//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "function returning x taking (y,z) as parameters", etc... // // The implementations of these classes live in the Type.cpp file. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DERIVEDTYPES_H #define LLVM_IR_DERIVEDTYPES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Type.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/TypeSize.h" #include #include namespace llvm { class Value; class APInt; class LLVMContext; /// Class to represent integer types. Note that this class is also used to /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and /// Int64Ty. /// Integer representation type class IntegerType : public Type { friend class LLVMContextImpl; protected: explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ setSubclassData(NumBits); } public: /// This enum is just used to hold constants we need for IntegerType. enum { MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified MAX_INT_BITS = (1<<23) ///< Maximum number of bits that can be specified ///< Note that bit width is stored in the Type classes SubclassData field ///< which has 24 bits. SelectionDAG type legalization can require a ///< power of 2 IntegerType, so limit to the largest representable power ///< of 2, 8388608. }; /// This static method is the primary way of constructing an IntegerType. /// If an IntegerType with the same NumBits value was previously instantiated, /// that instance will be returned. Otherwise a new one will be created. Only /// one instance with a given NumBits value is ever created. /// Get or create an IntegerType instance. static IntegerType *get(LLVMContext &C, unsigned NumBits); /// Returns type twice as wide the input type. IntegerType *getExtendedType() const { return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits()); } /// Get the number of bits in this IntegerType unsigned getBitWidth() const { return getSubclassData(); } /// Return a bitmask with ones set for all of the bits that can be set by an /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. uint64_t getBitMask() const { return ~uint64_t(0UL) >> (64-getBitWidth()); } /// Return a uint64_t with just the most significant bit set (the sign bit, if /// the value is treated as a signed number). uint64_t getSignBit() const { return 1ULL << (getBitWidth()-1); } /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. /// @returns a bit mask with ones set for all the bits of this type. /// Get a bit mask for this type. APInt getMask() const; /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == IntegerTyID; } }; unsigned Type::getIntegerBitWidth() const { return cast(this)->getBitWidth(); } /// Class to represent function types /// class FunctionType : public Type { FunctionType(Type *Result, ArrayRef Params, bool IsVarArgs); public: FunctionType(const FunctionType &) = delete; FunctionType &operator=(const FunctionType &) = delete; /// This static method is the primary way of constructing a FunctionType. static FunctionType *get(Type *Result, ArrayRef Params, bool isVarArg); /// Create a FunctionType taking no parameters. static FunctionType *get(Type *Result, bool isVarArg); /// Return true if the specified type is valid as a return type. static bool isValidReturnType(Type *RetTy); /// Return true if the specified type is valid as an argument type. static bool isValidArgumentType(Type *ArgTy); bool isVarArg() const { return getSubclassData()!=0; } Type *getReturnType() const { return ContainedTys[0]; } using param_iterator = Type::subtype_iterator; param_iterator param_begin() const { return ContainedTys + 1; } param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } ArrayRef params() const { return ArrayRef(param_begin(), param_end()); } /// Parameter type accessors. Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } /// Return the number of fixed parameters this function type requires. /// This does not consider varargs. unsigned getNumParams() const { return NumContainedTys - 1; } /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == FunctionTyID; } }; static_assert(alignof(FunctionType) >= alignof(Type *), "Alignment sufficient for objects appended to FunctionType"); bool Type::isFunctionVarArg() const { return cast(this)->isVarArg(); } Type *Type::getFunctionParamType(unsigned i) const { return cast(this)->getParamType(i); } unsigned Type::getFunctionNumParams() const { return cast(this)->getNumParams(); } /// A handy container for a FunctionType+Callee-pointer pair, which can be /// passed around as a single entity. This assists in replacing the use of /// PointerType::getElementType() to access the function's type, since that's /// slated for removal as part of the [opaque pointer types] project. class FunctionCallee { public: // Allow implicit conversion from types which have a getFunctionType member // (e.g. Function and InlineAsm). template FunctionCallee(T *Fn) : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {} FunctionCallee(FunctionType *FnTy, Value *Callee) : FnTy(FnTy), Callee(Callee) { assert((FnTy == nullptr) == (Callee == nullptr)); } FunctionCallee(std::nullptr_t) {} FunctionCallee() = default; FunctionType *getFunctionType() { return FnTy; } Value *getCallee() { return Callee; } explicit operator bool() { return