//===- GVN.h - Eliminate redundant values and loads -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file provides the interface for LLVM's Global Value Numbering pass /// which eliminates fully redundant instructions. It also does somewhat Ad-Hoc /// PRE and dead load elimination. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_SCALAR_GVN_H #define LLVM_TRANSFORMS_SCALAR_GVN_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include #include #include #include namespace llvm { class AAResults; class AssumeInst; class AssumptionCache; class BasicBlock; class BranchInst; class CallInst; class ExtractValueInst; class Function; class FunctionPass; class GetElementPtrInst; class ImplicitControlFlowTracking; class LoadInst; class LoopInfo; class MemDepResult; class MemoryDependenceResults; class MemorySSA; class MemorySSAUpdater; class NonLocalDepResult; class OptimizationRemarkEmitter; class PHINode; class TargetLibraryInfo; class Value; /// A private "module" namespace for types and utilities used by GVN. These /// are implementation details and should not be used by clients. namespace LLVM_LIBRARY_VISIBILITY gvn { struct AvailableValue; struct AvailableValueInBlock; class GVNLegacyPass; } // end namespace gvn /// A set of parameters to control various transforms performed by GVN pass. // Each of the optional boolean parameters can be set to: /// true - enabling the transformation. /// false - disabling the transformation. /// None - relying on a global default. /// Intended use is to create a default object, modify parameters with /// additional setters and then pass it to GVN. struct GVNOptions { std::optional AllowPRE; std::optional AllowLoadPRE; std::optional AllowLoadInLoopPRE; std::optional AllowLoadPRESplitBackedge; std::optional AllowMemDep; GVNOptions() = default; /// Enables or disables PRE in GVN. GVNOptions &setPRE(bool PRE) { AllowPRE = PRE; return *this; } /// Enables or disables PRE of loads in GVN. GVNOptions &setLoadPRE(bool LoadPRE) { AllowLoadPRE = LoadPRE; return *this; } GVNOptions &setLoadInLoopPRE(bool LoadInLoopPRE) { AllowLoadInLoopPRE = LoadInLoopPRE; return *this; } /// Enables or disables PRE of loads in GVN. GVNOptions &setLoadPRESplitBackedge(bool LoadPRESplitBackedge) { AllowLoadPRESplitBackedge = LoadPRESplitBackedge; return *this; } /// Enables or disables use of MemDepAnalysis. GVNOptions &setMemDep(bool MemDep) { AllowMemDep = MemDep; return *this; } }; /// The core GVN pass object. /// /// FIXME: We should have a good summary of the GVN algorithm implemented by /// this particular pass here. class GVNPass : public PassInfoMixin { GVNOptions Options; public: struct Expression; GVNPass(GVNOptions Options = {}) : Options(Options) {} /// Run the pass over the function. PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); void printPipeline(raw_ostream &OS, function_ref MapClassName2PassName); /// This removes the specified instruction from /// our various maps and marks it for deletion. void markInstructionForDeletion(Instruction *I) { VN.erase(I); InstrsToErase.push_back(I); } DominatorTree &getDominatorTree() const { return *DT; } AAResults *getAliasAnalysis() const { return VN.getAliasAnalysis(); } MemoryDependenceResults &getMemDep() const { return *MD; } bool isPREEnabled() const; bool isLoadPREEnabled() const; bool isLoadInLoopPREEnabled() const; bool isLoadPRESplitBackedgeEnabled() const; bool isMemDepEnabled() const; /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. class ValueTable { DenseMap valueNumbering; DenseMap expressionNumbering; // Expressions is the vector of Expression. ExprIdx is the mapping from // value number to the index of Expression in Expressions. We use it // instead of a DenseMap because filling such mapping is faster than // filling a DenseMap and the compile time is a little better. uint32_t nextExprNumber = 0; std::vector Expressions; std::vector ExprIdx; // Value number to PHINode mapping. Used for phi-translate in scalarpre. DenseMap NumberingPhi; // Cache for phi-translate in scalarpre. using PhiTranslateMap = DenseMap, uint32_t>; PhiTranslateMap PhiTranslateTable; AAResults *AA = nullptr; MemoryDependenceResults *MD = nullptr; DominatorTree *DT = nullptr; uint32_t nextValueNumber = 1; Expression createExpr(Instruction *I); Expression createCmpExpr(unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS); Expression createExtractvalueExpr(ExtractValueInst *EI); Expression createGEPExpr(GetElementPtrInst *GEP); uint32_t lookupOrAddCall(CallInst *C); uint32_t phiTranslateImpl(const BasicBlock *BB, const BasicBlock *PhiBlock, uint32_t Num, GVNPass &Gvn); bool areCallValsEqual(uint32_t Num, uint32_t NewNum, const BasicBlock *Pred, const BasicBlock *PhiBlock, GVNPass &Gvn); std::pair assignExpNewValueNum(Expression &exp); bool areAllValsInBB(uint32_t num, const BasicBlock *BB, GVNPass &Gvn); public: ValueTable(); ValueTable(const ValueTable &Arg); ValueTable(ValueTable &&Arg); ~ValueTable(); ValueTable &operator=(const ValueTable &Arg); uint32_t lookupOrAdd(Value *V); uint32_t lookup(Value *V, bool Verify = true) const; uint32_t lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Pred, Value *LHS, Value *RHS); uint32_t phiTranslate(const BasicBlock *BB, const BasicBlock *PhiBlock, uint32_t Num, GVNPass &Gvn); void eraseTranslateCacheEntry(uint32_t Num, const BasicBlock &CurrBlock); bool exists(Value *V) const; void add(Value *V, uint32_t num); void clear(); void erase(Value *v); void setAliasAnalysis(AAResults *A) { AA = A; } AAResults *getAliasAnalysis() const { return AA; } void setMemDep(MemoryDependenceResults *M) { MD = M; } void setDomTree(DominatorTree *D) { DT = D; } uint32_t getNextUnusedValueNumber() { return