//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Contains generic JIT-linker types. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FunctionExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/Core.h" #include "llvm/ExecutionEngine/Orc/Shared/ExecutorAddress.h" #include "llvm/ExecutionEngine/Orc/Shared/ExecutorSymbolDef.h" #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/BinaryStreamWriter.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/TargetParser/SubtargetFeature.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include namespace llvm { namespace jitlink { class LinkGraph; class Symbol; class Section; /// Base class for errors originating in JIT linker, e.g. missing relocation /// support. class JITLinkError : public ErrorInfo { public: static char ID; JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {} void log(raw_ostream &OS) const override; const std::string &getErrorMessage() const { return ErrMsg; } std::error_code convertToErrorCode() const override; private: std::string ErrMsg; }; /// Represents fixups and constraints in the LinkGraph. class Edge { public: using Kind = uint8_t; enum GenericEdgeKind : Kind { Invalid, // Invalid edge value. FirstKeepAlive, // Keeps target alive. Offset/addend zero. KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness. FirstRelocation // First architecture specific relocation. }; using OffsetT = uint32_t; using AddendT = int64_t; Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend) : Target(&Target), Offset(Offset), Addend(Addend), K(K) {} OffsetT getOffset() const { return Offset; } void setOffset(OffsetT Offset) { this->Offset = Offset; } Kind getKind() const { return K; } void setKind(Kind K) { this->K = K; } bool isRelocation() const { return K >= FirstRelocation; } Kind getRelocation() const { assert(isRelocation() && "Not a relocation edge"); return K - FirstRelocation; } bool isKeepAlive() const { return K >= FirstKeepAlive; } Symbol &getTarget() const { return *Target; } void setTarget(Symbol &Target) { this->Target = &Target; } AddendT getAddend() const { return Addend; } void setAddend(AddendT Addend) { this->Addend = Addend; } private: Symbol *Target = nullptr; OffsetT Offset = 0; AddendT Addend = 0; Kind K = 0; }; /// Returns the string name of the given generic edge kind, or "unknown" /// otherwise. Useful for debugging. const char *getGenericEdgeKindName(Edge::Kind K); /// Base class for Addressable entities (externals, absolutes, blocks). class Addressable { friend class LinkGraph; protected: Addressable(orc::ExecutorAddr Address, bool IsDefined) : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {} Addressable(orc::ExecutorAddr Address) : Address(Address), IsDefined(false), IsAbsolute(true) { assert(!(IsDefined && IsAbsolute) && "Block cannot be both defined and absolute"); } public: Addressable(const Addressable &) = delete; Addressable &operator=(const Addressable &) = default; Addressable(Addressable &&) = delete; Addressable &operator=(Addressable &&) = default; orc::ExecutorAddr getAddress() const { return Address; } void setAddress(orc::ExecutorAddr Address) { this->Address = Address; } /// Returns true if this is a defined addressable, in which case you /// can downcast this to a Block. bool isDefined() const { return static_cast(IsDefined); } bool isAbsolute() const { return static_cast(IsAbsolute); } private: void setAbsolute(bool IsAbsolute) { assert(!IsDefined && "Cannot change the Absolute flag on a defined block"); this->IsAbsolute = IsAbsolute; } orc::ExecutorAddr Address; uint64_t IsDefined : 1; uint64_t IsAbsolute : 1; protected: // bitfields for Block, allocated here to improve packing. uint64_t ContentMutable : 1; uint64_t P2Align : 5; uint64_t AlignmentOffset : 56; }; using SectionOrdinal = unsigned; /// An Addressable with content and edges. class Block : public Addressable { friend class LinkGraph; private: /// Create a zero-fill defined addressable. Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) : Addressable(Address, true), Parent(&Parent), Size(Size) { assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); assert(AlignmentOffset < Alignment && "Alignment offset cannot exceed alignment"); assert(AlignmentOffset <= MaxAlignmentOffset && "Alignment offset exceeds maximum"); ContentMutable = false; P2Align = Alignment ? llvm::countr_zero(Alignment) : 0; this->AlignmentOffset = AlignmentOffset; } /// Create a defined addressable for the given content. /// The Content is assumed to be non-writable, and will be copied when /// mutations are required. Block(Section &Parent, ArrayRef Content, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) : Addressable(Address, true), Parent(&Parent), Data(Content.data()), Size(Content.size()) { assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); assert(AlignmentOffset < Alignment && "Alignment offset cannot exceed alignment"); assert(AlignmentOffset <= MaxAlignmentOffset && "Alignment offset exceeds maximum"); ContentMutable = false; P2Align = Alignment ? llvm::countr_zero(Alignment) : 0; this->AlignmentOffset = AlignmentOffset; } /// Create a defined addressable for the given content. /// The content is assumed to be writable, and the caller is responsible /// for ensuring that it lives for the duration of the Block's lifetime. /// The standard way to achieve this is to allocate it on the Graph's /// allocator. Block(Section &Parent, MutableArrayRef Content, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) : Addressable(Address, true), Parent(&Parent), Data(Content.data()), Size(Content.size()) { assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); assert(AlignmentOffset < Alignment && "Alignment offset cannot exceed alignment"); assert(AlignmentOffset <= MaxAlignmentOffset && "Alignment offset exceeds maximum"); ContentMutable = true; P2Align = Alignment ? llvm::countr_zero(Alignment) : 0; this->AlignmentOffset = AlignmentOffset; } public: using EdgeVector = std::vector; using edge_iterator = EdgeVector::iterator; using const_edge_iterator = EdgeVector::const_iterator; Block(const Block &) = delete; Block &operator=(const Block &) = delete; Block(Block &&) = delete; Block &operator=(Block &&) = delete; /// Return the parent section for this block. Section &getSection() const { return *Parent; } /// Returns true if this is a zero-fill block. /// /// If true, getSize is callable but getContent is not (the content is /// defined to be a sequence of zero bytes of length Size). bool isZeroFill() const { return !Data; } /// Returns the size of this defined addressable. size_t getSize() const { return Size; } /// Returns the address range of this defined addressable. orc::ExecutorAddrRange getRange() const { return orc::ExecutorAddrRange(getAddress(), getSize()); } /// Get the content for this block. Block must not be a zero-fill block. ArrayRef getContent() const { assert(Data && "Block does not contain content"); return ArrayRef(Data, Size); } /// Set the content for this block. /// Caller is responsible for ensuring the underlying bytes are not /// deallocated while pointed to by this block. void setContent(ArrayRef Content) { assert(Content.data() && "Setting null content"); Data = Content.data(); Size = Content.size(); ContentMutable = false; } /// Get mutable content for this block. /// /// If this Block's content is not already mutable this will trigger a copy /// of the existing immutable content to a new, mutable buffer allocated using /// LinkGraph::allocateContent. MutableArrayRef getMutableContent(LinkGraph &G); /// Get mutable content for this block. /// /// This block's content must