//===------ Core.h -- Core ORC APIs (Layer, JITDylib, etc.) -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Contains core ORC APIs. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_ORC_CORE_H #define LLVM_EXECUTIONENGINE_ORC_CORE_H #include "llvm/ADT/BitmaskEnum.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FunctionExtras.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ExecutionEngine/JITLink/JITLinkDylib.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/ExecutorProcessControl.h" #include "llvm/ExecutionEngine/Orc/Shared/ExecutorAddress.h" #include "llvm/ExecutionEngine/Orc/Shared/ExecutorSymbolDef.h" #include "llvm/ExecutionEngine/Orc/Shared/WrapperFunctionUtils.h" #include "llvm/ExecutionEngine/Orc/TaskDispatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ExtensibleRTTI.h" #include #include #include #include #include namespace llvm { namespace orc { // Forward declare some classes. class AsynchronousSymbolQuery; class ExecutionSession; class MaterializationUnit; class MaterializationResponsibility; class JITDylib; class ResourceTracker; class InProgressLookupState; enum class SymbolState : uint8_t; using ResourceTrackerSP = IntrusiveRefCntPtr; using JITDylibSP = IntrusiveRefCntPtr; using ResourceKey = uintptr_t; /// API to remove / transfer ownership of JIT resources. class ResourceTracker : public ThreadSafeRefCountedBase { private: friend class ExecutionSession; friend class JITDylib; friend class MaterializationResponsibility; public: ResourceTracker(const ResourceTracker &) = delete; ResourceTracker &operator=(const ResourceTracker &) = delete; ResourceTracker(ResourceTracker &&) = delete; ResourceTracker &operator=(ResourceTracker &&) = delete; ~ResourceTracker(); /// Return the JITDylib targeted by this tracker. JITDylib &getJITDylib() const { return *reinterpret_cast(JDAndFlag.load() & ~static_cast(1)); } /// Runs the given callback under the session lock, passing in the associated /// ResourceKey. This is the safe way to associate resources with trackers. template Error withResourceKeyDo(Func &&F); /// Remove all resources associated with this key. Error remove(); /// Transfer all resources associated with this key to the given /// tracker, which must target the same JITDylib as this one. void transferTo(ResourceTracker &DstRT); /// Return true if this tracker has become defunct. bool isDefunct() const { return JDAndFlag.load() & 0x1; } /// Returns the key associated with this tracker. /// This method should not be used except for debug logging: there is no /// guarantee that the returned value will remain valid. ResourceKey getKeyUnsafe() const { return reinterpret_cast(this); } private: ResourceTracker(JITDylibSP JD); void makeDefunct(); std::atomic_uintptr_t JDAndFlag; }; /// Listens for ResourceTracker operations. class ResourceManager { public: virtual ~ResourceManager(); virtual Error handleRemoveResources(JITDylib &JD, ResourceKey K) = 0; virtual void handleTransferResources(JITDylib &JD, ResourceKey DstK, ResourceKey SrcK) = 0; }; /// A set of symbol names (represented by SymbolStringPtrs for // efficiency). using SymbolNameSet = DenseSet; /// A vector of symbol names. using SymbolNameVector = std::vector; /// A map from symbol names (as SymbolStringPtrs) to JITSymbols /// (address/flags pairs). using SymbolMap = DenseMap; /// A map from symbol names (as SymbolStringPtrs) to JITSymbolFlags. using SymbolFlagsMap = DenseMap; /// A map from JITDylibs to sets of symbols. using SymbolDependenceMap = DenseMap; /// Lookup flags that apply to each dylib in the search order for a lookup. /// /// If MatchHiddenSymbolsOnly is used (the default) for a given dylib, then /// only symbols in that Dylib's interface will be searched. If /// MatchHiddenSymbols is used then symbols with hidden visibility will match /// as well. enum class JITDylibLookupFlags { MatchExportedSymbolsOnly, MatchAllSymbols }; /// Lookup flags that apply to each symbol in a lookup. /// /// If RequiredSymbol is used (the default) for a given symbol then that symbol /// must be found during the lookup or the lookup will fail returning a /// SymbolNotFound error. If WeaklyReferencedSymbol is used and the given /// symbol is not found then the query will continue, and no result for the /// missing symbol will be present in the result (assuming the rest of the /// lookup succeeds). enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol }; /// Describes the kind of lookup being performed. The lookup kind is passed to /// symbol generators (if they're invoked) to help them determine what /// definitions to generate. /// /// Static -- Lookup is being performed as-if at static link time (e.g. /// generators representing static archives should pull in new /// definitions). /// /// DLSym -- Lookup is being performed as-if at runtime (e.g. generators /// representing static archives should not pull in new definitions). enum class LookupKind { Static, DLSym }; /// A list of (JITDylib*, JITDylibLookupFlags) pairs to be used as a search /// order during symbol lookup. using JITDylibSearchOrder = std::vector>; /// Convenience function for creating a search order from an ArrayRef of /// JITDylib*, all with the same flags. inline JITDylibSearchOrder makeJITDylibSearchOrder( ArrayRef JDs, JITDylibLookupFlags Flags = JITDylibLookupFlags::MatchExportedSymbolsOnly) { JITDylibSearchOrder O; O.reserve(JDs.size()); for (auto *JD : JDs) O.push_back(std::make_pair(JD, Flags)); return O; } /// A set of symbols to look up, each associated with a SymbolLookupFlags /// value. /// /// This class is backed by a vector and optimized for fast insertion, /// deletion and iteration. It does not guarantee a stable order between /// operations, and will not automatically detect duplicate elements (they /// can be manually checked by calling the validate method). class SymbolLookupSet { public: using value_type = std::pair; using UnderlyingVector = std::vector; using iterator = UnderlyingVector::iterator; using const_iterator = UnderlyingVector::const_iterator; SymbolLookupSet() = default; explicit SymbolLookupSet( SymbolStringPtr Name, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { add(std::move(Name), Flags); } /// Construct a SymbolLookupSet from an initializer list of SymbolStringPtrs. explicit SymbolLookupSet( std::initializer_list Names, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { Symbols.reserve(Names.size()); for (const auto &Name : Names) add(std::move(Name), Flags); } /// Construct a SymbolLookupSet from a SymbolNameSet with the given /// Flags used for each value. explicit SymbolLookupSet( const SymbolNameSet &Names, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { Symbols.reserve(Names.size()); for (const auto &Name : Names) add(Name, Flags); } /// Construct a SymbolLookupSet from a vector of symbols with the given Flags /// used for each value. /// If the ArrayRef contains duplicates it is up to the client to remove these /// before using this instance for lookup. explicit SymbolLookupSet( ArrayRef Names, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { Symbols.reserve(Names.size()); for (const auto &Name : Names) add(Name, Flags); } /// Construct a SymbolLookupSet from DenseMap keys. template static SymbolLookupSet fromMapKeys(const DenseMap &M, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { SymbolLookupSet Result; Result.Symbols.reserve(M.size()); for (const auto &KV : M) Result.add(KV.first, Flags); return Result; } /// Add an element to the set. The client is responsible for checking that /// duplicates are not added. SymbolLookupSet & add(SymbolStringPtr Name, SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) { Symbols.push_back(std::make_pair(std::move(Name), Flags)); return *this; } /// Quickly append one lookup set to another. SymbolLookupSet &append(SymbolLookupSet Other) { Symbols.reserve(Symbols.size() + Other.size()); for (auto &KV : Other) Symbols.push_back(std::move(KV)); return *this; } bool empty() const { return Symbols.empty(); } UnderlyingVector::size_type size() const { return Symbols.size(); } iterator begin() { return Symbols.begin(); } iterator end() { return Symbols.end(); } const_iterator begin() const { return Symbols.begin(); } const_iterator end() const { return Symbols.end(); } /// Removes the Ith element of the vector, replacing it with the last element. void remove(UnderlyingVector::size_type