[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This chapter explains the goals sought in the creation
of GNU gettext
and the free Translation Project.
Then, it explains a few broad concepts around
Native Language Support, and positions message translation with regard
to other aspects of national and cultural variance, as they apply
to programs. It also surveys those files used to convey the
translations. It explains how the various tools interact in the
initial generation of these files, and later, how the maintenance
cycle should usually operate.
In this manual, we use he when speaking of the programmer or
maintainer, she when speaking of the translator, and they
when speaking of the installers or end users of the translated program.
This is only a convenience for clarifying the documentation. It is
absolutely not meant to imply that some roles are more appropriate
to males or females. Besides, as you might guess, GNU gettext
is meant to be useful for people using computers, whatever their sex,
race, religion or nationality!
Please submit suggestions and corrections
bug-gettext@gnu.org
.
Please include the manual's edition number and update date in your messages.
gettext
Usually, programs are written and documented in English, and use English at execution time to interact with users. This is true not only of GNU software, but also of a great deal of proprietary and free software. Using a common language is quite handy for communication between developers, maintainers and users from all countries. On the other hand, most people are less comfortable with English than with their own native language, and would prefer to use their mother tongue for day to day's work, as far as possible. Many would simply love to see their computer screen showing a lot less of English, and far more of their own language.
However, to many people, this dream might appear so far fetched that they may believe it is not even worth spending time thinking about it. They have no confidence at all that the dream might ever become true. Yet some have not lost hope, and have organized themselves. The Translation Project is a formalization of this hope into a workable structure, which has a good chance to get all of us nearer the achievement of a truly multi-lingual set of programs.
GNU gettext
is an important step for the Translation Project,
as it is an asset on which we may build many other steps. This package
offers to programmers, translators and even users, a well integrated
set of tools and documentation. Specifically, the GNU gettext
utilities are a set of tools that provides a framework within which
other free packages may produce multi-lingual messages. These tools
include
GNU gettext
is designed to minimize the impact of
internationalization on program sources, keeping this impact as small
and hardly noticeable as possible. Internationalization has better
chances of succeeding if it is very light weighted, or at least,
appear to be so, when looking at program sources.
The Translation Project also uses the GNU gettext
distribution
as a vehicle for documenting its structure and methods. This goes
beyond the strict technicalities of documenting the GNU gettext
proper. By so doing, translators will find in a single place, as
far as possible, all they need to know for properly doing their
translating work. Also, this supplemental documentation might also
help programmers, and even curious users, in understanding how GNU
gettext
is related to the remainder of the Translation
Project, and consequently, have a glimpse at the big picture.
Two long words appear all the time when we discuss support of native language in programs, and these words have a precise meaning, worth being explained here, once and for all in this document. The words are internationalization and localization. Many people, tired of writing these long words over and over again, took the habit of writing i18n and l10n instead, quoting the first and last letter of each word, and replacing the run of intermediate letters by a number merely telling how many such letters there are. But in this manual, in the sake of clarity, we will patiently write the names in full, each time…
By internationalization, one refers to the operation by which a
program, or a set of programs turned into a package, is made aware of and
able to support multiple languages. This is a generalization process,
by which the programs are untied from calling only English strings or
other English specific habits, and connected to generic ways of doing
the same, instead. Program developers may use various techniques to
internationalize their programs. Some of these have been standardized.
GNU gettext
offers one of these standards. See section The Programmer's View.
By localization, one means the operation by which, in a set of programs already internationalized, one gives the program all needed information so that it can adapt itself to handle its input and output in a fashion which is correct for some native language and cultural habits. This is a particularisation process, by which generic methods already implemented in an internationalized program are used in specific ways. The programming environment puts several functions to the programmers disposal which allow this runtime configuration. The formal description of specific set of cultural habits for some country, together with all associated translations targeted to the same native language, is called the locale for this language or country. Users achieve localization of programs by setting proper values to special environment variables, prior to executing those programs, identifying which locale should be used.
In fact, locale message support is only one component of the cultural data that makes up a particular locale. There are a whole host of routines and functions provided to aid programmers in developing internationalized software and which allow them to access the data stored in a particular locale. When someone presently refers to a particular locale, they are obviously referring to the data stored within that particular locale. Similarly, if a programmer is referring to “accessing the locale routines”, they are referring to the complete suite of routines that access all of the locale's information.
