//===-- llvm/IntrinsicInst.h - Intrinsic Instruction Wrappers ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines classes that make it really easy to deal with intrinsic // functions with the isa/dyncast family of functions. In particular, this // allows you to do things like: // // if (MemCpyInst *MCI = dyn_cast(Inst)) // ... MCI->getDest() ... MCI->getSource() ... // // All intrinsic function calls are instances of the call instruction, so these // are all subclasses of the CallInst class. Note that none of these classes // has state or virtual methods, which is an important part of this gross/neat // hack working. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INTRINSICINST_H #define LLVM_IR_INTRINSICINST_H #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include #include #include namespace llvm { class Metadata; /// A wrapper class for inspecting calls to intrinsic functions. /// This allows the standard isa/dyncast/cast functionality to work with calls /// to intrinsic functions. class IntrinsicInst : public CallInst { public: IntrinsicInst() = delete; IntrinsicInst(const IntrinsicInst &) = delete; IntrinsicInst &operator=(const IntrinsicInst &) = delete; /// Return the intrinsic ID of this intrinsic. Intrinsic::ID getIntrinsicID() const { return getCalledFunction()->getIntrinsicID(); } bool isAssociative() const { switch (getIntrinsicID()) { case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: return true; default: return false; } } /// Return true if swapping the first two arguments to the intrinsic produces /// the same result. bool isCommutative() const { switch (getIntrinsicID()) { case Intrinsic::maxnum: case Intrinsic::minnum: case Intrinsic::maximum: case Intrinsic::minimum: case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: case Intrinsic::sadd_sat: case Intrinsic::uadd_sat: case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_fix: case Intrinsic::umul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix_sat: case Intrinsic::fma: case Intrinsic::fmuladd: return true; default: return false; } } /// Checks if the intrinsic is an annotation. bool isAssumeLikeIntrinsic() const { switch (getIntrinsicID()) { default: break; case Intrinsic::assume: case Intrinsic::sideeffect: case Intrinsic::pseudoprobe: case Intrinsic::dbg_assign: case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::dbg_label: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::experimental_noalias_scope_decl: case Intrinsic::objectsize: case Intrinsic::ptr_annotation: case Intrinsic::var_annotation: return true; } return false; } /// Check if the intrinsic might lower into a regular function call in the /// course of IR transformations static bool mayLowerToFunctionCall(Intrinsic::ID IID); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const CallInst *I) { if (const Function *CF = I->getCalledFunction()) return CF->isIntrinsic(); return false; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// Check if \p ID corresponds to a lifetime intrinsic. static inline bool isLifetimeIntrinsic(Intrinsic::ID ID) { switch (ID) { case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: return true; default: return false; } } /// This is the common base class for lifetime intrinsics. class LifetimeIntrinsic : public IntrinsicInst { public: /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { return isLifetimeIntrinsic(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// Check if \p ID corresponds to a debug info intrinsic. static inline bool isDbgInfoIntrinsic(Intrinsic::ID ID) { switch (ID) { case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::dbg_label: case Intrinsic::dbg_assign: return true; default: return false; } } /// This is the common base class for debug info intrinsics. class DbgInfoIntrinsic : public IntrinsicInst { public: /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { return isDbgInfoIntrinsic(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; // Iterator for ValueAsMetadata that internally uses direct pointer iteration // over either a ValueAsMetadata* or a ValueAsMetadata**, dereferencing to the // ValueAsMetadata . class location_op_iterator : public iterator_facade_base { PointerUnion I; public: location_op_iterator(ValueAsMetadata *SingleIter) : I(SingleIter) {} location_op_iterator(ValueAsMetadata **MultiIter) : I(MultiIter) {} location_op_iterator(const location_op_iterator &R) : I(R.I) {} location_op_iterator &operator=(const location_op_iterator &R) { I = R.I; return *this; } bool operator==(const location_op_iterator &RHS) const { return I == RHS.I; } const Value *operator*() const { ValueAsMetadata *VAM = isa(I) ? cast(I) : *cast(I); return VAM->getValue(); }; Value *operator*() { ValueAsMetadata *VAM = isa(I) ? cast(I) : *cast(I); return VAM->getValue(); } location_op_iterator &operator++() { if (isa(I)) I = cast(I) + 1; else I = cast(I) + 1; return *this; } location_op_iterator &operator--() { if (isa(I)) I = cast(I) - 1; else I = cast(I) - 1; return *this; } }; /// Lightweight class that wraps the location operand metadata of a debug /// intrinsic. The raw location may be a ValueAsMetadata, an empty MDTuple, /// or a DIArgList. class RawLocationWrapper { Metadata *RawLocation = nullptr; public: RawLocationWrapper() = default; explicit RawLocationWrapper(Metadata *RawLocation) : RawLocation(RawLocation) { // Allow ValueAsMetadata, empty MDTuple, DIArgList. assert(RawLocation && "unexpected null RawLocation"); assert(isa(RawLocation) || isa(RawLocation) || (isa(RawLocation) && !cast(RawLocation)->getNumOperands())); } Metadata *getRawLocation() const { return RawLocation; } /// Get the locations corresponding to the variable referenced by the debug /// info intrinsic. Depending on the intrinsic, this could be the /// variable's value or its address. iterator_range location_ops() const; Value *getVariableLocationOp(unsigned OpIdx) const; unsigned getNumVariableLocationOps() const { if (hasArgList()) return cast(getRawLocation())->getArgs().size(); return 1; } bool hasArgList() const { return isa(getRawLocation()); } bool isKillLocation(const DIExpression *Expression) const { // Check for "kill" sentinel values. // Non-variadic: empty metadata. if (!hasArgList() && isa(getRawLocation())) return true; // Variadic: empty DIArgList with empty expression. if (getNumVariableLocationOps() == 0 && !Expression->isComplex()) return true; // Variadic and non-variadic: Interpret expressions using undef or poison // values as kills. return any_of(location_ops(), [](Value *V) { return isa(V); }); } friend bool operator==(const RawLocationWrapper &A, const RawLocationWrapper &B) { return A.RawLocation == B.RawLocation; } friend bool operator!=(const RawLocationWrapper &A, const RawLocationWrapper &B) { return !(A == B); } friend bool operator>(const RawLocationWrapper &A, const RawLocationWrapper &B) { return A.RawLocation > B.RawLocation; } friend bool operator>=(const RawLocationWrapper &A, const RawLocationWrapper &B) { return A.RawLocation >= B.RawLocation; } friend bool operator<(const RawLocationWrapper &A, const RawLocationWrapper &B) { return A.RawLocation < B.RawLocation; } friend bool operator<=(const RawLocationWrapper &A, const RawLocationWrapper &B) { return A.RawLocation <= B.RawLocation; } }; /// This is the common base class for debug info intrinsics for variables. class DbgVariableIntrinsic : public DbgInfoIntrinsic { public: /// Get the locations corresponding to the variable referenced by the debug /// info intrinsic. Depending on the intrinsic, this could be the /// variable's value or its address. iterator_range location_ops() const; Value *getVariableLocationOp(unsigned OpIdx) const; void replaceVariableLocationOp(Value *OldValue, Value *NewValue); void replaceVariableLocationOp(unsigned OpIdx, Value *NewValue); /// Adding a new location operand will always result in this intrinsic using /// an ArgList, and must always be accompanied by a new expression that uses /// the new operand. void addVariableLocationOps(ArrayRef NewValues, DIExpression *NewExpr); void setVariable(DILocalVariable *NewVar) { setArgOperand(1, MetadataAsValue::get(NewVar->getContext(), NewVar)); } void setExpression(DIExpression *NewExpr) { setArgOperand(2, MetadataAsValue::get(NewExpr->getContext(), NewExpr)); } unsigned getNumVariableLocationOps() const { return getWrappedLocation().getNumVariableLocationOps(); } bool hasArgList() const { return getWrappedLocation().hasArgList(); } /// Does this describe the address of a local variable. True for dbg.declare, /// but not dbg.value, which describes its value, or dbg.assign, which /// describes a combination of the variable's value and address. bool isAddressOfVariable() const { return getIntrinsicID() == Intrinsic::dbg_declare; } void setKillLocation() { // TODO: When/if we remove duplicate values from DIArgLists, we don't need // this set anymore. SmallPtrSet RemovedValues; for (Value *OldValue : location_ops()) { if (!RemovedValues.insert(OldValue).second) continue; Value *Poison = PoisonValue::get(OldValue->getType()); replaceVariableLocationOp(OldValue, Poison); } } bool isKillLocation() const { return getWrappedLocation().isKillLocation(getExpression()); } DILocalVariable *getVariable() const { return cast(getRawVariable()); } DIExpression *getExpression() const { return cast(getRawExpression()); } Metadata *getRawLocation() const { return cast(getArgOperand(0))->getMetadata(); } RawLocationWrapper getWrappedLocation() const { return RawLocationWrapper(getRawLocation()); } Metadata *getRawVariable() const { return cast(getArgOperand(1))->getMetadata(); } Metadata *getRawExpression() const { return cast(getArgOperand(2))->getMetadata(); } /// Use of this should generally be avoided; instead, /// replaceVariableLocationOp and addVariableLocationOps should be used where /// possible to avoid creating invalid state. void setRawLocation(Metadata *Location) { return setArgOperand(0, MetadataAsValue::get(getContext(), Location)); } /// Get the size (in bits) of the variable, or fragment of the variable that /// is described. std::optional getFragmentSizeInBits() const; /// Get the FragmentInfo for the variable. std::optional getFragment() const { return getExpression()->getFragmentInfo(); } /// Get the FragmentInfo for the variable if it exists, otherwise return a /// FragmentInfo that covers the entire variable if the variable size is /// known, otherwise return a zero-sized fragment. DIExpression::FragmentInfo getFragmentOrEntireVariable() const { DIExpression::FragmentInfo VariableSlice(0, 0); // Get the fragment or variable size, or zero. if (auto Sz = getFragmentSizeInBits()) VariableSlice.SizeInBits = *Sz; if (auto Frag = getExpression()->getFragmentInfo()) VariableSlice.OffsetInBits = Frag->OffsetInBits; return VariableSlice; } /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::dbg_assign: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} protected: void setArgOperand(unsigned i, Value *v) { DbgInfoIntrinsic::setArgOperand(i, v); } void setOperand(unsigned i, Value *v) { DbgInfoIntrinsic::setOperand(i, v); } }; /// This represents the llvm.dbg.declare instruction. class DbgDeclareInst : public DbgVariableIntrinsic { public: Value *getAddress() const { assert(getNumVariableLocationOps() == 1 && "dbg.declare must have exactly 1 location operand."); return getVariableLocationOp(0); } /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::dbg_declare; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// This represents the llvm.dbg.value instruction. class DbgValueInst : public DbgVariableIntrinsic { public: // The default argument should only be used in ISel, and the default option // should be removed once ISel support for multiple location ops is complete. Value *getValue(unsigned OpIdx = 0) const { return getVariableLocationOp(OpIdx); } iterator_range getValues() const { return location_ops(); } /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::dbg_value || I->getIntrinsicID() == Intrinsic::dbg_assign; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// This represents the llvm.dbg.assign instruction. class DbgAssignIntrinsic : public DbgValueInst { enum Operands { OpValue, OpVar, OpExpr, OpAssignID, OpAddress, OpAddressExpr, }; public: Value *getAddress() const; Metadata *getRawAddress() const { return cast(getArgOperand(OpAddress))->getMetadata(); } Metadata *getRawAssignID() const { return cast(getArgOperand(OpAssignID))->getMetadata(); } DIAssignID *getAssignID() const { return cast(getRawAssignID()); } Metadata *getRawAddressExpression() const { return cast(getArgOperand(OpAddressExpr))->getMetadata(); } DIExpression *getAddressExpression() const { return cast(getRawAddressExpression()); } void setAddressExpression(DIExpression *NewExpr) { setArgOperand(OpAddressExpr, MetadataAsValue::get(NewExpr->getContext(), NewExpr)); } void setAssignId(DIAssignID *New); void setAddress(Value *V); /// Kill the address component. void setKillAddress(); /// Check whether this kills the address component. This doesn't take into /// account the position of the intrinsic, therefore a returned value of false /// does not guarentee the address is a valid location for the variable at the /// intrinsic's position in IR. bool isKillAddress() const; void setValue(Value *V); /// \name Casting methods /// @{ static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::dbg_assign; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// This represents the llvm.dbg.label instruction. class DbgLabelInst : public DbgInfoIntrinsic { public: DILabel *getLabel() const { return cast(getRawLabel()); } Metadata *getRawLabel() const { return cast(getArgOperand(0))->getMetadata(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: /// @{ static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::dbg_label; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// This is the common base class for vector predication intrinsics. class VPIntrinsic : public IntrinsicInst { public: /// \brief Declares a llvm.vp.* intrinsic in \p M that matches the parameters /// \p Params. Additionally, the load and gather intrinsics require /// \p ReturnType to be specified. static Function *getDeclarationForParams(Module *M, Intrinsic::ID, Type *ReturnType, ArrayRef Params); static std::optional getMaskParamPos(Intrinsic::ID IntrinsicID); static std::optional getVectorLengthParamPos( Intrinsic::ID IntrinsicID); /// The llvm.vp.* intrinsics for this instruction Opcode static Intrinsic::ID getForOpcode(unsigned OC); // Whether \p ID is a VP intrinsic ID. static bool isVPIntrinsic(Intrinsic::ID); /// \return The mask parameter or nullptr. Value *getMaskParam() const; void setMaskParam(Value *); /// \return The vector length parameter or nullptr. Value *getVectorLengthParam() const; void setVectorLengthParam(Value *); /// \return Whether the vector length param can be ignored. bool canIgnoreVectorLengthParam() const; /// \return The static element count (vector number of elements) the vector /// length parameter applies to. ElementCount getStaticVectorLength() const; /// \return The alignment of the pointer used by this load/store/gather or /// scatter. MaybeAlign getPointerAlignment() const; // MaybeAlign setPointerAlignment(Align NewAlign); // TODO /// \return The pointer operand of this load,store, gather or scatter. Value *getMemoryPointerParam() const; static std::optional getMemoryPointerParamPos(Intrinsic::ID); /// \return The data (payload) operand of this store or scatter. Value *getMemoryDataParam() const; static std::optional getMemoryDataParamPos(Intrinsic::ID); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { return isVPIntrinsic(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } // Equivalent non-predicated opcode std::optional getFunctionalOpcode() const { return getFunctionalOpcodeForVP(getIntrinsicID()); } // Equivalent non-predicated intrinsic ID std::optional getFunctionalIntrinsicID() const { return getFunctionalIntrinsicIDForVP(getIntrinsicID()); } // Equivalent non-predicated constrained ID std::optional getConstrainedIntrinsicID() const { return getConstrainedIntrinsicIDForVP(getIntrinsicID()); } // Equivalent non-predicated opcode static std::optional getFunctionalOpcodeForVP(Intrinsic::ID ID); // Equivalent non-predicated intrinsic ID static std::optional getFunctionalIntrinsicIDForVP(Intrinsic::ID ID); // Equivalent non-predicated constrained ID static std::optional getConstrainedIntrinsicIDForVP(Intrinsic::ID ID); }; /// This represents vector predication reduction intrinsics. class VPReductionIntrinsic : public VPIntrinsic { public: static bool isVPReduction(Intrinsic::ID ID); unsigned getStartParamPos() const; unsigned getVectorParamPos() const; static std::optional getStartParamPos(Intrinsic::ID ID); static std::optional getVectorParamPos(Intrinsic::ID ID); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// @{ static bool classof(const IntrinsicInst *I) { return VPReductionIntrinsic::isVPReduction(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; class VPCastIntrinsic : public VPIntrinsic { public: static bool isVPCast(Intrinsic::ID ID); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// @{ static bool classof(const IntrinsicInst *I) { return VPCastIntrinsic::isVPCast(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; class VPCmpIntrinsic : public VPIntrinsic { public: static bool isVPCmp(Intrinsic::ID ID); CmpInst::Predicate getPredicate() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: /// @{ static bool classof(const IntrinsicInst *I) { return VPCmpIntrinsic::isVPCmp(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; class VPBinOpIntrinsic : public VPIntrinsic { public: static bool isVPBinOp(Intrinsic::ID ID); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// @{ static bool classof(const IntrinsicInst *I) { return VPBinOpIntrinsic::isVPBinOp(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// @} }; /// This is the common base class for constrained floating point intrinsics. class ConstrainedFPIntrinsic : public IntrinsicInst { public: bool isUnaryOp() const; bool isTernaryOp() const; std::optional getRoundingMode() const; std::optional getExceptionBehavior() const; bool isDefaultFPEnvironment() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I); static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// Constrained floating point compare intrinsics. class ConstrainedFPCmpIntrinsic : public ConstrainedFPIntrinsic { public: FCmpInst::Predicate getPredicate() const; bool isSignaling() const { return getIntrinsicID() == Intrinsic::experimental_constrained_fcmps; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::experimental_constrained_fcmp: case Intrinsic::experimental_constrained_fcmps: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents min/max intrinsics. class MinMaxIntrinsic : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::umin: case Intrinsic::umax: case Intrinsic::smin: case Intrinsic::smax: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getLHS() const { return const_cast(getArgOperand(0)); } Value *getRHS() const { return const_cast(getArgOperand(1)); } /// Returns the comparison predicate underlying the intrinsic. static ICmpInst::Predicate getPredicate(Intrinsic::ID ID) { switch (ID) { case Intrinsic::umin: return ICmpInst::Predicate::ICMP_ULT; case Intrinsic::umax: return ICmpInst::Predicate::ICMP_UGT; case Intrinsic::smin: return ICmpInst::Predicate::ICMP_SLT; case Intrinsic::smax: return ICmpInst::Predicate::ICMP_SGT; default: llvm_unreachable("Invalid intrinsic"); } } /// Returns the comparison predicate underlying the intrinsic. ICmpInst::Predicate getPredicate() const { return getPredicate(getIntrinsicID()); } /// Whether the intrinsic is signed or unsigned. static bool isSigned(Intrinsic::ID ID) { return ICmpInst::isSigned(getPredicate(ID)); }; /// Whether the intrinsic is signed or unsigned. bool isSigned() const { return isSigned(getIntrinsicID()); }; /// Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, /// so there is a certain threshold value, upon reaching which, /// their value can no longer change. Return said threshold. static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits) { switch (ID) { case Intrinsic::umin: return APInt::getMinValue(numBits); case Intrinsic::umax: return APInt::getMaxValue(numBits); case Intrinsic::smin: return APInt::getSignedMinValue(numBits); case Intrinsic::smax: return APInt::getSignedMaxValue(numBits); default: llvm_unreachable("Invalid intrinsic"); } } /// Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, /// so there is a certain threshold value, upon reaching which, /// their value can no longer change. Return said threshold. APInt getSaturationPoint(unsigned numBits) const { return