Callee; } private: FunctionType *FnTy = nullptr; Value *Callee = nullptr; }; /// Class to represent struct types. There are two different kinds of struct /// types: Literal structs and Identified structs. /// /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must /// always have a body when created. You can get one of these by using one of /// the StructType::get() forms. /// /// Identified structs (e.g. %foo or %42) may optionally have a name and are not /// uniqued. The names for identified structs are managed at the LLVMContext /// level, so there can only be a single identified struct with a given name in /// a particular LLVMContext. Identified structs may also optionally be opaque /// (have no body specified). You get one of these by using one of the /// StructType::create() forms. /// /// Independent of what kind of struct you have, the body of a struct type are /// laid out in memory consecutively with the elements directly one after the /// other (if the struct is packed) or (if not packed) with padding between the /// elements as defined by DataLayout (which is required to match what the code /// generator for a target expects). /// class StructType : public Type { StructType(LLVMContext &C) : Type(C, StructTyID) {} enum { /// This is the contents of the SubClassData field. SCDB_HasBody = 1, SCDB_Packed = 2, SCDB_IsLiteral = 4, SCDB_IsSized = 8, SCDB_ContainsScalableVector = 16, SCDB_NotContainsScalableVector = 32 }; /// For a named struct that actually has a name, this is a pointer to the /// symbol table entry (maintained by LLVMContext) for the struct. /// This is null if the type is an literal struct or if it is a identified /// type that has an empty name. void *SymbolTableEntry = nullptr; public: StructType(const StructType &) = delete; StructType &operator=(const StructType &) = delete; /// This creates an identified struct. static StructType *create(LLVMContext &Context, StringRef Name); static StructType *create(LLVMContext &Context); static StructType *create(ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(ArrayRef Elements); static StructType *create(LLVMContext &Context, ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(LLVMContext &Context, ArrayRef Elements); template static std::enable_if_t::value, StructType *> create(StringRef Name, Type *elt1, Tys *... elts) { assert(elt1 && "Cannot create a struct type with no elements with this"); return create(ArrayRef({elt1, elts...}), Name); } /// This static method is the primary way to create a literal StructType. static StructType *get(LLVMContext &Context, ArrayRef Elements, bool isPacked = false); /// Create an empty structure type. static StructType *get(LLVMContext &Context, bool isPacked = false); /// This static method is a convenience method for creating structure types by /// specifying the elements as arguments. Note that this method always returns /// a non-packed struct, and requires at least one element type. template static std::enable_if_t::value, StructType *> get(Type *elt1, Tys *... elts) { assert(elt1 && "Cannot create a struct type with no elements with this"); LLVMContext &Ctx = elt1->getContext(); return StructType::get(Ctx, ArrayRef({elt1, elts...})); } /// Return the type with the specified name, or null if there is none by that /// name. static StructType *getTypeByName(LLVMContext &C, StringRef Name); bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } /// Return true if this type is uniqued by structural equivalence, false if it /// is a struct definition. bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } /// Return true if this is a type with an identity that has no body specified /// yet. These prints as 'opaque' in .ll files. bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } /// isSized - Return true if this is a sized type. bool isSized(SmallPtrSetImpl *Visited = nullptr) const; /// Returns true if this struct contains a scalable vector. bool containsScalableVectorType(SmallPtrSetImpl *Visited = nullptr) const; /// Returns true if this struct contains homogeneous scalable vector types. /// Note that the definition of homogeneous scalable vector type is not /// recursive here. That means the following structure will return false /// when calling this function. /// {{, }, /// {, }} bool containsHomogeneousScalableVectorTypes() const; /// Return true if this is a named struct that has a non-empty name. bool hasName() const { return SymbolTableEntry != nullptr; } /// Return the name for this struct type if it has an identity. /// This may return an empty string for an unnamed struct type. Do not call /// this on an literal type. StringRef getName() const; /// Change the name of this type to the specified name, or to a name with a /// suffix if there is a collision. Do not call this on an literal type. void setName(StringRef Name); /// Specify a body for an opaque identified type. void setBody(ArrayRef Elements, bool isPacked = false); template std::enable_if_t::value, void> setBody(Type *elt1, Tys *... elts) { assert(elt1 && "Cannot create a struct type with no elements with this"); setBody(ArrayRef({elt1, elts...