//===- llvm/IR/DebugInfoMetadata.h - Debug info metadata --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Declarations for metadata specific to debug info. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DEBUGINFOMETADATA_H #define LLVM_IR_DEBUGINFOMETADATA_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitmaskEnum.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Discriminator.h" #include #include #include #include #include #include #include // Helper macros for defining get() overrides. #define DEFINE_MDNODE_GET_UNPACK_IMPL(...) __VA_ARGS__ #define DEFINE_MDNODE_GET_UNPACK(ARGS) DEFINE_MDNODE_GET_UNPACK_IMPL ARGS #define DEFINE_MDNODE_GET_DISTINCT_TEMPORARY(CLASS, FORMAL, ARGS) \ static CLASS *getDistinct(LLVMContext &Context, \ DEFINE_MDNODE_GET_UNPACK(FORMAL)) { \ return getImpl(Context, DEFINE_MDNODE_GET_UNPACK(ARGS), Distinct); \ } \ static Temp##CLASS getTemporary(LLVMContext &Context, \ DEFINE_MDNODE_GET_UNPACK(FORMAL)) { \ return Temp##CLASS( \ getImpl(Context, DEFINE_MDNODE_GET_UNPACK(ARGS), Temporary)); \ } #define DEFINE_MDNODE_GET(CLASS, FORMAL, ARGS) \ static CLASS *get(LLVMContext &Context, DEFINE_MDNODE_GET_UNPACK(FORMAL)) { \ return getImpl(Context, DEFINE_MDNODE_GET_UNPACK(ARGS), Uniqued); \ } \ static CLASS *getIfExists(LLVMContext &Context, \ DEFINE_MDNODE_GET_UNPACK(FORMAL)) { \ return getImpl(Context, DEFINE_MDNODE_GET_UNPACK(ARGS), Uniqued, \ /* ShouldCreate */ false); \ } \ DEFINE_MDNODE_GET_DISTINCT_TEMPORARY(CLASS, FORMAL, ARGS) namespace llvm { namespace dwarf { enum Tag : uint16_t; } class DbgVariableIntrinsic; class DPValue; extern cl::opt EnableFSDiscriminator; class DITypeRefArray { const MDTuple *N = nullptr; public: DITypeRefArray() = default; DITypeRefArray(const MDTuple *N) : N(N) {} explicit operator bool() const { return get(); } explicit operator MDTuple *() const { return get(); } MDTuple *get() const { return const_cast(N); } MDTuple *operator->() const { return get(); } MDTuple &operator*() const { return *get(); } // FIXME: Fix callers and remove condition on N. unsigned size() const { return N ? N->getNumOperands() : 0u; } DIType *operator[](unsigned I) const { return cast_or_null(N->getOperand(I)); } class iterator { MDNode::op_iterator I = nullptr; public: using iterator_category = std::input_iterator_tag; using value_type = DIType *; using difference_type = std::ptrdiff_t; using pointer = void; using reference = DIType *; iterator() = default; explicit iterator(MDNode::op_iterator I) : I(I) {} DIType *operator*() const { return cast_or_null(*I); } iterator &operator++() { ++I; return *this; } iterator operator++(int) { iterator Temp(*this); ++I; return Temp; } bool operator==(const iterator &X) const { return I == X.I; } bool operator!=(const iterator &X) const { return I != X.I; } }; // FIXME: Fix callers and remove condition on N. iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); } iterator end() const { return N ? iterator(N->op_end()) : iterator(); } }; /// Tagged DWARF-like metadata node. /// /// A metadata node with a DWARF tag (i.e., a constant named \c DW_TAG_*, /// defined in llvm/BinaryFormat/Dwarf.h). Called \a DINode because it's /// potentially used for non-DWARF output. /// /// Uses the SubclassData16 Metadata slot. class DINode : public MDNode { friend class LLVMContextImpl; friend class MDNode; protected: DINode(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef Ops1, ArrayRef Ops2 = std::nullopt) : MDNode(C, ID, Storage, Ops1, Ops2) { assert(Tag < 1u << 16); SubclassData16 = Tag; } ~DINode() = default; template Ty *getOperandAs(unsigned I) const { return cast_or_null(getOperand(I)); } StringRef getStringOperand(unsigned I) const { if (auto *S = getOperandAs(I)) return S->getString(); return StringRef(); } static MDString *getCanonicalMDString(LLVMContext &Context, StringRef S) { if (S.empty()) return nullptr; return MDString::get(Context, S); } /// Allow subclasses to mutate the tag. void setTag(unsigned Tag) { SubclassData16 = Tag; } public: dwarf::Tag getTag() const; /// Debug info flags. /// /// The three accessibility flags are mutually exclusive and rolled together /// in the first two bits. enum DIFlags : uint32_t { #define HANDLE_DI_FLAG(ID, NAME) Flag##NAME = ID, #define DI_FLAG_LARGEST_NEEDED #include "llvm/IR/DebugInfoFlags.def" FlagAccessibility = FlagPrivate | FlagProtected | FlagPublic, FlagPtrToMemberRep = FlagSingleInheritance | FlagMultipleInheritance | FlagVirtualInheritance, LLVM_MARK_AS_BITMASK_ENUM(FlagLargest) }; static DIFlags getFlag(StringRef Flag); static StringRef getFlagString(DIFlags Flag); /// Split up a flags bitfield. /// /// Split \c Flags into \c SplitFlags, a vector of its components. Returns /// any remaining (unrecognized) bits. static DIFlags splitFlags(DIFlags Flags, SmallVectorImpl &SplitFlags); static bool classof(const Metadata *MD) { switch (MD->getMetadataID()) { default: return false; case GenericDINodeKind: case DISubrangeKind: case DIEnumeratorKind: case DIBasicTypeKind: case DIStringTypeKind: case DIDerivedTypeKind: case DICompositeTypeKind: case DISubroutineTypeKind: case DIFileKind: case DICompileUnitKind: case DISubprogramKind: case DILexicalBlockKind: case DILexicalBlockFileKind: case DINamespaceKind: case DICommonBlockKind: case DITemplateTypeParameterKind: case DITemplateValueParameterKind: case DIGlobalVariableKind: case DILocalVariableKind: case DILabelKind: case DIObjCPropertyKind: case DIImportedEntityKind: case DIModuleKind: case DIGenericSubrangeKind: case DIAssignIDKind: return true; } } }; /// Generic tagged DWARF-like metadata node. /// /// An un-specialized DWARF-like metadata node. The first operand is a /// (possibly empty) null-separated \a MDString header that contains arbitrary /// fields. The remaining operands are \a dwarf_operands(), and are pointers /// to other metadata. /// /// Uses the SubclassData32 Metadata slot. class GenericDINode : public DINode { friend class LLVMContextImpl; friend class MDNode; GenericDINode(LLVMContext &C, StorageType Storage, unsigned Hash, unsigned Tag, ArrayRef Ops1, ArrayRef Ops2) : DINode(C, GenericDINodeKind, Storage, Tag, Ops1, Ops2) { setHash(Hash); } ~GenericDINode() { dropAllReferences(); } void setHash(unsigned Hash) { SubclassData32 = Hash; } void recalculateHash(); static GenericDINode *getImpl(LLVMContext &Context, unsigned Tag, StringRef Header, ArrayRef DwarfOps, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, getCanonicalMDString(Context, Header), DwarfOps, Storage, ShouldCreate); } static GenericDINode *getImpl(LLVMContext &Context, unsigned Tag, MDString *Header, ArrayRef DwarfOps, StorageType Storage, bool ShouldCreate = true); TempGenericDINode cloneImpl() const { return getTemporary(getContext(), getTag(), getHeader(), SmallVector(dwarf_operands())); } public: unsigned getHash() const { return SubclassData32; } DEFINE_MDNODE_GET(GenericDINode, (unsigned Tag, StringRef Header, ArrayRef DwarfOps), (Tag, Header, DwarfOps)) DEFINE_MDNODE_GET(GenericDINode, (unsigned Tag, MDString *Header, ArrayRef DwarfOps), (Tag, Header, DwarfOps)) /// Return a (temporary) clone of this. TempGenericDINode clone() const { return cloneImpl(); } dwarf::Tag getTag() const; StringRef getHeader() const { return getStringOperand(0); } MDString *getRawHeader() const { return getOperandAs(0); } op_iterator dwarf_op_begin() const { return op_begin() + 1; } op_iterator dwarf_op_end() const { return op_end(); } op_range dwarf_operands() const { return op_range(dwarf_op_begin(), dwarf_op_end()); } unsigned getNumDwarfOperands() const { return getNumOperands() - 1; } const MDOperand &getDwarfOperand(unsigned I) const { return getOperand(I + 1); } void replaceDwarfOperandWith(unsigned I, Metadata *New) { replaceOperandWith(I + 1, New); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == GenericDINodeKind; } }; /// Assignment ID. /// Used to link stores (as an attachment) and dbg.assigns (as an operand). /// DIAssignID metadata is never uniqued as we compare instances using /// referential equality (the instance/address is the ID). class DIAssignID : public MDNode { friend class LLVMContextImpl; friend class MDNode; DIAssignID(LLVMContext &C, StorageType Storage) : MDNode(C, DIAssignIDKind, Storage, std::nullopt) {} ~DIAssignID() { dropAllReferences(); } static DIAssignID *getImpl(LLVMContext &Context, StorageType Storage, bool ShouldCreate = true); TempDIAssignID cloneImpl() const { return getTemporary(getContext()); } public: // This node has no operands to replace. void replaceOperandWith(unsigned I, Metadata *New) = delete; SmallVector getAllDPValueUsers() { return Context.getReplaceableUses()->getAllDPValueUsers(); } static DIAssignID *getDistinct(LLVMContext &Context) { return getImpl(Context, Distinct); } static TempDIAssignID getTemporary(LLVMContext &Context) { return TempDIAssignID(getImpl(Context, Temporary)); } // NOTE: Do not define get(LLVMContext&) - see class comment. static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIAssignIDKind; } }; /// Array subrange. /// /// TODO: Merge into node for DW_TAG_array_type, which should have a custom /// type. class DISubrange : public DINode { friend class LLVMContextImpl; friend class MDNode; DISubrange(LLVMContext &C, StorageType Storage, ArrayRef Ops); ~DISubrange() = default; static DISubrange *getImpl(LLVMContext &Context, int64_t Count, int64_t LowerBound, StorageType Storage, bool ShouldCreate = true); static DISubrange *getImpl(LLVMContext &Context, Metadata *CountNode, int64_t LowerBound, StorageType Storage, bool ShouldCreate = true); static DISubrange *getImpl(LLVMContext &Context, Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride, StorageType Storage, bool ShouldCreate = true); TempDISubrange cloneImpl() const { return getTemporary(getContext(), getRawCountNode(), getRawLowerBound(), getRawUpperBound(), getRawStride()); } public: DEFINE_MDNODE_GET(DISubrange, (int64_t Count, int64_t LowerBound = 0), (Count, LowerBound)) DEFINE_MDNODE_GET(DISubrange, (Metadata * CountNode, int64_t LowerBound = 0), (CountNode, LowerBound)) DEFINE_MDNODE_GET(DISubrange, (Metadata * CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride), (CountNode, LowerBound, UpperBound, Stride)) TempDISubrange clone() const { return cloneImpl(); } Metadata *getRawCountNode() const { return getOperand(0).get(); } Metadata *getRawLowerBound() const { return getOperand(1).get(); } Metadata *getRawUpperBound() const { return getOperand(2).get(); } Metadata *getRawStride() const { return getOperand(3).get(); } typedef PointerUnion BoundType; BoundType getCount() const; BoundType getLowerBound() const; BoundType getUpperBound() const; BoundType getStride() const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DISubrangeKind; } }; class DIGenericSubrange : public DINode { friend class LLVMContextImpl; friend class MDNode; DIGenericSubrange(LLVMContext &C, StorageType Storage, ArrayRef Ops); ~DIGenericSubrange() = default; static DIGenericSubrange *getImpl(LLVMContext &Context, Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride, StorageType Storage, bool ShouldCreate = true); TempDIGenericSubrange cloneImpl() const { return getTemporary(getContext(), getRawCountNode(), getRawLowerBound(), getRawUpperBound(), getRawStride()); } public: DEFINE_MDNODE_GET(DIGenericSubrange, (Metadata * CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride), (CountNode, LowerBound, UpperBound, Stride)) TempDIGenericSubrange clone() const { return cloneImpl(); } Metadata *getRawCountNode() const { return getOperand(0).get(); } Metadata *getRawLowerBound() const { return getOperand(1).get(); } Metadata *getRawUpperBound() const { return getOperand(2).get(); } Metadata *getRawStride() const { return getOperand(3).get(); } using BoundType = PointerUnion; BoundType getCount() const; BoundType getLowerBound() const; BoundType getUpperBound() const; BoundType getStride() const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIGenericSubrangeKind; } }; /// Enumeration value. /// /// TODO: Add a pointer to the context (DW_TAG_enumeration_type) once that no /// longer creates a type cycle. class DIEnumerator : public DINode { friend class LLVMContextImpl; friend class MDNode; APInt Value; DIEnumerator(LLVMContext &C, StorageType Storage, const APInt &Value, bool IsUnsigned, ArrayRef Ops); DIEnumerator(LLVMContext &C, StorageType Storage, int64_t Value, bool IsUnsigned, ArrayRef Ops) : DIEnumerator(C, Storage, APInt(64, Value, !IsUnsigned), IsUnsigned, Ops) {} ~DIEnumerator() = default; static DIEnumerator *getImpl(LLVMContext &Context, const APInt &Value, bool IsUnsigned, StringRef Name, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Value, IsUnsigned, getCanonicalMDString(Context, Name), Storage, ShouldCreate); } static DIEnumerator *getImpl(LLVMContext &Context, const APInt &Value, bool IsUnsigned, MDString *Name, StorageType Storage, bool ShouldCreate = true); TempDIEnumerator cloneImpl() const { return getTemporary(getContext(), getValue(), isUnsigned(), getName()); } public: DEFINE_MDNODE_GET(DIEnumerator, (int64_t Value, bool IsUnsigned, StringRef Name), (APInt(64, Value, !IsUnsigned), IsUnsigned, Name)) DEFINE_MDNODE_GET(DIEnumerator, (int64_t Value, bool IsUnsigned, MDString *Name), (APInt(64, Value, !IsUnsigned), IsUnsigned, Name)) DEFINE_MDNODE_GET(DIEnumerator, (APInt Value, bool IsUnsigned, StringRef Name), (Value, IsUnsigned, Name)) DEFINE_MDNODE_GET(DIEnumerator, (APInt Value, bool IsUnsigned, MDString *Name), (Value, IsUnsigned, Name)) TempDIEnumerator clone() const { return cloneImpl(); } const APInt &getValue() const { return Value; } bool isUnsigned() const { return SubclassData32; } StringRef getName() const { return getStringOperand(0); } MDString *getRawName() const { return getOperandAs(0); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIEnumeratorKind; } }; /// Base class for scope-like contexts. /// /// Base class for lexical scopes and types (which are also declaration /// contexts). /// /// TODO: Separate the concepts of declaration contexts and lexical scopes. class DIScope : public DINode { protected: DIScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef Ops) : DINode(C, ID, Storage, Tag, Ops) {} ~DIScope() = default; public: DIFile *getFile() const { return cast_or_null(getRawFile()); } inline StringRef getFilename() const; inline StringRef getDirectory() const; inline std::optional getSource() const; StringRef getName() const; DIScope *getScope() const; /// Return the raw underlying file. /// /// A \a DIFile is a \a DIScope, but it doesn't point at a separate file (it /// \em is the file). If \c this is an \a DIFile, we need to return \c this. /// Otherwise, return the first operand, which is where all other subclasses /// store their file pointer. Metadata *getRawFile() const { return isa(this) ? const_cast(this) : static_cast(getOperand(0)); } static bool classof(const Metadata *MD) { switch (MD->getMetadataID()) { default: return false; case DIBasicTypeKind: case DIStringTypeKind: case DIDerivedTypeKind: case DICompositeTypeKind: case DISubroutineTypeKind: case DIFileKind: case DICompileUnitKind: case DISubprogramKind: case DILexicalBlockKind: case DILexicalBlockFileKind: case DINamespaceKind: case DICommonBlockKind: case DIModuleKind: return true; } } }; /// File. /// /// TODO: Merge with directory/file node (including users). /// TODO: Canonicalize paths on creation. class DIFile : public DIScope { friend class LLVMContextImpl; friend class MDNode; public: /// Which algorithm (e.g. MD5) a checksum was generated with. /// /// The encoding is explicit because it is used directly in Bitcode. The /// value 0 is reserved to indicate the absence of a checksum in Bitcode. enum ChecksumKind { // The first variant was originally CSK_None, encoded as 0. The new // internal representation removes the need for this by wrapping the // ChecksumInfo in an Optional, but to preserve Bitcode compatibility the 0 // encoding is reserved. CSK_MD5 = 1, CSK_SHA1 = 2, CSK_SHA256 = 3, CSK_Last = CSK_SHA256 // Should be last enumeration. }; /// A single checksum, represented by a \a Kind and a \a Value (a string). template struct ChecksumInfo { /// The kind of checksum which \a Value encodes. ChecksumKind Kind; /// The string value of the checksum. T Value; ChecksumInfo(ChecksumKind Kind, T Value) : Kind(Kind), Value(Value) {} ~ChecksumInfo() = default; bool operator==(const ChecksumInfo &X) const { return Kind == X.Kind && Value == X.Value; } bool operator!