//===- llvm/Transforms/IPO/FunctionImport.h - ThinLTO importing -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H #define LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Error.h" #include #include #include #include #include #include #include namespace llvm { class Module; /// The function importer is automatically importing function from other modules /// based on the provided summary informations. class FunctionImporter { public: /// Set of functions to import from a source module. Each entry is a set /// containing all the GUIDs of all functions to import for a source module. using FunctionsToImportTy = std::unordered_set; /// The different reasons selectCallee will chose not to import a /// candidate. enum ImportFailureReason { None, // We can encounter a global variable instead of a function in rare // situations with SamplePGO. See comments where this failure type is // set for more details. GlobalVar, // Found to be globally dead, so we don't bother importing. NotLive, // Instruction count over the current threshold. TooLarge, // Don't import something with interposable linkage as we can't inline it // anyway. InterposableLinkage, // Generally we won't end up failing due to this reason, as we expect // to find at least one summary for the GUID that is global or a local // in the referenced module for direct calls. LocalLinkageNotInModule, // This corresponds to the NotEligibleToImport being set on the summary, // which can happen in a few different cases (e.g. local that can't be // renamed or promoted because it is referenced on a llvm*.used variable). NotEligible, // This corresponds to NoInline being set on the function summary, // which will happen if it is known that the inliner will not be able // to inline the function (e.g. it is marked with a NoInline attribute). NoInline }; /// Information optionally tracked for candidates the importer decided /// not to import. Used for optional stat printing. struct ImportFailureInfo { // The ValueInfo corresponding to the candidate. We save an index hash // table lookup for each GUID by stashing this here. ValueInfo VI; // The maximum call edge hotness for all failed imports of this candidate. CalleeInfo::HotnessType MaxHotness; // most recent reason for failing to import (doesn't necessarily correspond // to the attempt with the maximum hotness). ImportFailureReason Reason; // The number of times we tried to import candidate but failed. unsigned Attempts; ImportFailureInfo(ValueInfo VI, CalleeInfo::HotnessType MaxHotness, ImportFailureReason Reason, unsigned Attempts) : VI(VI), MaxHotness(MaxHotness), Reason(Reason), Attempts(Attempts) {} }; /// Map of callee GUID considered for import into a given module to a pair /// consisting of the largest threshold applied when deciding whether to /// import it and, if we decided to import, a pointer to the summary instance /// imported. If we decided not to import, the summary will be nullptr. using ImportThresholdsTy = DenseMap>>; /// The map contains an entry for every module to import from, the key being /// the module identifier to pass to the ModuleLoader. The value is the set of /// functions to import. The module identifier strings must be owned /// elsewhere, typically by the in-memory ModuleSummaryIndex the importing /// decisions are made from (the module path for each summary is owned by the /// index's module path string table). using ImportMapTy = DenseMap; /// The set contains an entry for every global value the module exports. using ExportSetTy = DenseSet; /// A function of this type is used to load modules referenced by the index. using ModuleLoaderTy = std::function>(StringRef Identifier)>; /// Create a Function Importer. FunctionImporter(const ModuleSummaryIndex &Index, ModuleLoaderTy ModuleLoader, bool ClearDSOLocalOnDeclarations) : Index(Index), ModuleLoader(std::move(ModuleLoader)), ClearDSOLocalOnDeclarations(ClearDSOLocalOnDeclarations) {} /// Import functions in Module \p M based on the supplied import list. Expected importFunctions(Module &M, const ImportMapTy &ImportList); private: /// The summaries index used to trigger importing. const ModuleSummaryIndex &Index; /// Factory function to load a Module for a given identifier ModuleLoaderTy ModuleLoader; /// See the comment of ClearDSOLocalOnDeclarations in /// Utils/FunctionImportUtils.h. bool ClearDSOLocalOnDeclarations; }; /// The function importing pass class FunctionImportPass : public PassInfoMixin { public: PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); }; /// Compute