})); } /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); // Iterator access to the elements. using element_iterator = Type::subtype_iterator; element_iterator element_begin() const { return ContainedTys; } element_iterator element_end() const { return &ContainedTys[NumContainedTys];} ArrayRef elements() const { return ArrayRef(element_begin(), element_end()); } /// Return true if this is layout identical to the specified struct. bool isLayoutIdentical(StructType *Other) const; /// Random access to the elements unsigned getNumElements() const { return NumContainedTys; } Type *getElementType(unsigned N) const { assert(N < NumContainedTys && "Element number out of range!"); return ContainedTys[N]; } /// Given an index value into the type, return the type of the element. Type *getTypeAtIndex(const Value *V) const; Type *getTypeAtIndex(unsigned N) const { return getElementType(N); } bool indexValid(const Value *V) const; bool indexValid(unsigned Idx) const { return Idx < getNumElements(); } /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == StructTyID; } }; StringRef Type::getStructName() const { return cast(this)->getName(); } unsigned Type::getStructNumElements() const { return cast(this)->getNumElements(); } Type *Type::getStructElementType(unsigned N) const { return cast(this)->getElementType(N); } /// Class to represent array types. class ArrayType : public Type { /// The element type of the array. Type *ContainedType; /// Number of elements in the array. uint64_t NumElements; ArrayType(Type *ElType, uint64_t NumEl); public: ArrayType(const ArrayType &) = delete; ArrayType &operator=(const ArrayType &) = delete; uint64_t getNumElements() const { return NumElements; } Type *getElementType() const { return ContainedType; } /// This static method is the primary way to construct an ArrayType static ArrayType *get(Type *ElementType, uint64_t NumElements); /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == ArrayTyID; } }; uint64_t Type::getArrayNumElements() const { return cast(this)->getNumElements(); } /// Base class of all SIMD vector types class VectorType : public Type { /// A fully specified VectorType is of the form . 'n' is the /// minimum number of elements of type Ty contained within the vector, and /// 'vscale x' indicates that the total element count is an integer multiple /// of 'n', where the multiple is either guaranteed to be one, or is /// statically unknown at compile time. /// /// If the multiple is known to be 1, then the extra term is discarded in /// textual IR: /// /// <4 x i32> - a vector containing 4 i32s /// - a vector containing an unknown integer multiple /// of 4 i32s /// The element type of the vector. Type *ContainedType; protected: /// The element quantity of this vector. The meaning of this value depends /// on the type of vector: /// - For FixedVectorType = , there are /// exactly ElementQuantity elements in this vector. /// - For ScalableVectorType = , /// there are vscale * ElementQuantity elements in this vector, where /// vscale is a runtime-constant integer greater than 0. const unsigned ElementQuantity; VectorType(Type *ElType, unsigned EQ, Type::TypeID TID); public: VectorType(const VectorType &) = delete; VectorType &operator=(const VectorType &) = delete; Type *getElementType() const { return ContainedType; } /// This static method is the primary way to construct an VectorType. static VectorType *get(Type *ElementType, ElementCount EC); static VectorType *get(Type *ElementType, unsigned NumElements, bool Scalable) { return VectorType::get(ElementType, ElementCount::get(NumElements, Scalable)); } static VectorType *get(Type *ElementType, const VectorType *Other) { return VectorType::get(ElementType, Other->getElementCount()); } /// This static method gets a VectorType with the same number of elements as /// the input type, and the element type is an integer type of the same width /// as the input element type. static VectorType *getInteger(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert(EltBits && "Element size must be of a non-zero size"); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); return VectorType::get(EltTy, VTy->getElementCount()); } /// This static method is like getInteger except that the element types are /// twice as wide as the elements in the input type. static VectorType *getExtendedElementVectorType(VectorType *VTy) { assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints."); auto *EltTy = cast(VTy->getElementType()); return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount()); } // This static method gets a VectorType with the same number of elements as // the input type, and the element type is an integer or float type which // is half as wide as the elements in the input type. static VectorType *getTruncatedElementVectorType(VectorType *VTy) { Type *EltTy; if (VTy->getElementType()->isFloatingPointTy()) { switch(VTy->getElementType()->getTypeID()) { case DoubleTyID: EltTy = Type::getFloatTy(VTy->getContext()); break; case FloatTyID: EltTy = Type::getHalfTy(VTy->getContext()); break; default: llvm_unreachable("Cannot create narrower fp vector element type"); } } else { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"); EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); } return VectorType::get(EltTy, VTy->getElementCount()); } // This static method returns a VectorType with a smaller number of elements // of a larger