=(const ChecksumInfo &X) const { return !(*this == X); } StringRef getKindAsString() const { return getChecksumKindAsString(Kind); } }; private: std::optional> Checksum; /// An optional source. A nullptr means none. MDString *Source; DIFile(LLVMContext &C, StorageType Storage, std::optional> CS, MDString *Src, ArrayRef Ops); ~DIFile() = default; static DIFile *getImpl(LLVMContext &Context, StringRef Filename, StringRef Directory, std::optional> CS, std::optional Source, StorageType Storage, bool ShouldCreate = true) { std::optional> MDChecksum; if (CS) MDChecksum.emplace(CS->Kind, getCanonicalMDString(Context, CS->Value)); return getImpl(Context, getCanonicalMDString(Context, Filename), getCanonicalMDString(Context, Directory), MDChecksum, Source ? MDString::get(Context, *Source) : nullptr, Storage, ShouldCreate); } static DIFile *getImpl(LLVMContext &Context, MDString *Filename, MDString *Directory, std::optional> CS, MDString *Source, StorageType Storage, bool ShouldCreate = true); TempDIFile cloneImpl() const { return getTemporary(getContext(), getFilename(), getDirectory(), getChecksum(), getSource()); } public: DEFINE_MDNODE_GET(DIFile, (StringRef Filename, StringRef Directory, std::optional> CS = std::nullopt, std::optional Source = std::nullopt), (Filename, Directory, CS, Source)) DEFINE_MDNODE_GET(DIFile, (MDString * Filename, MDString *Directory, std::optional> CS = std::nullopt, MDString *Source = nullptr), (Filename, Directory, CS, Source)) TempDIFile clone() const { return cloneImpl(); } StringRef getFilename() const { return getStringOperand(0); } StringRef getDirectory() const { return getStringOperand(1); } std::optional> getChecksum() const { std::optional> StringRefChecksum; if (Checksum) StringRefChecksum.emplace(Checksum->Kind, Checksum->Value->getString()); return StringRefChecksum; } std::optional getSource() const { return Source ? std::optional(Source->getString()) : std::nullopt; } MDString *getRawFilename() const { return getOperandAs(0); } MDString *getRawDirectory() const { return getOperandAs(1); } std::optional> getRawChecksum() const { return Checksum; } MDString *getRawSource() const { return Source; } static StringRef getChecksumKindAsString(ChecksumKind CSKind); static std::optional getChecksumKind(StringRef CSKindStr); static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIFileKind; } }; StringRef DIScope::getFilename() const { if (auto *F = getFile()) return F->getFilename(); return ""; } StringRef DIScope::getDirectory() const { if (auto *F = getFile()) return F->getDirectory(); return ""; } std::optional DIScope::getSource() const { if (auto *F = getFile()) return F->getSource(); return std::nullopt; } /// Base class for types. /// /// TODO: Remove the hardcoded name and context, since many types don't use /// them. /// TODO: Split up flags. /// /// Uses the SubclassData32 Metadata slot. class DIType : public DIScope { unsigned Line; DIFlags Flags; uint64_t SizeInBits; uint64_t OffsetInBits; protected: DIType(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, unsigned Line, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, ArrayRef Ops) : DIScope(C, ID, Storage, Tag, Ops) { init(Line, SizeInBits, AlignInBits, OffsetInBits, Flags); } ~DIType() = default; void init(unsigned Line, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags) { this->Line = Line; this->Flags = Flags; this->SizeInBits = SizeInBits; this->SubclassData32 = AlignInBits; this->OffsetInBits = OffsetInBits; } /// Change fields in place. void mutate(unsigned Tag, unsigned Line, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags) { assert(isDistinct() && "Only distinct nodes can mutate"); setTag(Tag); init(Line, SizeInBits, AlignInBits, OffsetInBits, Flags); } public: TempDIType clone() const { return TempDIType(cast(MDNode::clone().release())); } unsigned getLine() const { return Line; } uint64_t getSizeInBits() const { return SizeInBits; } uint32_t getAlignInBits() const { return SubclassData32; } uint32_t getAlignInBytes() const { return getAlignInBits() / CHAR_BIT; } uint64_t getOffsetInBits() const { return OffsetInBits; } DIFlags getFlags() const { return Flags; } DIScope *getScope() const { return cast_or_null(getRawScope()); } StringRef getName() const { return getStringOperand(2); } Metadata *getRawScope() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } /// Returns a new temporary DIType with updated Flags TempDIType cloneWithFlags(DIFlags NewFlags) const { auto NewTy = clone(); NewTy->Flags = NewFlags; return NewTy; } bool isPrivate() const { return (getFlags() & FlagAccessibility) == FlagPrivate; } bool isProtected() const { return (getFlags() & FlagAccessibility) == FlagProtected; } bool isPublic() const { return (getFlags() & FlagAccessibility) == FlagPublic; } bool isForwardDecl() const { return getFlags() & FlagFwdDecl; } bool isAppleBlockExtension() const { return getFlags() & FlagAppleBlock; } bool isVirtual() const { return getFlags() & FlagVirtual; } bool isArtificial() const { return getFlags() & FlagArtificial; } bool isObjectPointer() const { return getFlags() & FlagObjectPointer; } bool isObjcClassComplete() const { return getFlags() & FlagObjcClassComplete; } bool isVector() const { return getFlags() & FlagVector; } bool isBitField() const { return getFlags() & FlagBitField; } bool isStaticMember() const { return getFlags() & FlagStaticMember; } bool isLValueReference() const { return getFlags() & FlagLValueReference; } bool isRValueReference() const { return getFlags() & FlagRValueReference; } bool isTypePassByValue() const { return getFlags() & FlagTypePassByValue; } bool isTypePassByReference() const { return getFlags() & FlagTypePassByReference; } bool isBigEndian() const { return getFlags() & FlagBigEndian; } bool isLittleEndian() const { return getFlags() & FlagLittleEndian; } bool getExportSymbols() const { return getFlags() & FlagExportSymbols; } static bool classof(const Metadata *MD) { switch (MD->getMetadataID()) { default: return false; case DIBasicTypeKind: case DIStringTypeKind: case DIDerivedTypeKind: case DICompositeTypeKind: case DISubroutineTypeKind: return true; } } }; /// Basic type, like 'int' or 'float'. /// /// TODO: Split out DW_TAG_unspecified_type. /// TODO: Drop unused accessors. class DIBasicType : public DIType { friend class LLVMContextImpl; friend class MDNode; unsigned Encoding; DIBasicType(LLVMContext &C, StorageType Storage, unsigned Tag, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags, ArrayRef Ops) : DIType(C, DIBasicTypeKind, Storage, Tag, 0, SizeInBits, AlignInBits, 0, Flags, Ops), Encoding(Encoding) {} ~DIBasicType() = default; static DIBasicType *getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, getCanonicalMDString(Context, Name), SizeInBits, AlignInBits, Encoding, Flags, Storage, ShouldCreate); } static DIBasicType *getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags, StorageType Storage, bool ShouldCreate = true); TempDIBasicType cloneImpl() const { return getTemporary(getContext(), getTag(), getName(), getSizeInBits(), getAlignInBits(), getEncoding(), getFlags()); } public: DEFINE_MDNODE_GET(DIBasicType, (unsigned Tag, StringRef Name), (Tag, Name, 0, 0, 0, FlagZero)) DEFINE_MDNODE_GET(DIBasicType, (unsigned Tag, StringRef Name, uint64_t SizeInBits), (Tag, Name, SizeInBits, 0, 0, FlagZero)) DEFINE_MDNODE_GET(DIBasicType, (unsigned Tag, MDString *Name, uint64_t SizeInBits), (Tag, Name, SizeInBits, 0, 0, FlagZero)) DEFINE_MDNODE_GET(DIBasicType, (unsigned Tag, StringRef Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags), (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)) DEFINE_MDNODE_GET(DIBasicType, (unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags), (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)) TempDIBasicType clone() const { return cloneImpl(); } unsigned getEncoding() const { return Encoding; } enum class Signedness { Signed, Unsigned }; /// Return the signedness of this type, or std::nullopt if this type is /// neither signed nor unsigned. std::optional getSignedness() const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIBasicTypeKind; } }; /// String type, Fortran CHARACTER(n) class DIStringType : public DIType { friend class LLVMContextImpl; friend class MDNode; unsigned Encoding; DIStringType(LLVMContext &C, StorageType Storage, unsigned Tag, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, ArrayRef Ops) : DIType(C, DIStringTypeKind, Storage, Tag, 0, SizeInBits, AlignInBits, 0, FlagZero, Ops), Encoding(Encoding) {} ~DIStringType() = default; static DIStringType *getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, Metadata *StringLength, Metadata *StrLenExp, Metadata *StrLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, getCanonicalMDString(Context, Name), StringLength, StrLenExp, StrLocationExp, SizeInBits, AlignInBits, Encoding, Storage, ShouldCreate); } static DIStringType *getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *StringLength, Metadata *StrLenExp, Metadata *StrLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, StorageType Storage, bool ShouldCreate = true); TempDIStringType cloneImpl() const { return getTemporary(getContext(), getTag(), getRawName(), getRawStringLength(), getRawStringLengthExp(), getRawStringLocationExp(), getSizeInBits(), getAlignInBits(), getEncoding()); } public: DEFINE_MDNODE_GET(DIStringType, (unsigned Tag, StringRef Name, uint64_t SizeInBits, uint32_t AlignInBits), (Tag, Name, nullptr, nullptr, nullptr, SizeInBits, AlignInBits, 0)) DEFINE_MDNODE_GET(DIStringType, (unsigned Tag, MDString *Name, Metadata *StringLength, Metadata *StringLengthExp, Metadata *StringLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding), (Tag, Name, StringLength, StringLengthExp, StringLocationExp, SizeInBits, AlignInBits, Encoding)) DEFINE_MDNODE_GET(DIStringType, (unsigned Tag, StringRef Name, Metadata *StringLength, Metadata *StringLengthExp, Metadata *StringLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding), (Tag, Name, StringLength, StringLengthExp, StringLocationExp, SizeInBits, AlignInBits, Encoding)) TempDIStringType clone() const { return cloneImpl(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIStringTypeKind; } DIVariable *getStringLength() const { return cast_or_null(getRawStringLength()); } DIExpression *getStringLengthExp() const { return cast_or_null(getRawStringLengthExp()); } DIExpression *getStringLocationExp() const { return cast_or_null(getRawStringLocationExp()); } unsigned getEncoding() const { return Encoding; } Metadata *getRawStringLength() const { return getOperand(3); } Metadata *getRawStringLengthExp() const { return getOperand(4); } Metadata *getRawStringLocationExp() const { return getOperand(5); } }; /// Derived types. /// /// This includes qualified types, pointers, references, friends, typedefs, and /// class members. /// /// TODO: Split out members (inheritance, fields, methods, etc.). class DIDerivedType : public DIType { friend class LLVMContextImpl; friend class MDNode; /// The DWARF address space of the memory pointed to or referenced by a /// pointer or reference type respectively. std::optional DWARFAddressSpace; DIDerivedType(LLVMContext &C, StorageType Storage, unsigned Tag, unsigned Line, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, DIFlags Flags, ArrayRef Ops) : DIType(C, DIDerivedTypeKind, Storage, Tag, Line, SizeInBits, AlignInBits, OffsetInBits, Flags, Ops), DWARFAddressSpace(DWARFAddressSpace) {} ~DIDerivedType() = default; static DIDerivedType * getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, DIFile *File, unsigned Line, DIScope *Scope, DIType *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData, DINodeArray Annotations, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, getCanonicalMDString(Context, Name), File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, Flags, ExtraData, Annotations.get(), Storage, ShouldCreate); } static DIDerivedType * getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData, Metadata *Annotations, StorageType Storage, bool ShouldCreate = true); TempDIDerivedType cloneImpl() const { return getTemporary( getContext(), getTag(), getName(), getFile(), getLine(), getScope(), getBaseType(), getSizeInBits(), getAlignInBits(), getOffsetInBits(), getDWARFAddressSpace(), getFlags(), getExtraData(), getAnnotations()); } public: DEFINE_MDNODE_GET( DIDerivedType, (unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData = nullptr, Metadata *Annotations = nullptr), (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, Flags, ExtraData, Annotations)) DEFINE_MDNODE_GET(DIDerivedType, (unsigned Tag, StringRef Name, DIFile *File, unsigned Line, DIScope *Scope, DIType *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData = nullptr, DINodeArray Annotations = nullptr), (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, Flags, ExtraData, Annotations)) TempDIDerivedType clone() const { return cloneImpl(); } /// Get the base type this is derived from. DIType *getBaseType() const { return cast_or_null(getRawBaseType()); } Metadata *getRawBaseType() const { return getOperand(3); } /// \returns The DWARF address space of the memory pointed to or referenced by /// a pointer or reference type respectively. std::optional getDWARFAddressSpace() const { return DWARFAddressSpace; } /// Get extra data associated with this derived type. /// /// Class type for pointer-to-members, objective-c property node for ivars, /// global constant wrapper for static members, or virtual base pointer offset /// for inheritance. /// /// TODO: Separate out types that need this extra operand: pointer-to-member /// types and member fields (static members and ivars). Metadata *getExtraData() const { return getRawExtraData(); } Metadata *getRawExtraData() const { return getOperand(4); } /// Get annotations associated with this derived type. DINodeArray getAnnotations() const { return cast_or_null(getRawAnnotations()); } Metadata *getRawAnnotations() const { return getOperand(5); } /// Get casted version of extra data. /// @{ DIType *getClassType() const; DIObjCProperty *getObjCProperty() const { return dyn_cast_or_null(getExtraData()); } uint32_t getVBPtrOffset() const; Constant *getStorageOffsetInBits() const; Constant *getConstant() const; Constant *getDiscriminantValue() const; /// @} static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIDerivedTypeKind; } }; /// Composite types. /// /// TODO: Detach from DerivedTypeBase (split out MDEnumType?). /// TODO: Create a custom, unrelated node for DW_TAG_array_type. class DICompositeType : public DIType { friend class LLVMContextImpl; friend class MDNode; unsigned RuntimeLang; DICompositeType(LLVMContext &C, StorageType Storage, unsigned Tag, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, ArrayRef Ops) : DIType(C, DICompositeTypeKind, Storage, Tag, Line, SizeInBits, AlignInBits, OffsetInBits, Flags, Ops), RuntimeLang(RuntimeLang) {} ~DICompositeType() = default; /// Change fields in place. void mutate(unsigned Tag, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags) { assert(isDistinct() && "Only distinct nodes can mutate"); assert(getRawIdentifier() && "Only ODR-uniqued nodes should mutate"); this->RuntimeLang = RuntimeLang; DIType::mutate(Tag, Line, SizeInBits, AlignInBits, OffsetInBits, Flags); } static DICompositeType * getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, Metadata *File, unsigned Line, DIScope *Scope, DIType *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, DINodeArray Elements, unsigned RuntimeLang, DIType *VTableHolder, DITemplateParameterArray TemplateParams, StringRef Identifier, DIDerivedType *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, DINodeArray Annotations, StorageType Storage, bool ShouldCreate = true) { return getImpl( Context, Tag, getCanonicalMDString(Context, Name), File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements.get(), RuntimeLang, VTableHolder, TemplateParams.get(), getCanonicalMDString(Context, Identifier), Discriminator, DataLocation, Associated, Allocated, Rank, Annotations.get(), Storage, ShouldCreate); } static DICompositeType * getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations, StorageType Storage, bool ShouldCreate = true); TempDICompositeType cloneImpl() const { return getTemporary( getContext(), getTag(), getName(), getFile(), getLine(), getScope(), getBaseType(), getSizeInBits(), getAlignInBits(), getOffsetInBits(), getFlags(), getElements(), getRuntimeLang(), getVTableHolder(), getTemplateParams(), getIdentifier(), getDiscriminator(), getRawDataLocation(), getRawAssociated(), getRawAllocated(), getRawRank(), getAnnotations()); } public: DEFINE_MDNODE_GET( DICompositeType, (unsigned Tag, StringRef Name, DIFile *File, unsigned Line, DIScope *Scope, DIType *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, DINodeArray Elements, unsigned RuntimeLang, DIType *VTableHolder, DITemplateParameterArray TemplateParams = nullptr, StringRef Identifier = "", DIDerivedType *Discriminator = nullptr, Metadata *DataLocation = nullptr, Metadata *Associated = nullptr, Metadata *Allocated = nullptr, Metadata *Rank = nullptr, DINodeArray Annotations = nullptr), (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations)) DEFINE_MDNODE_GET( DICompositeType, (unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams = nullptr, MDString *Identifier = nullptr, Metadata *Discriminator = nullptr, Metadata *DataLocation = nullptr, Metadata *Associated = nullptr, Metadata *Allocated = nullptr, Metadata *Rank = nullptr, Metadata *Annotations = nullptr), (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations)) TempDICompositeType clone() const { return cloneImpl(); } /// Get a DICompositeType with the given ODR identifier. /// /// If \a LLVMContext::isODRUniquingDebugTypes(), gets the mapped /// DICompositeType for the given ODR \c Identifier. If none exists, creates /// a new node. /// /// Else, returns \c nullptr. static DICompositeType * getODRType(LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations); static DICompositeType *getODRTypeIfExists(LLVMContext &Context, MDString &Identifier); /// Build a DICompositeType with the given ODR identifier. /// /// Looks up the mapped DICompositeType for the given ODR \c Identifier. If /// it doesn't exist, creates a new one. If it does exist and \a /// isForwardDecl(), and the new arguments would be a definition, mutates the /// the type in place. In either case, returns the type. /// /// If not \a LLVMContext::isODRUniquingDebugTypes(), this function returns /// nullptr. static DICompositeType * buildODRType(LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations); DIType *getBaseType() const { return cast_or_null(getRawBaseType()); } DINodeArray getElements() const { return cast_or_null(getRawElements()); } DIType *getVTableHolder() const { return cast_or_null(getRawVTableHolder()); } DITemplateParameterArray getTemplateParams() const { return cast_or_null(getRawTemplateParams()); } StringRef getIdentifier() const { return getStringOperand(7); } unsigned getRuntimeLang() const { return RuntimeLang; } Metadata *getRawBaseType() const { return getOperand(3); } Metadata *getRawElements() const { return getOperand(4); } Metadata *getRawVTableHolder() const { return getOperand(5); } Metadata *getRawTemplateParams() const { return getOperand(6); } MDString *getRawIdentifier() const { return getOperandAs(7); } Metadata *getRawDiscriminator() const { return getOperand(8); } DIDerivedType *getDiscriminator() const { return getOperandAs(8); } Metadata *getRawDataLocation() const { return getOperand(9); } DIVariable *getDataLocation() const { return dyn_cast_or_null(getRawDataLocation()); } DIExpression *getDataLocationExp() const { return dyn_cast_or_null(getRawDataLocation()); } Metadata *getRawAssociated() const { return getOperand(10); } DIVariable *getAssociated() const { return dyn_cast_or_null(getRawAssociated()); } DIExpression *getAssociatedExp() const { return dyn_cast_or_null(getRawAssociated()); } Metadata *getRawAllocated() const { return getOperand(11); } DIVariable *getAllocated() const { return dyn_cast_or_null(getRawAllocated()); } DIExpression *getAllocatedExp() const { return dyn_cast_or_null(getRawAllocated()); } Metadata *getRawRank() const { return getOperand(12); } ConstantInt *getRankConst() const { if (auto *MD = dyn_cast_or_null(getRawRank())) return dyn_cast_or_null(MD->getValue()); return nullptr; } DIExpression *getRankExp() const { return dyn_cast_or_null(getRawRank()); } Metadata *getRawAnnotations() const { return getOperand(13); } DINodeArray getAnnotations() const { return cast_or_null(getRawAnnotations()); } /// Replace operands. /// /// If this \a isUniqued() and not \a isResolved(), on a uniquing collision /// this will be RAUW'ed and deleted. Use a \a TrackingMDRef to keep track /// of its movement if necessary. /// @{ void replaceElements(DINodeArray Elements) { #ifndef NDEBUG for (DINode *Op : getElements()) assert(is_contained(Elements->operands(), Op) && "Lost a member during member list replacement"); #endif replaceOperandWith(4, Elements.get()); } void replaceVTableHolder(DIType *VTableHolder) { replaceOperandWith(5, VTableHolder); } void replaceTemplateParams(DITemplateParameterArray TemplateParams) { replaceOperandWith(6, TemplateParams.get()); } /// @} static bool classof(const Metadata *MD) { return MD->getMetadataID() == DICompositeTypeKind; } }; /// Type array for a subprogram. /// /// TODO: Fold the array of types in directly as operands. class DISubroutineType : public DIType { friend class LLVMContextImpl; friend class MDNode; /// The calling convention used with DW_AT_calling_convention. Actually of /// type dwarf::CallingConvention. uint8_t CC; DISubroutineType(LLVMContext &C, StorageType Storage, DIFlags Flags, uint8_t CC, ArrayRef Ops); ~DISubroutineType() = default; static DISubroutineType *getImpl(LLVMContext &Context, DIFlags Flags, uint8_t CC, DITypeRefArray TypeArray, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Flags, CC, TypeArray.get(), Storage, ShouldCreate); } static DISubroutineType *getImpl(LLVMContext &Context, DIFlags Flags, uint8_t CC, Metadata *TypeArray, StorageType Storage, bool ShouldCreate = true); TempDISubroutineType cloneImpl() const { return getTemporary(getContext(), getFlags(), getCC(), getTypeArray()); } public: DEFINE_MDNODE_GET(DISubroutineType, (DIFlags Flags, uint8_t CC, DITypeRefArray TypeArray), (Flags, CC, TypeArray)) DEFINE_MDNODE_GET(DISubroutineType, (DIFlags Flags, uint8_t CC, Metadata *TypeArray), (Flags, CC, TypeArray)) TempDISubroutineType clone() const { return cloneImpl(); } // Returns a new temporary DISubroutineType with updated CC TempDISubroutineType cloneWithCC(uint8_t CC) const { auto NewTy = clone(); NewTy->CC = CC; return NewTy; } uint8_t getCC() const { return CC; } DITypeRefArray getTypeArray() const { return cast_or_null(getRawTypeArray()); } Metadata *getRawTypeArray() const { return getOperand(3); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DISubroutineTypeKind; } }; /// Compile unit. class DICompileUnit : public DIScope { friend class LLVMContextImpl; friend class MDNode; public: enum DebugEmissionKind : unsigned { NoDebug = 0, FullDebug, LineTablesOnly, DebugDirectivesOnly, LastEmissionKind = DebugDirectivesOnly }; enum class DebugNameTableKind : unsigned { Default = 0, GNU = 1, None = 2, Apple = 3, LastDebugNameTableKind = Apple }; static std::optional getEmissionKind(StringRef Str); static const char *emissionKindString(DebugEmissionKind EK); static std::optional getNameTableKind(StringRef Str); static const char *nameTableKindString(DebugNameTableKind PK); private: unsigned SourceLanguage; unsigned RuntimeVersion; uint64_t DWOId; unsigned EmissionKind; unsigned NameTableKind; bool IsOptimized; bool SplitDebugInlining; bool DebugInfoForProfiling; bool RangesBaseAddress; DICompileUnit(LLVMContext &C, StorageType Storage, unsigned SourceLanguage, bool IsOptimized, unsigned RuntimeVersion, unsigned EmissionKind, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, ArrayRef Ops); ~DICompileUnit() = default; static DICompileUnit * getImpl(LLVMContext &Context, unsigned SourceLanguage, DIFile *File, StringRef Producer, bool IsOptimized, StringRef Flags, unsigned RuntimeVersion, StringRef SplitDebugFilename, unsigned EmissionKind, DICompositeTypeArray EnumTypes, DIScopeArray RetainedTypes, DIGlobalVariableExpressionArray GlobalVariables, DIImportedEntityArray ImportedEntities, DIMacroNodeArray Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, StringRef SysRoot, StringRef SDK, StorageType Storage, bool ShouldCreate = true) { return getImpl( Context, SourceLanguage, File, getCanonicalMDString(Context, Producer), IsOptimized, getCanonicalMDString(Context, Flags), RuntimeVersion, getCanonicalMDString(Context, SplitDebugFilename), EmissionKind, EnumTypes.get(), RetainedTypes.get(), GlobalVariables.get(), ImportedEntities.get(), Macros.get(), DWOId, SplitDebugInlining, DebugInfoForProfiling, NameTableKind, RangesBaseAddress, getCanonicalMDString(Context, SysRoot), getCanonicalMDString(Context, SDK), Storage, ShouldCreate); } static DICompileUnit * getImpl(LLVMContext &Context, unsigned SourceLanguage, Metadata *File, MDString *Producer, bool IsOptimized, MDString *Flags, unsigned RuntimeVersion, MDString *SplitDebugFilename, unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, MDString *SDK, StorageType Storage, bool ShouldCreate = true); TempDICompileUnit cloneImpl() const { return getTemporary( getContext(), getSourceLanguage(), getFile(), getProducer(), isOptimized(), getFlags(), getRuntimeVersion(), getSplitDebugFilename(), getEmissionKind(), getEnumTypes(), getRetainedTypes(), getGlobalVariables(), getImportedEntities(), getMacros(), DWOId, getSplitDebugInlining(), getDebugInfoForProfiling(), getNameTableKind(), getRangesBaseAddress(), getSysRoot(), getSDK()); } public: static void get() = delete; static void getIfExists() = delete; DEFINE_MDNODE_GET_DISTINCT_TEMPORARY( DICompileUnit, (unsigned SourceLanguage, DIFile *File, StringRef Producer, bool IsOptimized, StringRef Flags, unsigned RuntimeVersion, StringRef SplitDebugFilename, DebugEmissionKind EmissionKind, DICompositeTypeArray EnumTypes, DIScopeArray RetainedTypes, DIGlobalVariableExpressionArray GlobalVariables, DIImportedEntityArray ImportedEntities, DIMacroNodeArray Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, DebugNameTableKind NameTableKind, bool RangesBaseAddress, StringRef SysRoot, StringRef SDK), (SourceLanguage, File, Producer, IsOptimized, Flags, RuntimeVersion, SplitDebugFilename, EmissionKind, EnumTypes, RetainedTypes, GlobalVariables, ImportedEntities, Macros, DWOId, SplitDebugInlining, DebugInfoForProfiling, (unsigned)NameTableKind, RangesBaseAddress, SysRoot, SDK)) DEFINE_MDNODE_GET_DISTINCT_TEMPORARY( DICompileUnit, (unsigned SourceLanguage, Metadata *File, MDString *Producer, bool IsOptimized, MDString *Flags, unsigned RuntimeVersion, MDString *SplitDebugFilename, unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, MDString *SDK), (SourceLanguage, File, Producer, IsOptimized, Flags, RuntimeVersion, SplitDebugFilename, EmissionKind, EnumTypes, RetainedTypes, GlobalVariables, ImportedEntities, Macros, DWOId, SplitDebugInlining, DebugInfoForProfiling, NameTableKind, RangesBaseAddress, SysRoot, SDK)) TempDICompileUnit clone() const { return cloneImpl(); } unsigned getSourceLanguage() const { return SourceLanguage; } bool isOptimized() const { return IsOptimized; } unsigned getRuntimeVersion() const { return RuntimeVersion; } DebugEmissionKind getEmissionKind() const { return (DebugEmissionKind)EmissionKind; } bool isDebugDirectivesOnly() const { return EmissionKind == DebugDirectivesOnly; } bool getDebugInfoForProfiling() const { return DebugInfoForProfiling; } DebugNameTableKind getNameTableKind() const { return (DebugNameTableKind)NameTableKind; } bool getRangesBaseAddress() const { return RangesBaseAddress; } StringRef getProducer() const { return getStringOperand(1); } StringRef getFlags() const { return getStringOperand(2); } StringRef getSplitDebugFilename() const { return getStringOperand(3); } DICompositeTypeArray getEnumTypes() const { return cast_or_null(getRawEnumTypes()); } DIScopeArray getRetainedTypes() const { return cast_or_null(getRawRetainedTypes()); } DIGlobalVariableExpressionArray getGlobalVariables() const { return cast_or_null(getRawGlobalVariables()); } DIImportedEntityArray getImportedEntities() const { return cast_or_null(getRawImportedEntities()); } DIMacroNodeArray getMacros() const { return cast_or_null(getRawMacros()); } uint64_t getDWOId() const { return DWOId; } void setDWOId(uint64_t DwoId) { DWOId = DwoId; } bool getSplitDebugInlining() const { return SplitDebugInlining; } void setSplitDebugInlining(bool SplitDebugInlining) { this->SplitDebugInlining = SplitDebugInlining; } StringRef getSysRoot() const { return getStringOperand(9); } StringRef getSDK() const { return getStringOperand(10); } MDString *getRawProducer() const { return getOperandAs(1); } MDString *getRawFlags() const { return getOperandAs(2); } MDString *getRawSplitDebugFilename() const { return getOperandAs(3); } Metadata *getRawEnumTypes() const { return getOperand(4); } Metadata *getRawRetainedTypes() const { return getOperand(5); } Metadata *getRawGlobalVariables() const { return getOperand(6); } Metadata *getRawImportedEntities() const { return getOperand(7); } Metadata *getRawMacros() const { return getOperand(8); } MDString *getRawSysRoot() const { return getOperandAs(9); } MDString *getRawSDK() const { return getOperandAs(10); } /// Replace