I) { std::swap(Symbols[I], Symbols.back()); Symbols.pop_back(); } /// Removes the element pointed to by the given iterator. This iterator and /// all subsequent ones (including end()) are invalidated. void remove(iterator I) { remove(I - begin()); } /// Removes all elements matching the given predicate, which must be callable /// as bool(const SymbolStringPtr &, SymbolLookupFlags Flags). template void remove_if(PredFn &&Pred) { UnderlyingVector::size_type I = 0; while (I != Symbols.size()) { const auto &Name = Symbols[I].first; auto Flags = Symbols[I].second; if (Pred(Name, Flags)) remove(I); else ++I; } } /// Loop over the elements of this SymbolLookupSet, applying the Body function /// to each one. Body must be callable as /// bool(const SymbolStringPtr &, SymbolLookupFlags). /// If Body returns true then the element just passed in is removed from the /// set. If Body returns false then the element is retained. template auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t< std::is_same(), std::declval())), bool>::value> { UnderlyingVector::size_type I = 0; while (I != Symbols.size()) { const auto &Name = Symbols[I].first; auto Flags = Symbols[I].second; if (Body(Name, Flags)) remove(I); else ++I; } } /// Loop over the elements of this SymbolLookupSet, applying the Body function /// to each one. Body must be callable as /// Expected(const SymbolStringPtr &, SymbolLookupFlags). /// If Body returns a failure value, the loop exits immediately. If Body /// returns true then the element just passed in is removed from the set. If /// Body returns false then the element is retained. template auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t< std::is_same(), std::declval())), Expected>::value, Error> { UnderlyingVector::size_type I = 0; while (I != Symbols.size()) { const auto &Name = Symbols[I].first; auto Flags = Symbols[I].second; auto Remove = Body(Name, Flags); if (!Remove) return Remove.takeError(); if (*Remove) remove(I); else ++I; } return Error::success(); } /// Construct a SymbolNameVector from this instance by dropping the Flags /// values. SymbolNameVector getSymbolNames() const { SymbolNameVector Names; Names.reserve(Symbols.size()); for (const auto &KV : Symbols) Names.push_back(KV.first); return Names; } /// Sort the lookup set by pointer value. This sort is fast but sensitive to /// allocation order and so should not be used where a consistent order is /// required. void sortByAddress() { llvm::sort(Symbols, llvm::less_first()); } /// Sort the lookup set lexicographically. This sort is slow but the order /// is unaffected by allocation order. void sortByName() { llvm::sort(Symbols, [](const value_type &LHS, const value_type &RHS) { return *LHS.first < *RHS.first; }); } /// Remove any duplicate elements. If a SymbolLookupSet is not duplicate-free /// by construction, this method can be used to turn it into a proper set. void removeDuplicates() { sortByAddress(); auto LastI = std::unique(Symbols.begin(), Symbols.end()); Symbols.erase(LastI, Symbols.end()); } #ifndef NDEBUG /// Returns true if this set contains any duplicates. This should only be used /// in assertions. bool containsDuplicates() { if (Symbols.size() < 2) return false; sortByAddress(); for (UnderlyingVector::size_type I = 1; I != Symbols.size(); ++I) if (Symbols[I].first == Symbols[I - 1].first) return true; return false; } #endif private: UnderlyingVector Symbols; }; struct SymbolAliasMapEntry { SymbolAliasMapEntry() = default; SymbolAliasMapEntry(SymbolStringPtr Aliasee, JITSymbolFlags AliasFlags) : Aliasee(std::move(Aliasee)), AliasFlags(AliasFlags) {} SymbolStringPtr Aliasee; JITSymbolFlags AliasFlags; }; /// A map of Symbols to (Symbol, Flags) pairs. using SymbolAliasMap = DenseMap; /// Callback to notify client that symbols have been resolved. using SymbolsResolvedCallback = unique_function)>; /// Callback to register the dependencies for a given query. using RegisterDependenciesFunction = std::function; /// This can be used as the value for a RegisterDependenciesFunction if there /// are no dependants to register with. extern RegisterDependenciesFunction NoDependenciesToRegister; class ResourceTrackerDefunct : public ErrorInfo { public: static char ID; ResourceTrackerDefunct(ResourceTrackerSP RT); std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; private: ResourceTrackerSP RT; }; /// Used to notify a JITDylib that the given set of symbols failed to /// materialize. class FailedToMaterialize : public ErrorInfo { public: static char ID; FailedToMaterialize(std::shared_ptr SSP, std::shared_ptr Symbols); ~FailedToMaterialize(); std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; const SymbolDependenceMap &getSymbols() const { return *Symbols; } private: std::shared_ptr SSP; std::shared_ptr Symbols; }; /// Used to notify clients when symbols can not be found during a lookup. class SymbolsNotFound : public ErrorInfo { public: static char ID; SymbolsNotFound(std::shared_ptr SSP, SymbolNameSet Symbols); SymbolsNotFound(std::shared_ptr SSP, SymbolNameVector Symbols); std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; std::shared_ptr getSymbolStringPool() { return SSP; } const SymbolNameVector &getSymbols() const { return Symbols; } private: std::shared_ptr SSP; SymbolNameVector Symbols; }; /// Used to notify clients that a set of symbols could not be removed. class SymbolsCouldNotBeRemoved : public ErrorInfo { public: static char ID; SymbolsCouldNotBeRemoved(std::shared_ptr SSP, SymbolNameSet Symbols); std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; std::shared_ptr getSymbolStringPool() { return SSP; } const SymbolNameSet &getSymbols() const { return Symbols; } private: std::shared_ptr SSP; SymbolNameSet Symbols; }; /// Errors of this type should be returned if a module fails to include /// definitions that are claimed by the module's associated /// MaterializationResponsibility. If this error is returned it is indicative of /// a broken transformation / compiler / object cache. class MissingSymbolDefinitions : public ErrorInfo { public: static char ID; MissingSymbolDefinitions(std::shared_ptr SSP, std::string ModuleName, SymbolNameVector Symbols) : SSP(std::move(SSP)), ModuleName(std::move(ModuleName)), Symbols(std::move(Symbols)) {} std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; std::shared_ptr getSymbolStringPool() { return SSP; } const std::string &getModuleName() const { return ModuleName; } const SymbolNameVector &getSymbols() const { return Symbols; } private: std::shared_ptr SSP; std::string ModuleName; SymbolNameVector Symbols; }; /// Errors of this type should be returned if a module contains definitions for /// symbols that are not claimed by the module's associated /// MaterializationResponsibility. If this error is returned it is indicative of /// a broken transformation / compiler / object cache. class UnexpectedSymbolDefinitions : public ErrorInfo { public: static char ID; UnexpectedSymbolDefinitions(std::shared_ptr SSP, std::string ModuleName, SymbolNameVector Symbols) : SSP(std::move(SSP)), ModuleName(std::move(ModuleName)), Symbols(std::move(Symbols)) {} std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; std::shared_ptr getSymbolStringPool() { return SSP; } const std::string &getModuleName() const { return ModuleName; } const SymbolNameVector &getSymbols() const { return Symbols; } private: std::shared_ptr SSP; std::string ModuleName; SymbolNameVector Symbols; }; /// Tracks responsibility for materialization, and mediates interactions between /// MaterializationUnits and JDs. /// /// An instance of this class is passed to MaterializationUnits when their /// materialize method is called. It allows MaterializationUnits to resolve and /// emit symbols, or abandon materialization by notifying any unmaterialized /// symbols of an error. class MaterializationResponsibility { friend class ExecutionSession; friend class JITDylib; public: MaterializationResponsibility(MaterializationResponsibility &&) = delete; MaterializationResponsibility & operator=(MaterializationResponsibility &&) = delete; /// Destruct a MaterializationResponsibility instance. In debug mode /// this asserts that all symbols being tracked have been either /// emitted or notified of an error. ~MaterializationResponsibility(); /// Runs the given callback under the session lock, passing in the associated /// ResourceKey. This is the safe way to associate resources with