already be mutable. It is a programmatic error /// to call this on a block with immutable content -- consider using /// getMutableContent instead. MutableArrayRef getAlreadyMutableContent() { assert(Data && "Block does not contain content"); assert(ContentMutable && "Content is not mutable"); return MutableArrayRef(const_cast(Data), Size); } /// Set mutable content for this block. /// /// The caller is responsible for ensuring that the memory pointed to by /// MutableContent is not deallocated while pointed to by this block. void setMutableContent(MutableArrayRef MutableContent) { assert(MutableContent.data() && "Setting null content"); Data = MutableContent.data(); Size = MutableContent.size(); ContentMutable = true; } /// Returns true if this block's content is mutable. /// /// This is primarily useful for asserting that a block is already in a /// mutable state prior to modifying the content. E.g. when applying /// fixups we expect the block to already be mutable as it should have been /// copied to working memory. bool isContentMutable() const { return ContentMutable; } /// Get the alignment for this content. uint64_t getAlignment() const { return 1ull << P2Align; } /// Set the alignment for this content. void setAlignment(uint64_t Alignment) { assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two"); P2Align = Alignment ? llvm::countr_zero(Alignment) : 0; } /// Get the alignment offset for this content. uint64_t getAlignmentOffset() const { return AlignmentOffset; } /// Set the alignment offset for this content. void setAlignmentOffset(uint64_t AlignmentOffset) { assert(AlignmentOffset < (1ull << P2Align) && "Alignment offset can't exceed alignment"); this->AlignmentOffset = AlignmentOffset; } /// Add an edge to this block. void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target, Edge::AddendT Addend) { assert((K == Edge::KeepAlive || !isZeroFill()) && "Adding edge to zero-fill block?"); Edges.push_back(Edge(K, Offset, Target, Addend)); } /// Add an edge by copying an existing one. This is typically used when /// moving edges between blocks. void addEdge(const Edge &E) { Edges.push_back(E); } /// Return the list of edges attached to this content. iterator_range edges() { return make_range(Edges.begin(), Edges.end()); } /// Returns the list of edges attached to this content. iterator_range edges() const { return make_range(Edges.begin(), Edges.end()); } /// Return the size of the edges list. size_t edges_size() const { return Edges.size(); } /// Returns true if the list of edges is empty. bool edges_empty() const { return Edges.empty(); } /// Remove the edge pointed to by the given iterator. /// Returns an iterator to the new next element. edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); } /// Returns the address of the fixup for the given edge, which is equal to /// this block's address plus the edge's offset. orc::ExecutorAddr getFixupAddress(const Edge &E) const { return getAddress() + E.getOffset(); } private: static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1; void setSection(Section &Parent) { this->Parent = &Parent; } Section *Parent; const char *Data = nullptr; size_t Size = 0; std::vector Edges; }; // Align an address to conform with block alignment requirements. inline uint64_t alignToBlock(uint64_t Addr, const Block &B) { uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment(); return Addr + Delta; } // Align a orc::ExecutorAddr to conform with block alignment requirements. inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, const Block &B) { return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B)); } // Returns true if the given blocks contains exactly one valid c-string. // Zero-fill blocks of size 1 count as valid empty strings. Content blocks // must end with a zero, and contain no zeros before the end. bool isCStringBlock(Block &B); /// Describes symbol linkage. This can be used to resolve definition clashes. enum class Linkage : uint8_t { Strong, Weak, }; /// Holds target-specific properties for a symbol. using TargetFlagsType = uint8_t; /// For errors and debugging output. const char *getLinkageName(Linkage L); /// Defines the scope in which this symbol should be visible: /// Default -- Visible in the public interface of the linkage unit. /// Hidden -- Visible within the linkage unit, but not exported from it. /// Local -- Visible only within the LinkGraph. enum class Scope : uint8_t { Default, Hidden, Local }; /// For debugging output. const char *getScopeName(Scope S); raw_ostream &operator<<(raw_ostream &OS, const Block &B); /// Symbol representation. /// /// Symbols represent locations within Addressable objects. /// They can be either Named or Anonymous. /// Anonymous symbols have neither linkage nor visibility, and must point at /// ContentBlocks. /// Named symbols may be in one of four states: /// - Null: Default initialized. Assignable, but otherwise unusable. /// - Defined: Has both linkage and visibility and points to a ContentBlock /// - Common: Has both linkage and visibility, points to a null Addressable. /// - External: Has neither linkage nor visibility, points to an external /// Addressable. /// class Symbol { friend class LinkGraph; private: Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive, bool IsCallable) : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) { assert(Offset <= MaxOffset && "Offset out of range"); setLinkage(L); setScope(S); setLive(IsLive); setCallable(IsCallable); setTargetFlags(TargetFlagsType{}); } static Symbol &constructExternal(BumpPtrAllocator &Allocator, Addressable &Base, StringRef Name, orc::ExecutorAddrDiff Size, Linkage L, bool WeaklyReferenced) { assert(!Base.isDefined() && "Cannot create external symbol from defined block"); assert(!Name.empty() && "External symbol name cannot be empty"); auto *Sym = Allocator.Allocate(); new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false); Sym->setWeaklyReferenced(WeaklyReferenced); return *Sym; } static Symbol &constructAbsolute(BumpPtrAllocator &Allocator, Addressable &Base, StringRef Name, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive) { assert(!Base.isDefined() && "Cannot create absolute symbol from a defined block"); auto *Sym = Allocator.Allocate(); new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false); return *Sym; } static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base, orc::ExecutorAddrDiff Offset, orc::ExecutorAddrDiff Size, bool IsCallable, bool IsLive) { assert((Offset + Size) <= Base.getSize() && "Symbol extends past end of block"); auto *Sym = Allocator.Allocate(); new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong, Scope::Local, IsLive, IsCallable); return *Sym; } static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base, orc::ExecutorAddrDiff Offset, StringRef Name, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive, bool IsCallable) { assert((Offset + Size) <= Base.getSize() && "Symbol extends past end of block"); assert(!Name.empty() && "Name cannot be empty"); auto *Sym = Allocator.Allocate(); new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable); return *Sym; } public: /// Create a null Symbol. This allows Symbols to be default initialized for /// use in containers (e.g. as map values). Null symbols are only useful for /// assigning to. Symbol() = default; // Symbols are not movable or copyable. Symbol(const Symbol &) = delete; Symbol &operator=(const Symbol &) = delete; Symbol(Symbol &&) = delete; Symbol &operator=(Symbol &&) = delete; /// Returns true if this symbol has a name. bool hasName() const { return !Name.empty(); } /// Returns