getSaturationPoint(getIntrinsicID(), numBits); } /// Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, /// so there is a certain threshold value, upon reaching which, /// their value can no longer change. Return said threshold. static Constant *getSaturationPoint(Intrinsic::ID ID, Type *Ty) { return Constant::getIntegerValue( Ty, getSaturationPoint(ID, Ty->getScalarSizeInBits())); } /// Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, /// so there is a certain threshold value, upon reaching which, /// their value can no longer change. Return said threshold. Constant *getSaturationPoint(Type *Ty) const { return getSaturationPoint(getIntrinsicID(), Ty); } }; /// This class represents an intrinsic that is based on a binary operation. /// This includes op.with.overflow and saturating add/sub intrinsics. class BinaryOpIntrinsic : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::uadd_sat: case Intrinsic::sadd_sat: case Intrinsic::usub_sat: case Intrinsic::ssub_sat: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getLHS() const { return const_cast(getArgOperand(0)); } Value *getRHS() const { return const_cast(getArgOperand(1)); } /// Returns the binary operation underlying the intrinsic. Instruction::BinaryOps getBinaryOp() const; /// Whether the intrinsic is signed or unsigned. bool isSigned() const; /// Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap. unsigned getNoWrapKind() const; }; /// Represents an op.with.overflow intrinsic. class WithOverflowInst : public BinaryOpIntrinsic { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// Represents a saturating add/sub intrinsic. class SaturatingInst : public BinaryOpIntrinsic { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::uadd_sat: case Intrinsic::sadd_sat: case Intrinsic::usub_sat: case Intrinsic::ssub_sat: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// Common base class for all memory intrinsics. Simply provides /// common methods. /// Written as CRTP to avoid a common base class amongst the /// three atomicity hierarchies. template class MemIntrinsicBase : public IntrinsicInst { private: enum { ARG_DEST = 0, ARG_LENGTH = 2 }; public: Value *getRawDest() const { return const_cast(getArgOperand(ARG_DEST)); } const Use &getRawDestUse() const { return getArgOperandUse(ARG_DEST); } Use &getRawDestUse() { return getArgOperandUse(ARG_DEST); } Value *getLength() const { return const_cast(getArgOperand(ARG_LENGTH)); } const Use &getLengthUse() const { return getArgOperandUse(ARG_LENGTH); } Use &getLengthUse() { return getArgOperandUse(ARG_LENGTH); } /// This is just like getRawDest, but it strips off any cast /// instructions (including addrspacecast) that feed it, giving the /// original input. The returned value is guaranteed to be a pointer. Value *getDest() const { return getRawDest()->stripPointerCasts(); } unsigned getDestAddressSpace() const { return cast(getRawDest()->getType())->getAddressSpace(); } /// FIXME: Remove this function once transition to Align is over. /// Use getDestAlign() instead. LLVM_DEPRECATED("Use getDestAlign() instead", "getDestAlign") unsigned getDestAlignment() const { if (auto MA = getParamAlign(ARG_DEST)) return MA->value(); return 0; } MaybeAlign getDestAlign() const { return getParamAlign(ARG_DEST); } /// Set the specified arguments of the instruction. void setDest(Value *Ptr) { assert(getRawDest()->getType() == Ptr->getType() && "setDest called with pointer of wrong type!"); setArgOperand(ARG_DEST, Ptr); } void setDestAlignment(MaybeAlign Alignment) { removeParamAttr(ARG_DEST, Attribute::Alignment); if (Alignment) addParamAttr(ARG_DEST, Attribute::getWithAlignment(getContext(), *Alignment)); } void setDestAlignment(Align Alignment) { removeParamAttr(ARG_DEST, Attribute::Alignment); addParamAttr(ARG_DEST, Attribute::getWithAlignment(getContext(), Alignment)); } void setLength(Value *L) { assert(getLength()->getType() == L->getType() && "setLength called with value of wrong type!"); setArgOperand(ARG_LENGTH, L); } }; /// Common base class for all memory transfer intrinsics. Simply provides /// common methods. template class MemTransferBase : public BaseCL { private: enum { ARG_SOURCE = 1 }; public: /// Return the arguments to the instruction. Value *getRawSource() const { return const_cast(BaseCL::getArgOperand(ARG_SOURCE)); } const Use &getRawSourceUse() const { return BaseCL::getArgOperandUse(ARG_SOURCE); } Use &getRawSourceUse() { return BaseCL::getArgOperandUse(ARG_SOURCE); } /// This is just like getRawSource, but it strips off any cast /// instructions that feed it, giving the original input. The returned /// value is guaranteed to be a pointer. Value *getSource() const { return getRawSource()->stripPointerCasts(); } unsigned getSourceAddressSpace() const { return cast(getRawSource()->getType())->getAddressSpace(); } /// FIXME: Remove this function once transition to Align is over. /// Use getSourceAlign() instead. LLVM_DEPRECATED("Use getSourceAlign() instead", "getSourceAlign") unsigned getSourceAlignment() const { if (auto MA = BaseCL::getParamAlign(ARG_SOURCE)) return MA->value(); return 0; } MaybeAlign getSourceAlign() const { return BaseCL::getParamAlign(ARG_SOURCE); } void setSource(Value *Ptr) { assert(getRawSource()->getType() == Ptr->getType() && "setSource