trackers. template Error withResourceKeyDo(Func &&F) const { return RT->withResourceKeyDo(std::forward(F)); } /// Returns the target JITDylib that these symbols are being materialized /// into. JITDylib &getTargetJITDylib() const { return JD; } /// Returns the ExecutionSession for this instance. ExecutionSession &getExecutionSession() const; /// Returns the symbol flags map for this responsibility instance. /// Note: The returned flags may have transient flags (Lazy, Materializing) /// set. These should be stripped with JITSymbolFlags::stripTransientFlags /// before using. const SymbolFlagsMap &getSymbols() const { return SymbolFlags; } /// Returns the initialization pseudo-symbol, if any. This symbol will also /// be present in the SymbolFlagsMap for this MaterializationResponsibility /// object. const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; } /// Returns the names of any symbols covered by this /// MaterializationResponsibility object that have queries pending. This /// information can be used to return responsibility for unrequested symbols /// back to the JITDylib via the delegate method. SymbolNameSet getRequestedSymbols() const; /// Notifies the target JITDylib that the given symbols have been resolved. /// This will update the given symbols' addresses in the JITDylib, and notify /// any pending queries on the given symbols of their resolution. The given /// symbols must be ones covered by this MaterializationResponsibility /// instance. Individual calls to this method may resolve a subset of the /// symbols, but all symbols must have been resolved prior to calling emit. /// /// This method will return an error if any symbols being resolved have been /// moved to the error state due to the failure of a dependency. If this /// method returns an error then clients should log it and call /// failMaterialize. If no dependencies have been registered for the /// symbols covered by this MaterializationResponsibility then this method /// is guaranteed to return Error::success() and can be wrapped with cantFail. Error notifyResolved(const SymbolMap &Symbols); /// Notifies the target JITDylib (and any pending queries on that JITDylib) /// that all symbols covered by this MaterializationResponsibility instance /// have been emitted. /// /// This method will return an error if any symbols being resolved have been /// moved to the error state due to the failure of a dependency. If this /// method returns an error then clients should log it and call /// failMaterialize. If no dependencies have been registered for the /// symbols covered by this MaterializationResponsibility then this method /// is guaranteed to return Error::success() and can be wrapped with cantFail. Error notifyEmitted(); /// Attempt to claim responsibility for new definitions. This method can be /// used to claim responsibility for symbols that are added to a /// materialization unit during the compilation process (e.g. literal pool /// symbols). Symbol linkage rules are the same as for symbols that are /// defined up front: duplicate strong definitions will result in errors. /// Duplicate weak definitions will be discarded (in which case they will /// not be added to this responsibility instance). /// /// This method can be used by materialization units that want to add /// additional symbols at materialization time (e.g. stubs, compile /// callbacks, metadata). Error defineMaterializing(SymbolFlagsMap SymbolFlags); /// Notify all not-yet-emitted covered by this MaterializationResponsibility /// instance that an error has occurred. /// This will remove all symbols covered by this MaterializationResponsibility /// from the target JITDylib, and send an error to any queries waiting on /// these symbols. void failMaterialization(); /// Transfers responsibility to the given MaterializationUnit for all /// symbols defined by that MaterializationUnit. This allows /// materializers to break up work based on run-time information (e.g. /// by introspecting which symbols have actually been looked up and /// materializing only those). Error replace(std::unique_ptr MU); /// Delegates responsibility for the given symbols to the returned /// materialization responsibility. Useful for breaking up work between /// threads, or different kinds of materialization processes. Expected> delegate(const SymbolNameSet &Symbols); void addDependencies(const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies); /// Add dependencies that apply to all symbols covered by this instance. void addDependenciesForAll(const SymbolDependenceMap &Dependencies); private: /// Create a MaterializationResponsibility for the given JITDylib and /// initial symbols. MaterializationResponsibility(ResourceTrackerSP RT, SymbolFlagsMap SymbolFlags, SymbolStringPtr InitSymbol) : JD(RT->getJITDylib()), RT(std::move(RT)), SymbolFlags(std::move(SymbolFlags)), InitSymbol(std::move(InitSymbol)) { assert(!this->SymbolFlags.empty() && "Materializing nothing?"); } JITDylib &JD; ResourceTrackerSP RT; SymbolFlagsMap SymbolFlags; SymbolStringPtr InitSymbol; }; /// A MaterializationUnit represents a set of symbol definitions that can /// be materialized as a group, or individually discarded (when /// overriding definitions are encountered). /// /// MaterializationUnits are used when providing lazy definitions of symbols to /// JITDylibs. The JITDylib will call materialize when the address of a symbol /// is requested via the lookup method. The JITDylib will call discard if a /// stronger definition is added or already present. class MaterializationUnit { friend class ExecutionSession; friend class JITDylib; public: static char ID; struct Interface { Interface() = default; Interface(SymbolFlagsMap InitalSymbolFlags, SymbolStringPtr InitSymbol) : SymbolFlags(std::move(InitalSymbolFlags)), InitSymbol(std::move(InitSymbol)) { assert((!this->InitSymbol || this->SymbolFlags.count(this->InitSymbol)) && "If set, InitSymbol should appear in InitialSymbolFlags map"); } SymbolFlagsMap SymbolFlags; SymbolStringPtr InitSymbol; }; MaterializationUnit(Interface I) : SymbolFlags(std::move(I.SymbolFlags)), InitSymbol(std::move(I.InitSymbol)) {} virtual ~MaterializationUnit() = default; /// Return the name of this materialization unit. Useful for debugging /// output. virtual StringRef getName() const = 0; /// Return the set of symbols that this source provides. const SymbolFlagsMap &getSymbols() const { return SymbolFlags; } /// Returns the initialization symbol for this MaterializationUnit (if any). const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; } /// Implementations of this method should materialize all symbols /// in the materialzation unit, except for those that have been /// previously discarded. virtual void materialize(std::unique_ptr R) = 0; /// Called by JITDylibs to notify MaterializationUnits that the given symbol /// has been overridden. void doDiscard(const JITDylib &JD, const SymbolStringPtr &Name) { SymbolFlags.erase(Name); if (InitSymbol == Name) { DEBUG_WITH_TYPE("orc", { dbgs() << "In " << getName() << ": discarding init symbol \"" << *Name << "\"\n"; }); InitSymbol = nullptr; } discard(JD, std::move(Name)); } protected: SymbolFlagsMap SymbolFlags; SymbolStringPtr InitSymbol; private: virtual void anchor(); /// Implementations of this method should discard the given symbol /// from the source (e.g. if the source is an LLVM IR Module and the /// symbol is a function, delete the function body or mark it available /// externally). virtual void discard(const JITDylib &JD, const SymbolStringPtr &Name) = 0; }; /// A MaterializationUnit implementation for pre-existing absolute symbols. /// /// All symbols will be resolved and marked ready as soon as the unit is /// materialized. class AbsoluteSymbolsMaterializationUnit : public MaterializationUnit { public: AbsoluteSymbolsMaterializationUnit(SymbolMap Symbols); StringRef getName() const override; private: void materialize(std::unique_ptr R) override; void discard(const JITDylib &JD, const SymbolStringPtr &Name) override; static MaterializationUnit::Interface extractFlags(const SymbolMap &Symbols); SymbolMap Symbols; }; /// Create an AbsoluteSymbolsMaterializationUnit with the given symbols. /// Useful for inserting absolute symbols into a JITDylib. E.g.: /// \code{.cpp} /// JITDylib &JD = ...; /// SymbolStringPtr Foo = ...; /// ExecutorSymbolDef FooSym = ...; /// if (auto Err = JD.define(absoluteSymbols({{Foo, FooSym}}))) /// return Err; /// \endcode /// inline std::unique_ptr absoluteSymbols(SymbolMap Symbols) { return std::make_unique( std::move(Symbols)); } /// A materialization unit for symbol aliases. Allows existing symbols to be /// aliased with alternate flags. class ReExportsMaterializationUnit : public MaterializationUnit { public: /// SourceJD is allowed to be nullptr, in which case the source JITDylib is /// taken to be whatever JITDylib these definitions are materialized in (and /// MatchNonExported has no effect). This is useful for defining aliases /// within a JITDylib. /// /// Note: Care must be taken that no sets of aliases form a cycle, as such /// a cycle will result in a deadlock when any symbol in the cycle is /// resolved. ReExportsMaterializationUnit(JITDylib *SourceJD, JITDylibLookupFlags SourceJDLookupFlags, SymbolAliasMap Aliases); StringRef getName() const override; private: void materialize(std::unique_ptr R) override; void discard(const JITDylib &JD, const SymbolStringPtr &Name) override; static MaterializationUnit::Interface extractFlags(const SymbolAliasMap &Aliases); JITDylib *SourceJD = nullptr; JITDylibLookupFlags SourceJDLookupFlags; SymbolAliasMap Aliases; }; /// Create a ReExportsMaterializationUnit with the given aliases. /// Useful for defining symbol aliases.: E.g., given a JITDylib JD containing /// symbols "foo" and "bar", we can define aliases "baz" (for "foo") and "qux" /// (for "bar") with: \code{.cpp} /// SymbolStringPtr Baz = ...; /// SymbolStringPtr Qux = ...; /// if (auto Err = JD.define(symbolAliases({ /// {Baz, { Foo, JITSymbolFlags::Exported }}, /// {Qux, { Bar, JITSymbolFlags::Weak }}})) /// return Err; /// \endcode inline std::unique_ptr symbolAliases(SymbolAliasMap Aliases) { return std::make_unique( nullptr, JITDylibLookupFlags::MatchAllSymbols, std::move(Aliases)); } /// Create a materialization unit for re-exporting symbols from another JITDylib /// with alternative names/flags. /// SourceJD will be searched using the given JITDylibLookupFlags. inline std::unique_ptr reexports(JITDylib &SourceJD, SymbolAliasMap Aliases, JITDylibLookupFlags SourceJDLookupFlags = JITDylibLookupFlags::MatchExportedSymbolsOnly) { return std::make_unique( &SourceJD, SourceJDLookupFlags, std::move(Aliases)); } /// Build a SymbolAliasMap for the common case where you want to re-export /// symbols from another JITDylib with the same linkage/flags. Expected buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols); /// Represents the state that a symbol has reached during materialization. enum class SymbolState : uint8_t { Invalid, /// No symbol should be in this state. NeverSearched, /// Added to the symbol table, never queried. Materializing, /// Queried, materialization begun. Resolved, /// Assigned address, still materializing. Emitted, /// Emitted to memory, but waiting on transitive dependencies. Ready = 0x3f /// Ready and safe for clients to access. }; /// A symbol query that returns results via a callback when results are /// ready. /// /// makes a callback when all symbols are available. class AsynchronousSymbolQuery { friend class ExecutionSession; friend class InProgressFullLookupState; friend class JITDylib; friend class JITSymbolResolverAdapter; friend class MaterializationResponsibility; public: /// Create a query for the given symbols. The NotifyComplete /// callback will be called once all queried symbols reach the given /// minimum state. AsynchronousSymbolQuery(const SymbolLookupSet &Symbols, SymbolState RequiredState, SymbolsResolvedCallback NotifyComplete); /// Notify the query that a requested symbol has reached the required state. void notifySymbolMetRequiredState(const SymbolStringPtr &Name, ExecutorSymbolDef Sym); /// Returns true if all symbols covered by this query have been /// resolved. bool isComplete() const { return OutstandingSymbolsCount == 0; } private: void handleComplete(ExecutionSession &ES); SymbolState getRequiredState() { return RequiredState; } void addQueryDependence(JITDylib &JD, SymbolStringPtr Name); void removeQueryDependence(JITDylib &JD, const SymbolStringPtr &Name); void dropSymbol(const SymbolStringPtr &Name); void handleFailed(Error Err); void detach(); SymbolsResolvedCallback NotifyComplete; SymbolDependenceMap QueryRegistrations; SymbolMap ResolvedSymbols; size_t OutstandingSymbolsCount; SymbolState RequiredState; }; /// Wraps state for a lookup-in-progress. /// DefinitionGenerators can optionally take ownership of a LookupState object /// to suspend a lookup-in-progress while they search for definitions. class LookupState { friend class OrcV2CAPIHelper; friend class ExecutionSession; public: LookupState(); LookupState(LookupState &&); LookupState &operator=(LookupState &&); ~LookupState(); /// Continue the lookup. This can be called by DefinitionGenerators /// to re-start a captured query-application operation. void continueLookup(Error Err); private: LookupState(std::unique_ptr IPLS); // For C API. void reset(InProgressLookupState *IPLS); std::unique_ptr IPLS; }; /// Definition generators can be attached to JITDylibs to generate new /// definitions for otherwise unresolved symbols during lookup. class DefinitionGenerator { friend class ExecutionSession; public: virtual ~DefinitionGenerator(); /// DefinitionGenerators should override this method to insert new /// definitions into the parent JITDylib. K specifies the kind of this /// lookup. JD specifies the target JITDylib being searched, and /// JDLookupFlags specifies whether the search should match against /// hidden symbols. Finally, Symbols describes the set of unresolved /// symbols and their associated lookup flags. virtual Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD, JITDylibLookupFlags JDLookupFlags, const SymbolLookupSet &LookupSet) = 0; private: std::mutex M; bool InUse = false; std::deque PendingLookups; }; /// Represents a JIT'd dynamic library. /// /// This class aims to mimic the behavior of a regular dylib or shared object, /// but without requiring the contained program representations to be compiled /// up-front. The JITDylib's content is defined by adding MaterializationUnits, /// and contained MaterializationUnits will typically rely on the JITDylib's /// links-against order to resolve external references (similar to a regular /// dylib). /// /// The JITDylib object is a thin wrapper that references state held by the /// ExecutionSession. JITDylibs can be removed, clearing this underlying state /// and leaving the JITDylib object in a defunct state. In this state the /// JITDylib's name is guaranteed to remain accessible. If the ExecutionSession /// is still alive then other operations are callable but will return an Error /// or null result (depending on the API). It is illegal to call any operation /// other than getName on a JITDylib after the ExecutionSession has been torn /// down. /// /// JITDylibs cannot be moved or copied. Their address is stable, and useful as /// a key in some JIT data structures. class JITDylib : public ThreadSafeRefCountedBase, public jitlink::JITLinkDylib { friend class AsynchronousSymbolQuery; friend class ExecutionSession; friend class Platform; friend class MaterializationResponsibility; public: JITDylib(const JITDylib &) = delete; JITDylib &operator=(const JITDylib &) = delete; JITDylib(JITDylib &&) = delete; JITDylib &operator=(JITDylib &&) = delete; ~JITDylib(); /// Get a reference to the ExecutionSession for this JITDylib. /// /// It is legal to call this method on a defunct JITDylib, however the result /// will only usable if the ExecutionSession is still alive. If this JITDylib /// is held by an error that may have torn down the JIT then the result /// should not be used. ExecutionSession &getExecutionSession() const { return ES; } /// Dump current JITDylib state to OS. /// /// It is legal to call this method on a defunct JITDylib. void dump(raw_ostream &OS); /// Calls remove on all trackers currently associated with this JITDylib. /// Does not run static deinits. /// /// Note that removal happens outside the session lock, so new code may be /// added concurrently while the clear is underway, and the newly added /// code will *not* be cleared. Adding new code concurrently with a clear /// is usually a bug and should be avoided. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. Error clear(); /// Get the default resource tracker for this JITDylib. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. ResourceTrackerSP getDefaultResourceTracker(); /// Create a resource tracker for this JITDylib. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. ResourceTrackerSP createResourceTracker(); /// Adds a definition generator to this JITDylib and returns a referenece to /// it. /// /// When JITDylibs are searched during lookup, if no existing definition of /// a symbol is found, then any generators that have been added are run (in /// the order that they were added) to potentially generate a definition. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. template GeneratorT &addGenerator(std::unique_ptr DefGenerator); /// Remove a definition generator from this JITDylib. /// /// The given generator must exist in this JITDylib's generators list (i.e. /// have been added and not yet removed). /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. void removeGenerator(DefinitionGenerator &G); /// Set the link order to be used when fixing up definitions in JITDylib. /// This will replace the previous link order, and apply to any symbol /// resolutions made for definitions in this JITDylib after the call to /// setLinkOrder (even if the definition itself was added before the /// call). /// /// If LinkAgainstThisJITDylibFirst is true (the default) then this JITDylib /// will add itself to the beginning of the LinkOrder (Clients should not /// put this JITDylib in the list in this case, to avoid redundant lookups). /// /// If LinkAgainstThisJITDylibFirst is false then the link order will be used /// as-is. The primary motivation for this feature is to support deliberate /// shadowing of symbols in this JITDylib by a facade JITDylib. For example, /// the facade may resolve function names to stubs, and the stubs may compile /// lazily by looking up symbols in this dylib. Adding the facade dylib /// as the first in the link order (instead of this dylib) ensures that /// definitions within this dylib resolve to the lazy-compiling stubs, /// rather than immediately materializing the definitions in this dylib. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. void setLinkOrder(JITDylibSearchOrder NewSearchOrder, bool LinkAgainstThisJITDylibFirst = true); /// Append the given JITDylibSearchOrder to the link order for this /// JITDylib (discarding any elements already present in this JITDylib's /// link order). void addToLinkOrder(const JITDylibSearchOrder &NewLinks); /// Add the given JITDylib to the link order for definitions in this /// JITDylib. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. void addToLinkOrder(JITDylib &JD, JITDylibLookupFlags JDLookupFlags = JITDylibLookupFlags::MatchExportedSymbolsOnly); /// Replace OldJD with NewJD in the link order if OldJD is present. /// Otherwise this operation is a no-op. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. void replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD, JITDylibLookupFlags JDLookupFlags = JITDylibLookupFlags::MatchExportedSymbolsOnly); /// Remove the given JITDylib from the link order for this JITDylib if it is /// present. Otherwise this operation is a no-op. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. void removeFromLinkOrder(JITDylib &JD); /// Do something with the link order (run under the session lock). /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. template auto withLinkOrderDo(Func &&F) -> decltype(F(std::declval())); /// Define all symbols provided by the materialization unit to be part of this /// JITDylib. /// /// If RT is not specified then the default resource tracker will be used. /// /// This overload always takes ownership of the MaterializationUnit. If any /// errors occur, the MaterializationUnit consumed. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. template Error define(std::unique_ptr &&MU, ResourceTrackerSP RT = nullptr); /// Define all symbols provided by the materialization unit to be part of this /// JITDylib. /// /// This overload only takes ownership of the MaterializationUnit no error is /// generated. If an error occurs, ownership remains with the caller. This /// may allow the caller to modify the MaterializationUnit to correct the /// issue, then re-call define. /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. template Error define(std::unique_ptr &MU, ResourceTrackerSP RT = nullptr); /// Tries to remove the given symbols. /// /// If any symbols are not defined in this JITDylib this method will return /// a SymbolsNotFound error covering the missing symbols. /// /// If all symbols are found but some symbols are in the process of being /// materialized this method will return a SymbolsCouldNotBeRemoved error. /// /// On success, all symbols are removed. On failure, the JITDylib state is /// left unmodified (no symbols are removed). /// /// It is illegal to call this method on a defunct JITDylib and the client /// is responsible for ensuring that they do not do so. Error remove(const SymbolNameSet &Names); /// Returns the given JITDylibs and all of their transitive dependencies in /// DFS order (based on linkage relationships). Each JITDylib will appear /// only once. /// /// If any JITDylib in the order is defunct then this method will return an /// error, otherwise returns the order. static Expected> getDFSLinkOrder(ArrayRef JDs); /// Returns the given JITDylibs and all of their transitive dependencies in /// reverse DFS order (based on linkage relationships). Each JITDylib will /// appear only once. /// /// If any JITDylib in the order is defunct then this method will return an /// error, otherwise returns the order. static Expected> getReverseDFSLinkOrder(ArrayRef JDs); /// Return this JITDylib and its transitive dependencies in DFS order /// based on linkage relationships. /// /// If any JITDylib in the order is defunct then this method will return an /// error, otherwise returns the order. Expected> getDFSLinkOrder(); /// Rteurn this JITDylib and its transitive dependencies in reverse DFS order /// based on linkage relationships. /// /// If any JITDylib in the order is defunct then this method will return an /// error, otherwise returns the order. Expected> getReverseDFSLinkOrder(); private: using AsynchronousSymbolQuerySet = std::set>; using AsynchronousSymbolQueryList = std::vector>; struct UnmaterializedInfo { UnmaterializedInfo(std::unique_ptr MU, ResourceTracker *RT) : MU(std::move(MU)), RT(RT) {} std::unique_ptr MU; ResourceTracker *RT; }; using UnmaterializedInfosMap = DenseMap>; using UnmaterializedInfosList = std::vector>; struct MaterializingInfo { SymbolDependenceMap Dependants; SymbolDependenceMap UnemittedDependencies; void addQuery(std::shared_ptr Q); void removeQuery(const AsynchronousSymbolQuery &Q); AsynchronousSymbolQueryList takeQueriesMeeting(SymbolState RequiredState); AsynchronousSymbolQueryList takeAllPendingQueries() { return std::move(PendingQueries); } bool hasQueriesPending() const { return !PendingQueries.empty(); } const AsynchronousSymbolQueryList &pendingQueries() const { return PendingQueries; } private: AsynchronousSymbolQueryList PendingQueries; }; using MaterializingInfosMap = DenseMap; class SymbolTableEntry { public: SymbolTableEntry() = default; SymbolTableEntry(JITSymbolFlags Flags) : Flags(Flags), State(static_cast(SymbolState::NeverSearched)), MaterializerAttached(false) {} ExecutorAddr getAddress() const { return Addr; } JITSymbolFlags getFlags() const { return Flags; } SymbolState getState() const { return static_cast(State); } bool hasMaterializerAttached() const { return MaterializerAttached; } void setAddress(ExecutorAddr Addr) { this->Addr = Addr; } void setFlags(JITSymbolFlags Flags) { this->Flags = Flags; } void setState(SymbolState State) { assert(static_cast(State) < (1 << 6) && "State does not fit in bitfield"); this->State = static_cast(State); } void setMaterializerAttached(bool MaterializerAttached) { this->MaterializerAttached = MaterializerAttached; } ExecutorSymbolDef getSymbol() const { return {Addr, Flags}; } private: ExecutorAddr Addr; JITSymbolFlags Flags; uint8_t State : 7; uint8_t MaterializerAttached : 1; }; using SymbolTable = DenseMap; JITDylib(ExecutionSession &ES, std::string Name); std::pair> removeTracker(ResourceTracker &RT); void transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT); Error defineImpl(MaterializationUnit &MU); void installMaterializationUnit(std::unique_ptr