the name of this symbol (empty if the symbol is anonymous). StringRef getName() const { assert((!Name.empty() || getScope() == Scope::Local) && "Anonymous symbol has non-local scope"); return Name; } /// Rename this symbol. The client is responsible for updating scope and /// linkage if this name-change requires it. void setName(StringRef Name) { this->Name = Name; } /// Returns true if this Symbol has content (potentially) defined within this /// object file (i.e. is anything but an external or absolute symbol). bool isDefined() const { assert(Base && "Attempt to access null symbol"); return Base->isDefined(); } /// Returns true if this symbol is live (i.e. should be treated as a root for /// dead stripping). bool isLive() const { assert(Base && "Attempting to access null symbol"); return IsLive; } /// Set this symbol's live bit. void setLive(bool IsLive) { this->IsLive = IsLive; } /// Returns true is this symbol is callable. bool isCallable() const { return IsCallable; } /// Set this symbol's callable bit. void setCallable(bool IsCallable) { this->IsCallable = IsCallable; } /// Returns true if the underlying addressable is an unresolved external. bool isExternal() const { assert(Base && "Attempt to access null symbol"); return !Base->isDefined() && !Base->isAbsolute(); } /// Returns true if the underlying addressable is an absolute symbol. bool isAbsolute() const { assert(Base && "Attempt to access null symbol"); return Base->isAbsolute(); } /// Return the addressable that this symbol points to. Addressable &getAddressable() { assert(Base && "Cannot get underlying addressable for null symbol"); return *Base; } /// Return the addressable that this symbol points to. const Addressable &getAddressable() const { assert(Base && "Cannot get underlying addressable for null symbol"); return *Base; } /// Return the Block for this Symbol (Symbol must be defined). Block &getBlock() { assert(Base && "Cannot get block for null symbol"); assert(Base->isDefined() && "Not a defined symbol"); return static_cast(*Base); } /// Return the Block for this Symbol (Symbol must be defined). const Block &getBlock() const { assert(Base && "Cannot get block for null symbol"); assert(Base->isDefined() && "Not a defined symbol"); return static_cast(*Base); } /// Returns the offset for this symbol within the underlying addressable. orc::ExecutorAddrDiff getOffset() const { return Offset; } void setOffset(orc::ExecutorAddrDiff NewOffset) { assert(NewOffset < getBlock().getSize() && "Offset out of range"); Offset = NewOffset; } /// Returns the address of this symbol. orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; } /// Returns the size of this symbol. orc::ExecutorAddrDiff getSize() const { return Size; } /// Set the size of this symbol. void setSize(orc::ExecutorAddrDiff Size) { assert(Base && "Cannot set size for null Symbol"); assert((Size == 0 || Base->isDefined()) && "Non-zero size can only be set for defined symbols"); assert((Offset + Size <= static_cast(*Base).getSize()) && "Symbol size cannot extend past the end of its containing block"); this->Size = Size; } /// Returns the address range of this symbol. orc::ExecutorAddrRange getRange() const { return orc::ExecutorAddrRange(getAddress(), getSize()); } /// Returns true if this symbol is backed by a zero-fill block. /// This method may only be called on defined symbols. bool isSymbolZeroFill() const { return getBlock().isZeroFill(); } /// Returns the content in the underlying block covered by this symbol. /// This method may only be called on defined non-zero-fill symbols. ArrayRef getSymbolContent() const { return getBlock().getContent().slice(Offset, Size); } /// Get the linkage for this Symbol. Linkage getLinkage() const { return static_cast(L); } /// Set the linkage for this Symbol. void setLinkage(Linkage L) { assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) && "Linkage can only be applied to defined named symbols"); this->L = static_cast(L); } /// Get the visibility for this Symbol. Scope getScope() const { return static_cast(S); } /// Set the visibility for this Symbol. void setScope(Scope S) { assert((!Name.empty() || S == Scope::Local) && "Can not set anonymous symbol to non-local scope"); assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) && "Invalid visibility for symbol type"); this->S = static_cast(S); } /// Get the target flags of this Symbol. TargetFlagsType getTargetFlags() const { return TargetFlags; } /// Set the target flags for this Symbol. void setTargetFlags(TargetFlagsType Flags) { assert(Flags <= 1 && "Add more bits to store more than single flag"); TargetFlags = Flags; } /// Returns true if this is a weakly referenced external symbol. /// This method may only be called on external symbols. bool isWeaklyReferenced() const { assert(isExternal() && "isWeaklyReferenced called on non-external"); return WeakRef; } /// Set the WeaklyReferenced value for this symbol. /// This method may only be called on external symbols. void setWeaklyReferenced(bool WeakRef) { assert(isExternal() && "setWeaklyReferenced called on non-external"); this->WeakRef = WeakRef; } private: void makeExternal(Addressable &A) { assert(!A.isDefined() && !A.isAbsolute() && "Attempting to make external with defined or absolute block"); Base = &A; Offset = 0; setScope(Scope::Default); IsLive = 0; // note: Size, Linkage and IsCallable fields left unchanged. } void makeAbsolute(Addressable &A) { assert(!A.isDefined() && A.isAbsolute() && "Attempting to make absolute with defined or external block"); Base = &A; Offset = 0; } void setBlock(Block &B) { Base = &B; } static constexpr uint64_t MaxOffset = (1ULL << 59) - 1; // FIXME: A char* or SymbolStringPtr may pack better. StringRef Name; Addressable *Base = nullptr; uint64_t Offset : 57; uint64_t L : 1; uint64_t S : 2; uint64_t IsLive : 1; uint64_t IsCallable : 1; uint64_t WeakRef : 1; uint64_t TargetFlags : 1; size_t Size = 0; }; raw_ostream &operator<<(raw_ostream &OS, const Symbol &A); void printEdge(raw_ostream &OS, const Block &B, const Edge &E, StringRef EdgeKindName); /// Represents an object file section. class Section { friend class LinkGraph; private: Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal) : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {} using SymbolSet = DenseSet; using BlockSet = DenseSet; public: using symbol_iterator = SymbolSet::iterator; using const_symbol_iterator = SymbolSet::const_iterator; using block_iterator = BlockSet::iterator; using const_block_iterator = BlockSet::const_iterator; ~Section(); // Sections are not movable or copyable. Section(const Section &) = delete; Section &operator=(const Section &) = delete; Section(Section &&) = delete; Section &operator=(Section &&) = delete; /// Returns the name of this section. StringRef getName() const { return Name; } /// Returns the protection flags for this section. orc::MemProt getMemProt() const { return Prot; } /// Set the protection flags for this section. void setMemProt(orc::MemProt Prot) { this->Prot = Prot; } /// Get the memory lifetime policy for this section. orc::MemLifetime getMemLifetime() const { return ML; } /// Set the memory lifetime policy for this section. void setMemLifetime(orc::MemLifetime ML) { this->ML = ML; } /// Returns the ordinal for this section. SectionOrdinal getOrdinal() const { return SecOrdinal; } /// Returns true if this section is empty (contains no blocks or symbols). bool empty() const { return Blocks.empty(); } /// Returns an iterator over the blocks defined in this section. iterator_range blocks() { return make_range(Blocks.begin(), Blocks.end()); } /// Returns