//===- ValueMapper.h - Remapping for constants and metadata -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the MapValue interface which is used by various parts of // the Transforms/Utils library to implement cloning and linking facilities. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H #define LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/simple_ilist.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" namespace llvm { class Constant; class DPValue; class Function; class GlobalVariable; class Instruction; class MDNode; class Metadata; class Module; class Type; class Value; using ValueToValueMapTy = ValueMap; using DPValueIterator = simple_ilist::iterator; /// This is a class that can be implemented by clients to remap types when /// cloning constants and instructions. class ValueMapTypeRemapper { virtual void anchor(); // Out of line method. public: virtual ~ValueMapTypeRemapper() = default; /// The client should implement this method if they want to remap types while /// mapping values. virtual Type *remapType(Type *SrcTy) = 0; }; /// This is a class that can be implemented by clients to materialize Values on /// demand. class ValueMaterializer { virtual void anchor(); // Out of line method. protected: ValueMaterializer() = default; ValueMaterializer(const ValueMaterializer &) = default; ValueMaterializer &operator=(const ValueMaterializer &) = default; ~ValueMaterializer() = default; public: /// This method can be implemented to generate a mapped Value on demand. For /// example, if linking lazily. Returns null if the value is not materialized. virtual Value *materialize(Value *V) = 0; }; /// These are flags that the value mapping APIs allow. enum RemapFlags { RF_None = 0, /// If this flag is set, the remapper knows that only local values within a /// function (such as an instruction or argument) are mapped, not global /// values like functions and global metadata. RF_NoModuleLevelChanges = 1, /// If this flag is set, the remapper ignores missing function-local entries /// (Argument, Instruction, BasicBlock) that are not in the value map. If it /// is unset, it aborts if an operand is asked to be remapped which doesn't /// exist in the mapping. /// /// There are no such assertions in MapValue(), whose results are almost /// unchanged by this flag. This flag mainly changes the assertion behaviour /// in RemapInstruction(). /// /// Since an Instruction's metadata operands (even that point to SSA values) /// aren't guaranteed to be dominated by their definitions, MapMetadata will /// return "!{}" instead of "null" for \a LocalAsMetadata instances whose SSA /// values are unmapped when this flag is set. Otherwise, \a MapValue() /// completely ignores this flag. /// /// \a MapMetadata() always ignores this flag. RF_IgnoreMissingLocals = 2, /// Instruct the remapper to reuse and mutate distinct metadata (remapping /// them in place) instead of cloning remapped copies. This flag has no /// effect when RF_NoModuleLevelChanges, since that implies an identity /// mapping. RF_ReuseAndMutateDistinctMDs = 4, /// Any global values not in value map are mapped to null instead of mapping /// to self. Illegal if RF_IgnoreMissingLocals is also set. RF_NullMapMissingGlobalValues = 8, }; inline RemapFlags operator|(RemapFlags LHS, RemapFlags RHS) { return RemapFlags(unsigned(LHS) | unsigned(RHS)); } /// Context for (re-)mapping values (and metadata). /// /// A shared context used for mapping and remapping of Value and Metadata /// instances using \a ValueToValueMapTy, \a RemapFlags, \a /// ValueMapTypeRemapper, and \a ValueMaterializer. /// /// There are a number of top-level entry points: /// - \a mapValue() (and \a mapConstant()); /// - \a mapMetadata() (and \a mapMDNode()); /// - \a remapInstruction(); /// - \a remapFunction(); and /// - \a remapGlobalObjectMetadata(). /// /// The \a ValueMaterializer can be used as a callback, but cannot invoke any /// of these top-level functions recursively. Instead, callbacks should use /// one of the following to schedule work lazily in the \a ValueMapper /// instance: /// - \a scheduleMapGlobalInitializer() /// - \a scheduleMapAppendingVariable() /// - \a scheduleMapGlobalAlias() /// - \a scheduleMapGlobalIFunc() /// - \a scheduleRemapFunction() /// /// Sometimes a callback needs a different mapping context. Such a context can /// be registered using \a registerAlternateMappingContext(), which takes an /// alternate \a ValueToValueMapTy and \a ValueMaterializer and returns a ID to /// pass into the schedule*() functions. /// /// TODO: lib/Linker really doesn't need the \a ValueHandle in the \a /// ValueToValueMapTy. We should template \a ValueMapper (and its /// implementation classes), and explicitly instantiate on two concrete /// instances of \a ValueMap (one as \a ValueToValueMap, and one with raw \a /// Value pointers). It may be viable to do away with \a TrackingMDRef in the /// \a Metadata side map for the lib/Linker case as well, in which case we'll /// need a new template parameter on \a ValueMap. /// /// TODO: Update callers of \a RemapInstruction() and \a MapValue() (etc.) to /// use \a ValueMapper directly. class ValueMapper { void *pImpl; public: ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr); ValueMapper(ValueMapper &&) = delete; ValueMapper(const ValueMapper &) = delete; ValueMapper &operator=(ValueMapper &&) = delete; ValueMapper &operator=(const ValueMapper &) = delete; ~ValueMapper(); /// Register an alternate mapping context. /// /// Returns a MappingContextID that can be used with the various schedule*() /// API to switch in a different value map on-the-fly. unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer = nullptr); /// Add to the current \a RemapFlags. /// /// \note Like the top-level mapping functions, \a addFlags() must be called /// at the top level, not during a callback in a \a ValueMaterializer. void addFlags(RemapFlags Flags); Metadata *mapMetadata(const Metadata &MD); MDNode *mapMDNode(const MDNode &N); Value *mapValue(const Value &V); Constant *mapConstant(const Constant &C); void remapInstruction(Instruction &I); void remapDPValue(Module *M, DPValue &V); void remapDPValueRange(Module *M, iterator_range Range); void remapFunction(Function &F); void remapGlobalObjectMetadata(GlobalObject &GO); void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID = 0); void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers, unsigned MappingContextID = 0); void scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID = 0); void scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MappingContextID = 0); void scheduleRemapFunction(Function &F, unsigned MappingContextID = 0); }; /// Look up or compute a value in the value map. /// /// Return a mapped value for a function-local value (Argument, Instruction, /// BasicBlock), or compute and memoize a value for a Constant. /// /// 1. If \c V is in VM, return the result. /// 2. Else if \c V can be materialized with \c Materializer, do so, memoize /// it in \c VM, and return it. /// 3. Else if \c V is a function-local value, return nullptr. /// 4. Else if \c V is a \a GlobalValue, return \c nullptr or \c V depending /// on \a RF_NullMapMissingGlobalValues. /// 5. Else if \c V is a \a MetadataAsValue wrapping a LocalAsMetadata, /// recurse on the local SSA value, and return nullptr or "metadata !{}" on /// missing depending on RF_IgnoreMissingValues. /// 6. Else if \c V is a \a MetadataAsValue, rewrap the return of \a /// MapMetadata(). /// 7. Else, compute the equivalent constant, and return it. inline Value *MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { return ValueMapper(VM, Flags, TypeMapper, Materializer).mapValue(*V); } /// Lookup or compute a mapping for a piece of metadata. /// /// Compute and memoize a mapping for \c MD. /// /// 1. If \c MD is mapped, return it. /// 2. Else if \a RF_NoModuleLevelChanges or \c MD is an \a MDString, return /// \c MD. /// 3. Else if \c MD is a \a ConstantAsMetadata, call \a MapValue() and /// re-wrap its return (returning nullptr on nullptr). /// 4. Else, \c MD is an \a MDNode. These are remapped, along with their /// transitive operands. Distinct nodes are duplicated or moved depending /// on \a RF_MoveDistinctNodes. Uniqued nodes are remapped like constants. /// /// \note \a LocalAsMetadata is completely unsupported by \a MapMetadata. /// Instead, use \a MapValue() with its wrapping \a MetadataAsValue instance. inline Metadata *MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { return ValueMapper(VM, Flags, TypeMapper, Materializer).mapMetadata(*MD); } /// Version of MapMetadata with type safety for MDNode. inline MDNode *MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { return ValueMapper(VM, Flags, TypeMapper, Materializer).mapMDNode(*MD); } /// Convert the instruction operands from referencing the current values into /// those specified by VM. /// /// If \a RF_IgnoreMissingLocals is set and an operand can't be found via \a /// MapValue(), use the old value. Otherwise assert that this doesn't happen. /// /// Note that \a MapValue() only returns \c nullptr for SSA values missing from /// \c VM. inline void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { ValueMapper(VM, Flags, TypeMapper, Materializer).remapInstruction(*I); } /// Remap the Values used in the DPValue \a V using the value map \a VM. inline void RemapDPValue(Module *M, DPValue *V, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { ValueMapper(VM, Flags, TypeMapper, Materializer).remapDPValue(M, *V); } /// Remap the Values used in the DPValue \a V using the value map \a VM. inline void RemapDPValueRange(Module *M, iterator_range Range, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { ValueMapper(VM, Flags, TypeMapper, Materializer).remapDPValueRange(M, Range); } /// Remap the operands, metadata, arguments, and instructions of a function. /// /// Calls \a MapValue() on prefix data, prologue data, and personality /// function; calls \a MapMetadata() on each attached MDNode; remaps the /// argument types using the provided \c TypeMapper; and calls \a /// RemapInstruction() on every instruction. inline void RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { ValueMapper(VM, Flags, TypeMapper, Materializer).remapFunction(F); } /// Version of MapValue with type safety for Constant. inline Constant *MapValue(const Constant *V, ValueToValueMapTy &VM, RemapFlags Flags = RF_None, ValueMapTypeRemapper *TypeMapper = nullptr, ValueMaterializer *Materializer = nullptr) { return ValueMapper(VM, Flags, TypeMapper, Materializer).mapConstant(*V); } } // end namespace llvm #endif // LLVM_TRANSFORMS_UTILS_VALUEMAPPER_H