type than the input element type. For example, a <16 x i8> // subdivided twice would return <4 x i32> static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) { for (int i = 0; i < NumSubdivs; ++i) { VTy = VectorType::getDoubleElementsVectorType(VTy); VTy = VectorType::getTruncatedElementVectorType(VTy); } return VTy; } /// This static method returns a VectorType with half as many elements as the /// input type and the same element type. static VectorType *getHalfElementsVectorType(VectorType *VTy) { auto EltCnt = VTy->getElementCount(); assert(EltCnt.isKnownEven() && "Cannot halve vector with odd number of elements."); return VectorType::get(VTy->getElementType(), EltCnt.divideCoefficientBy(2)); } /// This static method returns a VectorType with twice as many elements as the /// input type and the same element type. static VectorType *getDoubleElementsVectorType(VectorType *VTy) { auto EltCnt = VTy->getElementCount(); assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX && "Too many elements in vector"); return VectorType::get(VTy->getElementType(), EltCnt * 2); } /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Return an ElementCount instance to represent the (possibly scalable) /// number of elements in the vector. inline ElementCount getElementCount() const; /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == FixedVectorTyID || T->getTypeID() == ScalableVectorTyID; } }; /// Class to represent fixed width SIMD vectors class FixedVectorType : public VectorType { protected: FixedVectorType(Type *ElTy, unsigned NumElts) : VectorType(ElTy, NumElts, FixedVectorTyID) {} public: static FixedVectorType *get(Type *ElementType, unsigned NumElts); static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) { return get(ElementType, FVTy->getNumElements()); } static FixedVectorType *getInteger(FixedVectorType *VTy) { return cast(VectorType::getInteger(VTy)); } static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) { return cast(VectorType::getExtendedElementVectorType(VTy)); } static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) { return cast( VectorType::getTruncatedElementVectorType(VTy)); } static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy, int NumSubdivs) { return cast( VectorType::getSubdividedVectorType(VTy, NumSubdivs)); } static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) { return cast(VectorType::getHalfElementsVectorType(VTy)); } static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) { return cast(VectorType::getDoubleElementsVectorType(VTy)); } static bool classof(const Type *T) { return T->getTypeID() == FixedVectorTyID; } unsigned getNumElements() const { return ElementQuantity; } }; /// Class to represent scalable SIMD vectors class ScalableVectorType : public VectorType { protected: ScalableVectorType(Type *ElTy, unsigned MinNumElts) : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {} public: static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts); static ScalableVectorType *get(Type *ElementType, const ScalableVectorType *SVTy) { return get(ElementType, SVTy->getMinNumElements()); } static ScalableVectorType *getInteger(ScalableVectorType *VTy) { return cast(VectorType::getInteger(VTy)); } static ScalableVectorType * getExtendedElementVectorType(ScalableVectorType *VTy) { return cast( VectorType::getExtendedElementVectorType(VTy)); } static ScalableVectorType * getTruncatedElementVectorType(ScalableVectorType *VTy) { return cast( VectorType::getTruncatedElementVectorType(VTy)); } static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy, int NumSubdivs) { return cast( VectorType::getSubdividedVectorType(VTy, NumSubdivs)); } static ScalableVectorType * getHalfElementsVectorType(ScalableVectorType *VTy) { return cast(VectorType::getHalfElementsVectorType(VTy)); } static ScalableVectorType * getDoubleElementsVectorType(ScalableVectorType *VTy) { return cast( VectorType::getDoubleElementsVectorType(VTy)); } /// Get the minimum number of elements in this vector. The actual number of /// elements in the vector is an integer multiple of this value. uint64_t getMinNumElements() const { return ElementQuantity; } static bool classof(const Type *T) { return T->getTypeID() == ScalableVectorTyID; } }; inline ElementCount VectorType::getElementCount() const { return ElementCount::get(ElementQuantity, isa(this)); } /// Class to represent pointers. class PointerType : public Type { explicit PointerType(LLVMContext &C, unsigned AddrSpace); public: PointerType(const PointerType &) = delete; PointerType &operator=(const PointerType &) = delete; /// This constructs a pointer to an object of the specified type in a numbered /// address space. static PointerType *get(Type *ElementType, unsigned AddressSpace); /// This constructs an opaque pointer to an object in a numbered address /// space. static PointerType *get(LLVMContext &C, unsigned AddressSpace); /// This constructs a pointer to an object of the specified type in the /// default address space (address space zero). static PointerType *getUnqual(Type *ElementType) { return PointerType::get(ElementType, 0); } /// This constructs an opaque pointer to an object in the /// default address space (address space zero). static PointerType *getUnqual(LLVMContext &C) { return