all the imports and exports for every module in the Index. /// /// \p ModuleToDefinedGVSummaries contains for each Module a map /// (GUID -> Summary) for every global defined in the module. /// /// \p isPrevailing is a callback that will be called with a global value's GUID /// and summary and should return whether the module corresponding to the /// summary contains the linker-prevailing copy of that value. /// /// \p ImportLists will be populated with an entry for every Module we are /// importing into. This entry is itself a map that can be passed to /// FunctionImporter::importFunctions() above (see description there). /// /// \p ExportLists contains for each Module the set of globals (GUID) that will /// be imported by another module, or referenced by such a function. I.e. this /// is the set of globals that need to be promoted/renamed appropriately. /// /// The module identifier strings that are the keys of the above two maps /// are owned by the in-memory ModuleSummaryIndex the importing decisions /// are made from (the module path for each summary is owned by the index's /// module path string table). void ComputeCrossModuleImport( const ModuleSummaryIndex &Index, const DenseMap &ModuleToDefinedGVSummaries, function_ref isPrevailing, DenseMap &ImportLists, DenseMap &ExportLists); /// PrevailingType enum used as a return type of callback passed /// to computeDeadSymbolsAndUpdateIndirectCalls. Yes and No values used when /// status explicitly set by symbols resolution, otherwise status is Unknown. enum class PrevailingType { Yes, No, Unknown }; /// Update call edges for indirect calls to local functions added from /// SamplePGO when needed. Normally this is done during /// computeDeadSymbolsAndUpdateIndirectCalls, but can be called standalone /// when that is not called (e.g. during testing). void updateIndirectCalls(ModuleSummaryIndex &Index); /// Compute all the symbols that are "dead": i.e these that can't be reached /// in the graph from any of the given symbols listed in /// \p GUIDPreservedSymbols. Non-prevailing symbols are symbols without a /// prevailing copy anywhere in IR and are normally dead, \p isPrevailing /// predicate returns status of symbol. /// Also update call edges for indirect calls to local functions added from /// SamplePGO when needed. void computeDeadSymbolsAndUpdateIndirectCalls( ModuleSummaryIndex &Index, const DenseSet &GUIDPreservedSymbols, function_ref isPrevailing); /// Compute dead symbols and run constant propagation in combined index /// after that. void computeDeadSymbolsWithConstProp( ModuleSummaryIndex &Index, const DenseSet &GUIDPreservedSymbols, function_ref isPrevailing, bool ImportEnabled); /// Converts value \p GV to declaration, or replaces with a declaration if /// it is an alias. Returns true if converted, false if replaced. bool convertToDeclaration(GlobalValue &GV); /// Compute the set of summaries needed for a ThinLTO backend compilation of /// \p ModulePath. // /// This includes summaries from that module (in case any global summary based /// optimizations were recorded) and from any definitions in other modules that /// should be imported. // /// \p ModuleToSummariesForIndex will be populated with the needed summaries /// from each required module path. Use a std::map instead of StringMap to get /// stable order for bitcode emission. void gatherImportedSummariesForModule( StringRef ModulePath, const DenseMap &ModuleToDefinedGVSummaries, const FunctionImporter::ImportMapTy &ImportList, std::map &ModuleToSummariesForIndex); /// Emit into \p OutputFilename the files module \p ModulePath will import from. std::error_code EmitImportsFiles( StringRef ModulePath, StringRef OutputFilename, const std::map &ModuleToSummariesForIndex); /// Based on the information recorded in the summaries during global /// summary-based analysis: /// 1. Resolve prevailing symbol linkages and constrain visibility (CanAutoHide /// and consider visibility from other definitions for ELF) in \p TheModule /// 2. (optional) Apply propagated function attributes to \p TheModule if /// PropagateAttrs is true void thinLTOFinalizeInModule(Module &TheModule, const GVSummaryMapTy &DefinedGlobals, bool PropagateAttrs); /// Internalize \p TheModule based on the information recorded in the summaries /// during global summary-based analysis. void thinLTOInternalizeModule(Module &TheModule, const GVSummaryMapTy &DefinedGlobals); } // end namespace llvm #endif // LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H