MU, ResourceTracker &RT); void detachQueryHelper(AsynchronousSymbolQuery &Q, const SymbolNameSet &QuerySymbols); void transferEmittedNodeDependencies(MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName, MaterializingInfo &EmittedMI); Expected defineMaterializing(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags); Error replace(MaterializationResponsibility &FromMR, std::unique_ptr MU); Expected> delegate(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags, SymbolStringPtr InitSymbol); SymbolNameSet getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const; void addDependencies(const SymbolStringPtr &Name, const SymbolDependenceMap &Dependants); Error resolve(MaterializationResponsibility &MR, const SymbolMap &Resolved); Error emit(MaterializationResponsibility &MR, const SymbolFlagsMap &Emitted); void unlinkMaterializationResponsibility(MaterializationResponsibility &MR); using FailedSymbolsWorklist = std::vector>; static std::pair> failSymbols(FailedSymbolsWorklist); ExecutionSession &ES; enum { Open, Closing, Closed } State = Open; std::mutex GeneratorsMutex; SymbolTable Symbols; UnmaterializedInfosMap UnmaterializedInfos; MaterializingInfosMap MaterializingInfos; std::vector> DefGenerators; JITDylibSearchOrder LinkOrder; ResourceTrackerSP DefaultTracker; // Map trackers to sets of symbols tracked. DenseMap TrackerSymbols; DenseMap> TrackerMRs; }; /// Platforms set up standard symbols and mediate interactions between dynamic /// initializers (e.g. C++ static constructors) and ExecutionSession state. /// Note that Platforms do not automatically run initializers: clients are still /// responsible for doing this. class Platform { public: virtual ~Platform(); /// This method will be called outside the session lock each time a JITDylib /// is created (unless it is created with EmptyJITDylib set) to allow the /// Platform to install any JITDylib specific standard symbols (e.g /// __dso_handle). virtual Error setupJITDylib(JITDylib &JD) = 0; /// This method will be called outside the session lock each time a JITDylib /// is removed to allow the Platform to remove any JITDylib-specific data. virtual Error teardownJITDylib(JITDylib &JD) = 0; /// This method will be called under the ExecutionSession lock each time a /// MaterializationUnit is added to a JITDylib. virtual Error notifyAdding(ResourceTracker &RT, const MaterializationUnit &MU) = 0; /// This method will be called under the ExecutionSession lock when a /// ResourceTracker is removed. virtual Error notifyRemoving(ResourceTracker &RT) = 0; /// A utility function for looking up initializer symbols. Performs a blocking /// lookup for the given symbols in each of the given JITDylibs. /// /// Note: This function is deprecated and will be removed in the near future. static Expected> lookupInitSymbols(ExecutionSession &ES, const DenseMap &InitSyms); /// Performs an async lookup for the given symbols in each of the given /// JITDylibs, calling the given handler once all lookups have completed. static void lookupInitSymbolsAsync(unique_function OnComplete, ExecutionSession &ES, const DenseMap &InitSyms); }; /// A materialization task. class MaterializationTask : public RTTIExtends { public: static char ID; MaterializationTask(std::unique_ptr MU, std::unique_ptr MR) : MU(std::move(MU)), MR(std::move(MR)) {} void printDescription(raw_ostream &OS) override; void run() override; private: std::unique_ptr MU; std::unique_ptr MR; }; /// Lookups are usually run on the current thread, but in some cases they may /// be run as tasks, e.g. if the lookup has been continued from a suspended /// state. class LookupTask : public RTTIExtends { public: static char ID; LookupTask(LookupState LS) : LS(std::move(LS)) {} void printDescription(raw_ostream &OS) override; void run() override; private: LookupState LS; }; /// An ExecutionSession represents a running JIT program. class ExecutionSession { friend class InProgressLookupFlagsState; friend class InProgressFullLookupState; friend class JITDylib; friend class LookupState; friend class MaterializationResponsibility; friend class ResourceTracker; public: /// For reporting errors. using ErrorReporter = std::function; /// Send a result to the remote. using SendResultFunction = unique_function; /// For dispatching ORC tasks (typically materialization tasks). using DispatchTaskFunction = unique_function T)>; /// An asynchronous wrapper-function callable from the executor via /// jit-dispatch. using JITDispatchHandlerFunction = unique_function; /// A map associating tag names with asynchronous wrapper function /// implementations in the JIT. using JITDispatchHandlerAssociationMap = DenseMap; /// Construct an ExecutionSession with the given ExecutorProcessControl /// object. ExecutionSession(std::unique_ptr EPC); /// Destroy an ExecutionSession. Verifies that endSession was called prior to /// destruction. ~ExecutionSession(); /// End the session. Closes all JITDylibs and disconnects from the /// executor. Clients must call this method before destroying the session. Error endSession(); /// Get the ExecutorProcessControl object associated with this /// ExecutionSession. ExecutorProcessControl &getExecutorProcessControl() { return *EPC; } /// Return the triple for the executor. const Triple &getTargetTriple() const { return EPC->getTargetTriple(); } // Return the page size for the executor. size_t getPageSize() const { return EPC->getPageSize(); } /// Get the SymbolStringPool for this instance. std::shared_ptr getSymbolStringPool() { return EPC->getSymbolStringPool(); } /// Add a symbol name to the SymbolStringPool and return a pointer to it. SymbolStringPtr intern(StringRef SymName) { return EPC->intern(SymName); } /// Set the Platform for this ExecutionSession. void setPlatform(std::unique_ptr P) { this->P = std::move(P); } /// Get the Platform for this session. /// Will return null if no Platform has been set for this ExecutionSession. Platform *getPlatform() { return P.get(); } /// Run the given lambda with the session mutex locked. template decltype(auto) runSessionLocked(Func &&F) { std::lock_guard Lock(SessionMutex); return F(); } /// Register the given ResourceManager with this ExecutionSession. /// Managers will be notified of events in reverse order of registration. void registerResourceManager(ResourceManager &RM); /// Deregister the given ResourceManager with this ExecutionSession. /// Manager must have been previously registered. void deregisterResourceManager(ResourceManager &RM); /// Return a pointer to the "name" JITDylib. /// Ownership of JITDylib remains within Execution Session JITDylib *getJITDylibByName(StringRef Name); /// Add a new bare JITDylib to this ExecutionSession. /// /// The JITDylib Name is required to be unique. Clients should verify that /// names are not being re-used (E.g. by calling getJITDylibByName) if names /// are based on user input. /// /// This call does not install any library code or symbols into the newly /// created JITDylib. The client is responsible for all configuration. JITDylib &createBareJITDylib(std::string Name); /// Add a new JITDylib to this ExecutionSession. /// /// The JITDylib Name is required to be unique. Clients should verify that /// names are not being re-used (e.g. by calling getJITDylibByName) if names /// are based on user input. /// /// If a Platform is attached then Platform::setupJITDylib will be called to /// install standard platform symbols (e.g. standard library interposes). /// If no Platform is attached this call is equivalent to createBareJITDylib. Expected createJITDylib(std::string Name); /// Removes the given JITDylibs from the ExecutionSession. /// /// This method clears all resources held for the JITDylibs, puts them in the /// closed state, and clears all references to them that are held by the /// ExecutionSession or other JITDylibs. No further code can be added to the /// removed JITDylibs, and the JITDylib objects will be freed once any /// remaining JITDylibSPs pointing to them are destroyed. /// /// This method does *not* run static destructors for code contained in the /// JITDylibs, and each JITDylib can only be removed once. /// /// JITDylibs will be removed in the order given. Teardown is usually /// independent for each JITDylib, but not always. In particular, where the /// ORC runtime is used it is expected that teardown off all JITDylibs will /// depend on it, so the JITDylib containing