PointerType::get(C, 0); } /// This constructs a pointer type with the same pointee type as input /// PointerType (or opaque pointer if the input PointerType is opaque) and the /// given address space. This is only useful during the opaque pointer /// transition. /// TODO: remove after opaque pointer transition is complete. [[deprecated("Use PointerType::get() with LLVMContext argument instead")]] static PointerType *getWithSamePointeeType(PointerType *PT, unsigned AddressSpace) { return get(PT->getContext(), AddressSpace); } [[deprecated("Always returns true")]] bool isOpaque() const { return true; } /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Return true if we can load or store from a pointer to this type. static bool isLoadableOrStorableType(Type *ElemTy); /// Return the address space of the Pointer type. inline unsigned getAddressSpace() const { return getSubclassData(); } /// Return true if either this is an opaque pointer type or if this pointee /// type matches Ty. Primarily used for checking if an instruction's pointer /// operands are valid types. Will be useless after non-opaque pointers are /// removed. [[deprecated("Always returns true")]] bool isOpaqueOrPointeeTypeMatches(Type *) { return true; } /// Return true if both pointer types have the same element type. Two opaque /// pointers are considered to have the same element type, while an opaque /// and a non-opaque pointer have different element types. /// TODO: Remove after opaque pointer transition is complete. [[deprecated("Always returns true")]] bool hasSameElementTypeAs(PointerType *Other) { return true; } /// Implement support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == PointerTyID; } }; Type *Type::getExtendedType() const { assert( isIntOrIntVectorTy() && "Original type expected to be a vector of integers or a scalar integer."); if (auto *VTy = dyn_cast(this)) return VectorType::getExtendedElementVectorType( const_cast(VTy)); return cast(this)->getExtendedType(); } Type *Type::getWithNewType(Type *EltTy) const { if (auto *VTy = dyn_cast(this)) return VectorType::get(EltTy, VTy->getElementCount()); return EltTy; } Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const { assert( isIntOrIntVectorTy() && "Original type expected to be a vector of integers or a scalar integer."); return getWithNewType(getIntNTy(getContext(), NewBitWidth)); } unsigned Type::getPointerAddressSpace() const { return cast(getScalarType())->getAddressSpace(); } /// Class to represent target extensions types, which are generally /// unintrospectable from target-independent optimizations. /// /// Target extension types have a string name, and optionally have type and/or /// integer parameters. The exact meaning of any parameters is dependent on the /// target. class TargetExtType : public Type { TargetExtType(LLVMContext &C, StringRef Name, ArrayRef Types, ArrayRef Ints); // These strings are ultimately owned by the context. StringRef Name; unsigned *IntParams; public: TargetExtType(const TargetExtType &) = delete; TargetExtType &operator=(const TargetExtType &) = delete; /// Return a target extension type having the specified name and optional /// type and integer parameters. static TargetExtType *get(LLVMContext &Context, StringRef Name, ArrayRef Types = std::nullopt, ArrayRef Ints = std::nullopt); /// Return the name for this target extension type. Two distinct target /// extension types may have the same name if their type or integer parameters /// differ. StringRef getName() const { return Name; } /// Return the type parameters for this particular target extension type. If /// there are no parameters, an empty array is returned. ArrayRef type_params() const { return ArrayRef(type_param_begin(), type_param_end()); } using type_param_iterator = Type::subtype_iterator; type_param_iterator type_param_begin() const { return ContainedTys; } type_param_iterator type_param_end() const { return &ContainedTys[NumContainedTys]; } Type *getTypeParameter(unsigned i) const { return getContainedType(i); } unsigned getNumTypeParameters() const { return getNumContainedTypes(); } /// Return the integer parameters for this particular target extension type. /// If there are no parameters, an empty array is returned. ArrayRef int_params() const { return ArrayRef(IntParams, getNumIntParameters()); } unsigned getIntParameter(unsigned i) const { return IntParams[i]; } unsigned getNumIntParameters() const { return getSubclassData(); } enum Property { /// zeroinitializer is valid for this target extension type. HasZeroInit = 1U << 0, /// This type may be used as the value type of a global variable. CanBeGlobal = 1U << 1, }; /// Returns true if the target extension type contains the given property. bool hasProperty(Property Prop) const; /// Returns an underlying layout type for the target extension type. This /// type can be used to query size and alignment information, if it is /// appropriate (although note that the layout type may also be void). It is /// not legal to bitcast between this type and the layout type, however. Type *getLayoutType() const; /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; } }; StringRef Type::getTargetExtName() const { return cast(this)->getName(); } } // end namespace llvm #endif // LLVM_IR_DERIVEDTYPES_H