called with pointer of wrong type!"); BaseCL::setArgOperand(ARG_SOURCE, Ptr); } void setSourceAlignment(MaybeAlign Alignment) { BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment); if (Alignment) BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment( BaseCL::getContext(), *Alignment)); } void setSourceAlignment(Align Alignment) { BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment); BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment( BaseCL::getContext(), Alignment)); } }; /// Common base class for all memset intrinsics. Simply provides /// common methods. template class MemSetBase : public BaseCL { private: enum { ARG_VALUE = 1 }; public: Value *getValue() const { return const_cast(BaseCL::getArgOperand(ARG_VALUE)); } const Use &getValueUse() const { return BaseCL::getArgOperandUse(ARG_VALUE); } Use &getValueUse() { return BaseCL::getArgOperandUse(ARG_VALUE); } void setValue(Value *Val) { assert(getValue()->getType() == Val->getType() && "setValue called with value of wrong type!"); BaseCL::setArgOperand(ARG_VALUE, Val); } }; // The common base class for the atomic memset/memmove/memcpy intrinsics // i.e. llvm.element.unordered.atomic.memset/memcpy/memmove class AtomicMemIntrinsic : public MemIntrinsicBase { private: enum { ARG_ELEMENTSIZE = 3 }; public: Value *getRawElementSizeInBytes() const { return const_cast(getArgOperand(ARG_ELEMENTSIZE)); } ConstantInt *getElementSizeInBytesCst() const { return cast(getRawElementSizeInBytes()); } uint32_t getElementSizeInBytes() const { return getElementSizeInBytesCst()->getZExtValue(); } void setElementSizeInBytes(Constant *V) { assert(V->getType() == Type::getInt8Ty(getContext()) && "setElementSizeInBytes called with value of wrong type!"); setArgOperand(ARG_ELEMENTSIZE, V); } static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy_element_unordered_atomic: case Intrinsic::memmove_element_unordered_atomic: case Intrinsic::memset_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents atomic memset intrinsic // i.e. llvm.element.unordered.atomic.memset class AtomicMemSetInst : public MemSetBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memset_element_unordered_atomic; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // This class wraps the atomic memcpy/memmove intrinsics // i.e. llvm.element.unordered.atomic.memcpy/memmove class AtomicMemTransferInst : public MemTransferBase { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy_element_unordered_atomic: case Intrinsic::memmove_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents the atomic memcpy intrinsic /// i.e. llvm.element.unordered.atomic.memcpy class AtomicMemCpyInst : public AtomicMemTransferInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memcpy_element_unordered_atomic; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents the atomic memmove intrinsic /// i.e. llvm.element.unordered.atomic.memmove class AtomicMemMoveInst : public AtomicMemTransferInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memmove_element_unordered_atomic; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This is the common base class for memset/memcpy/memmove. class MemIntrinsic : public MemIntrinsicBase { private: enum { ARG_VOLATILE = 3 }; public: ConstantInt *getVolatileCst() const { return cast(const_cast(getArgOperand(ARG_VOLATILE))); } bool isVolatile() const { return !getVolatileCst()->isZero(); } void setVolatile(Constant *V) { setArgOperand(ARG_VOLATILE, V); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::memset_inline: case Intrinsic::memcpy_inline: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memset and llvm.memset.inline intrinsics. class MemSetInst : public MemSetBase { public: // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memset: case Intrinsic::memset_inline: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memset.inline intrinsic. class MemSetInlineInst : public MemSetInst { public: ConstantInt *getLength() const { return cast(MemSetInst::getLength()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memset_inline; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memcpy/memmove intrinsics. class MemTransferInst : public MemTransferBase { public: // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memcpy_inline: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memcpy intrinsic. class MemCpyInst : public MemTransferInst { public: // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memcpy || I->getIntrinsicID() == Intrinsic::memcpy_inline; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memmove intrinsic. class MemMoveInst : public MemTransferInst { public: // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memmove; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class wraps the llvm.memcpy.inline intrinsic. class MemCpyInlineInst : public MemCpyInst { public: ConstantInt *getLength() const { return cast(MemCpyInst::getLength()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::memcpy_inline; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // The common base class for any memset/memmove/memcpy intrinsics; // whether they be atomic or non-atomic. // i.e. llvm.element.unordered.atomic.memset/memcpy/memmove // and llvm.memset/memcpy/memmove class AnyMemIntrinsic : public MemIntrinsicBase { public: bool isVolatile() const { // Only the non-atomic intrinsics can be volatile if (auto *MI = dyn_cast(this)) return MI->isVolatile(); return false; } static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memcpy_inline: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::memset_inline: case Intrinsic::memcpy_element_unordered_atomic: case Intrinsic::memmove_element_unordered_atomic: case Intrinsic::memset_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents any memset intrinsic // i.e. llvm.element.unordered.atomic.memset // and llvm.memset class AnyMemSetInst : public MemSetBase { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memset: case Intrinsic::memset_inline: case Intrinsic::memset_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; // This class wraps any memcpy/memmove intrinsics // i.e. llvm.element.unordered.atomic.memcpy/memmove // and llvm.memcpy/memmove class AnyMemTransferInst : public MemTransferBase { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memcpy_inline: case Intrinsic::memmove: case Intrinsic::memcpy_element_unordered_atomic: case Intrinsic::memmove_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents any memcpy intrinsic /// i.e. llvm.element.unordered.atomic.memcpy /// and llvm.memcpy class AnyMemCpyInst : public AnyMemTransferInst { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memcpy_inline: case Intrinsic::memcpy_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This class represents any memmove intrinsic /// i.e. llvm.element.unordered.atomic.memmove /// and llvm.memmove class AnyMemMoveInst : public AnyMemTransferInst { public: static bool classof(const IntrinsicInst *I) { switch (I->getIntrinsicID()) { case Intrinsic::memmove: case Intrinsic::memmove_element_unordered_atomic: return true; default: return false; } } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.va_start intrinsic. class VAStartInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::vastart; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getArgList() const { return const_cast(getArgOperand(0)); } }; /// This represents the llvm.va_end intrinsic. class VAEndInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::vaend; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getArgList() const { return const_cast(getArgOperand(0)); } }; /// This represents the llvm.va_copy intrinsic. class VACopyInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::vacopy; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getDest() const { return const_cast(getArgOperand(0)); } Value *getSrc() const { return const_cast(getArgOperand(1)); } }; /// A base class for all instrprof intrinsics. class InstrProfInstBase : public IntrinsicInst { public: // The name of the instrumented function. GlobalVariable *getName() const { return cast( const_cast(getArgOperand(0))->stripPointerCasts()); } // The hash of the CFG for the instrumented function. ConstantInt *getHash() const { return cast(const_cast(getArgOperand(1))); } }; /// A base class for all instrprof counter intrinsics. class InstrProfCntrInstBase : public InstrProfInstBase { public: // The number of counters for the instrumented function. ConstantInt *getNumCounters() const; // The index of the counter that this instruction acts on. ConstantInt *getIndex() const; }; /// This represents the llvm.instrprof.cover intrinsic. class InstrProfCoverInst : public InstrProfCntrInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_cover; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.instrprof.increment intrinsic. class InstrProfIncrementInst : public InstrProfCntrInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_increment || I->getIntrinsicID() == Intrinsic::instrprof_increment_step; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getStep() const; }; /// This represents the llvm.instrprof.increment.step intrinsic. class InstrProfIncrementInstStep : public InstrProfIncrementInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_increment_step; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.instrprof.timestamp intrinsic. class InstrProfTimestampInst : public InstrProfCntrInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_timestamp; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.instrprof.value.profile intrinsic. class InstrProfValueProfileInst : public InstrProfCntrInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_value_profile; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } Value *getTargetValue() const { return cast(const_cast(getArgOperand(2))); } ConstantInt *getValueKind() const { return cast(const_cast(getArgOperand(3))); } // Returns the value site index. ConstantInt *getIndex() const { return cast(const_cast(getArgOperand(4))); } }; /// A base class for instrprof mcdc intrinsics that require global bitmap bytes. class InstrProfMCDCBitmapInstBase : public InstrProfInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_mcdc_parameters || I->getIntrinsicID() == Intrinsic::instrprof_mcdc_tvbitmap_update; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// \return The number of bytes used for the