the ORC runtime must be removed /// last. If the client has introduced any other dependencies they should be /// accounted for in the removal order too. Error removeJITDylibs(std::vector JDsToRemove); /// Calls removeJTIDylibs on the gives JITDylib. Error removeJITDylib(JITDylib &JD) { return removeJITDylibs(std::vector({&JD})); } /// Set the error reporter function. ExecutionSession &setErrorReporter(ErrorReporter ReportError) { this->ReportError = std::move(ReportError); return *this; } /// Report a error for this execution session. /// /// Unhandled errors can be sent here to log them. void reportError(Error Err) { ReportError(std::move(Err)); } /// Set the task dispatch function. ExecutionSession &setDispatchTask(DispatchTaskFunction DispatchTask) { this->DispatchTask = std::move(DispatchTask); return *this; } /// Search the given JITDylibs to find the flags associated with each of the /// given symbols. void lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet Symbols, unique_function)> OnComplete); /// Blocking version of lookupFlags. Expected lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet Symbols); /// Search the given JITDylibs for the given symbols. /// /// SearchOrder lists the JITDylibs to search. For each dylib, the associated /// boolean indicates whether the search should match against non-exported /// (hidden visibility) symbols in that dylib (true means match against /// non-exported symbols, false means do not match). /// /// The NotifyComplete callback will be called once all requested symbols /// reach the required state. /// /// If all symbols are found, the RegisterDependencies function will be called /// while the session lock is held. This gives clients a chance to register /// dependencies for on the queried symbols for any symbols they are /// materializing (if a MaterializationResponsibility instance is present, /// this can be implemented by calling /// MaterializationResponsibility::addDependencies). If there are no /// dependenant symbols for this query (e.g. it is being made by a top level /// client to get an address to call) then the value NoDependenciesToRegister /// can be used. void lookup(LookupKind K, const JITDylibSearchOrder &SearchOrder, SymbolLookupSet Symbols, SymbolState RequiredState, SymbolsResolvedCallback NotifyComplete, RegisterDependenciesFunction RegisterDependencies); /// Blocking version of lookup above. Returns the resolved symbol map. /// If WaitUntilReady is true (the default), will not return until all /// requested symbols are ready (or an error occurs). If WaitUntilReady is /// false, will return as soon as all requested symbols are resolved, /// or an error occurs. If WaitUntilReady is false and an error occurs /// after resolution, the function will return a success value, but the /// error will be reported via reportErrors. Expected lookup(const JITDylibSearchOrder &SearchOrder, SymbolLookupSet Symbols, LookupKind K = LookupKind::Static, SymbolState RequiredState = SymbolState::Ready, RegisterDependenciesFunction RegisterDependencies = NoDependenciesToRegister); /// Convenience version of blocking lookup. /// Searches each of the JITDylibs in the search order in turn for the given /// symbol. Expected lookup(const JITDylibSearchOrder &SearchOrder, SymbolStringPtr Symbol, SymbolState RequiredState = SymbolState::Ready); /// Convenience version of blocking lookup. /// Searches each of the JITDylibs in the search order in turn for the given /// symbol. The search will not find non-exported symbols. Expected lookup(ArrayRef SearchOrder, SymbolStringPtr Symbol, SymbolState RequiredState = SymbolState::Ready); /// Convenience version of blocking lookup. /// Searches each of the JITDylibs in the search order in turn for the given /// symbol. The search will not find non-exported symbols. Expected lookup(ArrayRef SearchOrder, StringRef Symbol, SymbolState RequiredState = SymbolState::Ready); /// Materialize the given unit. void dispatchTask(std::unique_ptr T) { assert(T && "T must be non-null"); DEBUG_WITH_TYPE("orc", dumpDispatchInfo(*T)); DispatchTask(std::move(T)); } /// Run a wrapper function in the executor. /// /// The wrapper function should be callable as: /// /// \code{.cpp} /// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size); /// \endcode{.cpp} /// /// The given OnComplete function will be called to return the result. template void callWrapperAsync(ArgTs &&... Args) { EPC->callWrapperAsync(std::forward(Args)...); } /// Run a wrapper function in the executor. The wrapper function should be /// callable as: /// /// \code{.cpp} /// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size); /// \endcode{.cpp} shared::WrapperFunctionResult callWrapper(ExecutorAddr WrapperFnAddr, ArrayRef ArgBuffer) { return EPC->callWrapper(WrapperFnAddr, ArgBuffer); } /// Run a wrapper function using SPS to serialize the arguments and /// deserialize the results. template void callSPSWrapperAsync(ExecutorAddr WrapperFnAddr, SendResultT &&SendResult, const ArgTs &...Args) { EPC->callSPSWrapperAsync( WrapperFnAddr, std::forward(SendResult), Args...); } /// Run a wrapper function using SPS to serialize the arguments and /// deserialize the results. /// /// If SPSSignature is a non-void function signature then the second argument /// (the first in the Args list) should be a reference to a return value. template Error callSPSWrapper(ExecutorAddr WrapperFnAddr, WrapperCallArgTs &&...WrapperCallArgs) { return EPC->callSPSWrapper( WrapperFnAddr, std::forward(WrapperCallArgs)...); } /// Wrap a handler that takes concrete argument types (and a sender for a /// concrete return type) to produce an AsyncHandlerWrapperFunction. Uses SPS /// to unpack the arguments and pack the result. /// /// This function is intended to support easy construction of /// AsyncHandlerWrapperFunctions that can be associated with a tag /// (using registerJITDispatchHandler) and called from the executor. template static JITDispatchHandlerFunction wrapAsyncWithSPS(HandlerT &&H) { return [H = std::forward(H)]( SendResultFunction SendResult, const char *ArgData, size_t ArgSize) mutable { shared::WrapperFunction::handleAsync(ArgData, ArgSize, H, std::move(SendResult)); }; } /// Wrap a class method that takes concrete argument types (and a sender for /// a concrete return type) to produce an AsyncHandlerWrapperFunction. Uses /// SPS to unpack the arguments and pack the result. /// /// This function is intended to support easy construction of /// AsyncHandlerWrapperFunctions that can be associated with a tag /// (using registerJITDispatchHandler) and called from the executor. template static JITDispatchHandlerFunction wrapAsyncWithSPS(ClassT *Instance, void (ClassT::*Method)(MethodArgTs...)) { return wrapAsyncWithSPS( [Instance, Method](MethodArgTs &&...MethodArgs) { (Instance->*Method)(std::forward(MethodArgs)...); }); } /// For each tag symbol name, associate the corresponding /// AsyncHandlerWrapperFunction with the address of that symbol. The /// handler becomes callable from the executor using the ORC runtime /// __orc_rt_jit_dispatch function and the given tag. /// /// Tag symbols will be looked up in JD using LookupKind::Static, /// JITDylibLookupFlags::MatchAllSymbols (hidden tags will be found), and /// LookupFlags::WeaklyReferencedSymbol. Missing tag definitions will not /// cause an error, the handler will simply be dropped. Error registerJITDispatchHandlers(JITDylib &JD, JITDispatchHandlerAssociationMap WFs); /// Run a registered jit-side wrapper function. /// This should be called by the ExecutorProcessControl instance in response /// to incoming jit-dispatch requests from the executor. void runJITDispatchHandler(SendResultFunction SendResult, ExecutorAddr HandlerFnTagAddr, ArrayRef ArgBuffer); /// Dump the state of all the JITDylibs in this session. void dump(raw_ostream &OS); private: static void logErrorsToStdErr(Error Err) { logAllUnhandledErrors(std::move(Err), errs(), "JIT session error: "); } static void runOnCurrentThread(std::unique_ptr T) { T->run(); } void dispatchOutstandingMUs(); static std::unique_ptr createMaterializationResponsibility(ResourceTracker &RT, SymbolFlagsMap Symbols, SymbolStringPtr InitSymbol) { auto &JD = RT.getJITDylib(); std::unique_ptr MR( new MaterializationResponsibility(&RT, std::move(Symbols), std::move(InitSymbol))); JD.TrackerMRs[&RT].insert(MR.get()); return MR; } Error