nextValueNumber; } void verifyRemoved(const Value *) const; }; private: friend class gvn::GVNLegacyPass; friend struct DenseMapInfo; MemoryDependenceResults *MD = nullptr; DominatorTree *DT = nullptr; const TargetLibraryInfo *TLI = nullptr; AssumptionCache *AC = nullptr; SetVector DeadBlocks; OptimizationRemarkEmitter *ORE = nullptr; ImplicitControlFlowTracking *ICF = nullptr; LoopInfo *LI = nullptr; MemorySSAUpdater *MSSAU = nullptr; ValueTable VN; /// A mapping from value numbers to lists of Value*'s that /// have that value number. Use findLeader to query it. struct LeaderTableEntry { Value *Val; const BasicBlock *BB; LeaderTableEntry *Next; }; DenseMap LeaderTable; BumpPtrAllocator TableAllocator; // Block-local map of equivalent values to their leader, does not // propagate to any successors. Entries added mid-block are applied // to the remaining instructions in the block. SmallMapVector ReplaceOperandsWithMap; SmallVector InstrsToErase; // Map the block to reversed postorder traversal number. It is used to // find back edge easily. DenseMap, uint32_t> BlockRPONumber; // This is set 'true' initially and also when new blocks have been added to // the function being analyzed. This boolean is used to control the updating // of BlockRPONumber prior to accessing the contents of BlockRPONumber. bool InvalidBlockRPONumbers = true; using LoadDepVect = SmallVector; using AvailValInBlkVect = SmallVector; using UnavailBlkVect = SmallVector; bool runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, const TargetLibraryInfo &RunTLI, AAResults &RunAA, MemoryDependenceResults *RunMD, LoopInfo &LI, OptimizationRemarkEmitter *ORE, MemorySSA *MSSA = nullptr); /// Push a new Value to the LeaderTable onto the list for its value number. void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) { LeaderTableEntry &Curr = LeaderTable[N]; if (!Curr.Val) { Curr.Val = V; Curr.BB = BB; return; } LeaderTableEntry *Node = TableAllocator.Allocate(); Node->Val = V; Node->BB = BB; Node->Next = Curr.Next; Curr.Next = Node; } /// Scan the list of values corresponding to a given /// value number, and remove the given instruction if encountered. void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) { LeaderTableEntry *Prev = nullptr; LeaderTableEntry *Curr = &LeaderTable[N]; while (Curr && (Curr->Val != I || Curr->BB != BB)) { Prev = Curr; Curr = Curr->Next; } if (!Curr) return; if (Prev) { Prev->Next = Curr->Next; } else { if (!Curr->Next) { Curr->Val = nullptr; Curr->BB = nullptr; } else { LeaderTableEntry *Next = Curr->Next; Curr->Val = Next->Val; Curr->BB = Next->BB; Curr->Next = Next->Next; } } } // List of critical edges to be split between iterations. SmallVector, 4> toSplit; // Helper functions of redundant load elimination bool processLoad(LoadInst *L); bool processNonLocalLoad(LoadInst *L); bool processAssumeIntrinsic(AssumeInst *II); /// Given a local dependency (Def or Clobber) determine if a value is /// available for the load. std::optional AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, Value *Address); /// Given a list of non-local dependencies, determine if a value is /// available for the load in each specified block. If it is, add it to /// ValuesPerBlock. If not, add it to UnavailableBlocks. void AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks); /// Given a critical edge from Pred to LoadBB, find a load instruction /// which is identical to Load from another successor of Pred. LoadInst *findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB, LoadInst *Load); bool PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks); /// Try to replace a load which executes on each loop iteraiton with Phi /// translation of load in preheader and load(s) in conditionally executed /// paths. bool performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks); /// Eliminates partially redundant \p Load, replacing it with \p /// AvailableLoads (connected by Phis if needed). void eliminatePartiallyRedundantLoad( LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, MapVector &AvailableLoads, MapVector *CriticalEdgePredAndLoad); // Other helper routines bool processInstruction(Instruction *I); bool processBlock(BasicBlock *BB); void dump(DenseMap &d) const; bool iterateOnFunction(Function &F); bool performPRE(Function &F); bool performScalarPRE(Instruction *I); bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, BasicBlock *Curr, unsigned int ValNo); Value *findLeader(const BasicBlock *BB, uint32_t num); void cleanupGlobalSets(); void removeInstruction(Instruction *I); void verifyRemoved(const Instruction *I) const; bool splitCriticalEdges(); BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ); bool replaceOperandsForInBlockEquality(Instruction *I) const; bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, bool DominatesByEdge); bool processFoldableCondBr(BranchInst *BI); void addDeadBlock(BasicBlock *BB); void assignValNumForDeadCode(); void assignBlockRPONumber(Function &F); }; /// Create a legacy GVN pass. This also allows parameterizing whether or not /// MemDep is enabled. FunctionPass *createGVNPass(bool NoMemDepAnalysis = false); /// A simple and fast domtree-based GVN pass to hoist common expressions /// from sibling branches. struct GVNHoistPass : PassInfoMixin { /// Run the pass over the function. PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// Uses an "inverted" value numbering to decide the similarity of /// expressions and sinks similar expressions into successors. struct GVNSinkPass : PassInfoMixin { /// Run the pass over the function. PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; } // end namespace llvm #endif // LLVM_TRANSFORMS_SCALAR_GVN_H