MCDC bitmaps for the instrumented /// function. ConstantInt *getNumBitmapBytes() const { return cast(const_cast(getArgOperand(2))); } }; /// This represents the llvm.instrprof.mcdc.parameters intrinsic. class InstrProfMCDCBitmapParameters : public InstrProfMCDCBitmapInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_mcdc_parameters; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.instrprof.mcdc.tvbitmap.update intrinsic. class InstrProfMCDCTVBitmapUpdate : public InstrProfMCDCBitmapInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_mcdc_tvbitmap_update; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// \return The index of the TestVector Bitmap upon which this intrinsic /// acts. ConstantInt *getBitmapIndex() const { return cast(const_cast(getArgOperand(3))); } /// \return The address of the corresponding condition bitmap containing /// the index of the TestVector to update within the TestVector Bitmap. Value *getMCDCCondBitmapAddr() const { return cast(const_cast(getArgOperand(4))); } }; /// This represents the llvm.instrprof.mcdc.condbitmap.update intrinsic. /// It does not pertain to global bitmap updates or parameters and so doesn't /// inherit from InstrProfMCDCBitmapInstBase. class InstrProfMCDCCondBitmapUpdate : public InstrProfInstBase { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::instrprof_mcdc_condbitmap_update; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// \return The ID of the condition to update. ConstantInt *getCondID() const { return cast(const_cast(getArgOperand(2))); } /// \return The address of the corresponding condition bitmap. Value *getMCDCCondBitmapAddr() const { return cast(const_cast(getArgOperand(3))); } /// \return The boolean value to set in the condition bitmap for the /// corresponding condition ID. This represents how the condition evaluated. Value *getCondBool() const { return cast(const_cast(getArgOperand(4))); } }; class PseudoProbeInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::pseudoprobe; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } ConstantInt *getFuncGuid() const { return cast(const_cast(getArgOperand(0))); } ConstantInt *getIndex() const { return cast(const_cast(getArgOperand(1))); } ConstantInt *getAttributes() const { return cast(const_cast(getArgOperand(2))); } ConstantInt *getFactor() const { return cast(const_cast(getArgOperand(3))); } }; class NoAliasScopeDeclInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } MDNode *getScopeList() const { auto *MV = cast(getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); return cast(MV->getMetadata()); } void setScopeList(MDNode *ScopeList) { setOperand(Intrinsic::NoAliasScopeDeclScopeArg, MetadataAsValue::get(getContext(), ScopeList)); } }; /// Common base class for representing values projected from a statepoint. /// Currently, the only projections available are gc.result and gc.relocate. class GCProjectionInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate || I->getIntrinsicID() == Intrinsic::experimental_gc_result; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// Return true if this relocate is tied to the invoke statepoint. /// This includes relocates which are on the unwinding path. bool isTiedToInvoke() const { const Value *Token = getArgOperand(0); return isa(Token) || isa(Token); } /// The statepoint with which this gc.relocate is associated. const Value *getStatepoint() const; }; /// Represents calls to the gc.relocate intrinsic. class GCRelocateInst : public GCProjectionInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// The index into the associate statepoint's argument list /// which contains the base pointer of the pointer whose /// relocation this gc.relocate describes. unsigned getBasePtrIndex() const { return cast(getArgOperand(1))->getZExtValue(); } /// The index into the associate statepoint's argument list which /// contains the pointer whose relocation this gc.relocate describes. unsigned getDerivedPtrIndex() const { return cast(getArgOperand(2))->getZExtValue(); } Value *getBasePtr() const; Value *getDerivedPtr() const; }; /// Represents calls to the gc.result intrinsic. class GCResultInst : public GCProjectionInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::experimental_gc_result; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// This represents the llvm.assume intrinsic. class AssumeInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return I->getIntrinsicID() == Intrinsic::assume; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// Check if \p ID corresponds to a convergence control intrinsic. static inline bool isConvergenceControlIntrinsic(unsigned IntrinsicID) { switch (IntrinsicID) { default: return false; case Intrinsic::experimental_convergence_anchor: case Intrinsic::experimental_convergence_entry: case Intrinsic::experimental_convergence_loop: return true; } } /// Represents calls to the llvm.experimintal.convergence.* intrinsics. class ConvergenceControlInst : public IntrinsicInst { public: static bool classof(const IntrinsicInst *I) { return isConvergenceControlIntrinsic(I->getIntrinsicID()); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; } // end namespace llvm #endif // LLVM_IR_INTRINSICINST_H