removeResourceTracker(ResourceTracker &RT); void transferResourceTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT); void destroyResourceTracker(ResourceTracker &RT); // State machine functions for query application.. /// IL_updateCandidatesFor is called to remove already-defined symbols that /// match a given query from the set of candidate symbols to generate /// definitions for (no need to generate a definition if one already exists). Error IL_updateCandidatesFor(JITDylib &JD, JITDylibLookupFlags JDLookupFlags, SymbolLookupSet &Candidates, SymbolLookupSet *NonCandidates); /// Handle resumption of a lookup after entering a generator. void OL_resumeLookupAfterGeneration(InProgressLookupState &IPLS); /// OL_applyQueryPhase1 is an optionally re-startable loop for triggering /// definition generation. It is called when a lookup is performed, and again /// each time that LookupState::continueLookup is called. void OL_applyQueryPhase1(std::unique_ptr IPLS, Error Err); /// OL_completeLookup is run once phase 1 successfully completes for a lookup /// call. It attempts to attach the symbol to all symbol table entries and /// collect all MaterializationUnits to dispatch. If this method fails then /// all MaterializationUnits will be left un-materialized. void OL_completeLookup(std::unique_ptr IPLS, std::shared_ptr Q, RegisterDependenciesFunction RegisterDependencies); /// OL_completeLookupFlags is run once phase 1 successfully completes for a /// lookupFlags call. void OL_completeLookupFlags( std::unique_ptr IPLS, unique_function)> OnComplete); // State machine functions for MaterializationResponsibility. void OL_destroyMaterializationResponsibility( MaterializationResponsibility &MR); SymbolNameSet OL_getRequestedSymbols(const MaterializationResponsibility &MR); Error OL_notifyResolved(MaterializationResponsibility &MR, const SymbolMap &Symbols); Error OL_notifyEmitted(MaterializationResponsibility &MR); Error OL_defineMaterializing(MaterializationResponsibility &MR, SymbolFlagsMap SymbolFlags); void OL_notifyFailed(MaterializationResponsibility &MR); Error OL_replace(MaterializationResponsibility &MR, std::unique_ptr MU); Expected> OL_delegate(MaterializationResponsibility &MR, const SymbolNameSet &Symbols); void OL_addDependencies(MaterializationResponsibility &MR, const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies); void OL_addDependenciesForAll(MaterializationResponsibility &MR, const SymbolDependenceMap &Dependencies); #ifndef NDEBUG void dumpDispatchInfo(Task &T); #endif // NDEBUG mutable std::recursive_mutex SessionMutex; bool SessionOpen = true; std::unique_ptr EPC; std::unique_ptr P; ErrorReporter ReportError = logErrorsToStdErr; DispatchTaskFunction DispatchTask = runOnCurrentThread; std::vector ResourceManagers; std::vector JDs; // FIXME: Remove this (and runOutstandingMUs) once the linking layer works // with callbacks from asynchronous queries. mutable std::recursive_mutex OutstandingMUsMutex; std::vector, std::unique_ptr>> OutstandingMUs; mutable std::mutex JITDispatchHandlersMutex; DenseMap> JITDispatchHandlers; }; template Error ResourceTracker::withResourceKeyDo(Func &&F) { return getJITDylib().getExecutionSession().runSessionLocked([&]() -> Error { if (isDefunct()) return make_error(this); F(getKeyUnsafe()); return Error::success(); }); } inline ExecutionSession & MaterializationResponsibility::getExecutionSession() const { return JD.getExecutionSession(); } template GeneratorT &JITDylib::addGenerator(std::unique_ptr DefGenerator) { auto &G = *DefGenerator; ES.runSessionLocked([&] { assert(State == Open && "Cannot add generator to closed JITDylib"); DefGenerators.push_back(std::move(DefGenerator)); }); return G; } template auto JITDylib::withLinkOrderDo(Func &&F) -> decltype(F(std::declval())) { assert(State == Open && "Cannot use link order of closed JITDylib"); return ES.runSessionLocked([&]() { return F(LinkOrder); }); } template Error JITDylib::define(std::unique_ptr &&MU, ResourceTrackerSP RT) { assert(MU && "Can not define with a null MU"); if (MU->getSymbols().empty()) { // Empty MUs are allowable but pathological, so issue a warning. DEBUG_WITH_TYPE("orc", { dbgs() << "Warning: Discarding empty MU " << MU->getName() << " for " << getName() << "\n"; }); return Error::success(); } else DEBUG_WITH_TYPE("orc", { dbgs() << "Defining MU " << MU->getName() << " for " << getName() << " (tracker: "; if (RT == getDefaultResourceTracker()) dbgs() << "default)"; else if (RT) dbgs() << RT.get() << ")\n"; else dbgs() << "0x0, default will be used)\n"; }); return ES.runSessionLocked([&, this]() -> Error { assert(State == Open && "JD is defunct"); if (auto Err = defineImpl(*MU)) return Err; if (!RT) RT = getDefaultResourceTracker(); if (auto *P = ES.getPlatform()) { if (auto Err = P->notifyAdding(*RT, *MU)) return Err; } installMaterializationUnit(std::move(MU), *RT); return Error::success(); }); } template Error JITDylib::define(std::unique_ptr &MU, ResourceTrackerSP RT) { assert(MU && "Can not define with a null MU"); if (MU->getSymbols().empty()) { // Empty MUs are allowable but pathological, so issue a warning. DEBUG_WITH_TYPE("orc", { dbgs() << "Warning: Discarding empty MU " << MU->getName() << getName() << "\n"; }); return Error::success(); } else DEBUG_WITH_TYPE("orc", { dbgs() << "Defining MU " << MU->getName() << " for " << getName() << " (tracker: "; if (RT == getDefaultResourceTracker()) dbgs() << "default)"; else if (RT) dbgs() << RT.get() << ")\n"; else dbgs() << "0x0, default will be used)\n"; }); return ES.runSessionLocked([&, this]() -> Error { assert(State == Open && "JD is defunct"); if (auto Err = defineImpl(*MU)) return Err; if (!RT) RT = getDefaultResourceTracker(); if (auto *P = ES.getPlatform()) { if (auto Err = P->notifyAdding(*RT, *MU)) return Err; } installMaterializationUnit(std::move(MU), *RT); return Error::success(); }); } /// ReexportsGenerator can be used with JITDylib::addGenerator to automatically /// re-export a subset of the source JITDylib's symbols in the target. class ReexportsGenerator : public DefinitionGenerator { public: using SymbolPredicate = std::function; /// Create a reexports generator. If an Allow predicate is passed, only /// symbols for which the predicate returns true will be reexported. If no /// Allow predicate is passed, all symbols will be exported. ReexportsGenerator(JITDylib &SourceJD, JITDylibLookupFlags SourceJDLookupFlags, SymbolPredicate Allow = SymbolPredicate()); Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD, JITDylibLookupFlags JDLookupFlags, const SymbolLookupSet &LookupSet) override; private: JITDylib &SourceJD; JITDylibLookupFlags SourceJDLookupFlags; SymbolPredicate Allow; }; // --------------- IMPLEMENTATION -------------- // Implementations for inline functions/methods. // --------------------------------------------- inline MaterializationResponsibility::~MaterializationResponsibility() { getExecutionSession().OL_destroyMaterializationResponsibility(*this); } inline SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const { return getExecutionSession().OL_getRequestedSymbols(*this); } inline Error MaterializationResponsibility::notifyResolved( const SymbolMap &Symbols) { return getExecutionSession().OL_notifyResolved(*this, Symbols); } inline Error MaterializationResponsibility::notifyEmitted() { return getExecutionSession().OL_notifyEmitted(*this); } inline Error MaterializationResponsibility::defineMaterializing( SymbolFlagsMap SymbolFlags) { return getExecutionSession().OL_defineMaterializing(*this, std::move(SymbolFlags)); } inline void MaterializationResponsibility::failMaterialization() { getExecutionSession().OL_notifyFailed(*this); } inline Error MaterializationResponsibility::replace( std::unique_ptr MU) { return getExecutionSession().OL_replace(*this, std::move(MU)); } inline Expected> MaterializationResponsibility::delegate(const SymbolNameSet &Symbols) { return getExecutionSession().OL_delegate(*this, Symbols); } inline void MaterializationResponsibility::addDependencies( const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) { getExecutionSession().OL_addDependencies(*this, Name, Dependencies); } inline void MaterializationResponsibility::addDependenciesForAll( const SymbolDependenceMap &Dependencies) { getExecutionSession().OL_addDependenciesForAll(*this, Dependencies); } } // End namespace orc } // End namespace llvm #endif // LLVM_EXECUTIONENGINE_ORC_CORE_H