arrays. /// /// If this \a isUniqued() and not \a isResolved(), it will be RAUW'ed and /// deleted on a uniquing collision. In practice, uniquing collisions on \a /// DICompileUnit should be fairly rare. /// @{ void replaceEnumTypes(DICompositeTypeArray N) { replaceOperandWith(4, N.get()); } void replaceRetainedTypes(DITypeArray N) { replaceOperandWith(5, N.get()); } void replaceGlobalVariables(DIGlobalVariableExpressionArray N) { replaceOperandWith(6, N.get()); } void replaceImportedEntities(DIImportedEntityArray N) { replaceOperandWith(7, N.get()); } void replaceMacros(DIMacroNodeArray N) { replaceOperandWith(8, N.get()); } /// @} static bool classof(const Metadata *MD) { return MD->getMetadataID() == DICompileUnitKind; } }; /// A scope for locals. /// /// A legal scope for lexical blocks, local variables, and debug info /// locations. Subclasses are \a DISubprogram, \a DILexicalBlock, and \a /// DILexicalBlockFile. class DILocalScope : public DIScope { protected: DILocalScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef Ops) : DIScope(C, ID, Storage, Tag, Ops) {} ~DILocalScope() = default; public: /// Get the subprogram for this scope. /// /// Return this if it's an \a DISubprogram; otherwise, look up the scope /// chain. DISubprogram *getSubprogram() const; /// Traverses the scope chain rooted at RootScope until it hits a Subprogram, /// recreating the chain with "NewSP" instead. static DILocalScope * cloneScopeForSubprogram(DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap &Cache); /// Get the first non DILexicalBlockFile scope of this scope. /// /// Return this if it's not a \a DILexicalBlockFIle; otherwise, look up the /// scope chain. DILocalScope *getNonLexicalBlockFileScope() const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DISubprogramKind || MD->getMetadataID() == DILexicalBlockKind || MD->getMetadataID() == DILexicalBlockFileKind; } }; /// Subprogram description. class DISubprogram : public DILocalScope { friend class LLVMContextImpl; friend class MDNode; unsigned Line; unsigned ScopeLine; unsigned VirtualIndex; /// In the MS ABI, the implicit 'this' parameter is adjusted in the prologue /// of method overrides from secondary bases by this amount. It may be /// negative. int ThisAdjustment; public: /// Debug info subprogram flags. enum DISPFlags : uint32_t { #define HANDLE_DISP_FLAG(ID, NAME) SPFlag##NAME = ID, #define DISP_FLAG_LARGEST_NEEDED #include "llvm/IR/DebugInfoFlags.def" SPFlagNonvirtual = SPFlagZero, SPFlagVirtuality = SPFlagVirtual | SPFlagPureVirtual, LLVM_MARK_AS_BITMASK_ENUM(SPFlagLargest) }; static DISPFlags getFlag(StringRef Flag); static StringRef getFlagString(DISPFlags Flag); /// Split up a flags bitfield for easier printing. /// /// Split \c Flags into \c SplitFlags, a vector of its components. Returns /// any remaining (unrecognized) bits. static DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl &SplitFlags); // Helper for converting old bitfields to new flags word. static DISPFlags toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, unsigned Virtuality = SPFlagNonvirtual, bool IsMainSubprogram = false); private: DIFlags Flags; DISPFlags SPFlags; DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, unsigned ScopeLine, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, ArrayRef Ops); ~DISubprogram() = default; static DISubprogram * getImpl(LLVMContext &Context, DIScope *Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned Line, DISubroutineType *Type, unsigned ScopeLine, DIType *ContainingType, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, DICompileUnit *Unit, DITemplateParameterArray TemplateParams, DISubprogram *Declaration, DINodeArray RetainedNodes, DITypeArray ThrownTypes, DINodeArray Annotations, StringRef TargetFuncName, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, getCanonicalMDString(Context, Name), getCanonicalMDString(Context, LinkageName), File, Line, Type, ScopeLine, ContainingType, VirtualIndex, ThisAdjustment, Flags, SPFlags, Unit, TemplateParams.get(), Declaration, RetainedNodes.get(), ThrownTypes.get(), Annotations.get(), getCanonicalMDString(Context, TargetFuncName), Storage, ShouldCreate); } static DISubprogram * getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, StorageType Storage, bool ShouldCreate = true); TempDISubprogram cloneImpl() const { return getTemporary(getContext(), getScope(), getName(), getLinkageName(), getFile(), getLine(), getType(), getScopeLine(), getContainingType(), getVirtualIndex(), getThisAdjustment(), getFlags(), getSPFlags(), getUnit(), getTemplateParams(), getDeclaration(), getRetainedNodes(), getThrownTypes(), getAnnotations(), getTargetFuncName()); } public: DEFINE_MDNODE_GET( DISubprogram, (DIScope * Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned Line, DISubroutineType *Type, unsigned ScopeLine, DIType *ContainingType, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, DICompileUnit *Unit, DITemplateParameterArray TemplateParams = nullptr, DISubprogram *Declaration = nullptr, DINodeArray RetainedNodes = nullptr, DITypeArray ThrownTypes = nullptr, DINodeArray Annotations = nullptr, StringRef TargetFuncName = ""), (Scope, Name, LinkageName, File, Line, Type, ScopeLine, ContainingType, VirtualIndex, ThisAdjustment, Flags, SPFlags, Unit, TemplateParams, Declaration, RetainedNodes, ThrownTypes, Annotations, TargetFuncName)) DEFINE_MDNODE_GET( DISubprogram, (Metadata * Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, Metadata *TemplateParams = nullptr, Metadata *Declaration = nullptr, Metadata *RetainedNodes = nullptr, Metadata *ThrownTypes = nullptr, Metadata *Annotations = nullptr, MDString *TargetFuncName = nullptr), (Scope, Name, LinkageName, File, Line, Type, ScopeLine, ContainingType, VirtualIndex, ThisAdjustment, Flags, SPFlags, Unit, TemplateParams, Declaration, RetainedNodes, ThrownTypes, Annotations, TargetFuncName)) TempDISubprogram clone() const { return cloneImpl(); } /// Returns a new temporary DISubprogram with updated Flags TempDISubprogram cloneWithFlags(DIFlags NewFlags) const { auto NewSP = clone(); NewSP->Flags = NewFlags; return NewSP; } public: unsigned getLine() const { return Line; } unsigned getVirtuality() const { return getSPFlags() & SPFlagVirtuality; } unsigned getVirtualIndex() const { return VirtualIndex; } int getThisAdjustment() const { return ThisAdjustment; } unsigned getScopeLine() const { return ScopeLine; } void setScopeLine(unsigned L) { assert(isDistinct()); ScopeLine = L; } DIFlags getFlags() const { return Flags; } DISPFlags getSPFlags() const { return SPFlags; } bool isLocalToUnit() const { return getSPFlags() & SPFlagLocalToUnit; } bool isDefinition() const { return getSPFlags() & SPFlagDefinition; } bool isOptimized() const { return getSPFlags() & SPFlagOptimized; } bool isMainSubprogram() const { return getSPFlags() & SPFlagMainSubprogram; } bool isArtificial() const { return getFlags() & FlagArtificial; } bool isPrivate() const { return (getFlags() & FlagAccessibility) == FlagPrivate; } bool isProtected() const { return (getFlags() & FlagAccessibility) == FlagProtected; } bool isPublic() const { return (getFlags() & FlagAccessibility) == FlagPublic; } bool isExplicit() const { return getFlags() & FlagExplicit; } bool isPrototyped() const { return getFlags() & FlagPrototyped; } bool areAllCallsDescribed() const { return getFlags() & FlagAllCallsDescribed; } bool isPure() const { return getSPFlags() & SPFlagPure; } bool isElemental() const { return getSPFlags() & SPFlagElemental; } bool isRecursive() const { return getSPFlags() & SPFlagRecursive; } bool isObjCDirect() const { return getSPFlags() & SPFlagObjCDirect; } /// Check if this is deleted member function. /// /// Return true if this subprogram is a C++11 special /// member function declared deleted. bool isDeleted() const { return getSPFlags() & SPFlagDeleted; } /// Check if this is reference-qualified. /// /// Return true if this subprogram is a C++11 reference-qualified non-static /// member function (void foo() &). bool isLValueReference() const { return getFlags() & FlagLValueReference; } /// Check if this is rvalue-reference-qualified. /// /// Return true if this subprogram is a C++11 rvalue-reference-qualified /// non-static member function (void foo() &&). bool isRValueReference() const { return getFlags() & FlagRValueReference; } /// Check if this is marked as noreturn. /// /// Return true if this subprogram is C++11 noreturn or C11 _Noreturn bool isNoReturn() const { return getFlags() & FlagNoReturn; } // Check if this routine is a compiler-generated thunk. // // Returns true if this subprogram is a thunk generated by the compiler. bool isThunk() const { return getFlags() & FlagThunk; } DIScope *getScope() const { return cast_or_null(getRawScope()); } StringRef getName() const { return getStringOperand(2); } StringRef getLinkageName() const { return getStringOperand(3); } /// Only used by clients of CloneFunction, and only right after the cloning. void replaceLinkageName(MDString *LN) { replaceOperandWith(3, LN); } DISubroutineType *getType() const { return cast_or_null(getRawType()); } DIType *getContainingType() const { return cast_or_null(getRawContainingType()); } void replaceType(DISubroutineType *Ty) { assert(isDistinct() && "Only distinct nodes can mutate"); replaceOperandWith(4, Ty); } DICompileUnit *getUnit() const { return cast_or_null(getRawUnit()); } void replaceUnit(DICompileUnit *CU) { replaceOperandWith(5, CU); } DITemplateParameterArray getTemplateParams() const { return cast_or_null(getRawTemplateParams()); } DISubprogram *getDeclaration() const { return cast_or_null(getRawDeclaration()); } void replaceDeclaration(DISubprogram *Decl) { replaceOperandWith(6, Decl); } DINodeArray getRetainedNodes() const { return cast_or_null(getRawRetainedNodes()); } DITypeArray getThrownTypes() const { return cast_or_null(getRawThrownTypes()); } DINodeArray getAnnotations() const { return cast_or_null(getRawAnnotations()); } StringRef getTargetFuncName() const { return (getRawTargetFuncName()) ? getStringOperand(12) : StringRef(); } Metadata *getRawScope() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } MDString *getRawLinkageName() const { return getOperandAs(3); } Metadata *getRawType() const { return getOperand(4); } Metadata *getRawUnit() const { return getOperand(5); } Metadata *getRawDeclaration() const { return getOperand(6); } Metadata *getRawRetainedNodes() const { return getOperand(7); } Metadata *getRawContainingType() const { return getNumOperands() > 8 ? getOperandAs(8) : nullptr; } Metadata *getRawTemplateParams() const { return getNumOperands() > 9 ? getOperandAs(9) : nullptr; } Metadata *getRawThrownTypes() const { return getNumOperands() > 10 ? getOperandAs(10) : nullptr; } Metadata *getRawAnnotations() const { return getNumOperands() > 11 ? getOperandAs(11) : nullptr; } MDString *getRawTargetFuncName() const { return getNumOperands() > 12 ? getOperandAs(12) : nullptr; } void replaceRawLinkageName(MDString *LinkageName) { replaceOperandWith(3, LinkageName); } void replaceRetainedNodes(DINodeArray N) { replaceOperandWith(7, N.get()); } /// Check if this subprogram describes the given function. /// /// FIXME: Should this be looking through bitcasts? bool describes(const Function *F) const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DISubprogramKind; } }; /// Debug location. /// /// A debug location in source code, used for debug info and otherwise. /// /// Uses the SubclassData1, SubclassData16 and SubclassData32 /// Metadata slots. class DILocation : public MDNode { friend class LLVMContextImpl; friend class MDNode; DILocation(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Column, ArrayRef MDs, bool ImplicitCode); ~DILocation() { dropAllReferences(); } static DILocation *getImpl(LLVMContext &Context, unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt, bool ImplicitCode, StorageType Storage, bool ShouldCreate = true); static DILocation *getImpl(LLVMContext &Context, unsigned Line, unsigned Column, DILocalScope *Scope, DILocation *InlinedAt, bool ImplicitCode, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Line, Column, static_cast(Scope), static_cast(InlinedAt), ImplicitCode, Storage, ShouldCreate); } TempDILocation cloneImpl() const { // Get the raw scope/inlinedAt since it is possible to invoke this on // a DILocation containing temporary metadata. return getTemporary(getContext(), getLine(), getColumn(), getRawScope(), getRawInlinedAt(), isImplicitCode()); } public: // Disallow replacing operands. void replaceOperandWith(unsigned I, Metadata *New) = delete; DEFINE_MDNODE_GET(DILocation, (unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt = nullptr, bool ImplicitCode = false), (Line, Column, Scope, InlinedAt, ImplicitCode)) DEFINE_MDNODE_GET(DILocation, (unsigned Line, unsigned Column, DILocalScope *Scope, DILocation *InlinedAt = nullptr, bool ImplicitCode = false), (Line, Column, Scope, InlinedAt, ImplicitCode)) /// Return a (temporary) clone of this. TempDILocation clone() const { return cloneImpl(); } unsigned getLine() const { return SubclassData32; } unsigned getColumn() const { return SubclassData16; } DILocalScope *getScope() const { return cast(getRawScope()); } /// Return the linkage name of Subprogram. If the linkage name is empty, /// return scope name (the demangled name). StringRef getSubprogramLinkageName() const { DISubprogram *SP = getScope()->getSubprogram(); if (!SP) return ""; auto Name = SP->getLinkageName(); if (!Name.empty()) return Name; return SP->getName(); } DILocation *getInlinedAt() const { return cast_or_null(getRawInlinedAt()); } /// Check if the location corresponds to an implicit code. /// When the ImplicitCode flag is true, it means that the Instruction /// with this DILocation has been added by the front-end but it hasn't been /// written explicitly by the user (e.g. cleanup stuff in C++ put on a closing /// bracket). It's useful for code coverage to not show a counter on "empty" /// lines. bool isImplicitCode() const { return SubclassData1; } void setImplicitCode(bool ImplicitCode) { SubclassData1 = ImplicitCode; } DIFile *getFile() const { return getScope()->getFile(); } StringRef getFilename() const { return getScope()->getFilename(); } StringRef getDirectory() const { return getScope()->getDirectory(); } std::optional getSource() const { return getScope()->getSource(); } /// Get the scope where this is inlined. /// /// Walk through \a getInlinedAt() and return \a getScope() from the deepest /// location. DILocalScope *getInlinedAtScope() const { if (auto *IA = getInlinedAt()) return IA->getInlinedAtScope(); return getScope(); } /// Get the DWARF discriminator. /// /// DWARF discriminators distinguish identical file locations between /// instructions that are on different basic blocks. /// /// There are 3 components stored in discriminator, from lower bits: /// /// Base discriminator: assigned by AddDiscriminators pass to identify IRs /// that are defined by the same source line, but /// different basic blocks. /// Duplication factor: assigned by optimizations that will scale down /// the execution frequency of the original IR. /// Copy Identifier: assigned by optimizations that clones the IR. /// Each copy of the IR will be assigned an identifier. /// /// Encoding: /// /// The above 3 components are encoded into a 32bit unsigned integer in /// order. If the lowest bit is 1, the current component is empty, and the /// next component will start in the next bit. Otherwise, the current /// component is non-empty, and its content starts in the next bit. The /// value of each components is either 5 bit or 12 bit: if the 7th bit /// is 0, the bit 2~6 (5 bits) are used to represent the component; if the /// 7th bit is 1, the bit 2~6 (5 bits) and 8~14 (7 bits) are combined to /// represent the component. Thus, the number of bits used for a component /// is either 0 (if it and all the next components are empty); 1 - if it is /// empty; 7 - if its value is up to and including 0x1f (lsb and msb are both /// 0); or 14, if its value is up to and including 0x1ff. Note that the last /// component is also capped at 0x1ff, even in the case when both first /// components are 0, and we'd technically have 29 bits available. /// /// For precise control over the data being encoded in the discriminator, /// use encodeDiscriminator/decodeDiscriminator. inline unsigned getDiscriminator() const; // For the regular discriminator, it stands for all empty components if all // the lowest 3 bits are non-zero and all higher 29 bits are unused(zero by // default). Here we fully leverage the higher 29 bits for pseudo probe use. // This is the format: // [2:0] - 0x7 // [31:3] - pseudo probe fields guaranteed to be non-zero as a whole // So if the lower 3 bits is non-zero and the others has at least one // non-zero bit, it guarantees to be a pseudo probe discriminator inline static bool isPseudoProbeDiscriminator(unsigned Discriminator) { return ((Discriminator & 0x7) == 0x7) && (Discriminator & 0xFFFFFFF8); } /// Returns a new DILocation with updated \p Discriminator. inline const DILocation *cloneWithDiscriminator(unsigned Discriminator) const; /// Returns a new DILocation with updated base discriminator \p BD. Only the /// base discriminator is set in the new DILocation, the other encoded values /// are elided. /// If the discriminator cannot be encoded, the function returns std::nullopt. inline std::optional cloneWithBaseDiscriminator(unsigned BD) const; /// Returns the duplication factor stored in the discriminator, or 1 if no /// duplication factor (or 0) is encoded. inline unsigned getDuplicationFactor() const; /// Returns the copy identifier stored in the discriminator. inline unsigned getCopyIdentifier() const; /// Returns the base discriminator stored in the discriminator. inline unsigned getBaseDiscriminator() const; /// Returns a new DILocation with duplication factor \p DF * current /// duplication factor encoded in the discriminator. The current duplication /// factor is as defined by getDuplicationFactor(). /// Returns std::nullopt if encoding failed. inline std::optional cloneByMultiplyingDuplicationFactor(unsigned DF) const; /// When two instructions are combined into a single instruction we also /// need to combine the original locations into a single location. /// When the locations are the same we can use either location. /// When they differ, we need a third location which is distinct from either. /// If they share a common scope, use this scope and compare the line/column /// pair of the locations with the common scope: /// * if both match, keep the line and column; /// * if only the line number matches, keep the line and set the column as 0; /// * otherwise set line and column as 0. /// If they do not share a common scope the location is ambiguous and can't be /// represented in a line entry. In this case, set line and column as 0 and /// use the scope of any location. /// /// \p LocA \p LocB: The locations to be merged. static DILocation *getMergedLocation(DILocation *LocA, DILocation *LocB); /// Try to combine the vector of locations passed as input in a single one. /// This function applies getMergedLocation() repeatedly left-to-right. /// /// \p Locs: The locations to be merged. static DILocation *getMergedLocations(ArrayRef Locs); /// Return the masked discriminator value for an input discrimnator value D /// (i.e. zero out the (B+1)-th and above bits for D (B is 0-base). // Example: an input of (0x1FF, 7) returns 0xFF. static unsigned getMaskedDiscriminator(unsigned D, unsigned B) { return (D & getN1Bits(B)); } /// Return the bits used for base discriminators. static unsigned getBaseDiscriminatorBits() { return getBaseFSBitEnd(); } /// Returns the base discriminator for a given encoded discriminator \p D. static unsigned getBaseDiscriminatorFromDiscriminator(unsigned D, bool IsFSDiscriminator = false) { // Return the probe id instead of zero for a pseudo probe discriminator. // This should help differenciate callsites with same line numbers to // achieve a decent AutoFDO profile under -fpseudo-probe-for-profiling, // where the original callsite dwarf discriminator is overwritten by // callsite probe information. if (isPseudoProbeDiscriminator(D)) return PseudoProbeDwarfDiscriminator::extractProbeIndex(D); if (IsFSDiscriminator) return getMaskedDiscriminator(D, getBaseDiscriminatorBits()); return getUnsignedFromPrefixEncoding(D); } /// Raw encoding of the discriminator. APIs such as cloneWithDuplicationFactor /// have certain special case behavior (e.g. treating empty duplication factor /// as the value '1'). /// This API, in conjunction with cloneWithDiscriminator, may be used to /// encode the raw values provided. /// /// \p BD: base discriminator /// \p DF: duplication factor /// \p CI: copy index /// /// The return is std::nullopt if the values cannot be encoded in 32 bits - /// for example, values for BD or DF larger than 12 bits. Otherwise, the /// return is the encoded value. static std::optional encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI); /// Raw decoder for values in an encoded discriminator D. static void decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, unsigned &CI); /// Returns the duplication factor for a given encoded discriminator \p D, or /// 1 if no value or 0 is encoded. static unsigned getDuplicationFactorFromDiscriminator(unsigned D) { if (EnableFSDiscriminator) return 1; D = getNextComponentInDiscriminator(D); unsigned Ret = getUnsignedFromPrefixEncoding(D); if (Ret == 0) return 1; return Ret; } /// Returns the copy identifier for a given encoded discriminator \p D. static unsigned getCopyIdentifierFromDiscriminator(unsigned D) { return getUnsignedFromPrefixEncoding( getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); } Metadata *getRawScope() const { return getOperand(0); } Metadata *getRawInlinedAt() const { if (getNumOperands() == 2) return getOperand(1); return nullptr; } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILocationKind; } }; class DILexicalBlockBase : public DILocalScope { protected: DILexicalBlockBase(LLVMContext &C, unsigned ID, StorageType Storage, ArrayRef Ops); ~DILexicalBlockBase() = default; public: DILocalScope *getScope() const { return cast(getRawScope()); } Metadata *getRawScope() const { return getOperand(1); } void replaceScope(DIScope *Scope) { assert(!isUniqued()); setOperand(1, Scope); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILexicalBlockKind || MD->getMetadataID() == DILexicalBlockFileKind; } }; /// Debug lexical block. /// /// Uses the SubclassData32 Metadata slot. class DILexicalBlock : public DILexicalBlockBase { friend class LLVMContextImpl; friend class MDNode; uint16_t Column; DILexicalBlock(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Column, ArrayRef Ops) : DILexicalBlockBase(C, DILexicalBlockKind, Storage, Ops), Column(Column) { SubclassData32 = Line; assert(Column < (1u << 16) && "Expected 16-bit column"); } ~DILexicalBlock() = default; static DILexicalBlock *getImpl(LLVMContext &Context, DILocalScope *Scope, DIFile *File, unsigned Line, unsigned Column, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, static_cast(Scope), static_cast(File), Line, Column, Storage, ShouldCreate); } static DILexicalBlock *getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Line, unsigned Column, StorageType Storage, bool ShouldCreate = true); TempDILexicalBlock cloneImpl() const { return getTemporary(getContext(), getScope(), getFile(), getLine(), getColumn()); } public: DEFINE_MDNODE_GET(DILexicalBlock, (DILocalScope * Scope, DIFile *File, unsigned Line, unsigned Column), (Scope, File, Line, Column)) DEFINE_MDNODE_GET(DILexicalBlock, (Metadata * Scope, Metadata *File, unsigned Line, unsigned Column), (Scope, File, Line, Column)) TempDILexicalBlock clone() const { return cloneImpl(); } unsigned getLine() const { return SubclassData32; } unsigned getColumn() const { return Column; } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILexicalBlockKind; } }; class DILexicalBlockFile : public DILexicalBlockBase { friend class LLVMContextImpl; friend class MDNode; DILexicalBlockFile(LLVMContext &C, StorageType Storage, unsigned Discriminator, ArrayRef Ops) : DILexicalBlockBase(C, DILexicalBlockFileKind, Storage, Ops) { SubclassData32 = Discriminator; } ~DILexicalBlockFile() = default; static DILexicalBlockFile *getImpl(LLVMContext &Context, DILocalScope *Scope, DIFile *File, unsigned Discriminator, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, static_cast(Scope), static_cast(File), Discriminator, Storage, ShouldCreate); } static DILexicalBlockFile *getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Discriminator, StorageType Storage, bool ShouldCreate = true); TempDILexicalBlockFile cloneImpl() const { return getTemporary(getContext(), getScope(), getFile(), getDiscriminator()); } public: DEFINE_MDNODE_GET(DILexicalBlockFile, (DILocalScope * Scope, DIFile *File, unsigned Discriminator), (Scope, File, Discriminator)) DEFINE_MDNODE_GET(DILexicalBlockFile, (Metadata * Scope, Metadata *File, unsigned Discriminator), (Scope, File, Discriminator)) TempDILexicalBlockFile clone() const { return cloneImpl(); } unsigned getDiscriminator() const { return SubclassData32; } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILexicalBlockFileKind; } }; unsigned DILocation::getDiscriminator() const { if (auto *F = dyn_cast(getScope())) return F->getDiscriminator(); return 0; } const DILocation * DILocation::cloneWithDiscriminator(unsigned Discriminator) const { DIScope *Scope = getScope(); // Skip all parent DILexicalBlockFile that already have a discriminator // assigned. We do not want to have nested DILexicalBlockFiles that have // mutliple discriminators because only the leaf DILexicalBlockFile's // dominator will be used. for (auto *LBF = dyn_cast(Scope); LBF && LBF->getDiscriminator() != 0; LBF = dyn_cast(Scope)) Scope = LBF->getScope(); DILexicalBlockFile *NewScope = DILexicalBlockFile::get(getContext(), Scope, getFile(), Discriminator); return DILocation::get(getContext(), getLine(), getColumn(), NewScope, getInlinedAt()); } unsigned DILocation::getBaseDiscriminator() const { return getBaseDiscriminatorFromDiscriminator(getDiscriminator(), EnableFSDiscriminator); } unsigned DILocation::getDuplicationFactor() const { return getDuplicationFactorFromDiscriminator(getDiscriminator()); } unsigned DILocation::getCopyIdentifier() const { return getCopyIdentifierFromDiscriminator(getDiscriminator()); } std::optional DILocation::cloneWithBaseDiscriminator(unsigned D) const { unsigned BD, DF, CI; if (EnableFSDiscriminator) { BD = getBaseDiscriminator(); if (D == BD) return this; return cloneWithDiscriminator(D); } decodeDiscriminator(getDiscriminator(), BD, DF, CI); if (D == BD) return this; if (std::optional Encoded = encodeDiscriminator(D, DF, CI)) return cloneWithDiscriminator(*Encoded); return std::nullopt; } std::optional DILocation::cloneByMultiplyingDuplicationFactor(unsigned DF) const { assert(!EnableFSDiscriminator && "FSDiscriminator should not call this."); // Do no interfere with pseudo probes. Pseudo probe doesn't need duplication // factor support as samples collected on cloned probes will be aggregated. // Also pseudo probe at a callsite uses the dwarf discriminator to store // pseudo probe related information, such as the probe id. if (isPseudoProbeDiscriminator(getDiscriminator())) return this; DF *= getDuplicationFactor(); if (DF <= 1) return this; unsigned BD = getBaseDiscriminator(); unsigned CI = getCopyIdentifier(); if (std::optional D = encodeDiscriminator(BD, DF, CI)) return cloneWithDiscriminator(*D); return std::nullopt; } /// Debug lexical block. /// /// Uses the SubclassData1 Metadata slot. class DINamespace : public DIScope { friend class LLVMContextImpl; friend class MDNode; DINamespace(LLVMContext &Context, StorageType Storage, bool ExportSymbols, ArrayRef Ops); ~DINamespace() = default; static DINamespace *getImpl(LLVMContext &Context, DIScope *Scope, StringRef Name, bool ExportSymbols, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, getCanonicalMDString(Context, Name), ExportSymbols, Storage, ShouldCreate); } static DINamespace *getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, bool ExportSymbols, StorageType Storage, bool ShouldCreate = true); TempDINamespace cloneImpl() const { return getTemporary(getContext(), getScope(), getName(), getExportSymbols()); } public: DEFINE_MDNODE_GET(DINamespace, (DIScope * Scope, StringRef Name, bool ExportSymbols), (Scope, Name, ExportSymbols)) DEFINE_MDNODE_GET(DINamespace, (Metadata * Scope, MDString *Name, bool ExportSymbols), (Scope, Name, ExportSymbols)) TempDINamespace clone() const { return cloneImpl(); } bool getExportSymbols() const { return SubclassData1; } DIScope *getScope() const { return cast_or_null(getRawScope()); } StringRef getName() const { return getStringOperand(2); } Metadata *getRawScope() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DINamespaceKind; } }; /// Represents a module in the programming language, for example, a Clang /// module, or a Fortran module. /// /// Uses the SubclassData1 and SubclassData32 Metadata slots. class DIModule : public DIScope { friend class LLVMContextImpl; friend class MDNode; DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, bool IsDecl, ArrayRef Ops); ~DIModule() = default; static DIModule *getImpl(LLVMContext &Context, DIFile *File, DIScope *Scope, StringRef Name, StringRef ConfigurationMacros, StringRef IncludePath, StringRef APINotesFile, unsigned LineNo, bool IsDecl, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, File, Scope, getCanonicalMDString(Context, Name), getCanonicalMDString(Context, ConfigurationMacros), getCanonicalMDString(Context, IncludePath), getCanonicalMDString(Context, APINotesFile), LineNo, IsDecl, Storage, ShouldCreate); } static DIModule *getImpl(LLVMContext &Context, Metadata *File, Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *APINotesFile, unsigned LineNo, bool IsDecl, StorageType Storage, bool ShouldCreate = true); TempDIModule cloneImpl() const { return getTemporary(getContext(), getFile(), getScope(), getName(), getConfigurationMacros(), getIncludePath(), getAPINotesFile(), getLineNo(), getIsDecl()); } public: DEFINE_MDNODE_GET(DIModule, (DIFile * File, DIScope *Scope, StringRef Name, StringRef ConfigurationMacros, StringRef IncludePath, StringRef APINotesFile, unsigned LineNo, bool IsDecl = false), (File, Scope, Name, ConfigurationMacros, IncludePath, APINotesFile, LineNo, IsDecl)) DEFINE_MDNODE_GET(DIModule, (Metadata * File, Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *APINotesFile, unsigned LineNo, bool IsDecl = false), (File, Scope, Name, ConfigurationMacros, IncludePath, APINotesFile, LineNo, IsDecl)) TempDIModule clone() const { return cloneImpl(); } DIScope *getScope() const { return cast_or_null(getRawScope()); } StringRef getName() const { return getStringOperand(2); } StringRef getConfigurationMacros() const { return getStringOperand(3); } StringRef getIncludePath() const { return getStringOperand(4); } StringRef getAPINotesFile() const { return getStringOperand(5); } unsigned getLineNo() const { return SubclassData32; } bool getIsDecl() const { return SubclassData1; } Metadata *getRawScope() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } MDString *getRawConfigurationMacros() const { return getOperandAs(3); } MDString *getRawIncludePath() const { return getOperandAs(4); } MDString *getRawAPINotesFile() const { return getOperandAs(5); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIModuleKind; } }; /// Base class for template parameters. /// /// Uses the SubclassData1 Metadata slot. class DITemplateParameter : public DINode { protected: DITemplateParameter(LLVMContext &Context, unsigned ID, StorageType Storage, unsigned Tag, bool IsDefault, ArrayRef Ops) : DINode(Context, ID, Storage, Tag, Ops) { SubclassData1 = IsDefault; } ~DITemplateParameter() = default; public: StringRef getName() const { return getStringOperand(0); } DIType *getType() const { return cast_or_null(getRawType()); } MDString *getRawName() const { return getOperandAs(0); } Metadata *getRawType() const { return getOperand(1); } bool isDefault() const { return SubclassData1; } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DITemplateTypeParameterKind || MD->getMetadataID() == DITemplateValueParameterKind; } }; class DITemplateTypeParameter : public DITemplateParameter { friend class LLVMContextImpl; friend class MDNode; DITemplateTypeParameter(LLVMContext &Context, StorageType Storage, bool IsDefault, ArrayRef Ops); ~DITemplateTypeParameter() = default; static DITemplateTypeParameter *getImpl(LLVMContext &Context, StringRef Name, DIType *Type, bool IsDefault, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, getCanonicalMDString(Context, Name), Type, IsDefault, Storage, ShouldCreate); } static DITemplateTypeParameter *getImpl(LLVMContext &Context, MDString *Name, Metadata *Type, bool IsDefault, StorageType Storage, bool ShouldCreate = true); TempDITemplateTypeParameter cloneImpl() const { return getTemporary(getContext(), getName(), getType(), isDefault()); } public: DEFINE_MDNODE_GET(DITemplateTypeParameter, (StringRef Name, DIType *Type, bool IsDefault), (Name, Type, IsDefault)) DEFINE_MDNODE_GET(DITemplateTypeParameter, (MDString * Name, Metadata *Type, bool IsDefault), (Name, Type, IsDefault)) TempDITemplateTypeParameter clone() const { return cloneImpl(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DITemplateTypeParameterKind; } }; class DITemplateValueParameter : public DITemplateParameter { friend class LLVMContextImpl; friend class MDNode; DITemplateValueParameter(LLVMContext &Context, StorageType Storage, unsigned Tag, bool IsDefault, ArrayRef Ops) : DITemplateParameter(Context, DITemplateValueParameterKind, Storage, Tag, IsDefault, Ops) {} ~DITemplateValueParameter() = default; static DITemplateValueParameter *getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, DIType *Type, bool IsDefault, Metadata *Value, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, getCanonicalMDString(Context, Name), Type, IsDefault, Value, Storage, ShouldCreate); } static DITemplateValueParameter *getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, bool IsDefault, Metadata *Value, StorageType Storage, bool ShouldCreate = true); TempDITemplateValueParameter cloneImpl() const { return getTemporary(getContext(), getTag(), getName(), getType(), isDefault(), getValue()); } public: DEFINE_MDNODE_GET(DITemplateValueParameter, (unsigned Tag, StringRef Name, DIType *Type, bool IsDefault, Metadata *Value), (Tag, Name, Type, IsDefault, Value)) DEFINE_MDNODE_GET(DITemplateValueParameter, (unsigned Tag, MDString *Name, Metadata *Type, bool IsDefault, Metadata *Value), (Tag, Name, Type, IsDefault, Value)) TempDITemplateValueParameter clone() const { return cloneImpl(); } Metadata *getValue() const { return getOperand(2); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DITemplateValueParameterKind; } }; /// Base class for variables. /// /// Uses the SubclassData32 Metadata slot. class DIVariable : public DINode { unsigned Line; protected: DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, signed Line, ArrayRef Ops, uint32_t AlignInBits = 0); ~DIVariable() = default; public: unsigned getLine() const { return Line; } DIScope *getScope() const { return cast_or_null(getRawScope()); } StringRef getName() const { return getStringOperand(1); } DIFile *getFile() const { return cast_or_null(getRawFile()); } DIType *getType() const { return cast_or_null(getRawType()); } uint32_t getAlignInBits() const { return SubclassData32; } uint32_t getAlignInBytes() const { return getAlignInBits() / CHAR_BIT; } /// Determines the size of the variable's type. std::optional getSizeInBits() const; /// Return the signedness of this variable's type, or std::nullopt if this /// type is neither signed nor unsigned. std::optional getSignedness() const { if (auto *BT = dyn_cast(getType())) return BT->getSignedness(); return std::nullopt; } StringRef getFilename() const { if (auto *F = getFile()) return F->getFilename(); return ""; } StringRef getDirectory() const { if (auto *F = getFile()) return F->getDirectory(); return ""; } std::optional getSource() const { if (auto *F = getFile()) return F->getSource(); return std::nullopt; } Metadata *getRawScope() const { return getOperand(0); } MDString *getRawName() const { return getOperandAs(1); } Metadata *getRawFile() const { return getOperand(2); } Metadata *getRawType() const { return getOperand(3); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILocalVariableKind || MD->getMetadataID() == DIGlobalVariableKind; } }; /// DWARF expression. /// /// This is (almost) a DWARF expression that modifies the location of a /// variable, or the location of a single piece of a variable, or (when using /// DW_OP_stack_value) is the constant variable value. /// /// TODO: Co-allocate the expression elements. /// TODO: Separate from MDNode, or otherwise drop Distinct and Temporary /// storage types. class DIExpression : public MDNode { friend class LLVMContextImpl; friend class MDNode; std::vector Elements; DIExpression(LLVMContext &C, StorageType Storage, ArrayRef Elements) : MDNode(C, DIExpressionKind, Storage, std::nullopt), Elements(Elements.begin(), Elements.end()) {} ~DIExpression() = default; static DIExpression *getImpl(LLVMContext &Context, ArrayRef Elements, StorageType Storage, bool ShouldCreate = true); TempDIExpression cloneImpl() const { return getTemporary(getContext(), getElements()); } public: DEFINE_MDNODE_GET(DIExpression, (ArrayRef Elements), (Elements)) TempDIExpression clone() const { return cloneImpl(); } ArrayRef getElements() const { return Elements; } unsigned getNumElements() const { return Elements.size(); } uint64_t getElement(unsigned I) const { assert(I < Elements.size() && "Index out of range"); return Elements[I]; } enum SignedOrUnsignedConstant { SignedConstant, UnsignedConstant }; /// Determine whether this represents a constant value, if so // return it's sign information. std::optional isConstant() const; /// Return the number of unique location operands referred to (via /// DW_OP_LLVM_arg) in this expression; this is not necessarily the number of /// instances of DW_OP_LLVM_arg within the expression. /// For example, for the expression: /// (DW_OP_LLVM_arg 0, DW_OP_LLVM_arg 1, DW_OP_plus, /// DW_OP_LLVM_arg 0, DW_OP_mul) /// This function would return 2, as there are two unique location operands /// (0 and 1). uint64_t getNumLocationOperands() const; using element_iterator = ArrayRef::iterator; element_iterator elements_begin() const { return getElements().begin(); } element_iterator elements_end() const { return getElements().end(); } /// A lightweight wrapper around an expression operand. /// /// TODO: Store arguments directly and change \a DIExpression to store a /// range of these. class ExprOperand { const uint64_t *Op = nullptr; public: ExprOperand() = default; explicit ExprOperand(const uint64_t *Op) : Op(Op) {} const uint64_t *get() const { return Op; } /// Get the operand code. uint64_t getOp() const { return *Op; } /// Get an argument to the operand. /// /// Never returns the operand itself. uint64_t getArg(unsigned I) const { return Op[I + 1]; } unsigned getNumArgs() const { return getSize() - 1; } /// Return the size of the operand. /// /// Return the number of elements in the operand (1 + args). unsigned getSize() const; /// Append the elements of this operand to \p V. void appendToVector(SmallVectorImpl &V) const { V.append(get(), get() + getSize()); } }; /// An iterator for expression operands. class expr_op_iterator { ExprOperand Op; public: using iterator_category = std::input_iterator_tag; using value_type = ExprOperand; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &; expr_op_iterator() = default; explicit expr_op_iterator(element_iterator I) : Op(I) {} element_iterator getBase() const { return Op.get(); } const ExprOperand &operator*() const { return Op; } const ExprOperand *operator->() const { return &Op; } expr_op_iterator &operator++() { increment(); return *this; } expr_op_iterator operator++(int) { expr_op_iterator T(*this); increment(); return T; } /// Get the next iterator. /// /// \a std::next() doesn't work because this is technically an /// input_iterator, but it's a perfectly valid operation. This is an /// accessor to provide the same functionality. expr_op_iterator getNext() const { return ++expr_op_iterator(*this); } bool operator==(const expr_op_iterator &X) const { return getBase() == X.getBase(); } bool operator!=(const expr_op_iterator &X) const { return getBase() != X.getBase(); } private: void increment() { Op = ExprOperand(getBase() + Op.getSize()); } }; /// Visit the elements via ExprOperand wrappers. /// /// These range iterators visit elements through \a ExprOperand wrappers. /// This is not guaranteed to be a valid range unless \a isValid() gives \c /// true. /// /// \pre \a isValid() gives \c true. /// @{ expr_op_iterator expr_op_begin() const { return expr_op_iterator(elements_begin()); } expr_op_iterator expr_op_end() const { return expr_op_iterator(elements_end()); } iterator_range expr_ops() const { return {expr_op_begin(), expr_op_end()}; } /// @} bool isValid() const; static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIExpressionKind; } /// Return whether the first element a DW_OP_deref. bool startsWithDeref() const; /// Return whether there is exactly one operator and it is a DW_OP_deref; bool isDeref() const; /// Holds the characteristics of one fragment of a larger variable. struct FragmentInfo { FragmentInfo() = default; FragmentInfo(uint64_t SizeInBits, uint64_t OffsetInBits) : SizeInBits(SizeInBits), OffsetInBits(OffsetInBits) {} uint64_t SizeInBits; uint64_t OffsetInBits; /// Return the index of the first bit of the fragment. uint64_t startInBits() const { return OffsetInBits; } /// Return the index of the bit after the end of the fragment, e.g. for /// fragment offset=16 and size=32 return their sum, 48. uint64_t endInBits() const { return OffsetInBits + SizeInBits; } /// Returns a zero-sized fragment if A and B don't intersect. static DIExpression::FragmentInfo intersect(DIExpression::FragmentInfo A, DIExpression::FragmentInfo B) { uint64_t StartInBits = std::max(A.OffsetInBits, B.OffsetInBits); uint64_t EndInBits = std::min(A.endInBits(), B.endInBits()); if (EndInBits <= StartInBits) return {0, 0}; return DIExpression::FragmentInfo(EndInBits - StartInBits, StartInBits); } }; /// Retrieve the details of this fragment expression. static std::optional getFragmentInfo(expr_op_iterator Start, expr_op_iterator End); /// Retrieve the details of this fragment expression. std::optional getFragmentInfo() const { return getFragmentInfo(expr_op_begin(), expr_op_end()); } /// Return whether this is a piece of an aggregate variable. bool isFragment() const { return getFragmentInfo().has_value(); } /// Return whether this is an implicit location description. bool isImplicit() const; /// Return whether the location is computed on the expression stack, meaning /// it cannot be a simple register location. bool isComplex() const; /// Return whether the evaluated expression makes use of a single location at /// the start of the expression, i.e. if it contains only a single /// DW_OP_LLVM_arg op as its first operand, or if it contains none. bool isSingleLocationExpression() const; /// Returns a reference to the elements contained in this expression, skipping /// past the leading `DW_OP_LLVM_arg, 0` if one is present. /// Similar to `convertToNonVariadicExpression`, but faster and cheaper - it /// does not check whether the expression is a single-location expression, and /// it returns elements rather than creating a new DIExpression. std::optional> getSingleLocationExpressionElements() const; /// Removes all elements from \p Expr that do not apply to an undef debug /// value, which includes every operator that computes the value/location on /// the DWARF stack, including any DW_OP_LLVM_arg elements (making the result /// of this function always a single-location expression) while leaving /// everything that defines what the computed value applies to, i.e. the /// fragment information. static const DIExpression *convertToUndefExpression(const DIExpression *Expr); /// If \p Expr is a non-variadic expression (i.e. one that does not contain /// DW_OP_LLVM_arg), returns \p Expr converted to variadic form by adding a /// leading [DW_OP_LLVM_arg, 0] to the expression; otherwise returns \p Expr. static const DIExpression * convertToVariadicExpression(const DIExpression *Expr); /// If \p Expr is a valid single-location expression, i.e. it refers to only a /// single debug operand at the start of the expression, then return that /// expression in a non-variadic form by removing DW_OP_LLVM_arg from the /// expression if it is present; otherwise returns std::nullopt. /// See also `getSingleLocationExpressionElements` above, which skips /// checking `isSingleLocationExpression` and returns a list of elements /// rather than a DIExpression. static std::optional convertToNonVariadicExpression(const DIExpression *Expr); /// Inserts the elements of \p Expr into \p Ops modified to a canonical form, /// which uses DW_OP_LLVM_arg (i.e. is a variadic expression) and folds the /// implied derefence from the \p IsIndirect flag into the expression. This /// allows us to check equivalence between expressions with differing /// directness or variadicness. static void canonicalizeExpressionOps(SmallVectorImpl &Ops, const DIExpression *Expr, bool IsIndirect); /// Determines whether two debug values should produce equivalent DWARF /// expressions, using their DIExpressions and directness, ignoring the /// differences between otherwise identical expressions in variadic and /// non-variadic form and not considering the debug operands. /// \p FirstExpr is the DIExpression for the first debug value. /// \p FirstIndirect should be true if the first debug value is indirect; in /// IR this should