One uses the expression Native Language Support, or merely NLS, for speaking of the overall activity or feature encompassing both internationalization and localization, allowing for multi-lingual interactions in a program. In a nutshell, one could say that internationalization is the operation by which further localizations are made possible.
Also, very roughly said, when it comes to multi-lingual messages, internationalization is usually taken care of by programmers, and localization is usually taken care of by translators.
For a totally multi-lingual distribution, there are many things to translate beyond output messages.
gettext
offers a complete toolset for
translating messages output by C programs. Perl scripts and shell
scripts will also need to be translated. Even if there are today some hooks
by which this can be done, these hooks are not integrated as well as they
should be.
autoconf
or bison
, are able
to produce other programs (or scripts). Even if the generating
programs themselves are internationalized, the generated programs they
produce may need internationalization on their own, and this indirect
internationalization could be automated right from the generating
program. In fact, quite usually, generating and generated programs
could be internationalized independently, as the effort needed is
fairly orthogonal.
recode
program is able to reconstruct at execution.
Since these descriptions are extracted from the RFC by mechanical means,
translating them properly would require a prior translation of the RFC
itself.
gcc
to allow diacriticized characters in identifiers or use
translated keywords; ‘rm -i’ might accept something else than
‘y’ or ‘n’ for replies, etc. Even if the program will
eventually make most of its output in the foreign languages, one has
to decide whether the input syntax, option values, etc., are to be
localized or not.
As we already stressed, translation is only one aspect of locales.
Other internationalization aspects are system services and are handled
in GNU libc
. There
are many attributes that are needed to define a country's cultural
conventions. These attributes include beside the country's native
language, the formatting of the date and time, the representation of
numbers, the symbols for currency, etc. These local rules are
termed the country's locale. The locale represents the knowledge
needed to support the country's native attributes.
There are a few major areas which may vary between countries and
hence, define what a locale must describe. The following list helps
putting multi-lingual messages into the proper context of other tasks
related to locales. See the GNU libc
manual for details.
The codeset most commonly used through out the USA and most English speaking parts of the world is the ASCII codeset. However, there are many characters needed by various locales that are not found within this codeset. The 8-bit ISO 8859-1 code set has most of the special characters needed to handle the major European languages. However, in many cases, choosing ISO 8859-1 is nevertheless not adequate: it doesn't even handle the major European currency. Hence each locale will need to specify which codeset they need to use and will need to have the appropriate character handling routines to cope with the codeset.
The symbols used vary from country to country as does the position used by the symbol. Software needs to be able to transparently display currency figures in the native mode for each locale.
The format of date varies between locales. For example, Christmas day in 1994 is written as 12/25/94 in the USA and as 25/12/94 in Australia. Other countries might use ISO 8601 dates, etc.
Time of the day may be noted as hh:mm, hh.mm, or otherwise. Some locales require time to be specified in 24-hour mode rather than as AM or PM. Further, the nature and yearly extent of the Daylight Saving correction vary widely between countries.
Numbers can be represented differently in different locales. For example, the following numbers are all written correctly for their respective locales:
12,345.67 English 12.345,67 German 12345,67 French 1,2345.67 Asia |
Some programs could go further and use different unit systems, like English units or Metric units, or even take into account variants about how numbers are spelled in full.
The most obvious area is the language support within a locale. This is
where GNU gettext
provides the means for developers and users to
easily change the language that the software uses to communicate to
the user.
These areas of cultural conventions are called locale categories. It is an unfortunate term; locale aspects or locale feature categories would be a better term, because each “locale category” describes an area or task that requires localization. The concrete data that describes the cultural conventions for such an area and for a particular culture is also called a locale category. In this sense, a locale is composed of several locale categories: the locale category describing the codeset, the locale category describing the formatting of numbers, the locale category containing the translated messages, and so on.
Components of locale outside of message handling are standardized in
the ISO C standard and the POSIX:2001 standard (also known as the SUSV3
specification). GNU libc
fully implements this, and most other modern systems provide a more
or less reasonable support for at least some of the missing components.
The letters PO in ‘.po’ files means Portable Object, to distinguish it from ‘.mo’ files, where MO stands for Machine Object. This paradigm, as well as the PO file format, is inspired by the NLS standard developed by Uniforum, and first implemented by Sun in their Solaris system.