an iterator over the blocks defined in this section. iterator_range blocks() const { return make_range(Blocks.begin(), Blocks.end()); } /// Returns the number of blocks in this section. BlockSet::size_type blocks_size() const { return Blocks.size(); } /// Returns an iterator over the symbols defined in this section. iterator_range symbols() { return make_range(Symbols.begin(), Symbols.end()); } /// Returns an iterator over the symbols defined in this section. iterator_range symbols() const { return make_range(Symbols.begin(), Symbols.end()); } /// Return the number of symbols in this section. SymbolSet::size_type symbols_size() const { return Symbols.size(); } private: void addSymbol(Symbol &Sym) { assert(!Symbols.count(&Sym) && "Symbol is already in this section"); Symbols.insert(&Sym); } void removeSymbol(Symbol &Sym) { assert(Symbols.count(&Sym) && "symbol is not in this section"); Symbols.erase(&Sym); } void addBlock(Block &B) { assert(!Blocks.count(&B) && "Block is already in this section"); Blocks.insert(&B); } void removeBlock(Block &B) { assert(Blocks.count(&B) && "Block is not in this section"); Blocks.erase(&B); } void transferContentTo(Section &DstSection) { if (&DstSection == this) return; for (auto *S : Symbols) DstSection.addSymbol(*S); for (auto *B : Blocks) DstSection.addBlock(*B); Symbols.clear(); Blocks.clear(); } StringRef Name; orc::MemProt Prot; orc::MemLifetime ML = orc::MemLifetime::Standard; SectionOrdinal SecOrdinal = 0; BlockSet Blocks; SymbolSet Symbols; }; /// Represents a section address range via a pair of Block pointers /// to the first and last Blocks in the section. class SectionRange { public: SectionRange() = default; SectionRange(const Section &Sec) { if (Sec.blocks().empty()) return; First = Last = *Sec.blocks().begin(); for (auto *B : Sec.blocks()) { if (B->getAddress() < First->getAddress()) First = B; if (B->getAddress() > Last->getAddress()) Last = B; } } Block *getFirstBlock() const { assert((!Last || First) && "First can not be null if end is non-null"); return First; } Block *getLastBlock() const { assert((First || !Last) && "Last can not be null if start is non-null"); return Last; } bool empty() const { assert((First || !Last) && "Last can not be null if start is non-null"); return !First; } orc::ExecutorAddr getStart() const { return First ? First->getAddress() : orc::ExecutorAddr(); } orc::ExecutorAddr getEnd() const { return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr(); } orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); } orc::ExecutorAddrRange getRange() const { return orc::ExecutorAddrRange(getStart(), getEnd()); } private: Block *First = nullptr; Block *Last = nullptr; }; class LinkGraph { private: using SectionMap = DenseMap>; using ExternalSymbolMap = StringMap; using AbsoluteSymbolSet = DenseSet; using BlockSet = DenseSet; template Addressable &createAddressable(ArgTs &&... Args) { Addressable *A = reinterpret_cast(Allocator.Allocate()); new (A) Addressable(std::forward(Args)...); return *A; } void destroyAddressable(Addressable &A) { A.~Addressable(); Allocator.Deallocate(&A); } template Block &createBlock(ArgTs &&... Args) { Block *B = reinterpret_cast(Allocator.Allocate()); new (B) Block(std::forward(Args)...); B->getSection().addBlock(*B); return *B; } void destroyBlock(Block &B) { B.~Block(); Allocator.Deallocate(&B); } void destroySymbol(Symbol &S) { S.~Symbol(); Allocator.Deallocate(&S); } static iterator_range getSectionBlocks(Section &S) { return S.blocks(); } static iterator_range getSectionConstBlocks(const Section &S) { return S.blocks(); } static iterator_range getSectionSymbols(Section &S) { return S.symbols(); } static iterator_range getSectionConstSymbols(const Section &S) { return S.symbols(); } struct GetExternalSymbolMapEntryValue { Symbol *operator()(ExternalSymbolMap::value_type &KV) const { return KV.second; } }; struct GetSectionMapEntryValue { Section &operator()(SectionMap::value_type &KV) const { return *KV.second; } }; struct GetSectionMapEntryConstValue { const Section &operator()(const SectionMap::value_type &KV) const { return *KV.second; } }; public: using external_symbol_iterator = mapped_iterator; using absolute_symbol_iterator = AbsoluteSymbolSet::iterator; using section_iterator = mapped_iterator; using const_section_iterator = mapped_iterator; template getInnerRange( typename OuterItrT::reference)> class nested_collection_iterator : public iterator_facade_base< nested_collection_iterator, std::forward_iterator_tag, T> { public: nested_collection_iterator() = default; nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE) : OuterI(OuterI), OuterE(OuterE), InnerI(getInnerBegin(OuterI, OuterE)) { moveToNonEmptyInnerOrEnd(); } bool operator==(const nested_collection_iterator &RHS) const { return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI); } T operator*() const { assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?"); return *InnerI; } nested_collection_iterator operator++() { ++InnerI; moveToNonEmptyInnerOrEnd(); return *this; } private: static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) { return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT(); } void moveToNonEmptyInnerOrEnd() { while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) { ++OuterI; InnerI = getInnerBegin(OuterI, OuterE); } } OuterItrT OuterI, OuterE; InnerItrT InnerI; }; using defined_symbol_iterator = nested_collection_iterator; using const_defined_symbol_iterator = nested_collection_iterator; using block_iterator = nested_collection_iterator; using const_block_iterator = nested_collection_iterator; using GetEdgeKindNameFunction = const char *(*)(Edge::Kind); LinkGraph(std::string Name, const Triple &TT, SubtargetFeatures Features, unsigned PointerSize, llvm::endianness Endianness, GetEdgeKindNameFunction GetEdgeKindName) : Name(std::move(Name)), TT(TT), Features(std::move(Features)), PointerSize(PointerSize), Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {} LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize, llvm::endianness Endianness, GetEdgeKindNameFunction GetEdgeKindName) : LinkGraph(std::move(Name), TT, SubtargetFeatures(), PointerSize, Endianness, GetEdgeKindName) {} LinkGraph(const LinkGraph &) = delete; LinkGraph &operator=(const LinkGraph &) = delete; LinkGraph(LinkGraph &&) = delete; LinkGraph &operator=(LinkGraph &&) = delete; /// Returns the name of this graph (usually the name of the original /// underlying MemoryBuffer). const std::string &getName() const { return Name; } /// Returns the target triple for this Graph. const Triple &getTargetTriple() const { return TT; } /// Return the subtarget features for this Graph. const SubtargetFeatures &getFeatures() const { return Features; } /// Returns the pointer size for use in this graph. unsigned getPointerSize() const { return PointerSize; } /// Returns the endianness of content in this graph. llvm::endianness getEndianness() const { return Endianness; } const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); } /// Allocate a mutable buffer of the given size using the LinkGraph's /// allocator. MutableArrayRef allocateBuffer(size_t Size) { return {Allocator.Allocate(Size), Size}; } /// Allocate a copy of the given string using the LinkGraph's allocator. /// This can be useful when renaming symbols or adding new content to the /// graph. MutableArrayRef allocateContent(ArrayRef Source) { auto *AllocatedBuffer = Allocator.Allocate(Source.size()); llvm::copy(Source, AllocatedBuffer); return MutableArrayRef(AllocatedBuffer, Source.size()); } /// Allocate a copy of the given string using the