be true for dbg.declare intrinsics and false for /// dbg.values, and in MIR this should be true only for DBG_VALUE instructions /// whose second operand is an immediate value. /// \p SecondExpr and \p SecondIndirect have the same meaning as the prior /// arguments, but apply to the second debug value. static bool isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect); /// Append \p Ops with operations to apply the \p Offset. static void appendOffset(SmallVectorImpl &Ops, int64_t Offset); /// If this is a constant offset, extract it. If there is no expression, /// return true with an offset of zero. bool extractIfOffset(int64_t &Offset) const; /// Returns true iff this DIExpression contains at least one instance of /// `DW_OP_LLVM_arg, n` for all n in [0, N). bool hasAllLocationOps(unsigned N) const; /// Checks if the last 4 elements of the expression are DW_OP_constu DW_OP_swap DW_OP_xderef and extracts the . static const DIExpression *extractAddressClass(const DIExpression *Expr, unsigned &AddrClass); /// Used for DIExpression::prepend. enum PrependOps : uint8_t { ApplyOffset = 0, DerefBefore = 1 << 0, DerefAfter = 1 << 1, StackValue = 1 << 2, EntryValue = 1 << 3 }; /// Prepend \p DIExpr with a deref and offset operation and optionally turn it /// into a stack value or/and an entry value. static DIExpression *prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset = 0); /// Prepend \p DIExpr with the given opcodes and optionally turn it into a /// stack value. static DIExpression *prependOpcodes(const DIExpression *Expr, SmallVectorImpl &Ops, bool StackValue = false, bool EntryValue = false); /// Append the opcodes \p Ops to \p DIExpr. Unlike \ref appendToStack, the /// returned expression is a stack value only if \p DIExpr is a stack value. /// If \p DIExpr describes a fragment, the returned expression will describe /// the same fragment. static DIExpression *append(const DIExpression *Expr, ArrayRef Ops); /// Convert \p DIExpr into a stack value if it isn't one already by appending /// DW_OP_deref if needed, and appending \p Ops to the resulting expression. /// If \p DIExpr describes a fragment, the returned expression will describe /// the same fragment. static DIExpression *appendToStack(const DIExpression *Expr, ArrayRef Ops); /// Create a copy of \p Expr by appending the given list of \p Ops to each /// instance of the operand `DW_OP_LLVM_arg, \p ArgNo`. This is used to /// modify a specific location used by \p Expr, such as when salvaging that /// location. static DIExpression *appendOpsToArg(const DIExpression *Expr, ArrayRef Ops, unsigned ArgNo, bool StackValue = false); /// Create a copy of \p Expr with each instance of /// `DW_OP_LLVM_arg, \p OldArg` replaced with `DW_OP_LLVM_arg, \p NewArg`, /// and each instance of `DW_OP_LLVM_arg, Arg` with `DW_OP_LLVM_arg, Arg - 1` /// for all Arg > \p OldArg. /// This is used when replacing one of the operands of a debug value list /// with another operand in the same list and deleting the old operand. static DIExpression *replaceArg(const DIExpression *Expr, uint64_t OldArg, uint64_t NewArg); /// Create a DIExpression to describe one part of an aggregate variable that /// is fragmented across multiple Values. The DW_OP_LLVM_fragment operation /// will be appended to the elements of \c Expr. If \c Expr already contains /// a \c DW_OP_LLVM_fragment \c OffsetInBits is interpreted as an offset /// into the existing fragment. /// /// \param OffsetInBits Offset of the piece in bits. /// \param SizeInBits Size of the piece in bits. /// \return Creating a fragment expression may fail if \c Expr /// contains arithmetic operations that would be /// truncated. static std::optional createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits); /// Determine the relative position of the fragments passed in. /// Returns -1 if this is entirely before Other, 0 if this and Other overlap, /// 1 if this is entirely after Other. static int fragmentCmp(const FragmentInfo &A, const FragmentInfo &B) { uint64_t l1 = A.OffsetInBits; uint64_t l2 = B.OffsetInBits; uint64_t r1 = l1 + A.SizeInBits; uint64_t r2 = l2 + B.SizeInBits; if (r1 <= l2) return -1; else if (r2 <= l1) return 1; else return 0; } using ExtOps = std::array; /// Returns the ops for a zero- or sign-extension in a DIExpression. static ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed); /// Append a zero- or sign-extension to \p Expr. Converts the expression to a /// stack value if it isn't one already. static DIExpression *appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed); /// Check if fragments overlap between a pair of FragmentInfos. static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B) { return fragmentCmp(A, B) == 0; } /// Determine the relative position of the fragments described by this /// DIExpression and \p Other. Calls static fragmentCmp implementation. int fragmentCmp(const DIExpression *Other) const { auto Fragment1 = *getFragmentInfo(); auto Fragment2 = *Other->getFragmentInfo(); return fragmentCmp(Fragment1, Fragment2); } /// Check if fragments overlap between this DIExpression and \p Other. bool fragmentsOverlap(const DIExpression *Other) const { if (!isFragment() || !Other->isFragment()) return true; return fragmentCmp(Other) == 0; } /// Check if the expression consists of exactly one entry value operand. /// (This is the only configuration of entry values that is supported.) bool isEntryValue() const; /// Try to shorten an expression with an initial constant operand. /// Returns a new expression and constant on success, or the original /// expression and constant on failure. std::pair constantFold(const ConstantInt *CI); }; inline bool operator==(const DIExpression::FragmentInfo &A, const DIExpression::FragmentInfo &B) { return std::tie(A.SizeInBits, A.OffsetInBits) == std::tie(B.SizeInBits, B.OffsetInBits); } inline bool operator<(const DIExpression::FragmentInfo &A, const DIExpression::FragmentInfo &B) { return std::tie(A.SizeInBits, A.OffsetInBits) < std::tie(B.SizeInBits, B.OffsetInBits); } template <> struct DenseMapInfo { using FragInfo = DIExpression::FragmentInfo; static const uint64_t MaxVal = std::numeric_limits::max(); static inline FragInfo getEmptyKey() { return {MaxVal, MaxVal}; } static inline FragInfo getTombstoneKey() { return {MaxVal - 1, MaxVal - 1}; } static unsigned getHashValue(const FragInfo &Frag) { return (Frag.SizeInBits & 0xffff) << 16 | (Frag.OffsetInBits & 0xffff); } static bool isEqual(const FragInfo &A, const FragInfo &B) { return A == B; } }; /// Global variables. /// /// TODO: Remove DisplayName. It's always equal to Name. class DIGlobalVariable : public DIVariable { friend class LLVMContextImpl; friend class MDNode; bool IsLocalToUnit; bool IsDefinition; DIGlobalVariable(LLVMContext &C, StorageType Storage, unsigned Line, bool IsLocalToUnit, bool IsDefinition, uint32_t AlignInBits, ArrayRef Ops) : DIVariable(C, DIGlobalVariableKind, Storage, Line, Ops, AlignInBits), IsLocalToUnit(IsLocalToUnit), IsDefinition(IsDefinition) {} ~DIGlobalVariable() = default; static DIGlobalVariable * getImpl(LLVMContext &Context, DIScope *Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned Line, DIType *Type, bool IsLocalToUnit, bool IsDefinition, DIDerivedType *StaticDataMemberDeclaration, MDTuple *TemplateParams, uint32_t AlignInBits, DINodeArray Annotations, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, getCanonicalMDString(Context, Name), getCanonicalMDString(Context, LinkageName), File, Line, Type, IsLocalToUnit, IsDefinition, StaticDataMemberDeclaration, cast_or_null(TemplateParams), AlignInBits, Annotations.get(), Storage, ShouldCreate); } static DIGlobalVariable * getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams, uint32_t AlignInBits, Metadata *Annotations, StorageType Storage, bool ShouldCreate = true); TempDIGlobalVariable cloneImpl() const { return getTemporary(getContext(), getScope(), getName(), getLinkageName(), getFile(), getLine(), getType(), isLocalToUnit(), isDefinition(), getStaticDataMemberDeclaration(), getTemplateParams(), getAlignInBits(), getAnnotations()); } public: DEFINE_MDNODE_GET( DIGlobalVariable, (DIScope * Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned Line, DIType *Type, bool IsLocalToUnit, bool IsDefinition, DIDerivedType *StaticDataMemberDeclaration, MDTuple *TemplateParams, uint32_t AlignInBits, DINodeArray Annotations), (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)) DEFINE_MDNODE_GET( DIGlobalVariable, (Metadata * Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams, uint32_t AlignInBits, Metadata *Annotations), (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)) TempDIGlobalVariable clone() const { return cloneImpl(); } bool isLocalToUnit() const { return IsLocalToUnit; } bool isDefinition() const { return IsDefinition; } StringRef getDisplayName() const { return getStringOperand(4); } StringRef getLinkageName() const { return getStringOperand(5); } DIDerivedType *getStaticDataMemberDeclaration() const { return cast_or_null(getRawStaticDataMemberDeclaration()); } DINodeArray getAnnotations() const { return cast_or_null(getRawAnnotations()); } MDString *getRawLinkageName() const { return getOperandAs(5); } Metadata *getRawStaticDataMemberDeclaration() const { return getOperand(6); } Metadata *getRawTemplateParams() const { return getOperand(7); } MDTuple *getTemplateParams() const { return getOperandAs(7); } Metadata *getRawAnnotations() const { return getOperand(8); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIGlobalVariableKind; } }; /// Debug common block. /// /// Uses the SubclassData32 Metadata slot. class DICommonBlock : public DIScope { friend class LLVMContextImpl; friend class MDNode; DICommonBlock(LLVMContext &Context, StorageType Storage, unsigned LineNo, ArrayRef Ops); static DICommonBlock *getImpl(LLVMContext &Context, DIScope *Scope, DIGlobalVariable *Decl, StringRef Name, DIFile *File, unsigned LineNo, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, Decl, getCanonicalMDString(Context, Name), File, LineNo, Storage, ShouldCreate); } static DICommonBlock *getImpl(LLVMContext &Context, Metadata *Scope, Metadata *Decl, MDString *Name, Metadata *File, unsigned LineNo, StorageType Storage, bool ShouldCreate = true); TempDICommonBlock cloneImpl() const { return getTemporary(getContext(), getScope(), getDecl(), getName(), getFile(), getLineNo()); } public: DEFINE_MDNODE_GET(DICommonBlock, (DIScope * Scope, DIGlobalVariable *Decl, StringRef Name, DIFile *File, unsigned LineNo), (Scope, Decl, Name, File, LineNo)) DEFINE_MDNODE_GET(DICommonBlock, (Metadata * Scope, Metadata *Decl, MDString *Name, Metadata *File, unsigned LineNo), (Scope, Decl, Name, File, LineNo)) TempDICommonBlock clone() const { return cloneImpl(); } DIScope *getScope() const { return cast_or_null(getRawScope()); } DIGlobalVariable *getDecl() const { return cast_or_null(getRawDecl()); } StringRef getName() const { return getStringOperand(2); } DIFile *getFile() const { return cast_or_null(getRawFile()); } unsigned getLineNo() const { return SubclassData32; } Metadata *getRawScope() const { return getOperand(0); } Metadata *getRawDecl() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } Metadata *getRawFile() const { return getOperand(3); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DICommonBlockKind; } }; /// Local variable. /// /// TODO: Split up flags. class DILocalVariable : public DIVariable { friend class LLVMContextImpl; friend class MDNode; unsigned Arg : 16; DIFlags Flags; DILocalVariable(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, ArrayRef Ops) : DIVariable(C, DILocalVariableKind, Storage, Line, Ops, AlignInBits), Arg(Arg), Flags(Flags) { assert(Arg < (1 << 16) && "DILocalVariable: Arg out of range"); } ~DILocalVariable() = default; static DILocalVariable *getImpl(LLVMContext &Context, DIScope *Scope, StringRef Name, DIFile *File, unsigned Line, DIType *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, DINodeArray Annotations, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, getCanonicalMDString(Context, Name), File, Line, Type, Arg, Flags, AlignInBits, Annotations.get(), Storage, ShouldCreate); } static DILocalVariable *getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, Metadata *Annotations, StorageType Storage, bool ShouldCreate = true); TempDILocalVariable cloneImpl() const { return getTemporary(getContext(), getScope(), getName(), getFile(), getLine(), getType(), getArg(), getFlags(), getAlignInBits(), getAnnotations()); } public: DEFINE_MDNODE_GET(DILocalVariable, (DILocalScope * Scope, StringRef Name, DIFile *File, unsigned Line, DIType *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, DINodeArray Annotations), (Scope, Name, File, Line, Type, Arg, Flags, AlignInBits, Annotations)) DEFINE_MDNODE_GET(DILocalVariable, (Metadata * Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, Metadata *Annotations), (Scope, Name, File, Line, Type, Arg, Flags, AlignInBits, Annotations)) TempDILocalVariable clone() const { return cloneImpl(); } /// Get the local scope for this variable. /// /// Variables must be defined in a local scope. DILocalScope *getScope() const { return cast(DIVariable::getScope()); } bool isParameter() const { return Arg; } unsigned getArg() const { return Arg; } DIFlags getFlags() const { return Flags; } DINodeArray getAnnotations() const { return cast_or_null(getRawAnnotations()); } Metadata *getRawAnnotations() const { return getOperand(4); } bool isArtificial() const { return getFlags() & FlagArtificial; } bool isObjectPointer() const { return getFlags() & FlagObjectPointer; } /// Check that a location is valid for this variable. /// /// Check that \c DL exists, is in the same subprogram, and has the same /// inlined-at location as \c this. (Otherwise, it's not a valid attachment /// to a \a DbgInfoIntrinsic.) bool isValidLocationForIntrinsic(const DILocation *DL) const { return DL && getScope()->getSubprogram() == DL->getScope()->getSubprogram(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILocalVariableKind; } }; /// Label. /// /// Uses the SubclassData32 Metadata slot. class DILabel : public DINode { friend class LLVMContextImpl; friend class MDNode; DILabel(LLVMContext &C, StorageType Storage, unsigned Line, ArrayRef Ops); ~DILabel() = default; static DILabel *getImpl(LLVMContext &Context, DIScope *Scope, StringRef Name, DIFile *File, unsigned Line, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Scope, getCanonicalMDString(Context, Name), File, Line, Storage, ShouldCreate); } static DILabel *getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, StorageType Storage, bool ShouldCreate = true); TempDILabel cloneImpl() const { return getTemporary(getContext(), getScope(), getName(), getFile(), getLine()); } public: DEFINE_MDNODE_GET(DILabel, (DILocalScope * Scope, StringRef Name, DIFile *File, unsigned Line), (Scope, Name, File, Line)) DEFINE_MDNODE_GET(DILabel, (Metadata * Scope, MDString *Name, Metadata *File, unsigned Line), (Scope, Name, File, Line)) TempDILabel clone() const { return cloneImpl(); } /// Get the local scope for this label. /// /// Labels must be defined in a local scope. DILocalScope *getScope() const { return cast_or_null(getRawScope()); } unsigned getLine() const { return SubclassData32; } StringRef getName() const { return getStringOperand(1); } DIFile *getFile() const { return