PO files are meant to be read and edited by humans, and associate each
original, translatable string of a given package with its translation
in a particular target language. A single PO file is dedicated to
a single target language. If a package supports many languages,
there is one such PO file per language supported, and each package
has its own set of PO files. These PO files are best created by
the xgettext
program, and later updated or refreshed through
the msgmerge
program. Program xgettext
extracts all
marked messages from a set of C files and initializes a PO file with
empty translations. Program msgmerge
takes care of adjusting
PO files between releases of the corresponding sources, commenting
obsolete entries, initializing new ones, and updating all source
line references. Files ending with ‘.pot’ are kind of base
translation files found in distributions, in PO file format.
MO files are meant to be read by programs, and are binary in nature.
A few systems already offer tools for creating and handling MO files
as part of the Native Language Support coming with the system, but the
format of these MO files is often different from system to system,
and non-portable. The tools already provided with these systems don't
support all the features of GNU gettext
. Therefore GNU
gettext
uses its own format for MO files. Files ending with
‘.gmo’ are really MO files, when it is known that these files use
the GNU format.
gettext
The following diagram summarizes the relation between the files
handled by GNU gettext
and the tools acting on these files.
It is followed by somewhat detailed explanations, which you should
read while keeping an eye on the diagram. Having a clear understanding
of these interrelations will surely help programmers, translators
and maintainers.
Original C Sources ───> Preparation ───> Marked C Sources ───╮ │ ╭─────────<─── GNU gettext Library │ ╭─── make <───┤ │ │ ╰─────────<────────────────────┬───────────────╯ │ │ │ ╭─────<─── PACKAGE.pot <─── xgettext <───╯ ╭───<─── PO Compendium │ │ │ ↑ │ │ ╰───╮ │ │ ╰───╮ ├───> PO editor ───╮ │ ├────> msgmerge ──────> LANG.po ────>────────╯ │ │ ╭───╯ │ │ │ │ │ ╰─────────────<───────────────╮ │ │ ├─── New LANG.po <────────────────────╯ │ ╭─── LANG.gmo <─── msgfmt <───╯ │ │ │ ╰───> install ───> /.../LANG/PACKAGE.mo ───╮ │ ├───> "Hello world!" ╰───────> install ───> /.../bin/PROGRAM ───────╯ |
As a programmer, the first step to bringing GNU gettext
into your package is identifying, right in the C sources, those strings
which are meant to be translatable, and those which are untranslatable.
This tedious job can be done a little more comfortably using emacs PO
mode, but you can use any means familiar to you for modifying your
C sources. Beside this some other simple, standard changes are needed to
properly initialize the translation library. See section Preparing Program Sources, for
more information about all this.
For newly written software the strings of course can and should be
marked while writing it. The gettext
approach makes this
very easy. Simply put the following lines at the beginning of each file
or in a central header file:
#define _(String) (String) #define N_(String) String #define textdomain(Domain) #define bindtextdomain(Package, Directory) |
Doing this allows you to prepare the sources for internationalization.
Later when you feel ready for the step to use the gettext
library
simply replace these definitions by the following:
#include <libintl.h> #define _(String) gettext (String) #define gettext_noop(String) String #define N_(String) gettext_noop (String) |
and link against ‘libintl.a’ or ‘libintl.so’. Note that on
GNU systems, you don't need to link with libintl
because the
gettext
library functions are already contained in GNU libc.
That is all you have to change.
Once the C sources have been modified, the xgettext
program
is used to find and extract all translatable strings, and create a
PO template file out of all these. This ‘package.pot’ file
contains all original program strings. It has sets of pointers to
exactly where in C sources each string is used. All translations
are set to empty. The letter t
in ‘.pot’ marks this as
a Template PO file, not yet oriented towards any particular language.
See section Invoking the xgettext
Program, for more details about how one calls the
xgettext
program. If you are really lazy, you might
be interested at working a lot more right away, and preparing the
whole distribution setup (see section The Maintainer's View). By doing so, you
spare yourself typing the xgettext
command, as make
should now generate the proper things automatically for you!
The first time through, there is no ‘lang.po’ yet, so the
msgmerge
step may be skipped and replaced by a mere copy of
‘package.pot’ to ‘lang.po’, where lang
represents the target language. See Creating a New PO File for details.
