CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks. // template <> struct GraphTraits { using NodeRef = MachineBasicBlock *; using ChildIteratorType = MachineBasicBlock::succ_iterator; static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } }; template <> struct GraphTraits { using NodeRef = const MachineBasicBlock *; using ChildIteratorType = MachineBasicBlock::const_succ_iterator; static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } }; // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks and to walk it // in inverse order. Inverse order for a function is considered // to be when traversing the predecessor edges of a MBB // instead of the successor edges. // template <> struct GraphTraits> { using NodeRef = MachineBasicBlock *; using ChildIteratorType = MachineBasicBlock::pred_iterator; static NodeRef getEntryNode(Inverse G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } }; template <> struct GraphTraits> { using NodeRef = const MachineBasicBlock *; using ChildIteratorType = MachineBasicBlock::const_pred_iterator; static NodeRef getEntryNode(Inverse G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } }; // These accessors are handy for sharing templated code between IR and MIR. inline auto successors(const MachineBasicBlock *BB) { return BB->successors(); } inline auto predecessors(const MachineBasicBlock *BB) { return BB->predecessors(); } /// MachineInstrSpan provides an interface to get an iteration range /// containing the instruction it was initialized with, along with all /// those instructions inserted prior to or following that instruction /// at some point after the MachineInstrSpan is constructed. class MachineInstrSpan { MachineBasicBlock &MBB; MachineBasicBlock::iterator I, B, E; public: MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB) : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)), E(std::next(I)) { assert(I == BB->end() || I->getParent() == BB); } MachineBasicBlock::iterator begin() { return B == MBB.end() ? MBB.begin() : std::next(B); } MachineBasicBlock::iterator end() { return E; } bool empty() { return begin() == end(); } MachineBasicBlock::iterator getInitial() { return I; } }; /// Increment \p It until it points to a non-debug instruction or to \p End /// and return the resulting iterator. This function should only be used /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, /// const_instr_iterator} and the respective reverse iterators. template inline IterT skipDebugInstructionsForward(IterT It, IterT End, bool SkipPseudoOp = true) { while (It != End && (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) ++It; return It; } /// Decrement \p It until it points to a non-debug instruction or to \p Begin /// and return the resulting iterator. This function should only be used /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, /// const_instr_iterator} and the respective reverse iterators. template inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin, bool SkipPseudoOp = true) { while (It != Begin && (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) --It; return It; } /// Increment \p It, then continue incrementing it while it points to a debug /// instruction. A replacement for std::next. template inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) { return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp); } /// Decrement \p It, then continue decrementing it while it points to a debug /// instruction. A replacement for std::prev. template inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) { return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp); } /// Construct a range iterator which begins at \p It and moves forwards until /// \p End is reached, skipping any debug instructions. template inline auto instructionsWithoutDebug(IterT It, IterT End, bool SkipPseudoOp = true) { return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) { return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe()); }); } } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H