cast_or_null(getRawFile()); } Metadata *getRawScope() const { return getOperand(0); } MDString *getRawName() const { return getOperandAs(1); } Metadata *getRawFile() const { return getOperand(2); } /// Check that a location is valid for this label. /// /// Check that \c DL exists, is in the same subprogram, and has the same /// inlined-at location as \c this. (Otherwise, it's not a valid attachment /// to a \a DbgInfoIntrinsic.) bool isValidLocationForIntrinsic(const DILocation *DL) const { return DL && getScope()->getSubprogram() == DL->getScope()->getSubprogram(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DILabelKind; } }; class DIObjCProperty : public DINode { friend class LLVMContextImpl; friend class MDNode; unsigned Line; unsigned Attributes; DIObjCProperty(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Attributes, ArrayRef Ops); ~DIObjCProperty() = default; static DIObjCProperty * getImpl(LLVMContext &Context, StringRef Name, DIFile *File, unsigned Line, StringRef GetterName, StringRef SetterName, unsigned Attributes, DIType *Type, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, getCanonicalMDString(Context, Name), File, Line, getCanonicalMDString(Context, GetterName), getCanonicalMDString(Context, SetterName), Attributes, Type, Storage, ShouldCreate); } static DIObjCProperty *getImpl(LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type, StorageType Storage, bool ShouldCreate = true); TempDIObjCProperty cloneImpl() const { return getTemporary(getContext(), getName(), getFile(), getLine(), getGetterName(), getSetterName(), getAttributes(), getType()); } public: DEFINE_MDNODE_GET(DIObjCProperty, (StringRef Name, DIFile *File, unsigned Line, StringRef GetterName, StringRef SetterName, unsigned Attributes, DIType *Type), (Name, File, Line, GetterName, SetterName, Attributes, Type)) DEFINE_MDNODE_GET(DIObjCProperty, (MDString * Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type), (Name, File, Line, GetterName, SetterName, Attributes, Type)) TempDIObjCProperty clone() const { return cloneImpl(); } unsigned getLine() const { return Line; } unsigned getAttributes() const { return Attributes; } StringRef getName() const { return getStringOperand(0); } DIFile *getFile() const { return cast_or_null(getRawFile()); } StringRef getGetterName() const { return getStringOperand(2); } StringRef getSetterName() const { return getStringOperand(3); } DIType *getType() const { return cast_or_null(getRawType()); } StringRef getFilename() const { if (auto *F = getFile()) return F->getFilename(); return ""; } StringRef getDirectory() const { if (auto *F = getFile()) return F->getDirectory(); return ""; } MDString *getRawName() const { return getOperandAs(0); } Metadata *getRawFile() const { return getOperand(1); } MDString *getRawGetterName() const { return getOperandAs(2); } MDString *getRawSetterName() const { return getOperandAs(3); } Metadata *getRawType() const { return getOperand(4); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIObjCPropertyKind; } }; /// An imported module (C++ using directive or similar). /// /// Uses the SubclassData32 Metadata slot. class DIImportedEntity : public DINode { friend class LLVMContextImpl; friend class MDNode; DIImportedEntity(LLVMContext &C, StorageType Storage, unsigned Tag, unsigned Line, ArrayRef Ops) : DINode(C, DIImportedEntityKind, Storage, Tag, Ops) { SubclassData32 = Line; } ~DIImportedEntity() = default; static DIImportedEntity *getImpl(LLVMContext &Context, unsigned Tag, DIScope *Scope, DINode *Entity, DIFile *File, unsigned Line, StringRef Name, DINodeArray Elements, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, Tag, Scope, Entity, File, Line, getCanonicalMDString(Context, Name), Elements.get(), Storage, ShouldCreate); } static DIImportedEntity * getImpl(LLVMContext &Context, unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name, Metadata *Elements, StorageType Storage, bool ShouldCreate = true); TempDIImportedEntity cloneImpl() const { return getTemporary(getContext(), getTag(), getScope(), getEntity(), getFile(), getLine(), getName(), getElements()); } public: DEFINE_MDNODE_GET(DIImportedEntity, (unsigned Tag, DIScope *Scope, DINode *Entity, DIFile *File, unsigned Line, StringRef Name = "", DINodeArray Elements = nullptr), (Tag, Scope, Entity, File, Line, Name, Elements)) DEFINE_MDNODE_GET(DIImportedEntity, (unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name, Metadata *Elements = nullptr), (Tag, Scope, Entity, File, Line, Name, Elements)) TempDIImportedEntity clone() const { return cloneImpl(); } unsigned getLine() const { return SubclassData32; } DIScope *getScope() const { return cast_or_null(getRawScope()); } DINode *getEntity() const { return cast_or_null(getRawEntity()); } StringRef getName() const { return getStringOperand(2); } DIFile *getFile() const { return cast_or_null(getRawFile()); } DINodeArray getElements() const { return cast_or_null(getRawElements()); } Metadata *getRawScope() const { return getOperand(0); } Metadata *getRawEntity() const { return getOperand(1); } MDString *getRawName() const { return getOperandAs(2); } Metadata *getRawFile() const { return getOperand(3); } Metadata *getRawElements() const { return getOperand(4); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIImportedEntityKind; } }; /// A pair of DIGlobalVariable and DIExpression. class DIGlobalVariableExpression : public MDNode { friend class LLVMContextImpl; friend class MDNode; DIGlobalVariableExpression(LLVMContext &C, StorageType Storage, ArrayRef Ops) : MDNode(C, DIGlobalVariableExpressionKind, Storage, Ops) {} ~DIGlobalVariableExpression() = default; static DIGlobalVariableExpression * getImpl(LLVMContext &Context, Metadata *Variable, Metadata *Expression, StorageType Storage, bool ShouldCreate = true); TempDIGlobalVariableExpression cloneImpl() const { return getTemporary(getContext(), getVariable(), getExpression()); } public: DEFINE_MDNODE_GET(DIGlobalVariableExpression, (Metadata * Variable, Metadata *Expression), (Variable, Expression)) TempDIGlobalVariableExpression clone() const { return cloneImpl(); } Metadata *getRawVariable() const { return getOperand(0); } DIGlobalVariable *getVariable() const { return cast_or_null(getRawVariable()); } Metadata *getRawExpression() const { return getOperand(1); } DIExpression *getExpression() const { return cast(getRawExpression()); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIGlobalVariableExpressionKind; } }; /// Macro Info DWARF-like metadata node. /// /// A metadata node with a DWARF macro info (i.e., a constant named /// \c DW_MACINFO_*, defined in llvm/BinaryFormat/Dwarf.h). Called \a /// DIMacroNode /// because it's potentially used for non-DWARF output. /// /// Uses the SubclassData16 Metadata slot. class DIMacroNode : public MDNode { friend class LLVMContextImpl; friend class MDNode; protected: DIMacroNode(LLVMContext &C, unsigned ID, StorageType Storage, unsigned MIType, ArrayRef Ops1, ArrayRef Ops2 = std::nullopt) : MDNode(C, ID, Storage, Ops1, Ops2) { assert(MIType < 1u << 16); SubclassData16 = MIType; } ~DIMacroNode() = default; template Ty *getOperandAs(unsigned I) const { return cast_or_null(getOperand(I)); } StringRef getStringOperand(unsigned I) const { if (auto *S = getOperandAs(I)) return S->getString(); return StringRef(); } static MDString *getCanonicalMDString(LLVMContext &Context, StringRef S) { if (S.empty()) return nullptr; return MDString::get(Context, S); } public: unsigned getMacinfoType() const { return SubclassData16; } static bool classof(const Metadata *MD) { switch (MD->getMetadataID()) { default: return false; case DIMacroKind: case DIMacroFileKind: return true; } } }; /// Macro /// /// Uses the SubclassData32 Metadata slot. class DIMacro : public DIMacroNode { friend class LLVMContextImpl; friend class MDNode; DIMacro(LLVMContext &C, StorageType Storage, unsigned MIType, unsigned Line, ArrayRef Ops) : DIMacroNode(C, DIMacroKind, Storage, MIType, Ops) { SubclassData32 = Line; } ~DIMacro() = default; static DIMacro *getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, StringRef Name, StringRef Value, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, MIType, Line, getCanonicalMDString(Context, Name), getCanonicalMDString(Context, Value), Storage, ShouldCreate); } static DIMacro *getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, MDString *Name, MDString *Value, StorageType Storage, bool ShouldCreate = true); TempDIMacro cloneImpl() const { return getTemporary(getContext(), getMacinfoType(), getLine(), getName(), getValue()); } public: DEFINE_MDNODE_GET(DIMacro, (unsigned MIType, unsigned Line, StringRef Name, StringRef Value = ""), (MIType, Line, Name, Value)) DEFINE_MDNODE_GET(DIMacro, (unsigned MIType, unsigned Line, MDString *Name, MDString *Value), (MIType, Line, Name, Value)) TempDIMacro clone() const { return cloneImpl(); } unsigned getLine() const { return SubclassData32; } StringRef getName() const { return getStringOperand(0); } StringRef getValue() const { return getStringOperand(1); } MDString *getRawName() const { return getOperandAs(0); } MDString *getRawValue() const { return getOperandAs(1); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIMacroKind; } }; /// Macro file /// /// Uses the SubclassData32 Metadata slot. class DIMacroFile : public DIMacroNode { friend class LLVMContextImpl; friend class MDNode; DIMacroFile(LLVMContext &C, StorageType Storage, unsigned MIType, unsigned Line, ArrayRef Ops) : DIMacroNode(C, DIMacroFileKind, Storage, MIType, Ops) { SubclassData32 = Line; } ~DIMacroFile() = default; static DIMacroFile *getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, DIFile *File, DIMacroNodeArray Elements, StorageType Storage, bool ShouldCreate = true) { return getImpl(Context, MIType, Line, static_cast(File), Elements.get(), Storage, ShouldCreate); } static DIMacroFile *getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements, StorageType Storage, bool ShouldCreate = true); TempDIMacroFile cloneImpl() const { return getTemporary(getContext(), getMacinfoType(), getLine(), getFile(), getElements()); } public: DEFINE_MDNODE_GET(DIMacroFile, (unsigned MIType, unsigned Line, DIFile *File, DIMacroNodeArray Elements), (MIType, Line, File, Elements)) DEFINE_MDNODE_GET(DIMacroFile, (unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements), (MIType, Line, File, Elements)) TempDIMacroFile clone() const { return cloneImpl(); } void replaceElements(DIMacroNodeArray Elements) { #ifndef NDEBUG for (DIMacroNode *Op : getElements()) assert(is_contained(Elements->operands(), Op) && "Lost a macro node during macro node list replacement"); #endif replaceOperandWith(1, Elements.get()); } unsigned getLine() const { return SubclassData32; } DIFile *getFile() const { return cast_or_null(getRawFile()); } DIMacroNodeArray getElements() const { return cast_or_null(getRawElements()); } Metadata *getRawFile() const { return getOperand(0); } Metadata *getRawElements() const { return getOperand(1); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIMacroFileKind; } }; /// List of ValueAsMetadata, to be used as an argument to a dbg.value /// intrinsic. class DIArgList : public Metadata, ReplaceableMetadataImpl { friend class ReplaceableMetadataImpl; friend class LLVMContextImpl; using iterator = SmallVectorImpl::iterator; SmallVector Args; DIArgList(LLVMContext &Context, ArrayRef Args) : Metadata(DIArgListKind, Uniqued), ReplaceableMetadataImpl(Context), Args(Args.begin(), Args.end()) { track(); } ~DIArgList() { untrack(); } void track(); void untrack(); void dropAllReferences(bool Untrack); public: static DIArgList *get(LLVMContext &Context, ArrayRef Args); ArrayRef getArgs() const { return Args; } iterator args_begin() { return Args.begin(); } iterator args_end() { return Args.end(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == DIArgListKind; } SmallVector getAllDPValueUsers() { return ReplaceableMetadataImpl::getAllDPValueUsers(); } void handleChangedOperand(void *Ref, Metadata *New); }; /// Identifies a unique instance of a variable. /// /// Storage for identifying a potentially inlined instance of a variable, /// or a fragment thereof. This guarantees that exactly one variable instance /// may be identified by this class, even when that variable is a fragment of /// an aggregate variable and/or there is another inlined instance of the same /// source code variable nearby. /// This class does not necessarily uniquely identify that variable: it is /// possible that a DebugVariable with different parameters may point to the /// same variable instance, but not that one DebugVariable points to multiple /// variable instances. class DebugVariable { using FragmentInfo = DIExpression::FragmentInfo; const DILocalVariable *Variable; std::optional Fragment; const DILocation *InlinedAt; /// Fragment that will overlap all other fragments. Used as default when /// caller demands a fragment. static const FragmentInfo DefaultFragment; public: DebugVariable(const DbgVariableIntrinsic *DII); DebugVariable(const DPValue *DPV); DebugVariable(const DILocalVariable *Var, std::optional FragmentInfo, const DILocation *InlinedAt) : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {} DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr, const DILocation *InlinedAt) : Variable(Var), Fragment(DIExpr ? DIExpr->getFragmentInfo() : std::nullopt), InlinedAt(InlinedAt) {} const DILocalVariable *getVariable() const { return Variable; } std::optional getFragment() const { return Fragment; } const DILocation *getInlinedAt() const { return InlinedAt; } FragmentInfo getFragmentOrDefault() const { return Fragment.value_or(DefaultFragment); } static bool isDefaultFragment(const FragmentInfo F) { return F == DefaultFragment; } bool operator==(const DebugVariable &Other) const { return std::tie(Variable, Fragment, InlinedAt) == std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); } bool operator<(const DebugVariable &Other) const { return std::tie(Variable, Fragment, InlinedAt) < std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); } }; template <> struct DenseMapInfo { using FragmentInfo = DIExpression::FragmentInfo; /// Empty key: no key should be generated that has no DILocalVariable. static inline DebugVariable getEmptyKey() { return DebugVariable(nullptr, std::nullopt, nullptr); } /// Difference in tombstone is that the Optional is meaningful. static inline DebugVariable getTombstoneKey() { return DebugVariable(nullptr, {{0, 0}}, nullptr); } static unsigned getHashValue(const DebugVariable &D) { unsigned HV = 0; const std::optional Fragment = D.getFragment(); if (Fragment) HV = DenseMapInfo::getHashValue(*Fragment); return hash_combine(D.getVariable(), HV, D.getInlinedAt()); } static bool isEqual(const DebugVariable &A, const DebugVariable &B) { return A == B; } }; /// Identifies a unique instance of a whole variable (discards/ignores fragment /// information). class DebugVariableAggregate : public DebugVariable { public: DebugVariableAggregate(const DbgVariableIntrinsic *DVI); DebugVariableAggregate(const DebugVariable &V) : DebugVariable(V.getVariable(), std::nullopt, V.getInlinedAt()) {} }; template <> struct DenseMapInfo : public DenseMapInfo {}; } // end namespace llvm #undef DEFINE_MDNODE_GET_UNPACK_IMPL #undef DEFINE_MDNODE_GET_UNPACK #undef DEFINE_MDNODE_GET #endif // LLVM_IR_DEBUGINFOMETADATA_H