LinkGraph's allocator. /// This can be useful when renaming symbols or adding new content to the /// graph. /// /// Note: This Twine-based overload requires an extra string copy and an /// extra heap allocation for large strings. The ArrayRef overload /// should be preferred where possible. MutableArrayRef allocateContent(Twine Source) { SmallString<256> TmpBuffer; auto SourceStr = Source.toStringRef(TmpBuffer); auto *AllocatedBuffer = Allocator.Allocate(SourceStr.size()); llvm::copy(SourceStr, AllocatedBuffer); return MutableArrayRef(AllocatedBuffer, SourceStr.size()); } /// Allocate a copy of the given string using the LinkGraph's allocator. /// /// The allocated string will be terminated with a null character, and the /// returned MutableArrayRef will include this null character in the last /// position. MutableArrayRef allocateCString(StringRef Source) { char *AllocatedBuffer = Allocator.Allocate(Source.size() + 1); llvm::copy(Source, AllocatedBuffer); AllocatedBuffer[Source.size()] = '\0'; return MutableArrayRef(AllocatedBuffer, Source.size() + 1); } /// Allocate a copy of the given string using the LinkGraph's allocator. /// /// The allocated string will be terminated with a null character, and the /// returned MutableArrayRef will include this null character in the last /// position. /// /// Note: This Twine-based overload requires an extra string copy and an /// extra heap allocation for large strings. The ArrayRef overload /// should be preferred where possible. MutableArrayRef allocateCString(Twine Source) { SmallString<256> TmpBuffer; auto SourceStr = Source.toStringRef(TmpBuffer); auto *AllocatedBuffer = Allocator.Allocate(SourceStr.size() + 1); llvm::copy(SourceStr, AllocatedBuffer); AllocatedBuffer[SourceStr.size()] = '\0'; return MutableArrayRef(AllocatedBuffer, SourceStr.size() + 1); } /// Create a section with the given name, protection flags, and alignment. Section &createSection(StringRef Name, orc::MemProt Prot) { assert(!Sections.count(Name) && "Duplicate section name"); std::unique_ptr
Sec(new Section(Name, Prot, Sections.size())); return *Sections.insert(std::make_pair(Name, std::move(Sec))).first->second; } /// Create a content block. Block &createContentBlock(Section &Parent, ArrayRef Content, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) { return createBlock(Parent, Content, Address, Alignment, AlignmentOffset); } /// Create a content block with initially mutable data. Block &createMutableContentBlock(Section &Parent, MutableArrayRef MutableContent, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) { return createBlock(Parent, MutableContent, Address, Alignment, AlignmentOffset); } /// Create a content block with initially mutable data of the given size. /// Content will be allocated via the LinkGraph's allocateBuffer method. /// By default the memory will be zero-initialized. Passing false for /// ZeroInitialize will prevent this. Block &createMutableContentBlock(Section &Parent, size_t ContentSize, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset, bool ZeroInitialize = true) { auto Content = allocateBuffer(ContentSize); if (ZeroInitialize) memset(Content.data(), 0, Content.size()); return createBlock(Parent, Content, Address, Alignment, AlignmentOffset); } /// Create a zero-fill block. Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) { return createBlock(Parent, Size, Address, Alignment, AlignmentOffset); } /// Returns a BinaryStreamReader for the given block. BinaryStreamReader getBlockContentReader(Block &B) { ArrayRef C( reinterpret_cast(B.getContent().data()), B.getSize()); return BinaryStreamReader(C, getEndianness()); } /// Returns a BinaryStreamWriter for the given block. /// This will call getMutableContent to obtain mutable content for the block. BinaryStreamWriter getBlockContentWriter(Block &B) { MutableArrayRef C( reinterpret_cast(B.getMutableContent(*this).data()), B.getSize()); return BinaryStreamWriter(C, getEndianness()); } /// Cache type for the splitBlock function. using SplitBlockCache = std::optional>; /// Splits block B at the given index which must be greater than zero. /// If SplitIndex == B.getSize() then this function is a no-op and returns B. /// If SplitIndex < B.getSize() then this function returns a new block /// covering the range [ 0, SplitIndex ), and B is modified to cover the range /// [ SplitIndex, B.size() ). /// /// The optional Cache parameter can be used to speed up repeated calls to /// splitBlock for a single block. If the value is None the cache will be /// treated as uninitialized and splitBlock will populate it. Otherwise it /// is assumed to contain the list of Symbols pointing at B, sorted in /// descending order of offset. /// /// Notes: /// /// 1. splitBlock must be used with care. Splitting a block may cause /// incoming edges to become invalid if the edge target subexpression /// points outside the bounds of the newly split target block (E.g. an /// edge 'S + 10 : Pointer64' where S points to a newly split block /// whose size is less than 10). No attempt is made to detect invalidation /// of incoming edges, as in general this requires context that the /// LinkGraph does not have. Clients are responsible for ensuring that /// splitBlock is not used in a way that invalidates edges. /// /// 2. The newly introduced block will have a new ordinal which will be /// higher than any other ordinals in the section. Clients are responsible /// for re-assigning block ordinals to restore a compatible order if /// needed. /// /// 3. The cache is not automatically updated if new symbols are introduced /// between calls to splitBlock. Any newly introduced symbols may be /// added to the cache manually (descending offset order must be /// preserved), or the cache can be set to None and rebuilt by /// splitBlock on the next call. Block &splitBlock(Block &B, size_t SplitIndex, SplitBlockCache *Cache = nullptr); /// Add an external symbol. /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose /// size is not known, you should substitute '0'. /// The IsWeaklyReferenced argument determines whether the symbol must be /// present during lookup: Externals that are strongly referenced must be /// found or an error will be emitted. Externals that are weakly referenced /// are permitted to be undefined, in which case they are assigned an address /// of 0. Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size, bool IsWeaklyReferenced) { assert(!ExternalSymbols.contains(Name) && "Duplicate external symbol"); auto &Sym = Symbol::constructExternal( Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size, Linkage::Strong, IsWeaklyReferenced); ExternalSymbols.insert({Sym.getName(), &Sym}); return Sym; } /// Add an absolute symbol. Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive) { assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols, [&](const Symbol *Sym) { return Sym->getName() == Name; }) == 0) && "Duplicate absolute symbol"); auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address), Name, Size, L, S, IsLive); AbsoluteSymbols.insert(&Sym); return Sym; } /// Add an anonymous symbol. Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset, orc::ExecutorAddrDiff Size, bool IsCallable, bool IsLive) { auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size, IsCallable, IsLive); Content.getSection().addSymbol(Sym); return Sym; } /// Add a named symbol. Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset, StringRef Name, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsCallable, bool IsLive) { assert((S == Scope::Local || llvm::count_if(defined_symbols(), [&](const Symbol *Sym) { return Sym->getName() == Name; }) == 0) && "Duplicate defined symbol"); auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name, Size, L, S, IsLive, IsCallable); Content.getSection().addSymbol(Sym); return Sym; } iterator_range sections() { return make_range( section_iterator(Sections.begin(), GetSectionMapEntryValue()), section_iterator(Sections.end(), GetSectionMapEntryValue())); } iterator_range sections() const { return make_range( const_section_iterator(Sections.begin(), GetSectionMapEntryConstValue()), const_section_iterator(Sections.end(), GetSectionMapEntryConstValue())); } size_t sections_size() const { return Sections.size(); } /// Returns the section with the given name if it exists, otherwise returns /// null. Section *findSectionByName(StringRef Name) { auto I = Sections.find(Name); if (I == Sections.end()) return nullptr; return I->second.get(); } iterator_range blocks() { auto Secs = sections(); return make_range(block_iterator(Secs.begin(), Secs.end()), block_iterator(Secs.end(), Secs.end())); } iterator_range blocks() const { auto Secs = sections(); return make_range(const_block_iterator(Secs.begin(), Secs.end()), const_block_iterator(Secs.end(), Secs.end())); } iterator_range external_symbols() { return make_range( external_symbol_iterator(ExternalSymbols.begin(), GetExternalSymbolMapEntryValue()), external_symbol_iterator(ExternalSymbols.end(), GetExternalSymbolMapEntryValue())); } iterator_range absolute_symbols() { return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); } iterator_range defined_symbols() { auto Secs = sections(); return make_range(defined_symbol_iterator(Secs.begin(), Secs.end()), defined_symbol_iterator(Secs.end(), Secs.end())); } iterator_range defined_symbols() const { auto Secs = sections(); return make_range(const_defined_symbol_iterator(Secs.begin(), Secs.end()), const_defined_symbol_iterator(Secs.end(), Secs.end())); } /// Make the given symbol external (must not already be external). /// /// Symbol size, linkage and callability will be left unchanged. Symbol scope /// will be set to Default, and offset will be reset to 0. void makeExternal(Symbol &Sym) { assert(!Sym.isExternal() && "Symbol is already external"); if (Sym.isAbsolute()) { assert(AbsoluteSymbols.count(&Sym) && "Sym is not in the absolute symbols set"); assert(Sym.getOffset() == 0 && "Absolute not at offset 0"); AbsoluteSymbols.erase(&Sym); auto &A = Sym.getAddressable(); A.setAbsolute(false); A.setAddress(orc::ExecutorAddr()); } else { assert(Sym.isDefined() && "Sym is not a defined symbol"); Section &Sec = Sym.getBlock().getSection(); Sec.removeSymbol(Sym); Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false)); } ExternalSymbols.insert({Sym.getName(), &Sym}); } /// Make the given symbol an absolute with the given address (must not already /// be absolute). /// /// The symbol's size, linkage, and callability, and liveness will be left /// unchanged, and its offset will be reset to 0. /// /// If the symbol was external then its scope will be set to local, otherwise /// it will be left unchanged. void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) { assert(!Sym.isAbsolute() && "Symbol is already absolute"); if (Sym.isExternal()) { assert(ExternalSymbols.contains(Sym.getName()) && "Sym is not in the absolute symbols set"); assert(Sym.getOffset() == 0 && "External is not at offset 0"); ExternalSymbols.erase(Sym.getName()); auto &A = Sym.getAddressable(); A.setAbsolute(true); A.setAddress(Address); Sym.setScope(Scope::Local); } else { assert(Sym.isDefined() && "Sym is not a defined symbol"); Section &Sec = Sym.getBlock().getSection(); Sec.removeSymbol(Sym); Sym.makeAbsolute(createAddressable(Address)); } AbsoluteSymbols.insert(&Sym); } /// Turn an absolute or external symbol into a defined one by attaching it to /// a block. Symbol must not already be defined. void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset, orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive) { assert(!Sym.isDefined() && "Sym is already a defined symbol"); if (Sym.isAbsolute()) { assert(AbsoluteSymbols.count(&Sym) && "Symbol is not in the absolutes set"); AbsoluteSymbols.erase(&Sym); } else { assert(ExternalSymbols.contains(Sym.getName()) && "Symbol is not in the externals set"); ExternalSymbols.erase(Sym.getName()); } Addressable &OldBase = *Sym.Base; Sym.setBlock(Content); Sym.setOffset(Offset); Sym.setSize(Size); Sym.setLinkage(L); Sym.setScope(S); Sym.setLive(IsLive); Content.getSection().addSymbol(Sym); destroyAddressable(OldBase); } /// Transfer a defined symbol from one block to another. /// /// The symbol's offset within DestBlock is set to NewOffset. /// /// If ExplicitNewSize is given as None then the size of the symbol will be /// checked and auto-truncated to at most the size of the remainder (from the /// given offset) of the size of the new block. /// /// All other symbol attributes are unchanged. void transferDefinedSymbol(Symbol &Sym, Block &DestBlock, orc::ExecutorAddrDiff NewOffset, std::optional ExplicitNewSize) { auto &OldSection = Sym.getBlock().getSection(); Sym.setBlock(DestBlock); Sym.setOffset(NewOffset); if (ExplicitNewSize) Sym.setSize(*ExplicitNewSize); else { auto RemainingBlockSize = DestBlock.getSize() - NewOffset; if (Sym.getSize() > RemainingBlockSize) Sym.setSize(RemainingBlockSize); } if (&DestBlock.getSection() != &OldSection) { OldSection.removeSymbol(Sym); DestBlock.getSection().addSymbol(Sym); } } /// Transfers the given Block and all Symbols pointing to it to the given /// Section. /// /// No attempt is made to check compatibility of the source and destination /// sections. Blocks may be moved between sections with incompatible /// permissions (e.g. from data to text). The client is responsible for /// ensuring that this is safe. void transferBlock(Block &B, Section &NewSection) { auto &OldSection = B.getSection(); if (&OldSection == &NewSection) return; SmallVector AttachedSymbols; for (auto *S : OldSection.symbols()) if (&S->getBlock() == &B) AttachedSymbols.push_back(S); for (auto *S : AttachedSymbols) { OldSection.removeSymbol(*S); NewSection.addSymbol(*S); } OldSection.removeBlock(B); NewSection.addBlock(B); } /// Move all blocks and symbols from the source section to the destination /// section. /// /// If PreserveSrcSection is true (or SrcSection and DstSection are the same) /// then SrcSection is preserved, otherwise it is removed (the default). void mergeSections(Section &DstSection, Section &SrcSection, bool PreserveSrcSection = false) { if (&DstSection == &SrcSection) return; for (auto *B : SrcSection.blocks()) B->setSection(DstSection); SrcSection.transferContentTo(DstSection); if (!PreserveSrcSection) removeSection(SrcSection); } /// Removes an external symbol. Also removes the underlying Addressable. void removeExternalSymbol(Symbol &Sym) { assert(!Sym.isDefined() && !Sym.isAbsolute() && "Sym is not an external symbol"); assert(ExternalSymbols.contains(Sym.getName()) && "Symbol is not in the externals set"); ExternalSymbols.erase(Sym.getName()); Addressable &Base = *Sym.Base; assert(llvm::none_of(external_symbols(), [&](Symbol *AS) { return AS->Base == &Base; }) && "Base addressable still in use"); destroySymbol(Sym); destroyAddressable(Base); } /// Remove an absolute symbol. Also removes the underlying Addressable. void removeAbsoluteSymbol(Symbol &Sym) { assert(!Sym.isDefined() && Sym.isAbsolute() && "Sym is not an absolute symbol"); assert(AbsoluteSymbols.count(&Sym) && "Symbol is not in the absolute symbols set"); AbsoluteSymbols.erase(&Sym); Addressable &Base = *Sym.Base; assert(llvm::none_of(external_symbols(), [&](Symbol *AS) { return AS->Base == &Base; }) && "Base addressable still in use"); destroySymbol(Sym); destroyAddressable(Base); } /// Removes defined symbols. Does not remove the underlying block. void removeDefinedSymbol(Symbol &Sym) { assert(Sym.isDefined() && "Sym is not a defined symbol"); Sym.getBlock().getSection().removeSymbol(Sym); destroySymbol(Sym); } /// Remove a block. The block reference is defunct after calling this /// function and should no longer be used. void removeBlock(Block &B) { assert(llvm::none_of(B.getSection().symbols(), [&](const Symbol *Sym) { return &Sym->getBlock() == &B; }) && "Block still has symbols attached"); B.getSection().removeBlock(B); destroyBlock(B); } /// Remove a section. The section reference is defunct after calling this /// function and should no longer be used. void removeSection(Section &Sec) { assert(Sections.count(Sec.getName()) && "Section not found"); assert(Sections.find(Sec.getName())->second.get() == &Sec && "Section map entry invalid"); Sections.erase(Sec.getName()); } /// Accessor for the AllocActions object for this graph. This can be used to /// register allocation action calls prior to finalization. /// /// Accessing this object after finalization will result in undefined /// behavior. orc::shared::AllocActions &allocActions() { return AAs; } /// Dump the graph. void dump(raw_ostream &OS); private: // Put the BumpPtrAllocator first so that we don't free any of the underlying // memory until the Symbol/Addressable destructors have been run. BumpPtrAllocator Allocator; std::string Name; Triple TT; SubtargetFeatures Features; unsigned PointerSize; llvm::endianness Endianness; GetEdgeKindNameFunction GetEdgeKindName = nullptr; DenseMap> Sections; ExternalSymbolMap ExternalSymbols; AbsoluteSymbolSet AbsoluteSymbols; orc::shared::AllocActions AAs; }; inline MutableArrayRef Block::getMutableContent(LinkGraph &G) { if (!ContentMutable) setMutableContent(G.allocateContent({Data, Size})); return MutableArrayRef(const_cast(Data), Size); } /// Enables easy lookup of blocks by addresses. class BlockAddressMap { public: using AddrToBlockMap = std::map; using const_iterator = AddrToBlockMap::const_iterator; /// A block predicate that always adds all blocks. static bool includeAllBlocks(const Block &B) { return true; } /// A block predicate that always includes blocks with non-null addresses. static bool includeNonNull(const Block &B) { return !!B.getAddress(); } BlockAddressMap() = default; /// Add a block to the map. Returns an error if the block overlaps with any /// existing block. template Error addBlock(Block &B, PredFn Pred = includeAllBlocks) { if (!Pred(B)) return Error::success(); auto I = AddrToBlock.upper_bound(B.getAddress()); // If we're not at the end of the map, check for overlap with the next // element. if (I != AddrToBlock.end()) { if (B.getAddress() + B.getSize() > I->second->getAddress()) return overlapError(B, *I->second); } // If we're not at the start of the map, check for overlap with the previous // element. if (I != AddrToBlock.begin()) { auto &PrevBlock = *std::prev(I)->second; if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress()) return overlapError(B, PrevBlock); } AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B)); return Error::success(); } /// Add a block to the map without checking for overlap with existing blocks. /// The client is responsible for ensuring that the block added does not /// overlap with any existing block. void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; } /// Add a range of blocks to the map. Returns an error if any block in the /// range overlaps with any other block in the range, or with any existing /// block in the map. template Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) { for (auto *B : Blocks) if (auto Err = addBlock(*B, Pred)) return Err; return Error::success(); } /// Add a range of blocks to the map without checking for overlap with /// existing blocks. The client is responsible for ensuring that the block /// added does not overlap with any existing block. template void addBlocksWithoutChecking(BlockPtrRange &&Blocks) { for (auto *B : Blocks) addBlockWithoutChecking(*B); } /// Iterates over (Address, Block*) pairs in ascending order of address. const_iterator begin() const { return AddrToBlock.begin(); } const_iterator end() const { return AddrToBlock.end(); } /// Returns the block starting at the given address, or nullptr if no such /// block exists. Block *getBlockAt(orc::ExecutorAddr Addr) const { auto I = AddrToBlock.find(Addr); if (I == AddrToBlock.end()) return nullptr; return I->second; } /// Returns the block covering the given address, or nullptr if no such block /// exists. Block *getBlockCovering(orc::ExecutorAddr Addr) const { auto I = AddrToBlock.upper_bound(Addr); if (I == AddrToBlock.begin()) return nullptr; auto *B = std::prev(I)->second; if (Addr < B->getAddress() + B->getSize()) return B; return nullptr; } private: Error overlapError(Block &NewBlock, Block &ExistingBlock) { auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize(); auto ExistingBlockEnd = ExistingBlock.getAddress() + ExistingBlock.getSize(); return make_error( "Block at " + formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(), NewBlockEnd.getValue()) + " overlaps " + formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(), ExistingBlockEnd.getValue())); } AddrToBlockMap AddrToBlock; }; /// A map of addresses to Symbols. class SymbolAddressMap { public: using SymbolVector = SmallVector; /// Add a symbol to the SymbolAddressMap. void addSymbol(Symbol &Sym) { AddrToSymbols[Sym.getAddress()].push_back(&Sym); } /// Add all symbols in a given range to the SymbolAddressMap. template void addSymbols(SymbolPtrCollection &&Symbols) { for (auto *Sym : Symbols) addSymbol(*Sym); } /// Returns the list of symbols that start at the given address, or nullptr if /// no such symbols exist. const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const { auto I = AddrToSymbols.find(Addr); if (I == AddrToSymbols.end()) return nullptr; return &I->second; } private: std::map AddrToSymbols; }; /// A function for mutating LinkGraphs. using LinkGraphPassFunction = unique_function; /// A list of LinkGraph passes. using LinkGraphPassList = std::vector; /// An LinkGraph pass configuration, consisting of a list of pre-prune, /// post-prune, and post-fixup passes. struct PassConfiguration { /// Pre-prune passes. /// /// These passes are called on the graph after it is built, and before any /// symbols have been pruned. Graph nodes still have their original vmaddrs. /// /// Notable use cases: Marking symbols live or should-discard. LinkGraphPassList PrePrunePasses; /// Post-prune passes. /// /// These passes are called on the graph after dead stripping, but before /// memory is allocated or nodes assigned their final addresses. /// /// Notable use cases: Building GOT, stub, and TLV symbols. LinkGraphPassList PostPrunePasses; /// Post-allocation passes. /// /// These passes are called on the graph after memory has been allocated and /// defined nodes have been assigned their final addresses, but before the /// context has been notified of these addresses. At this point externals /// have not been resolved, and symbol content has not yet been copied into /// working memory. /// /// Notable use cases: Setting up data structures associated with addresses /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the /// JIT runtime) -- using a PostAllocationPass for this ensures that the /// data structures are in-place before any query for resolved symbols /// can