Then comes the initial translation of messages. Translation in itself is a whole matter, still exclusively meant for humans, and whose complexity far overwhelms the level of this manual. Nevertheless, a few hints are given in some other chapter of this manual (see section The Translator's View). You will also find there indications about how to contact translating teams, or becoming part of them, for sharing your translating concerns with others who target the same native language.
While adding the translated messages into the ‘lang.po’ PO file, if you are not using one of the dedicated PO file editors (see section Editing PO Files), you are on your own for ensuring that your efforts fully respect the PO file format, and quoting conventions (see section The Format of PO Files). This is surely not an impossible task, as this is the way many people have handled PO files around 1995. On the other hand, by using a PO file editor, most details of PO file format are taken care of for you, but you have to acquire some familiarity with PO file editor itself.
If some common translations have already been saved into a compendium PO file, translators may use PO mode for initializing untranslated entries from the compendium, and also save selected translations into the compendium, updating it (see section Using Translation Compendia). Compendium files are meant to be exchanged between members of a given translation team.
Programs, or packages of programs, are dynamic in nature: users write bug reports and suggestion for improvements, maintainers react by modifying programs in various ways. The fact that a package has already been internationalized should not make maintainers shy of adding new strings, or modifying strings already translated. They just do their job the best they can. For the Translation Project to work smoothly, it is important that maintainers do not carry translation concerns on their already loaded shoulders, and that translators be kept as free as possible of programming concerns.
The only concern maintainers should have is carefully marking new
strings as translatable, when they should be, and do not otherwise
worry about them being translated, as this will come in proper time.
Consequently, when programs and their strings are adjusted in various
ways by maintainers, and for matters usually unrelated to translation,
xgettext
would construct ‘package.pot’ files which are
evolving over time, so the translations carried by ‘lang.po’
are slowly fading out of date.
It is important for translators (and even maintainers) to understand that package translation is a continuous process in the lifetime of a package, and not something which is done once and for all at the start. After an initial burst of translation activity for a given package, interventions are needed once in a while, because here and there, translated entries become obsolete, and new untranslated entries appear, needing translation.
The msgmerge
program has the purpose of refreshing an already
existing ‘lang.po’ file, by comparing it with a newer
‘package.pot’ template file, extracted by xgettext
out of recent C sources. The refreshing operation adjusts all
references to C source locations for strings, since these strings
move as programs are modified. Also, msgmerge
comments out as
obsolete, in ‘lang.po’, those already translated entries
which are no longer used in the program sources (see section Obsolete Entries). It finally discovers new strings and inserts them in
the resulting PO file as untranslated entries (see section Untranslated Entries). See section Invoking the msgmerge
Program, for more information about what
msgmerge
really does.
Whatever route or means taken, the goal is to obtain an updated ‘lang.po’ file offering translations for all strings.
The temporal mobility, or fluidity of PO files, is an integral part of the translation game, and should be well understood, and accepted. People resisting it will have a hard time participating in the Translation Project, or will give a hard time to other participants! In particular, maintainers should relax and include all available official PO files in their distributions, even if these have not recently been updated, without exerting pressure on the translator teams to get the job done. The pressure should rather come from the community of users speaking a particular language, and maintainers should consider themselves fairly relieved of any concern about the adequacy of translation files. On the other hand, translators should reasonably try updating the PO files they are responsible for, while the package is undergoing pretest, prior to an official distribution.
Once the PO file is complete and dependable, the msgfmt
program
is used for turning the PO file into a machine-oriented format, which
may yield efficient retrieval of translations by the programs of the
package, whenever needed at runtime (see section The Format of GNU MO Files). See section Invoking the msgfmt
Program, for more information about all modes of execution
for the msgfmt
program.
Finally, the modified and marked C sources are compiled and linked
with the GNU gettext
library, usually through the operation of
make
, given a suitable ‘Makefile’ exists for the project,
and the resulting executable is installed somewhere users will find it.
The MO files themselves should also be properly installed. Given the
appropriate environment variables are set (see section Setting the Locale through Environment Variables),
the program should localize itself automatically, whenever it executes.
The remainder of this manual has the purpose of explaining in depth the various steps outlined above.
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by Bruno Haible on February, 21 2024 using texi2html 1.78a.