complete. LinkGraphPassList PostAllocationPasses; /// Pre-fixup passes. /// /// These passes are called on the graph after memory has been allocated, /// content copied into working memory, and all nodes (including externals) /// have been assigned their final addresses, but before any fixups have been /// applied. /// /// Notable use cases: Late link-time optimizations like GOT and stub /// elimination. LinkGraphPassList PreFixupPasses; /// Post-fixup passes. /// /// These passes are called on the graph after block contents has been copied /// to working memory, and fixups applied. Blocks have been updated to point /// to their fixed up content. /// /// Notable use cases: Testing and validation. LinkGraphPassList PostFixupPasses; }; /// Flags for symbol lookup. /// /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge /// the two types once we have an OrcSupport library. enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol }; raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF); /// A map of symbol names to resolved addresses. using AsyncLookupResult = DenseMap; /// A function object to call with a resolved symbol map (See AsyncLookupResult) /// or an error if resolution failed. class JITLinkAsyncLookupContinuation { public: virtual ~JITLinkAsyncLookupContinuation() = default; virtual void run(Expected LR) = 0; private: virtual void anchor(); }; /// Create a lookup continuation from a function object. template std::unique_ptr createLookupContinuation(Continuation Cont) { class Impl final : public JITLinkAsyncLookupContinuation { public: Impl(Continuation C) : C(std::move(C)) {} void run(Expected LR) override { C(std::move(LR)); } private: Continuation C; }; return std::make_unique(std::move(Cont)); } /// Holds context for a single jitLink invocation. class JITLinkContext { public: using LookupMap = DenseMap; /// Create a JITLinkContext. JITLinkContext(const JITLinkDylib *JD) : JD(JD) {} /// Destroy a JITLinkContext. virtual ~JITLinkContext(); /// Return the JITLinkDylib that this link is targeting, if any. const JITLinkDylib *getJITLinkDylib() const { return JD; } /// Return the MemoryManager to be used for this link. virtual JITLinkMemoryManager &getMemoryManager() = 0; /// Notify this context that linking failed. /// Called by JITLink if linking cannot be completed. virtual void notifyFailed(Error Err) = 0; /// Called by JITLink to resolve external symbols. This method is passed a /// lookup continutation which it must call with a result to continue the /// linking process. virtual void lookup(const LookupMap &Symbols, std::unique_ptr LC) = 0; /// Called by JITLink once all defined symbols in the graph have been assigned /// their final memory locations in the target process. At this point the /// LinkGraph can be inspected to build a symbol table, however the block /// content will not generally have been copied to the target location yet. /// /// If the client detects an error in the LinkGraph state (e.g. unexpected or /// missing symbols) they may return an error here. The error will be /// propagated to notifyFailed and the linker will bail out. virtual Error notifyResolved(LinkGraph &G) = 0; /// Called by JITLink to notify the context that the object has been /// finalized (i.e. emitted to memory and memory permissions set). If all of /// this objects dependencies have also been finalized then the code is ready /// to run. virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0; /// Called by JITLink prior to linking to determine whether default passes for /// the target should be added. The default implementation returns true. /// If subclasses override this method to return false for any target then /// they are required to fully configure the pass pipeline for that target. virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const; /// Returns the mark-live pass to be used for this link. If no pass is /// returned (the default) then the target-specific linker implementation will /// choose a conservative default (usually marking all symbols live). /// This function is only called if shouldAddDefaultTargetPasses returns true, /// otherwise the JITContext is responsible for adding a mark-live pass in /// modifyPassConfig. virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const; /// Called by JITLink to modify the pass pipeline prior to linking. /// The default version performs no modification. virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config); private: const JITLinkDylib *JD = nullptr; }; /// Marks all symbols in a graph live. This can be used as a default, /// conservative mark-live implementation. Error markAllSymbolsLive(LinkGraph &G); /// Create an out of range error for the given edge in the given block. Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B, const Edge &E); Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N, const Edge &E); /// Creates a new pointer block in the given section and returns an /// Anonymous symbol pointing to it. /// /// The pointer block will have the following default values: /// alignment: PointerSize /// alignment-offset: 0 /// address: highest allowable using AnonymousPointerCreator = unique_function( LinkGraph &G, Section &PointerSection, Symbol *InitialTarget, uint64_t InitialAddend)>; /// Get target-specific AnonymousPointerCreator AnonymousPointerCreator getAnonymousPointerCreator(const Triple &TT); /// Create a jump stub that jumps via the pointer at the given symbol and /// an anonymous symbol pointing to it. Return the anonymous symbol. /// /// The stub block will be created by createPointerJumpStubBlock. using PointerJumpStubCreator = unique_function( LinkGraph &G, Section &StubSection, Symbol &PointerSymbol)>; /// Get target-specific PointerJumpStubCreator PointerJumpStubCreator getPointerJumpStubCreator(const Triple &TT); /// Base case for edge-visitors where the visitor-list is empty. inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {} /// Applies the first visitor in the list to the given edge. If the visitor's /// visitEdge method returns true then we return immediately, otherwise we /// apply the next visitor. template void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V, VisitorTs &&...Vs) { if (!V.visitEdge(G, B, E)) visitEdge(G, B, E, std::forward(Vs)...); } /// For each edge in the given graph, apply a list of visitors to the edge, /// stopping when the first visitor's visitEdge method returns true. /// /// Only visits edges that were in the graph at call time: if any visitor /// adds new edges those will not be visited. Visitors are not allowed to /// remove edges (though they can change their kind, target, and addend). template void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) { // We may add new blocks during this process, but we don't want to iterate // over them, so build a worklist. std::vector Worklist(G.blocks().begin(), G.blocks().end()); for (auto *B : Worklist) for (auto &E : B->edges()) visitEdge(G, B, E, std::forward(Vs)...); } /// Create a LinkGraph from the given object buffer. /// /// Note: The graph does not take ownership of the underlying buffer, nor copy /// its contents. The caller is responsible for ensuring that the object buffer /// outlives the graph. Expected> createLinkGraphFromObject(MemoryBufferRef ObjectBuffer); /// Create a \c LinkGraph defining the given absolute symbols. std::unique_ptr absoluteSymbolsLinkGraph(const Triple &TT, orc::SymbolMap Symbols); /// Link the given graph. void link(std::unique_ptr G, std::unique_ptr Ctx); } // end namespace jitlink } // end namespace llvm #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H